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Abstract

Connectedness of efficient solutions is a powerful property in multiple objective com-

binatorial optimization since it allows the construction of the complete efficient set

using neighborhood search techniques. In this paper we show that, however, most of

the classical multiple objective combinatorial optimization problems do not possess the

connectedness property in general, including, among others, knapsack problems (and

even several special cases of knapsack problems) and linear assignment problems. We

also extend already known non-connectedness results for several optimization problems

on graphs like shortest path, spanning tree and minimum cost flow problems. Different

concepts of connectedness are discussed in a formal setting, and numerical tests are

performed for different variants of the knapsack problem to analyze the likelihood with

which non-connected adjacency graphs occur in randomly generated problem instances.

Keywords: Multiple objective combinatorial optimization; MOCO; connectedness; adja-

cency; neighborhood search

1 Introduction and problem formulation

Multiple objective combinatorial optimization (MOCO) has become a quickly growing

field in multiple objective optimization, and has recently attracted the attention of re-

searchers both from the fields of multiple objective optimization and from single objective
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integer programming (see, for example, Ehrgott and Gandibleux (2000) for a recent re-

view). Typical examples of MOCO problems include multiple objective knapsack problems

(MOKP) with applications, among others, in capital budgeting, multiple objective assign-

ment problems (MOAP), the multiple objective traveling salesman problem (MTSP), and

other network problems like multiple objective minimum spanning tree (MOST), shortest

path (MOSP), and minimum cost flow (MOMC) problems.

Structural properties of the efficient set of MOCO problems play a crucial role for the

development of efficient solution methods. A central question relates to the connectedness

of the efficient set with respect to combinatorially or topologically motivated neighborhood

structures. A positive answer to this question would provide a theoretical justification for

the application of fast neighborhood search techniques, not only for multiple objective but

also for appropriate formulations of single objective problems.

Formally, a general MOCO problem can be stated as

min f(x) = (f1(x), . . . , fp(x))T

s.t. x ∈ X,

where the decision space X is a given discrete feasible set with some additional combi-

natorial structure. The vector-valued objective function f : X −→ Z
p maps the feasible

solutions into the objective space. Y := f(X) denotes the image of the feasible set in the

objective space.

We use the Pareto concept of optimality for MOCO problems which is based on the

componentwise ordering of Z
p defined for any pair y1, y2 ∈ Z

p by

y1 ≦ y2 ⇔ y1
k ≤ y2

k, k = 1, . . . , p

y1 ≤ y2 ⇔ y1
k ≤ y2

k, k = 1, . . . , p and y1 6= y2

y1 < y2 ⇔ y1
k < y2

k, k = 1, . . . , p.

A point y2 ∈ Z
p is called dominated by y1 ∈ Z

p if y1 ≤ y2. According to the Pareto

concept of optimality, the efficient set XE and the weakly efficient set XwE are defined as

XE := {x ∈ X : there exists no x̄ ∈ X with f(x̄) ≤ f(x)}

XwE := {x ∈ X : there exists no x̄ ∈ X with f(x̄) < f(x)}.

The images YN := f(XE) and YwN := f(XwE) of these sets under the vector-valued

mapping f are called the nondominated set and the weakly nondominated set, respectively.

In continuous optimization connectedness is defined in a topological sense. A set S is

called topologically connected if there does not exist nonempty open sets S1 and S2 such

that S ⊆ S1 ∪ S2 and S1 ∩ S2 = ∅. For multiple objective linear programming (MOLP)
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problems the efficient set and the nondominated set are topologically connected as shown

by Naccache (1978) and Warburton (1983), respectively. This definition is not directly

applicable in combinatorial optimization due to the discrete structure of the efficient set.

Instead of the topological connectedness, a graph theoretical definition can be used for

MOCO problems as described, for example, in Ehrgott and Klamroth (1997) and Paquete

and Stützle (2006).

Definition 1.1 For a given MOCO problem the adjacency graph of efficient solutions

G = (V,A) of the MOCO problem is defined as follows: V consists of all efficient solutions

of the given MOCO problem. An (undirected) edge is introduced between all pairs of

vertices which are adjacent with respect to the considered definition of adjacency for the

given MOCO problem. These edges form the set A.

The connectedness of XE is now defined via the connectedness of an undirected graph.

We recall that an undirected graph G is said to be connected if every pair of vertices is

connected by a path.

Definition 1.2 The set XE of all efficient solutions of a given MOCO problem is said to

be connected if its corresponding adjacency graph G is connected.

Since for MOCO problems the adjacency of two efficient solutions x and x′ can usually

be expressed by an application of some so-called elementary move (i.e., x can be obtained

from x′ by applying exactly one move), a neighborhood concept is introduced to the

problem. An efficient solution x′ is contained in the k-neighborhood of an efficient solution

x if x′ is reachable from x by applying at most k elementary moves. The minimum number

of elementary moves needed to get from x to x′ is called the distance between these

two solutions. Using this concept, the definition of the adjacency graph can be further

extended.

Definition 1.3 The weighted adjacency graph G′ = (V ′,A′) of efficient solutions is de-

fined as follows: G′ is a complete and undirected graph. Its set of vertices V ′ consists of

all efficient solutions of the given MOCO problem. The weight wij of an arc between to

vertices vi, vj ∈ V ′ is given by the distance between these two vertices with respect to the

considered neighborhood.

For each k ∈ N a subgraph G′
k can be extracted from G′ that contains all the vertices of G′

but only those arcs which have a weight less or equal to k. Since G = G′
1, XE is connected

if and only if G′
1 is connected. If XE is not connected, the graph G′

1 decomposes into at

least two connected subgraphs which build a partition of G′
1. More generally we define:
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Definition 1.4 A component or a cluster of efficient solutions at distance k is a maximal

connected subgraph of G′
k.

If G′
k is a connected graph, there exists exactly one component which is equal to G′

k.

Otherwise, the set of all components build a partition of G′
k.

Literature review

The literature on the connectedness of the set of efficient solutions in multiple objective

optimization is scarce. The first publications appeared in the seventies together with the

development of the multiple objective simplex method. In his fundamental work, Isermann

(1977) showed that the set of basic feasible and fundamental solutions of MOLP problems

are connected and, thus, established the correctness of multiple objective simplex methods.

Two solutions of an MOLP problem are said to be adjacent in the sense of Isermann (1977)

if they have m − 1 basic variables in common. Naccache (1978) established connectivity

for more general problems with closed, convex and K-compact outcome spaces where K is

a closed, convex and pointed cone. Helbig (1990) generalized this to locally convex spaces.

Lately, research on the connectedness of efficient solutions of MOCO problems was

coined by assertions and falsifications. Martins (1984) claimed that there always exists a

sequence of adjacent efficient paths connecting two arbitrary efficient paths for MOSP.

However, Ehrgott and Klamroth (1997) demonstrated the incorrectness of the con-

nectedness conjecture for MOSP and MOST problems by a counterexample and, thus,

disproved Martins (1984). Ehrgott and Klamroth (1997) showed that any graph can be

extended in such a way that the adjacency graph (of MOSP and MOST) for the problem

on the extended graph is not connected. They conjectured that in practice, it is rather

unlikely that the adjacency graph of a specific MOST problem is not connected. However,

their numerical tests included only 50 randomly generated graphs with a rather small

number of nodes.

In Przybylski et al. (2006), the example of Ehrgott and Klamroth (1997) was used to

show the incorrectness of the algorithm of Sedeño-Noda and González-Mart́ın (2001). The

latter tried to find all efficient flows of a biobjective integer flow problem by a method

based on simplex pivots.

O’Sullivan and Walker (2004) proposed two algorithms for the equally-weighted biob-

jective knapsack problem the success of which depends on “unproven characteristics of

efficient knapsacks” - the connectedness of the set of efficient solutions for this problem.

In da Silva et al. (2004), the geometrical configuration of the nondominated set for

three different models of the biobjective {0, 1}-knapsack problem was discussed. Under
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a cardinality constraint and the supplementary assumption that the sum of each pair of

the objective coefficients is constant, it was shown that the set of all efficient solutions is

connected. In this case, the nondominated set consists of a line segment with slope −1.

An LP-based approach is used to define adjacency of two efficient solutions.

Gorski (2004) recognized that the definition of adjacency is not canonical. One could

think of structural, problem-dependent definitions or of LP-based, problem independent

definitions. Based on ideas mentioned in Ehrgott and Klamroth (1997), he aimed at a

formal definition of adjacency.

