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Connections Between Single-Level and Bilevel
Multiobjective Optimization

Sauli Ruuska · Kaisa Miettinen ·
Margaret M. Wiecek

Abstract The relationship between bilevel optimization and multiobjective optimization
has been studied by several authors and there have been repeated attempts to establish a link
between the two. We unify the results from the literature and generalize them for bilevel
multiobjective optimization. We formulate sufficient conditions for an arbitrary binary rela-
tion to guarantee equality between the efficient set produced by the relation and the set of
optimal solutions to a bilevel problem. In addition, we present specially structured bilevel
multiobjective optimization problems motivated by real-life applications and an accompa-
nying binary relation permitting their reduction to single-level multiobjective optimization
problems.

Keywords Two-level optimization ·Multiobjective programming ·Multicriteria optimiza-
tion · Binary relations

1 Introduction

A bilevel optimization problem consists of two coupled optimization problems with two
decision makers, the leader and the follower. The leader’s problem, or the upper-level prob-
lem, is to make an optimal decision in anticipation of the follower’s response. The follower’s
problem, or the lower-level problem, is to make an optimal decision given the leader’s deci-
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sion. Thus, the lower-level problem is parameterized by the upper-level decision and appears
as a constraint in the upper-level problem.

Bilevel single-objective optimization has been studied in different formulations and in
the context of different applications for more than three decades. The applications of bilevel
optimization cover decision making in, for example, organizational hierarchies in which one
decision maker is in a subordinate role to another. Bilevel optimization also has applications
in various design tasks. Due to the inherent difficulty of bilevel optimization problems, their
numerical solution still remains a challenge today. For further background, see the surveys
[1–3], and the monographs by Bard [4] and Dempe [5].

There have been several attempts to establish a connection between bilevel single-ob-
jective optimization and multiobjective optimization. For the early attempts and a proof that
such attempts were in vain, see [6] and the references therein. Fülöp [7] discovered that
the feasible set of a bilevel linear program can be represented as the efficient set of an ap-
propriately constructed multiobjective linear program. Consequently, a bilevel optimization
problem can be posed as optimization over the efficient set. Fülöp’s theorem was popu-
larized by Dempe [5]. It has since been used as a part of an algorithm for solving bilevel
linear programs [8], but also criticized for the high number of objectives in the resulting
multiobjective problem [9].

Fülöp’s theorem was proposed and formulated for bilevel linear programs. Linearity,
however, is not necessary for the result. If the lower-level problem is a linear program,
then the reformulation results in optimization over the efficient set of a multiobjective lin-
ear program. Otherwise, the resulting problem is nonlinear, but the theorem remains valid
if only formulated accordingly. In this paper, we formulate Fülöp’s theorem for a general
vector-valued function, thus allowing the lower-level problem to be a nonlinear multiobjec-
tive optimization problem.

Fliege and Vicente [10] proposed a binary relation such that a solution to a bilevel opti-
mization problem is optimal if and only if it is efficient with respect to the proposed relation.
The result is stronger than Fülöp’s theorem and allows a reformulation of a bilevel optimiza-
tion problem as a multiobjective optimization problem. An essentially identical binary rela-
tion and problem reformulation were later considered by Ivanenko and Plyasunov [11] with
the distinction that, compared to the relation of Fliege and Vicente, the relation of Ivanenko
and Plyasunov involves an extension allowing the upper-level constraint functions to depend
on the lower-level decision.

The theorems of Fülöp and of Fliege and Vicente are closely related. The binary relation
proposed by Fliege and Vicente consists of a union of two ordering relations: one concerned
with feasibility, and the other with optimality with respect to the upper-level objective. The
former can be used to formulate a theorem equivalent to Fülöp’s theorem (see [11, Propo-
sition 1]). Conversely, the ordering relation implied by Fülöp’s theorem can be used in the
union as the relation concerned with feasibility. In this paper, we generalize the binary re-
lation proposed by Fliege and Vicente for bilevel multiobjective optimization and formalize
the connection to Fülöp’s theorem.