The numerical study of Paquete et al. (2004) investigates the number of clusters of near

efficient solutions obtained with some local search algorithms for the MTSP. In Paquete

and Stützle (2006) statistics on the clusters of near efficient solutions for the biobjec-

tive travelling salesman problem and the biobjective quadratic assignment problem are

reported. A stochastic local search method was employed to retrieve the near optimal

solutions. It should be pointed out that neither the solutions obtained are guaranteed to

be efficient, nor that all efficient solutions are found by the local search method. Thus, the

focus of this study is on the performance assessment of local search for the two MOCO

problems mentioned.

Some comments on the connectedness of efficient solutions for biobjective multimodal

assignment problems are also contained, but not further persued, in Pedersen (2006).

Contribution of this work

The remainder of this article is organized as follows. In Section 2, we discuss different

definitions of adjacency of feasible solutions of a MOCO problem. On one hand, adjacency

may be defined based on appropriate IP-formulations of a given problem and using the

natural neighborhood of basic feasible solutions of linear programming. For many con-

crete problems, however, it appears to be more convenient to consider a combinatorial

neighborhood. In Section 3 we discuss and extend existing results for the MOSP and the

MOST problem and present new connectedness results for other major classes of MOCO

problems like the MOKP, the MOAP and the MTSP, among others. We report numerical

tests on adjacency of efficient solutions for the binary MOKP with bounded cardinalities

and the binary multiple choice MOKP in Section 4. Finally, we conclude the paper in

Section 5 with current and future research ideas.

2 Categorizing different concepts of adjacency

We distinguish between two essentially different concepts of adjacency of efficient solutions:
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• The adjacency of two efficient solutions is defined via the adjacency of basic feasible

solutions of an appropriate model of the MOCO problem as a multiple objective

integer linear programming (MILP) problem, and its LP relaxation.

• The definition of adjacency is adapted to the special combinatorial structure of the

given MOCO problem.

While the latter concept has received some attention in the recent literature, for example,

in the context of neighborhood search algorithms (see, for example, Paquete and Stützle,

2006), the former has only been used so far for special types of MOCO problems (cf.

Ehrgott and Klamroth (1997), for the MOSP and the MOST and da Silva et al. (2004) for

{0, 1}-knapsack problems). Subsequently, we formalize these two concepts of adjacency.

2.1 MILP-based definition of adjacency and appropriate MILP models

For the MILP-based definition, we assume that the MOCO problem can be formulated

as a combinatorial optimization problem with weighted-sum type objective functions as

specified in Definition 2.1 below.

Definition 2.1 Let E := {e1, . . . , en} be a nonempty finite set, let c : E → Z
p, p > 1,

be an integer-valued weighting function on the elements of E, and let Z ⊆ P(E) be a

subset of the powerset of E. A multiple objective combinatorial sum problem (E,Z, c) is

a problem of the form

min

{

∑

e∈Z

c(e) : Z ∈ Z

}

. (1)

As described in Ehrgott (2005), every feasible solution Z ∈ Z of a MOCO problem (1)

can be identified with a binary vector x ∈ {0, 1}n by setting

xi :=

{

1 if ei ∈ Z

0 otherwise.
(2)

The weight
∑

e∈Z c(e) of a solution Z and of its binary representation x can be computed

as Cx using an appropriate objective matrix C ∈ Z
p×n with components cij := ci(ej) for

i = 1, . . . , p and j = 1 . . . , n.

Theorem 2.1 Every multiple objective combinatorial sum problem (1) can be modeled as

an MILP problem of the form

min {Cx : Ax ≦ b, x ∈ {0, 1}n},
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using variables x as defined in (2) and with an appropriate constraint matrix A ∈ Z
m×n

and right-hand-side vector b ∈ Z
m, such that there is a one-to-one correspondence between

all feasible (and particulary all efficient) solutions of the two problems.

Proof: See Ehrgott (2005) and Gorski (2004). �

We refer to a formulation of a MOCO problem according to Theorem 2.1 as a canonical

MILP formulation of the MOCO problem. Note that a canonical MILP formulation is in

general not unique. For the sake of simplicity we assume in the following that a canonical

MILP formulation is given. This is, however, not a necessary assumption for our analysis.

Namely, instead of a canonical MILP formulation we may consider any MILP formulation

of the problem that satisfies the conditions of Definition 2.3 below, i.e., there is a one-to-

one correspondence between the feasible solutions of the MOCO problem and the extreme

points of the LP relaxation of the MILP problem.

Denote by U := {x ∈ {0, 1}n : Ax ≦ b}, P := {x ∈ [0, 1]n : Ax ≦ b} and P ∗ := {x ∈

R
n : x ∈ conv(U)} the feasible set of a canonical MILP formulation, the feasible set of

the LP relaxation of the MILP problem, and the convex hull of all feasible solutions of

the MILP problem, respectively.

Definition 2.2 If the polytope P of the LP relaxation of a canonical MILP formulation

coincides with the polytope P ∗, we say that min {Cx : Ax ≦ b, x ∈ {0, 1}n} is an exact

MILP formulation of the given MOCO problem.

In order to use an LP-based definition of adjacency, a one-to-one correspondence between

feasible solutions of the MOCO problem and basic feasible solutions of the LP relaxation of

the corresponding MILP formulation is indispensable. We therefore restrict our analysis to

exact MILP formulations of a given MOCO problem. Note that otherwise there may exist

basic feasible solutions of the LP relaxation of the (non-exact) MILP formulation which

are not integer and which do not correspond to feasible solutions of the MOCO problem.

On the other hand, every feasible solution of the MOCO problem must correspond not

only to a feasible solution of its (exact) MILP formulation, but to a basic feasible (or

extreme point) solution of the LP relaxation of the MILP problem.

Definition 2.3 An MILP formulation of a given MOCO problem is called appropriate if

it satisfies the following two conditions:

• The MILP formulation is exact, i.e., P = P ∗.

• Every feasible solution of the MILP problem is an extreme point of P ∗.
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Polyhedral theory can be used to show that for every MOCO problem at least one appro-

priate MILP formulation exists.

Lemma 2.1 There exists at least one appropriate MILP formulation for every MOCO

problem (E,Z, c).

Proof: Suppose that an arbitrary MOCO problem (E,Z, c) is given, let U denote the

set of all feasible binary vectors for the canonical formulation of the MOCO problem (cf.

Theorem 2.1), and let P ∗ denote the convex hull of U . Then an exact formulation of the

problem is given by

min {Cx : x ∈ U}. (3)

Since all vectors x ∈ U are binary, they are essential for the generation of the convex hull

P ∗ of U . Hence, problem (3) is equivalent to

min {Cx : x ∈ P ∗, x ∈ {0, 1}n}, (4)

and every feasible solution of this problem is an extreme point of P ∗. Moreover, since all

feasible vectors x ∈ U are essential for the generation of P ∗, there exists a description of

P ∗ by means of a finite set of linear inequalities of the form P ∗ = {x ∈ R
n : Ãx ≦ b̃} with

appropriate rational Ã ∈ Z
m̃×n and b ∈ Z

m̃ (see, for example, Nemhauser and Wolsey,

1999), yielding an appropriate MILP formulation for problem (4) and hence for the MOCO

problem. �

Note that the polytope P ∗ of an appropriate MILP formulation of MOCO problem does

not contain any integer points in its interior nor in the interior of any of its faces.

The following two properties can be derived for an appropriate MILP formulation of

a MOCO problem which will be used later for the LP-based definition of adjacency.

Lemma 2.2 If an MILP formulation of a MOCO problem is appropriate, then its LP

relaxation, after transformation into standard form, has the following two properties:

(M1) Every basic feasible solution corresponds to a feasible solution of the MOCO problem.

(M2) For every feasible solution of the MOCO problem there exists at least one basis such

that the solution of the MOCO problem is equal to the corresponding basic feasible

solution of the above LP relaxation of the MILP problem in standard form.

Proof: Follows immediately from the analysis above and from polyhedral theory. �
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Lemma 2.3 Suppose that a MOCO problem is given by an (arbitrary binary) MILP for-

mulation. If the LP relaxation of the MILP problem, after transformation into standard

form, satisfies (M1) and (M2), then the MILP problem is an appropriate formulation of

the MOCO problem.

Proof: Let the MILP formulation of the MOCO problem be given as min{Cx : Ax ≦

b, x ∈ {0, 1}n} and let U , P and P ∗ be defined as above. Furthermore, let Up denote the

finite set of all extreme points of P . Since we assumed that the MOCO problem is finite

and E 6= ∅, P is bounded and hence P = conv{up ∈ Up}.

We first show that P = P ∗. By construction we have that P ∗ ⊆ P . To show that also

P ⊆ P ∗ suppose that, to the contrary, there exists an extreme point x0 ∈ Up ⊆ P that is

not contained in P ∗. Since x0 ∈ P , x0 satisfies Ax0 ≦ b and x0 ∈ [0, 1]n. Furthermore,

since x0 is an extreme point of P there exists a basic feasible solution of the LP relaxation of

the MILP problem (after transformation into standard form) corresponding to x0. Hence,

x0 ∈ {0, 1}n by (M1) and therefore x0 ∈ U , contradicting the assumption that x0 6∈ P ∗.

Since (M2) and Theorem 2.1 imply that there is a one-to-one correspondence between

feasible solutions u of the MILP problem and feasible solution Z ∈ Z of the MOCO

problem, the MILP problem is indeed an appropriate formulation of the MOCO problem.
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Figure 1: Definition of adjacency via an appropriate MILP formulation.

Since properties (M1) and (M2) characterize appropriate MILP formulations of MOCO

problems, they can be used for the definition of an LP-based concept of adjacency for these

problems. Figure 1 illustrates this idea. In this context, two bases of an LP are called

adjacent if they can be obtained from each other by one single pivot operation.
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Definition 2.4 Let an appropriate MILP formulation of a MOCO problem be given. Two

feasible solutions x1 and x2 of the MOCO problem are called adjacent with respect to the

given MILP formulation if there exist two adjacent bases of the LP relaxation of the MILP

problem (after transformation into standard form) corresponding to x1 and x2, respectively.

Since by MOLP theory all bases which represent efficient solutions of the LP relaxation

of the MILP problem in standard form are connected (see, for example, Ehrgott, 2005),

the resulting adjacency graph always contains a connected subgraph representing these

solutions. Note that these solutions are always supported efficient solutions of the MOCO

problem.

The above definition of adjacency (and hence the resulting adjacency graph) depends

on the chosen appropriate MILP formulation of the given MOCO problem, which is in

general not unique. If different appropriate MILP formulations are used to model the

same MOCO problem, we can expect different results concerning the connectedness of

efficient solutions of the problem. In this context, Definitions 1.1 and 1.2 must always

be understood with respect to the chosen appropriate MILP formulation of a MOCO

problem.

Note also that, using the above definitions of adjacency and connectedness, polyhedral

theory implies that the set of optimal solutions of a single objective combinatorial opti-

mization problem is always connected (or even unique). Therefore, the question whether

the corresponding multiple objective optimization problems have a connected adjacency

graph is in general non-trivial.

The following well-known fact from polyhedral theory shows that the last step in

Figure 1, i.e., the transformation of the LP relaxation of the MILP problem into standard

form, can as well be omitted in the definition of adjacency (Definition 2.4) since the

considered MILP problems are always bounded problems.

Proposition 2.1 Let P = {x ∈ [0, 1]n : Ax ≦ b} be the feasible set of an LP and let

Pst denote the polyhedron obtained from P after transformation into standard from. Then

two extreme points of P are connected by an edge in P if and only if the corresponding

extreme points of Pst are connected by an edge in Pst.

2.2 Combinatorial definitions of adjacency

Combinatorial definitions of adjacency are usually based on simple operations that trans-

form one feasible solution of a specific problem class into another, “adjacent” feasible

solution. We call such operations (elementary) moves. An elementary move is called ef-

ficient if it leads from one efficient solution of the problem to another efficient solution.
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Two efficient solutions are called adjacent if one can be obtained from the other by one

efficient move.

Examples for elementary moves for specific problem classes are the insertion and dele-

tion of arcs in a spanning tree, the modification of a matching along an alternating cycle,

or simply the swap of two bits in a binary solution vector. In single objective optimiza-

tion such elementary moves are frequently used in exact algorithms (e.g., the negative

dicycle algorithm for the minimum cost flow problem) as well as in heuristic algorithms

(e.g., the two-exchange heuristic for the TSP). Note that for specific problem classes, a

combinatorial definition of adjacency may in fact coincide with an MILP-based definition

of adjacency as discussed in Section 2.1.

While for the MILP-based definition of adjacency the set of optimal solutions of the

single objective problem corresponding to a given MOCO problem is always connected

in the sense of Definition 1.1 (cf. Section 2.1), this is not necessarily true for combina-

torial definitions of adjacency. We call an elementary move for a given problem class

canonical if the set of optimal solutions of the corresponding single objective problem is

connected for all problem instances. Although non-canonical moves immediately imply

non-connectedness results also in the multiple objective case, such extensions may be used

for the development of heuristic methods based on neighborhood search (see, for example,

Paquete and Stützle, 2006).

For some classes of combinatorial problems, an elementary move corresponds to a move

from one extreme point to another adjacent extreme point along an edge of the polytope

which is obtained by the LP relaxation of an MILP formulation of the given combinatorial

problem (cf. Definition 2.4). If the given MILP formulation is appropriate in the sense of

Definition 2.3, the corresponding elementary move is always canonical.

Proposition 2.2 Let a move-operation introduce a combinatorial definition of adjacency

for a class of MOCO problems for which also an appropriate MILP formulation exists,

and let P denote the polytope of its LP relaxation. If there is a one-to-one correspondence

between the set of all possible elementary moves between feasible solutions of the MOCO

problem and the edge-structure of P , i.e., solution x1 can be obtained from x2 by an

elementary move if and only if the x1, x2-corresponding extreme points of P are connected

by an edge in P , then the resulting adjacency graphs for the combinatorial definition and

the MILP-based definition of adjacency coincide.

Proof: Immediate consequence of Proposition 2.1. �
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3 Connectedness results for specific multiple objective com-

binatorial optimization problems

In this section, adjacency of efficient solutions is comprehensively investigated for various

combinatorial optimization problems. Due to intended clarity and legibility, each of these

fundamental problems is treated in a separate paragraph. On the one hand this list

contains - to the best of our knowledge - all results available in the literature. The more

significant part of this section yet contains two major components.

First, we investigate the question of adjacency of the graph of efficient solutions for

problems which have not been treated in the literature so far. Second, the concept of adja-

cency of the graph of efficient solutions is extended and structural properties of this graph

and its extensions are investigated. The latter is done exemplarily for MOSP problems.

Treating all of the combinatorial optimization problems in this section likewise certainly

goes beyond the scope of this work. Nevertheless, it should be emphasized that analogous

results can be achieved for other problems utilizing similar techniques.

3.1 Shortest path problems

Let G = (V, A) be a directed graph with source node s and sink node t. The multiple

objective shortest path problem (MOSP) can be formulated as

min (c1x, . . . , cpx)T

s.t.
n
∑

j=1

xij −
n
∑

j=1

xji =















1, if i = s

0, if i ∈ {1, . . . , n} \ {s, t}

−1, if i = t.

(5)

Ehrgott and Klamroth (1997) called two efficient paths adjacent if they correspond to two

adjacent basic feasible solutions of the linear program (5). Gorski (2004) showed that

this LP formulation is appropriate in the sense of Definition 2.3. Furthermore, in Ehrgott

and Klamroth (1997) it is shown that every given graph G = (V, A) with cost vectors

c1, . . . , cp : A → R+ can be extended in such a way that the adjacency graph of the MOSP

on the extended graph is not connected.

For this problem, a combinatorial definition of adjacency can be derived which is

equivalent to the MILP-based definition. Paths are associated with flows and the residual

flow of two paths is used to decide whether they are adjacent. A shortest path P1 is

adjacent to shortest path P2 if the symmetric difference of their arc set in the residual

graph corresponds to a single cycle. Note that these definitions are canonical extensions

of the single objective case in the sense of Section 2.2.
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Figure 2: Digraph from Ehrgott and Klamroth (1997)

In Figure 2 the digraph used in Ehrgott and Klamroth (1997) is depicted. All efficient

paths are indicated in Figure 3 together with their cost values. It is easy to verify that

P8 is not connected to any other efficient path. The adjacency graph has two connected

components, {P8} being a singleton and {Pi : 1 ≤ i ≤ 12, i 6= 8}. This implies the

following result.

Proposition 3.1 (Ehrgott and Klamroth (1997)) The adjacency graphs of efficient

shortest paths are non-connected in general.

In the example of Ehrgott and Klamroth (1997) the set of weakly efficient solutions is

connected. Consequently, investigating the adjacency graph of weakly efficient solutions

suggests itself. A slight modification of the previous example, depicted in Figure 4, proves

that this definition does also not result in a connected adjacency graph in general.

Proposition 3.2 The adjacency graphs of weakly efficient shortest paths are non-

connected in general.

In all examples so far, only two connected components of the adjacency graphs exist.

One of them consists of a single element, while the second comprises all other (weakly)

efficient solutions. Yet in general, we can derive the following structural property.

Proposition 3.3 In general, the number of connected components and the cardinality of

the components are exponentially large in the size of the input data.