The binary relation proposed by Fliege and Vicente is difficult to evaluate because
whether any two decisions are in the relation depends on their optimality to the lower-level
problem. The relation can be simplified for certain classes of problems using appropriate
optimality conditions [10, 11]. In [12], the results from [10] were reiterated, and it was sug-
gested that the optimal solutions to a bilevel optimization problem could be obtained as the
intersection of two efficient sets: one with respect to the relation concerned with feasibil-
ity, and the other with respect to the relation concerned with optimality at the upper level.
However, it was not elaborated how such an intersection could be calculated in practice.
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In the last few years, there has been a growing interest in solving bilevel multiobjec-
tive optimization problems and the number of methods proposed for solving such problems
has increased rapidly. Calvete and Galé [13] and Alves et al. [9] proposed scalarization ap-
proaches to bilevel linear programs with multiple objectives at the upper level. Nie [14] and
Bonnel and Morgan [15] studied bilevel optimization problems with multiple objectives at
the lower level. Nishizaki and Sakawa [16, 17], Dell’Aere [18], and Arora and Arora [19]
proposed methods for solving bilevel multiobjective optimization problems by scalarization
and substitution of optimality conditions for the lower-level problem.

For nonlinear bilevel multiobjective optimization problems, Eichfelder [20] and Geb-
hardt and Jahn [21] proposed exact iterative methods. In Eichfelder’s method, the solution
set is constructed by means of a sequence of iteratively refined approximations of the fea-
sible set, whereas Gebhardt and Jahn propose a method based on a so-called subdivision
technique and iterative refinement. Both methods rely on explicit discretization of the set of
feasible leader’s decisions. Moreover, Shi and Xia [22, 23] and Abo-Sinna and Baky [24]
proposed interactive methods, Osman et al. [25], Zhang et al. [26], Yano and Sakawa [27],
and Baky [28, 29] proposed fuzzy approaches, and Yin [30], Deb and Sinha [31], and Jia
and Wang [32] proposed evolutionary methods for solving bilevel multiobjective problems.

Introducing multiple objectives to a bilevel problem poses not only technical challenges,
but conceptual as well. With multiple objectives at the lower level, one can no longer assume
that there exists a unique solution to the lower-level problem. The different formulations
resulting from the leader’s anticipations of the follower’s actions were analyzed by Nishizaki
and Sakawa [16] and Nie [14]. A common approach is to assume that if the set of optimal
solutions to the lower-level problem is not a singleton, then the upper-level decision maker
is allowed to make the choice. This assumption brings about what is known as the optimistic
bilevel optimization problem, whereas the opposite case, in which the lower-level decision is
always the one least preferred by the upper-level decision maker, is known as the pessimistic
formulation [5, 16].

To our knowledge, the only result found in the literature that shows a connection be-
tween bilevel multiobjective optimization and multiobjective optimization is a theorem due
to Eichfelder [20]. Eichfelder’s theorem states that the feasible set of a bilevel multiobjective
optimization problem can be represented as the efficient set of a multiobjective optimization
problem. It is based on an ordering relation similar to the part concerning feasibility in the
relation proposed by Fliege and Vicente, and it is roughly equivalent to the multiobjective
generalization of Fülöp’s theorem discussed above.

In this paper, we study the relationship between bilevel optimization and multiobjective
optimization. In particular, we unify some existing results that have been independently de-
veloped by different authors and generalize them for bilevel multiobjective optimization. In
addition, we give sufficient conditions for an arbitrary binary relation to guarantee equal-
ity between the efficient set produced by the relation and the set of optimal solutions to
a bilevel problem. The binary relations satisfying the conditions can be used to reformu-
late bilevel multiobjective problems as multiobjective optimization problems; in effect, the
original problem is reduced to a single-level problem. Motivated by real-life applications,
we present specially structured bilevel multiobjective problems that can benefit from this
reduction.