Proof: Suppose we have k copies of the graph shown in Figure 4. The cost vectors of

copy k are multiplied by the factor 100k. These k copies are connected sequentially by
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Figure 3: All efficient shortest paths for the example shown in Figure 2 and their objective

vectors
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s1 s12 s2 s22 s3 s32 s4

s11 s21 s31

s13 s23 s33

� � �

R R R
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R R R

� � �

(0, 0) (0, 0) (0, 0)(71, 11) (1, 71) (201, 61)

(0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0)

(90, 0) (100, 0) (0, 190)

(10, 20) (70, 10) (10, 150)

Figure 4: Modified digraph from Ehrgott and Klamroth (1997)

connecting node s4 of copy i, i = 1, . . . , k− 1, with node s1 of copy i+1 using an arc with

costs (0, 0). The resulting adjacency graph has (19 · k− 1) arcs and 2k different connected

components. The largest component subsumes 11k efficient solutions, the second largest

11k−1 efficient solutions, and so on. �

3.2 Minimum spanning tree problems

Let G = (V, A) be an undirected graph with |V | = n nodes, and denote by A(S) := {a =

[i, j] ∈ A : i, j ∈ S} the subset of edges in the subgraph of G induced by S ⊆ V . The

multiple objective spanning tree (MOST) problem can be formulated as

min (c1x, . . . , cpx)T

s.t.
∑

a∈A

xa = n − 1

∑

a∈A(S)

xa ≤ |S| − 1 ∀S ⊆ V

xa ∈ {0, 1}.

(6)

In Ehrgott and Klamroth (1997) a combinatorial definition of adjacency for efficient span-

ning trees was considered. Two spanning trees are adjacent if they have n − 2 arcs in

common. Non-connectivity of the adjacency graph was proven in this case also with the

help of the graph of Figure 4, as there exists a one-to-one correspondence between ef-

ficient shortest paths and efficient spanning trees. It was also shown that every given

graph can be extended in such a way that the adjacency graph for the multiple objective

spanning tree problem in the new graph is non-connected. Gorski (2004) showed that the
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MILP formulation (6) is appropriate in the sense of Definition 2.3. The counter-example

of Ehrgott and Klamroth (1997) was used to prove that the adjacency graph of MOST is

also non-connected in this case.

Proposition 3.4 (Ehrgott and Klamroth (1997)) The adjacency graphs considered

above for the multiple objective spanning tree problem are non-connected in general.

Note that for the spanning tree problem there exists a subclass of problems where the

adjacency graph for both the combinatorial and the MILP-based definition of adjacency

is always connected. This subclass is the set of all graphs which contain exactly one cycle.

3.3 Minimum cost flow problems

Let G = (V, A) be a directed graph with capacities uij ≥ 0 for every edge (i, j) ∈ A and

supply / demand values bi for every node i ∈ V . The multiple objective minimum cost

flow problem (MOMC) can be formulated as

min (c1x, . . . , cpx)T

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀ i ∈ N

0 ≤ xij ≤ uij ∀ (i, j) ∈ A.

(7)

For the MOMC two efficient solutions are said to be adjacent if there exists a pivot

operation between two bases corresponding to these solutions or, equivalently, if two span-

ning trees representing the solutions exist which differ by one edge only. This definition of

adjacency is an extension of the definition for the shortest path problem and the spanning

tree problem. Using the counter-example of Ehrgott and Klamroth (1997) and arguing

that the shortest path problem is a particular case of the minimum cost flow problem,

Przybylski et al. (2006) conclude that the adjacency graph of the minimum cost flow

problem is not connected in general.

3.4 Optimization problems on matroids

A natural, combinatorial definition of adjacency for matroids is to call two solutions (con-

sisting of n elements each) adjacent if they have n − 1 elements in common. Since the

MOST is an example for a multiple objective minimization problem on a matroid for

which we have shown non-connectedness with respect to this definition of adjacency in

Section 3.1, we can conclude that the adjacency graph of such problems is in general

non-connected.
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3.5 Binary knapsack problems

For the {0, 1}-knapsack problem some results concerning the connectedness of the set of

efficient solutions can be found in the recent literature. In da Silva et al. (2004), three

different models of {0, 1}-knapsack problems were studied and some connectedness results

using an MILP-based definition of adjacency were presented for very specific problem

classes. O’Sullivan and Walker (2004) proposed two algorithms for the equally-weighted

bicriteria knapsack problem using a combinatorial definition of adjacency. These algo-

rithms are only guaranteed to find the set of all efficient solutions under the assumption

that this set is connected. We review the ideas of these two papers and show that the

set of efficient solutions is in general non-connected neither in the sense of adjacency in

da Silva et al. (2004) nor in the sense of adjacency in O’Sullivan and Walker (2004).

We consider a special class of {0, 1}-knapsack problems with equal weights and bounded

cardinality, i.e.,

max (c1x, c2x)T

s.t.
n
∑

i=1

xi = k

xi ∈ {0, 1}, i = 1 . . . , n,

(8)

where cj
i ≥ 0 represents the value of item i on criterion j, k ∈ N with k ≤ n denotes the

number of items that can be selected, and variables xi = 1 if and only if item i is included

in the knapsack. Let KP (n, k) denote an instance of (8). Obviously, this problem has
(

n
k

)

feasible solutions. As mentioned in da Silva et al. (2004), (8) can be relaxed to the

case that at most k items have to be chosen. Since all item values are non-negative, every

efficient solution will have maximum cardinality.

We start our analysis with a combinatorial definition of adjacency which is also used

in O’Sullivan and Walker (2004).

Definition 3.1 Two efficient knapsacks x = (x1, . . . , xn)T and x′ = (x′
1, . . . , x

′
n)T of

KP (n, k) are called adjacent if x′ can be obtained from x by replacing one item in x with

one item of x′ which is not contained in x.

Note that this elementary move is canonical. Two efficient knapsacks x and x′ are adjacent

if and only if
n
∑

i=1
|xi − x′

i|=2, i.e., if their Hamming distance is 2. For n ∈ {1, 2, 3, 4} or

k ∈ {0, 1, n − 1, n} it is easy to see that KP (n, k) has a connected adjacency graph.

Proposition 3.5 The adjacency graph of KP (n, k) is connected for n ∈ {1, 2, 3, 4} or

k ∈ {0, 1, n − 1, n}.
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In da Silva et al. (2004) another sufficient condition yielding a connected adjacency

graph is specified.

Proposition 3.6 (da Silva et al. (2004)) Let an instance KP (n, k) be given such that

c1
i + c2

i = α for all i = 1, . . . , n and for some α ∈ N. Then all
(

n
k

)

feasible solutions are

efficient solutions of (8) and hence, the adjacency graph of the problem is connected.

Unfortunately, this connectedness result is no longer valid for the general case.

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

Figure 5: Nondominated set of the non-connected example problem used in the proof

of Proposition 3.7. The nondominated set consists of two connected components, one

indicated by circles, the other - a singleton - indicated by a diamond.

Proposition 3.7 The adjacency graph of a {0, 1}-knapsack problem of the form (8) with

adjacency defined as in Definition 3.1 is non-connected in general.

Proof: Consider KP (15, 3) with the objective function vectors

(

c1x

c2x

)

=

(

55 51 48 44 37 36 27 16 14 10 8 5 3 1 0

0 3 6 18 19 26 27 28 29 39 41 47 49 50 52

)

.

The problem has 455 feasible and 59 efficient solutions (cf. Figure 5). All efficient solutions

S1, . . . , S59 and their corresponding objective function vectors are listed in Table 1. Using

the plotted boxes it is easy to verify that the efficient solution S11 is not adjacent to any
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C x x S

4 151 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 S1

6 149 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 S2

8 148 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 S3

9 146 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 S4

11 142 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 S5

13 140 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 S6

13 140 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 S7

15 138 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 S8

16 137 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 S9

18 135 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 S10

19 130 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 S11

28 129 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 S12

37 128 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 S13

39 127 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 S14

41 125 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 S15

42 123 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 S16

44 122 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 S17

45 120 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 S18

47 119 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 S19

49 117 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 S20

50 115 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 S21

52 114 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 S22

54 109 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 S23

55 108 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 S24

57 106 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 S25

57 106 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 S26

63 105 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 S27

64 103 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 S28

66 102 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 S29

68 100 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 S30

73 97 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 S31

80 96 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 S32

81 94 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 S33

83 93 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 S34

85 91 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 S35

88 85 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 S36

90 83 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 S37

91 78 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 S38

92 76 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 S39

92 76 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 S40

92 76 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 S41

94 75 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 S42

96 73 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 S43

100 72 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 S44

107 71 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 S45

108 64 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 S46

117 63 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 S47

118 53 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 S48

121 51 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 S49

128 50 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 S50

131 47 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 S51

135 44 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 S52

136 37 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 S53

139 32 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 S54

142 29 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 S55

143 27 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 S56

147 24 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 S57

150 21 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 S58

154 9 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 S59

Table 1: All efficient solutions of the example used in the proof of Proposition 3.7.
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other solution in the sense of Definition 3.1. Consequently, the adjacency graph of the

given problem which can be seen in Figure 6 is non-connected. �

Figure 6: Adjacency graph of the non-connected example problem used in the proof of

Proposition 3.7.