The paper is structured as follows. Problem formulation and necessary definitions are
given in Section 2. Results relating bilevel optimization and multiobjective optimization are
presented in Section 3. We lay a basis for deriving new binary relations connecting bilevel
and multiobjective optimization in Section 4, and propose a simple binary relation that en-
ables the reduction of bilevel multiobjective problems to single-level problems in certain
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special cases. The special cases are introduced in Section 5 and the paper is concluded in
Section 6.

2 Problem Formulation

Let X ⊂ Rn be a nonempty set, and let f : X → Rp be a vector-valued function. A general
multiobjective optimization problem (MOP) has the form

min f (x) subject to x ∈ X , (1)

where X is the feasible set and f is the objective function. Vector x ∈ X , x = (x1, . . . ,xn), is
called a (feasible) decision, and its image y = f (x), y = (y1, . . . ,yp), an outcome.

The minimization in (1) is understood as finding the set of decisions corresponding to
the set of minimal outcomes in the set Y :=

{
f (x) : x ∈ X

}
with respect to a given binary

relation 4 on Y . For y, ȳ ∈ Y , if ȳ 4 y, then ȳ is said to dominate y with respect to 4. If
there does not exist an outcome ȳ ∈ Y such that ȳ 4 y, then y is said to be nondominated in
Y . A decision x ∈ X is said to be efficient if its image under f is nondominated. The set of
nondominated outcomes is denoted by N

(
Y,4

)
and called the nondominated set. The set of

efficient decisions is denoted by E
(
X , f ,4

)
and called the efficient set.

Certain properties are often assumed for the relation 4 to make sure that problem (1)
has a meaningful solution. For example, it is common to consider only binary relations
compatible with addition and positive scalar multiplication, which can be represented as
cones in Rp (see, e.g., [33, 34]). In particular, the following (partial) ordering relations are
ubiquitous in the field of multiobjective optimization:

ȳ < y def⇐⇒ ȳi < yi for all i = 1, . . . , p,

ȳ≤ y def⇐⇒ ȳi ≤ yi for all i = 1, . . . , p and y 6= ȳ,

ȳ 5 y def⇐⇒ ȳi ≤ yi for all i = 1, . . . , p.

Nondominated outcomes and efficient decisions with respect to the relations ≤ and < are
called Pareto optimal and weakly Pareto optimal, respectively (see, e.g., [35]). Unless oth-
erwise stated, the minimization in (1) is defined with respect to the relation ≤.

Let Xu ⊂ Rnu and Xl(xu)⊂ Rnl for all xu ∈ Xu be nonempty sets, and let

X =
{
(xu,xl) : xu ∈ Xu, xl ∈ Xl(xu)

}
⊂ Rn,

where n = nu + nl . An optimistic bilevel multiobjective optimization problem (BMOP) has
the form

min
xu,xl

fu(xu,xl)

subject to xl ∈ E
(
Xl(xu), fl(xu, ·),≤

)
,

xu ∈ Xu,

(2)

where fu : X →Rpu is the upper-level objective function and fl : X →Rpl is the lower-level
objective function. Vector xu is called the upper-level decision and vector xl the lower-level
decision. In the rest of this paper, a shorthand notation x = (xu,xl) is frequently used to
improve readability.

The notation used for the set Xl reflects the fact that, in general, the feasible set of the
lower-level problem depends on the upper-level decision xu. Some authors consider a more



Connections Between Single-Level and Bilevel Multiobjective Optimization 5

general problem where, in addition, the set Xu may depend on the lower-level decision xl .
Such problems are, however, beyond the scope of this paper.

The feasible set of (2), denoted here by XI,

XI :=
{

x : xu ∈ Xu, xl ∈ E
(
Xl(xu), fl(xu, ·),≤

)}
, (3)

is called the induced set of (2) and consists of all the decisions x ∈ X such that xl is efficient
to the lower-level problem with an upper-level decision xu. We assume minimization with
respect to the relation ≤ at both the upper and the lower level of problem (2). The efficient
set of (2) is then, by definition, E

(
XI, fu,≤

)
. Thus, the induced set allows problem (2) to be

written compactly as
min fu(x) subject to x ∈ XI. (4)

From problem (4), it is evident that the lower-level problem only appears as a constraint in
the upper-level problem.