Corollary 3.1 The algorithms proposed by O’Sullivan and Walker (2004) for solving the

{0, 1}-knapsack problem with equal weights and bounded cardinality fail to compute the set

of efficient solutions in general.

In Section 4, we report about numerical results indicating the likelihood that a non-

connected adjacency graph of problem (8) appears in randomly generated instances. Note

that for these investigations problems KP (n, k) with k > n
2 are not of interest as they can

be transformed into an equivalent knapsack problem where the decision is which objects

to leave out of a knapsack. The resulting problem can be interpreted as KP (n, k̃) for

k̃ ≤ n
2 .

Next, we concentrate on the MILP-based definition of adjacency which is considered in

da Silva et al. (2004). Since the MILP formulation (8) is canonical it can be extended to

an appropriate MILP formulation using the proof of Lemma 2.1. Let P := {x ∈ [0, 1]n :
∑n

i=1 xi = k} denote the feasible set of the LP relaxation of (8).

Lemma 3.1 Let n ≥ 5. Two extreme points u and v of the {0, 1}-knapsack polytope

P = {x ∈ [0, 1]n :
∑n

i=1 xi = k} are connected by an edge if and only if u and v are

adjacent in the sense of Definition 3.1.

Proof: According to Geist and Rodin (1992) it suffices to show that two extreme points u

and v of P are connected by an edge if and only if there does not exist two other extreme
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points w1 and w2 of P , i.e., other feasible solutions of KP (n, k), such that

1

2
(w1 + w2) =

1

2
(u + v). (9)

First, let two feasible solutions u and v of KP (n, k) be given that are adjacent according

to Definition 3.1. By definition they differ in exactly one item in the knapsack. Without

loss of generality we assume that u1 = v2 = 1, u2 = v1 = 0 and ui = vi for all i = 3, . . . , n.

Suppose u and v are not connected by an edge in P , i.e., there exist two other feasible

solutions w1 and w2 satisfying equation (9). Since u and v are equal starting from the

third component and thus ui = vi = 0 or ui = vi = 1 for i = 3, . . . , n, 1
2(ui + vi) equals

either 0 or 1 and hence w1
i = w2

i = ui = vi for all i = 3, . . . , n must hold to satisfy (9).

So, w1 and w2 can differ from u and v only in the first two components which means that

either wj
1 = wj

2 = 0 or wj
1 = wj

2 = 1 (j ∈ {1, 2}), which is impossible due to the constraint
∑n

i=1 wj
i = k. Hence, u and v are connected by an edge in P .

Now let u and v be not adjacent solutions in the sense of Definition 3.1. Then u and

v differ in at least two different items in each knapsack. Without loss of generality we

assume that the first and the second item is contained in u but not in v and the third and

the fourth item is contained v but not in u. Now define

w1
i =















1 , if i ∈ {1, 3}

0 , if i ∈ {2, 4}

ui, if i ≥ 5

and w2
i =















1 , if i ∈ {2, 4}

0 , if i ∈ {1, 3}

vi, if i ≥ 5.

Then, w1 and w2 are feasible and both different from u and v. Equation (9) is satisfied

and hence u and v are not connected by an edge in P . �

According to Lemma 3.1, the adjacency structure of the efficient extreme points of P

coincides with the adjacency structure induced by Definition 3.1. Hence, the adjacency

graph with respect to the appropriate MILP formulation based on (8) and the adjacency

graph resulting from Definition 3.1 are the same (cf. Proposition 2.2). Thus, Proposition

3.7 immediately implies the following result.

Corollary 3.2 In general, the set of efficient solutions of KP (n, k) is non-connected with

respect to the appropriate MILP formulation based on (8).

Finally we investigate a combinatorial definition of adjacency for another variant of

the knapsack problem, namely the {0, 1}-multiple choice knapsack problem with equal
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weights:

max





n
∑

i=1

k
i
∑

j=1

c1
ijxij ,

n
∑

i=1

k
i
∑

j=1

c2
ijxij





T

s.t.

k
i
∑

j=1

xij = 1, i = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , ki.

(10)

The given problem can be interpreted as follows: Given n disjoint baskets B1, . . . , Bn each

having exactly ki items, the objective is to maximize the overall profit with the restriction

that exactly one item is chosen from each basket. Problem (10) is a more structured

knapsack problem compared to Problem (8) since items cannot be combined arbitrarily.

We consider the following combinatorial definition of adjacency.

Definition 3.2 Two efficient knapsacks x and x′ of the {0, 1}-multiple choice knapsack

problem with equal weights are called adjacent if x′ and x differ in one item in exactly one

basket Bi for an i ∈ {1, . . . , n}.

This definition of adjacency is again canonical since for single objective problems, any

maximal knapsack must contain an item with maximal profit from each basket. Alterna-

tive optimal solutions may exist if at least one basket contains more than one item with

maximal profit. All these optimal solutions are adjacent in the sense of Definition 3.2.

In the multiple objective case the situation is, however, different. The counter-example

of Ehrgott and Klamroth (1997) can be reformulated as a {0, 1}-multiple choice knapsack

problem with equal weights which implies the following non-connectedness result.

Proposition 3.8 The adjacency graph of a {0, 1}-multiple choice knapsack problem with

equal weights, where adjacency of two efficient solutions is defined according to Definition

3.2, is non-connected in general.

Proof: Consider the following modification of the non-connected example problem for the

MOSP given in Ehrgott and Klamroth (1997) (see Figure 2). We redefine the resulting

cost vectors (c1
ij , c

2
ij)

T for the three paths from the node si to node si+1 via sij by setting

c̃q
ij = max{cq

ij : i, j = 1, 2, 3; q = 1, 2} − cq
ij

for i, j = 1, 2, 3 and q = 1, 2 and interpret the new cost vectors of the three paths from the

node si to node si+1 as profit vectors for basket Bi, i = 1, 2, 3. This results in the three

baskets

B1 =

{(

11

20

)

,

(

13

19

)

,

(

19

18

)}

, B2 =

{(

10

20

)

,

(

20

13

)

,

(

13

19

)}

, B3 =

{(

20

1

)

,

(

0

14

)

,

(

19

5

)}

.
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Since we have transformed the minimization problem into a maximization problem by

taking the negative value of each cost vector followed by a shift of these vectors by an

amount of max{cq
ij} = 20, Figure 3 still represents all efficient solutions of the modified

problem. The profit vectors of the resulting solutions K1, . . . , K12 are given by (60, 60)T −

c(Pi) where c(Pi) corresponds to the cost vector of Pi in Figure 3 for i = 1, . . . , 12.

Items in at least two baskets have to be exchanged when transforming K8 into Kj ,

j 6= 8 by elementary moves. Hence, K8 is not adjacent to any other efficient solution in

the sense of Definition 3.2. �

In Section 4.2 we investigate the frequency with which a non-connected adjacency

graph for problem (10) occurs empirically in randomly generated instances.

3.6 General knapsack problems

Since the general knapsack problem subsumes the {0, 1}-knapsack problem with bounded

cardinality discussed above as a special case and since we have shown the non-

connectedness of this problem, the general knapsack problem is in general non-connected

as well if connectedness is defined, for example, based on elementary moves similar to

Section 3.5 above.

3.7 Integer programming problems with fixed (or bounded) cardinalities

The same reasoning as above (Section 3.6) applies.

3.8 Unconstrained binary optimization problems

Since, in general, the adjacency graph for the {0, 1}-knapsack problem with equal weights

and bounded cardinality is non-connected for well-established definitions of adjacency of

efficient solutions (see Section 3.5), we will focus on unconstrained {0, 1}-problems in this

subsection since these problems possess even less structure. Formally, an unconstrained

{0, 1}-problem is defined as follows:

max
(

c1x, c2x
)T

s.t. xi ∈ {0, 1}, i = 1, . . . , n.
(11)

We assume without loss of generality that c1
i · c2

i < 0 (but not necessarily c1
i < 0 and

c2
i > 0) for all i = 1, . . . , n. Otherwise either xi = 0 or xi = 1 in every efficient solution.

In problem (11) the number of variables set equal to one is not fixed. Consequently,

an appropriate notion of adjacency is not evident. Nevertheless, Definition 3.2 can be
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transferred to this problem. Consider the following modified version of problem (11).

max
(

c1x, c2x
)T

s.t. xi + yi = 1, i = 1, . . . , n

xi, yi ∈ {0, 1}, i = 1, . . . , n.