If the functions fu and fl are scalar valued, then problem (2) reduces to an ordinary
bilevel optimization problem, which can be written as

min
x

fu(xu,xl)

subject to xl = argmin
x̄l

{
fl(xu, x̄l) : x̄l ∈ Xl(xu)

}
,

xu ∈ Xu

(5)

assuming that for all xu ∈ Xu there exists a unique optimal solution xl(xu) to the lower-level
problem. The induced set of (5) is{

x : xu ∈ Xu, xl = argmin
x̄l

{
fl(xu, x̄l) : x̄l ∈ Xl(xu)

}}
, (6)

which is clearly a special case of (3). Problem (5) also has a compact formulation analogous
to (4), but using (6) instead of (3).

By a theorem due to Fülöp [7], the induced set of (5) can, under certain assumptions,
be represented as an efficient set of a MOP. It follows that problem (5) is equivalent to a
problem of the form

min fu(x) subject to x ∈ E
(
X , f̄ ,≤

)
, (7)

where f̄ is some vector-valued function defined on X . Problem (7) is known as optimization
over the efficient set and it has been studied especially in the context of multiobjective linear
programs (see, e.g., [36–41]). We present Fülöp’s theorem generalized for problem (2) in
the next section.

3 Representations by Efficient Sets

In this section, we review the results from the literature that establish a connection between
bilevel optimization and multiobjective optimization. We also generalize the theorems that
were proposed for single-objective bilevel optimization to bilevel multiobjective optimiza-
tion with vector-valued objective functions allowed at both levels. What is common to the
results presented in this section is that they allow a reformulation of a bilevel optimization
problem by representing the problem or some aspect of it as the efficient set of a specially
crafted MOP.

We begin by presenting theorems relating the induced set of a bilevel problem to the
efficient set of a multiobjective problem. We then present a theorem connecting the solution
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set of a bilevel problem to the efficient set of a multiobjective problem and conclude the
section by formalizing the relationships among the theorems presented. All the theorems
are given in a unified form that makes a direct comparison possible.

The first theorem states that the induced set XI can be represented as the efficient set of
a MOP. It is a generalization of a theorem given by Fülöp [7, Proposition 2.1] for bilevel
single-objective linear programs. For the generalized theorem, we adopt the concise formu-
lation of Fülöp’s theorem given in [8].

Let e ∈ Rnu be a vector with each component equal to 1, and let f̄F be the function
f̄F : X → Rnu+1+pl : x→ (xu,〈e,−xu〉 , fl(x)), where 〈·, ·〉 denotes the scalar product in Rnu .

Theorem 3.1 The efficient set E
(
X , f̄F,≤

)
is equal to the induced set XI of problem (2).

Proof

1. Let x∈E
(
X , f̄F,≤

)
and assume, to the contrary, that x /∈XI. Then there exists x̄l ∈Xl(xu)

such that fl(xu, x̄l) ≤ fl(x). Let x̂ equal the vector (xu, x̄l). It follows that x̂ ∈ X and
f̄F(x̂)≤ f̄F(x), which is a contradiction. Hence, x ∈ XI.

2. Let x ∈ XI and assume, to the contrary, that x /∈ E
(
X , f̄F,≤

)
. Then there exists x̄ ∈ X

such that f̄F(x̄) ≤ f̄F(x). By definition, x̄u 5 xu, 〈e,−x̄u〉 ≤ 〈e,−xu〉, fl(x̄) 5 fl(x), and
(x̄u,〈e,−x̄u〉 , fl(x̄)) 6= (xu,〈e,−xu〉 , fl(x)). It necessarily follows that x̄u = xu because
x̄u ≤ xu would imply 〈e,−x̄u〉 > 〈e,−xu〉. Therefore, fl(x̄) ≤ fl(x), which is a contra-
diction. Hence, x ∈ E

(
X , f̄F,≤

)
, which completes the proof. ut

Independently of Fülöp, a theorem similar to Theorem 3.1 was given by Eichfelder [20] for
a nonlinear BMOP. We reproduce it here without a proof.

Let f̄E be the function f̄E : X → Rnu+pl : x→ (xu, fl(x)), and let 4E be a binary relation
on f̄E(X) defined as

f̄E(x̄)4E f̄E(x)
def⇐⇒ x̄u = xu∧ fl(x̄)≤ fl(x). (8)

Theorem 3.2 (Eichfelder [20, Theorem 4.1]) The efficient set E
(
X , f̄E,4E

)
is equal to the

induced set XI of problem (2).

A prominent feature of the MOPs resulting from Theorems 3.1 and 3.2 is that their objective
functions involve an identity mapping of the upper-level decision xu, which makes it possible
to differentiate between the outcomes corresponding to different leader’s decisions. The
image space of the function f̄E in Theorem 3.2 has a dimension one less than the image
space of the function f̄F in Theorem 3.1 because of the specialized dominance relation used
in Theorem 3.2. Nonetheless, the reasoning behind the two theorems is identical. Both of
the theorems result in MOPs with the number of objectives greater than the dimension of the
upper-level decision in the original problem. Therefore, their applicability depends in part
on the capability of available solution methods to cope with a high number of objectives.

The following theorem states that not only the induced set, but also the efficient set of (2)
can be represented as the efficient set of a MOP. It is a multiobjective generalization of a
theorem given by Fliege and Vicente [10, Theorem 4.1].

Let f̄FV be the function f̄FV : X → Rnu+pu+pl : x→ (xu, fu(x), fl(x)), and let 4FV be a
binary relation on f̄FV(X) defined as

f̄FV(x̄)4FV f̄FV(x)
def⇐⇒

(
x̄u = xu∧ fl(x̄)≤ fl(x)

)
∨([

@x̂ ∈ X : x̂u = x̄u∧ fl(x̂)≤ fl(x̄)
]
∧ fu(x̄)≤ fu(x)

)
.

(9)
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Theorem 3.3 The efficient set E
(
X , f̄FV,4FV

)
is equal to the efficient set E

(
XI, fu,≤

)
of

problem (2).

Proof

1. Let x ∈ E
(
X , f̄FV,4FV

)
and assume, to the contrary, that x /∈ E

(
XI, fu,≤

)
. Then either

x /∈ XI or there exists another decision x̄ ∈ XI such that fu(x̄)≤ fu(x).
(a) If x /∈ XI, then there exists x̄ ∈ X such that x̄u = xu and fl(x̄) ≤ fl(x), which is a

contradiction. Hence, x ∈ XI.
(b) If there exists x̄ ∈ X such that fu(x̄) ≤ fu(x) and x̄ ∈ XI, then there does not exist

x̂∈ X for which x̂u = x̄u and fl(x̂u)≤ fl(x̄u), which is a contradiction. Hence, x̄ does
not exist.

Therefore, x ∈ E
(
XI, fu,≤

)
.

2. Let x ∈ E
(
XI, fu,≤

)
and assume, to the contrary, that x /∈ E

(
X , f̄FV,4FV

)
. It follows

immediately that x ∈ XI ⊂ X , leaving two cases. Let x̄ ∈ X be a decision such that
f̄FV(x̄) 4FV f̄FV(x). If x̄u = xu and fl(x̄) ≤ fl(x), then x /∈ XI, which is a contradiction.
Otherwise, if x̄ ∈ XI and fu(x̄)≤ fu(x), then x /∈ E

(
XI, fu,≤

)
, which is also a contradic-

tion. Hence, x̄ does not exist and x ∈ E
(
X , f̄FV,4FV

)
, which completes the proof. ut

If there are no upper-level objectives in (2), or if the upper-level objective function fu is
constant, then the induced set and the efficient set of problem (2) are equal and Theorem 3.3
reduces to Theorem 3.2. Theorem 3.2 is hence a special case of Theorem 3.3. While there
is no such relationship between Theorems 3.3 and 3.1, it is easy to formulate a theorem
similar to Theorem 3.3 but containing Theorem 3.1 as a special case. The following two
results describe the connections between Theorem 3.3 and Theorems 3.1 and 3.2.