(12)

Clearly, either xi = 1 or yi = 1 and in each feasible solution vector (x, y)T , the number

of ones is exactly n, i.e.,
n
∑

i=1
(xi + yi) = n. Every solution of problem (12) has the same

cardinality. However, the notion of adjacency for {0, 1}-knapsack problems with fixed

cardinality does not apply directly to problem (12) since the values of xi and yi, i =

1, . . . , n, cannot be chosen independently as they are coupled by a side constraint. By

introducing additional zero cost vectors for each yi, i = 1, . . . , n, (12) can be interpreted

as a {0, 1}-multiple choice knapsack problem with equal weights where either xi or yi has

to be included in the knapsack, i = 1, . . . , n. Hence, Definition 3.2 can be applied to (12).

Since this definition of adjacency for the extended problem results in single ‘1-to-0’ or

‘0-to-1’ swaps in exactly one xi in (11), we define:

Definition 3.3 Two efficient solutions x and x′ of the unconstrained {0, 1}-problem are

called adjacent if they differ in exactly one component, i.e., if
n
∑

i=1
|xi − x′

i| = 1.

If we extend the last definition to all 2n feasible solutions of the problem which can be

identified with the set of all extreme points of the n-dimensional unit cube W := [0, 1]n,

two feasible (efficient) solutions are adjacent if and only if they are connected by an edge

in W . But since W in combination with (11) can be easily modeled by an appropriate

MILP formulation, the adjacency graph which results from Definition 3.3 coincides with

the adjacency graph of this appropriate MILP formulation by Proposition 2.2.

Proposition 3.9 The adjacency graph of an unconstrained {0, 1}-problem of the form

(11), where adjacency of two efficient solutions is defined according to Definition 3.3, is

non-connected in general.

Proof: Consider the following unconstrained {0, 1}-problem with objective matrix

C =

(

−126 −121 −120 −103 −100 −97 −51 −29 −19 −18 −17 −13 124

100 94 90 74 73 68 67 55 54 41 23 7 −126

)

.

The set of all efficient solutions of the problem consists of exactly 155 vectors. It can be

shown that the efficient solution

x = (0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0)T with objective value Cx = (−551, 533)T
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is not adjacent to any other efficient solution of the problem in the sense of Definition 3.3.

�

Corollary 3.3 Let an appropriate MILP formulation of problem (11) be given where the

polytope of the LP relaxation describes the n-dimensional unit cube [0, 1]n. Then, the adja-

cency graph of the unconstrained {0, 1}-problem with respect to the given MILP formulation

is non-connected in general.

3.9 Linear assignment problems

We consider two definitions of adjacency for the linear assignment problem: A combina-

torial definition based on swapping rows in the assignment matrix, and an MILP-based

definition of adjacency. The bicriteria linear assignment problem can be formulated as

min





n
∑

i,j=1

c1
ijxij ,

n
∑

i,j=1

c2
ijxij





T

s.t.
n
∑

i=1

xij = 1, j = 1, . . . , n

n
∑

j=1

xij = 1, i = 1, . . . , n

xij ∈ {0, 1}, i, j = 1, . . . , n

(13)

with objective coefficients c1
ij , c

2
ij ≥ 0 for all i, j = 1, . . . , n.

First we consider an intuitive combinatorial definition of adjacency based on a simple

swap of two rows of the assignment matrix. This definition is not canonical, i.e., it does

not yield a connected graph of optimal solutions for the single objective version of the

problem:

Proposition 3.10 Swapping two rows of the assignment matrix of a single objective lin-

ear assignment problem without changing the objective function value does in general not

permit to construct the complete set of optimal solutions starting from an arbitrary optimal

solution.

Proof: Consider a single objective linear assignment problem with n = 4 and cost matrix

C = (c1
ij)i,j=1,...,n =















1 ∞ 1 ∞

1 1 ∞ ∞

∞ ∞ 1 1

∞ 1 ∞ 1















.

25



This problem has two optimal assignments with value 4:

Assignment 1: x11 = x22 = x33 = x44 = 1 and xij = 0 otherwise.

Assignment 2: x13 = x21 = x34 = x42 = 1 and xij = 0 otherwise.

Clearly, these assignments cannot be obtained from each other by one single row swap. �

Turning our attention to an MILP-based definition of adjacency using formulation (13),

we observe that the bicriteria linear assignment problem is a special case of the minimum

cost flow problem (cf. Section 3.3). Thus, we can expect the existence of a canonical

definition of adjacency in this case. The matrix describing the assignment polytope is

totally unimodular (see, for example, Nemhauser and Wolsey, 1999) and hence formulation

(13) is an appropriate MILP formulation. To simplify the discussion, we use the following

combinatorial interpretation of the resulting concept of adjacency.

Definition 3.4 Let G = (V1 ∪ V2, A) with |V1| = |V2| = n be a bipartite graph with

edge costs c1, c2 : A → R that models a given instance of the bicriteria linear assignment

problem, and let A1 and A2 be the edges selected in two different assignments. We call the

solutions corresponding to A1 and A2 adjacent if the graph induced by A1 ∪ A2 contains

exactly one cycle.

According to Balinski and Russakoff (1974), this combinatorial definition of adjacency

corresponds to the MILP-based definition of adjacency induced by the assignment polytope

P . Equivalently, two assignments A1 and A2 are adjacent if and only if their symmetric

difference A1△A2 = (A1 ∪A2) \ (A1 ∩A2) consists of exactly one cycle the edges of which

alternately belong to A1 and A2, respectively (Hausmann, 1980).

Since any pair of vertices of the assignment polytope is connected by a path of length

less than or equal to 2 (see, for example, Balinski and Russakoff, 1974; Hausmann, 1980),

the generalized adjacency graph G′
2 of problem (13) is always connected. However, if we

restrict ourselves to direct adjacency according to Definition 3.4, the adjacency graph

G = G′
1 of the bicriteria linear assignment problem is non-connected in general.

Proposition 3.11 The adjacency graph G of the bicriteria linear assignment problem

using Definition 3.4 for characterizing adjacent assignments is not connected in general.

Proof: We modify the counter-example of Ehrgott and Klamroth (1997). Let the following
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G1 G2 G3 G1 ∪ G2 G1 ∪ G3 G2 ∪ G3

Figure 7: All feasible assignments with finite costs for the subproblems Si in the proof of

Proposition 3.11 and their pairwise union.

six cost-submatrices of a (9 × 9) bicriteria linear assignment problem be given by

C1
(1:3,1:3) =









0 0 ∞

1 7 0

∞ 9 0









, C1
(4:6,4:6) =









0 0 ∞

7 0 0

∞ 10 0









, C1
(7:9,7:9) =









0 0 ∞

1 20 0

∞ 0 0









,

C2
(1:3,1:3) =









0 0 ∞

2 1 0

∞ 0 0









, C2
(4:6,4:6) =









0 0 ∞

1 7 0

∞ 0 0









, C2
(7:9,7:9) =









0 0 ∞

15 6 0

∞ 19 0









,

and let all remaining cost coefficients be set to infinity. This problem decomposes into

three (3× 3)-subproblems denoted by S1, S2 and S3, where each subproblem Si has three

solutions G1, G2 and G3 that have finite costs in both objectives. These three solutions

have the same structure for all three subproblems and are depicted in Figure 7. Note that

the cost vector of each solution Gj of subproblem Si is chosen such that it corresponds

to the cost vector of the path connecting node si with node si+1 via node sij in Fig-

ure 2. Consequently, there is a one-to-one correspondence between the efficient solutions

of this instance of the bicriteria linear assignment problem and the efficient solutions of

the bicriteria shortest path problem shown in Figure 3.

From Figure 7 it can be seen that the pairwise union of two subgraphs Gi and Gj , i 6= j,

contains exactly one cycle. According to Definition 3.4, two efficient assignments of the

overall problem are thus adjacent if they differ in exactly one subproblem Si, i ∈ {1, 2, 3}.

Since the efficient path P8 in Figure 3 differs from all other efficient paths in at least

two connections, the corresponding assignment (consisting of G2 in all three subproblems)

differs from all other efficient assignments in at least two subproblems and is thus not

adjacent to any other efficient assignment of the overall problem. �
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3.10 Transportation and transshipment problem

Since this problem can be interpreted as a special case of the linear assignment problem

(see, for example, Ehrgott and Gandibleux, 2000), the non-connectedness result of Section

3.9 can be transferred.