Proposition 3.1 For all x, x̄∈X, the statements f̄E(x̄)4E f̄E(x) and f̄F(x̄)≤ f̄F(x) are equiv-
alent.

Proof Let x, x̄∈X . If f̄E(x̄)4E f̄E(x), then x̄u = xu∧ fl(x̄)≤ fl(x) and, hence, f̄F(x̄)≤ f̄F(x).
If f̄F(x̄)≤ f̄F(x), then x̄u 5 xu and 〈e,−x̄u〉 ≤ 〈e,−xu〉, which implies that x̄u = xu∧ fl(x̄)≤
fl(x) and, hence, f̄E(x̄)4E f̄E(x). ut

Corollary 3.1 For all x, x̄ ∈ X, the following statements are equivalent:

(a) f̄FV(x̄)4FV f̄FV(x),
(b) f̄E(x̄)4E f̄E(x)∨

([
@x̂ ∈ X : f̄E(x̂)4E f̄E(x̄)

]
∧ fu(x̄)≤ fu(x)

)
,

(c) f̄F(x̄)≤ f̄F(x)∨
([
@x̂ ∈ X : f̄F(x̂)≤ f̄F(x̄)

]
∧ fu(x̄)≤ fu(x)

)
.

Proof The statements (a) and (b) are equivalent by definition. The statements (b) and (c) are
equivalent by Proposition 3.1. ut

By Corollary 3.1, Theorem 3.3 could alternatively have been formulated in accordance with
Theorem 3.1 and not Theorem 3.2. However, in Theorem 3.2, the intent of the result is
perhaps more apparent from the formulation than in Theorem 3.1. Therefore, we believe
that the chosen formulation makes the presentation easier to follow.

The virtue of Theorem 3.3 is that it allows a reduction of problem (2) to a MOP. Unfor-
tunately, the inherent difficulty of bilevel optimization is introduced into the resulting MOP
by the relation 4FV, which depends on the efficiency of the lower-level decisions. Thus,
for any two decisions x, x̄ ∈ X , the computational effort of directly evaluating the statement
f̄FV(x̄)4FV f̄FV(x) is equivalent in the worst case to that of solving an optimization problem.
Moreover, as shown in the next section, the relation 4FV is nontransitive in general, which
makes it difficult to work with in applications. In the next section, we consider replacing the
relation 4FV in Theorem 3.3 by other, potentially more tractable binary relations.
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4 Alternative Binary Relations

The binary relation 4FV presented in the previous section is complicated by the fact that, in
general, no two decisions can be considered in isolation. This is because of the condition
requiring that any decision dominating another decision at the upper level must be efficient
to the lower-level problem. The condition makes the relation depend not only on the two
decisions at hand, but also on a possibly infinite number of other decisions. Therefore, ap-
plying Theorem 3.3 to problem (2) would apparently not make the problem any easier to
solve. However, by Corollary 3.1, the reduction of problem (2) to a MOP is not unique.
Therefore, there may exist binary relations that could be used in place of the relation 4FV to
obtain more useful reductions of problem (2).

In this section, we first formulate sufficient conditions guaranteeing that, given a set of
decisions and an appropriate mapping, an arbitrary binary relation produces the same ef-
ficient set as the relation 4FV. We then propose a simple binary relation that satisfies the
sufficient conditions in certain special cases of problem (2) enabling a potentially very effi-
cient numerical solution.

Consider problem (2) and let f̄ be a vector-valued function with domain X and 4 be a
binary relation on f̄ (X).

Theorem 4.1 The efficient set E
(
X , f̄ ,4

)
is equal to the efficient set E

(
X , f̄FV,4FV

)
if the

following conditions are satisfied for all x, x̄, x̂ ∈ X:

(a) (inclusivity) f̄FV(x̄)4FV f̄FV(x) =⇒ f̄ (x̄)4 f̄ (x),
(b) (compatibility) f̄ (x̄)4 f̄ (x)∧ x̄ ∈ XI =⇒ f̄FV(x̄)4FV f̄FV(x),
(c) (transitivity) f̄ (x̄)4 f̄ (x̂)∧ f̄ (x̂)4 f̄ (x) =⇒ f̄ (x̄)4 f̄ (x).