3.11 The traveling salesman problem

Paquete et al. (2004) and Paquete and Stützle (2006) introduced a combinatorial definition

of adjacency for the MTSP: Two feasible tours of the MTSP are called adjacent if they

differ in exactly four edges. Note that this definition corresponds to the 2-edge-exchange

neighborhood of the TSP. However, the 2-edge-exchange neighborhood does not induce a

canonical definition of adjacency.

Proposition 3.12 The set of optimal solutions of the single objective TSP is in general

non-connected with respect to the 2-edge-exchange neighborhood.

Proof: Consider the following instance of a symmetric TSP with five nodes and distance

matrix D given by

D =



















0 7 10 3 1001

7 0 3 10 1000

10 3 0 7 1000

3 10 7 0 1001

1001 1000 1000 1001 0



















.

The problem has two optimal tours T1 = (1, 4, 3, 2, 5, 1) and T2 = (1, 4, 5, 3, 2, 1) with cost

c(T1) = c(T2) = 2014. However, T1 differs from T2 in six edges, i.e., T1 is only contained

in the 3-edge-exchange neighborhood of T2 and not in its 2-edge-exchange neighborhood.

�

Note that the formulation of an alternative, MILP-based definition of adjacency is not

immediate in the case of the bicriteria TSP as long as no appropriate MILP formulation

of the problem is available. Moreover, it is NP-hard to decide whether two given vertices

of the TSP-polytope are adjacent (Papadimitriou, 1978).

4 Numerical Results

All results in Section 3 are obtained from a worst-case analysis. Therefore, it is an inter-

esting question how frequently the phenomenon “non-connected adjacency graph” occurs
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in practice. To learn more about the practical relevance of adjacency considerations, we

exemplarily conduct numerical studies for the biobjective {0, 1}-knapsack problem with

bounded cardinality and the biobjective {0, 1}-multiple choice knapsack problem (cf. Sec-

tion 3.5). All in all, more than six million randomly generated problem instances have

been analyzed.

Before describing the design of the numerical experiments in detail, one has to be

aware of some facts being characteristic for our problem. First, it is not sufficient to

compute just one efficient solution for each nondominated point. All efficient solutions

have to be found. Consequently, an algorithm enumerating all alternative solutions for

the same nondominated outcome is required. Second, after having found all efficient

solutions, their adjacency relationships have to be explored. The set of efficient solutions

has to be traversed several times, solutions have to be compared pairwise, and clusters

of efficient solutions have to be built. This post-solution analysis requires a substantial

amount of computation time. Third, non-connected adjacency graphs cannot be expected

to occur with a high frequency in randomly generated problem instances. Conclusions

can therefore not be drawn on the basis of just a few dozen instances. For each set-up

thousands of instances have to be generated and tested to yield representative results.

Fourth, computation power as well as computation time are limited.

Recapitulating, one can conclude that under these circumstances the instances treated

in our study have to be rather small and do not nearly match the sizes of state-of-the-art

benchmark problems.

4.1 Biobjective {0, 1}-knapsack problems with bounded cardinality

For the computation of the efficient and nondominated set of the generated instances of

the biobjective {0, 1}-knapsack problem with bounded cardinality KP (n, k) we used a

dynamic programming approach for general multiple objective knapsack problems devel-

oped in Klamroth and Wiecek (2000). We implemented Model III for the binary case

(cf. the original work of Klamroth and Wiecek, 2000). Using this approach, we can solve

k knapsack instances KP (n, 1), . . . , KP (n, k) simultaneously, i.e., without any additional

computational cost. For each efficient solution of one of the problem instances, we store a

binary vector representing this solution in a list. Recall from Section 3.5 that two efficient

solutions are defined to be adjacent if their Hamming distance is equal to two. Starting

with the first efficient solution in the list, we find all its neighbors (by pairwise computa-

tions of Hamming distances with all the remaining solutions) in the list and mark them

with a certain label. Different labels signalize different adjacency clusters. We proceed

likewise with the second solution in the list. Eventually, adjacency clusters have to be
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Method / Setup 10/9/10 20/10/10 30/15/10 40/20/10 60/30/10 80/40/20 100/50/20

1 50000 20000 1000 1000 - - -

2 50000 20000 1000 1000 - - -

3 50000 20000 1000 1000 - - -

4 50000 20000 1000 1000 - - -

5 50000 20000 1000 1000 - - -

6 50000 50000 50000 10000 10000 10000 1000

Table 2: Setup of computational experiments for the biobjective {0, 1}-knapsack problem

with bounded cardinality

Method / Setup 10/9/10 20/10/10 30/15/10 40/20/10 60/30/10 80/40/20 100/50/20

1 0 0 0 2 - - -

2 0 2 1 1 - - -

3 0 2 0 0 - - -

4 0 1 0 0 - - -

5 0 1 1 0 - - -

6 0 0 0 0 0 1 0

Table 3: Number of instances with adjacency graph having more than one connected

component

merged, i.e., markers have to be re-assigned. After having processed all efficient solutions,

the number of different markers indicate the number of clusters.

Purpose and setup of the numerical study

The aim of the numerical study is to report the number of adjacency clusters of randomly

generated instances of KP (n, k) when

a) n increases,

b) k increases for fixed n, and

c) the objective coefficients are generated according to different methods.

We generated seven problem setups and for each setup we used six different methods to

generate the objective coefficients. In the first row of Table 2, we use a scheme of the

form Pos1/Pos2/Pos3 to code these seven setups. Pos1 specifies the total number n of

items. The upper bound k for the right hand side parameter of the knapsack constraint

is specified under Pos2. We determined the adjacency graph for all possible right hand

sides i ∈ {1, . . . , Pos2}. Finally, the coefficients of the first objective c1 were chosen in

the interval [0, r], where r = Pos1 · Pos3. The coefficients of the second objective c2 were

chosen according to six different methods which were motivated by the study of Pedersen

et al. (2005) and which are described in the following.
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Method 1: c1 was sorted in decreasing, c2 in increasing order to obtain pairwise non-

dominated profit vectors. Weakly-dominated vectors were omitted.

Method 2: The profit vectors p1 := (c1
1, c

2
1)

T = (r, 0)T and pn := (c1
n, c2

n)T = (0, r)T

were fixed at the beginning. The remaining vectors were chosen within the triangle

(0, 0)T , p1 and pn. Preferably pairwise non-dominated profit vectors were generated.

Only profit matrices with a few dominated profit vectors were accepted.

Method 3: The profit vectors were generated as in Method 2, but now within the triangle

(r, r)T , p1 and pn.

Method 4: The profit vectors p1 and pn were fixed like in Method 2. The remaining vec-

tors were generated spread around the concave part of the half circle with midpoint

(0, 0)T connecting the points p1 and pn. Preferably pairwise non-dominated profit

vectors were generated and profit matrices with only a few dominated profit vectors

were accepted.

Method 5: The profit vectors were generated as in Method 4, but now spread around

the convex half circle with midpoint (r, r)T connecting p1 and pn.

Method 6: The entries of the profit matrix were generated uniformly at random.

The entries of Table 2 correspond to the number of instances which were processed for

each of the setups. Note that these numbers are not always the same. Some setups result

in more difficult instances and thus, we could only process fewer instances in a reasonable

amount of time. A dash indicates that this setup was not tested due to its numerical

difficulty.

Interpretation of the numerical results

Table 3 presents the number of non-connected adjacency graphs that were found for each

setup. For the generated instances, only very few adjacency graphs are non-connected.

Nevertheless, we found for each of the six data generation methods at least one instance

possessing a non-connected adjacency graph. Based on the small number of components,

there do not seem to exist significant trends - neither with respect to increasing k or

n nor with respect to some particular generation method for the data. For the case of

randomly generated profit matrices (Method 6), non-connected adjacency graphs seem to

occur extremely rarely. As mentioned in da Silva et al. (2004), an item xi corresponding

to a dominated profit vector pi can only be contained in an efficient knapsack if at least

one of the items xj corresponding to profit vectors pj dominating pi is also contained in
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the knapsack. The set of all efficient solutions of such a problem consists of a few number

of elements and is more structured than in the case when only pairwise non-dominated

profit vectors are considered. For the problem size (40/20/10), the maximum number

of elements of an efficient set for a problem instance generated by Method 6 is given by

290 while for the other methods the maximum number does not fall below 1392 and has

a maximum value of over 5300 elements for a problem instance generated by Method 2.

Unfortunately, Method 6 seems to be the “standard” way to generate data when testing

an algorithm numerically. Yet, for algorithms based on neighborhood search, this problem

class seems to be quite uninteresting.

4.2 Biobjective {0, 1}-multiple choice knapsack problems

The second part of the numerical study is devoted to the biobjective {0, 1}-multiple choice

knapsack problem introduced in Section 3.5. Recall that this problem is closely related

to the biobjective {0, 1}-knapsack problem with bounded cardinality. Yet, this problem

behaves quite differently with respect to the adjacency issue.

Suppose that a biobjective {0, 1}-multiple choice knapsack problem is given with n

baskets and k possible items per basket. To obtain the set of efficient solutions XE , we

use a simple dynamic programming scheme. In the i-th step, i = 1, . . . , n, we combine

every solution being efficient for the problem with baskets B1, . . . , Bi−1, with the items

in basket i. Dominated solutions are deleted. The remaining solutions form the set of

efficient solutions for the problem with baskets B1, . . . , Bi−1. Note that the items in each

basket should be pairwise nondominated since dominated items are never included in an

efficient solution. It should be pointed out that applying this scheme, we solve in fact

not only the problem for n baskets, but n different problems for i, i = 1, . . . , n, baskets.

Similar to the previous study, a post-optimality procedure is applied to XE to retrieve the

adjacency information.

Purpose and setup of the numerical study

We study the frequency of problems with non-connected adjacency graphs when

a) the number of baskets increases from 1 to n, and

b) the (fixed) number of items per basket increases.

As in Section 4.1, we use a scheme Pos1/Pos2/Pos3 coding the setup of the instances.

Pos1 stands for the number of baskets while the number of items per basket is given in

Pos2. The integer cost coefficients are taken from the interval [1, Pos1 · Pos3] according
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Setup of test instances 20/5/10 20/10/10 20/15/10

Number of instances generated 10000 5000 1000

Number of instances having a non-connected adjacency graph 118 295 111

Table 4: Setup of computational experiments for the biobjective {0, 1}-multiple choice

knapsack problem with uniform weights

Setup of test instances 20/5/10 20/10/10 20/15/10

Instances with one cluster 199882 99705 19889

Instances with two clusters 115 282 100

Instances with three clusters 3 13 11

Maximal distance between two clusters 2 2 2

Maximal distance between three clusters 3 4 8

Table 5: Number of connected components (clusters) in the adjacency graph and maxi-

mal distance between two components for the biobjective {0, 1}-multiple choice knapsack

problem

to Method 1 in Section 4.1. Table 4 reports the setups and the number of instances we

have tested.

Interpretation of the numerical results

For each of the setups, Table 4 contains the number of instances possessing a non-connected

adjacency graph cumulated over all i = 1, . . . , 20 baskets. One obvious difference to the

results obtained in Section 4.1 is that non-connected adjacency graphs occur far more

often for multiple choice knapsack problems. Figure 8 shows the (normalized) number of

instances with non-connected adjacency graph per thousand instances tested. Detailed

results for each problem with i baskets, i = 1, . . . , 20, are reported. The dotted line, the

dashed line, and the solid line correspond to the setups with 5, 10, and 15 items per basket,

respectively. All curves are (slightly) increasing, i.e., “non-connectedness” happens more

often with an increasing number of baskets. Furthermore, the more items per basket, the

higher the likelihood for having a non-connected adjacency graph. Table 5 provides more

details about the character of the clusters. Among those instances with non-connected

adjacency graph, two clusters appear more often than three clusters. However, with

increasing number of items per basket three clusters are getting more likely. Interestingly,

the maximal distance between clusters of instances with two clusters only is never greater

than 2. The maximal (pairwise) distance between three clusters, however, can be as much

as 8.
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Figure 8: Number of instances per thousand (y-axis) with non-connected adjacency graph

for i = 1, . . . , 20 baskets (x-axis) for 5 (dotted line), 10 (dashed line), and 15 (solid line)

items per basket

Concluding remarks

To summarize the discussion above, the two problems treated in this section behave very

differently with respect to adjacency although their combinatorial structure seems quite

similar. This shows how careful one has to be with statements about adjacency and it

also shows the limitations of our study: No results about larger instances, about problems

with more than two objective functions, and about other problems are available so far.

5 Conclusion and current research directions

As in the case of single objective combinatorial optimization, the question of adjacency

of solutions is one of the core aspects in multiple objective combinatorial optimization

(MOCO). The concept of adjacency of optimal solutions in multiple objective problems

certainly exceeds its single criterion analogon in terms of complexity because of a more

involved optimality concept. Maybe it is due to this increased complexity that research

on this subject has widely been neglected. To the best of our knowledge there does

not exist (correct) exact algorithms for computing the set of efficient solutions based on

neighborhood structures, nor does the literature formalize different notions of adjacency.

Beyond, adjacency of MOCO problems has not been investigated numerically.
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The aim of our work is threefold. First, we formally introduce two different concepts

of adjacency. One class of adjacency concepts relies on problem-dependent combinatorial

structures, while the other one is based on appropriate models for the problem and, ul-

timately, goes back to the definition of adjacency for multiple objective linear programs.

Second, we survey the current state of the art and supplement it with our own findings. As

a result, we list eleven combinatorial optimization problems and discuss their adjacency

properties. Third, we conduct numerical experiments to analyze the adjacency structure

of two special types of bi-objective knapsack problems. Although being structurally re-

lated and possessing a non-connected adjacency graph in general, these knapsack problems

differ significantly in the practical occurrence of adjacency.

Our work should be understood as a first step towards an in-depth investigation of

adjacency in MOCO problems. In our opinion, several research directions seem to be

promising and are currently under investigation:

• Although we prove the non-connectedness of many fundamental MOCO problems

in general, special variants of these problems might possess a connected adjacency

graph (cf. da Silva et al., 2004). Further explorations of the structure, the size and

the geometry of connected components and their dependencies on the choice of the

problem data are currently the main focus of our work.

• The structural results presented in Section 3 are based on a worst-case analysis.

Studying theoretically the average case gives detailed information about the ex-

pected occurrence of adjacency in practical problems and might justify the appli-

cation of adjacency-based algorithms even for problems having non-connected adja-

cency graphs in general.

• If an average-case analysis is not possible for some problems, intensive numerical

investigations about the adjacency behavior might provide empirical evidence for

the effectiveness of adjacency-based algorithms.

• Another interesting stream of research is the development of new definitions of ad-

jacency possibly yielding connected adjacency graph for a wider class of MOCO

problems.

References

Balinski, M. L. and A. Russakoff (1974). On the assignment polytope. SIAM Review 16,

516–525.

35



da Silva, C. G., J. Cĺımaco, and J. Figueira (2004). Geometrical configuration of the

Pareto frontier of bi-criteria {0,1}-knapsack problems. Working paper 16-2004, Institute

for Systems and Computers Engineering, Coimbra, Portugal.

Ehrgott, M. (2005). Multicriteria Optimization. Berlin, Heidelberg: Springer.

Ehrgott, M. and X. Gandibleux (2000). A survey and annotated bibliography of multiob-

jective combinatorial optimization. OR Spektrum 22, 425–460.

Ehrgott, M. and K. Klamroth (1997). Connectedness of efficient solutions in multiple

criteria combinatorial optimization. European Journal of Operational Research 97, 159–

166.

Geist, D. and E. Y. Rodin (1992). Adjacency of the 0 − 1 knapsack problem. Computers

and Operations Research 19, 797–800.

Gorski, J. (2004). Analysis of the connectedness of Pareto-optimal solutions in multiple

criteria combinatorial optimization. Master’s thesis, University of Erlangen-Nuremberg,

Germany. In German.

Hausmann, D. (1980). Adjacency on Polytopes in Combinatorial Optimization. König-

stein/Ts.: Verlag Anton Hain.

Helbig, S. (1990). On the connectedness of the set of weakly efficient points of a vector

optimization problem in locally convex spaces. Journal of Optimization Theory and

Applications 65, 257–271.

Isermann, H. (1977). The enumeration of the set of all efficient solutions for a linear

multiple objective program. Operations Research Quarterly 28, 711–725.

Klamroth, K. and M. Wiecek (2000). Dynamic programming approaches to the multiple

criteria knapsack problem. Naval Research Logistics 47, 57–76.

Martins, E. (1984). On a multicriteria shortest path problem. European Journal of Oper-

ational Research 16, 236–245.

Naccache, P. (1978). Connectedness of the set of nondominated outcomes. Journal of

Optimization Theory and Applications 25, 459–467.

Nemhauser, G. and L. Wolsey (1999). Integer and Combinatorial Optimization. New York:

John Wiley & Sons, Inc.

36



O’Sullivan, M. and C. Walker (2004). Connecting efficient knapsacks - experiments with

the equally-weighted bi-criteria knapsack problem. In 39th Annual ORSNZ Conference,

University of Auckland, Auckland, New Zealand.

Papadimitriou, C. (1978). The adjacency relation on the traveling salesman polytope is

NP-complete. Mathematical Programming 14, 312–324.
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