Proof

1. Let x ∈ E
(
X , f̄ ,4

)
and assume, to the contrary, that x /∈ E

(
X , f̄FV,4FV

)
. Then there

exists x̄∈ X such that f̄FV(x̄)4FV f̄FV(x), and it follows from (a) that f̄ (x̄)4 f̄ (x), which
is a contradiction. Hence, x ∈ E

(
X , f̄FV,4FV

)
.

2. Let x ∈ E
(
X , f̄FV,4FV

)
and assume, to the contrary, that x /∈ E

(
X , f̄ ,4

)
. Then there

exists x̂ ∈ X such that f̄ (x̂)4 f̄ (x). If x̂ ∈ XI, it follows from (b) that f̄FV(x̂)4FV f̄FV(x),
which is a contradiction. Otherwise, there exists x̄ ∈ XI such that x̄u = x̂u and fl(x̄) ≤
fl(x̂). Thus, f̄FV(x̄) 4FV f̄FV(x̂) and it follows from (a) that f̄ (x̄) 4 f̄ (x̂), from (c) that
f̄ (x̄) 4 f̄ (x), and from (b) that f̄FV(x̄) 4FV f̄FV(x), which is a contradiction. Hence, x ∈
E
(
X , f̄ ,4

)
, which completes the proof. ut

It follows immediately that a binary relation satisfying all three conditions of Theorem 4.1
can be used to reduce problem (2) to a MOP.

Corollary 4.1 The efficient set E
(
X , f̄ ,4

)
is equal to the efficient set E

(
XI, fu,≤

)
of prob-

lem (2) if the relation 4 satisfies the conditions (a), (b), and (c) of Theorem 4.1.

Proof The result follows directly from Theorems 3.3 and 4.1. ut

We next introduce a binary relation 4SC that satisfies two of the conditions of Theorem 4.1.
It is defined on the same domain as the relation 4FV and has a strong resemblance to it. How-
ever, unlike the relation 4FV, the relation 4SC does not depend on any external information:
whether any two decisions are in the relation is fully determined by the decisions themselves
and their respective outcomes. Consequently, the relation 4SC would make a good candidate
to substitute for the relation 4FV.
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Let 4SC be a binary relation on f̄FV(X) defined as

f̄FV(x̄)4SC f̄FV(x)
def⇐⇒

(
x̄u = xu∧ fl(x̄)≤ fl(x)

)
∨(

¬
[
xu = x̄u∧ fl(x)≤ fl(x̄)

]
∧ fu(x̄)≤ fu(x)

)
.

(10)

Proposition 4.1 The relation 4SC together with f̄ := f̄FV satisfies the conditions (a) and (b)
of Theorem 4.1.

Proof

1. Let x, x̄ ∈ X be any two decisions such that f̄FV(x̄) 4FV f̄FV(x). If x̄u = xu and fl(x̄) ≤
fl(x), then f̄FV(x̄) 4SC f̄FV(x). Otherwise, fu(x̄) ≤ fu(x) and there does not exist x̂ ∈ X
such that x̂u = x̄u and fl(x̂) ≤ fl(x̄). Therefore, either xu 6= x̄u or fl(x) � fl(x̄), and it
follows that f̄FV(x̄)4SC f̄FV(x). Hence, the relation 4SC satisfies (a).

2. Let x ∈ X and x̄ ∈ XI be any two decisions such that f̄FV(x̄) 4SC f̄FV(x). If x̄u = xu
and fl(x̄) ≤ fl(x), then f̄FV(x̄) 4FV f̄FV(x). Otherwise, fu(x̄) ≤ fu(x) and from x̄ ∈ XI
it follows that there does not exist x̂ ∈ X such that x̂u = x̄u and fl(x̂) ≤ fl(x̄). Hence,
f̄FV(x̄)4FV f̄FV(x) and the relation 4SC satisfies (b), which completes the proof. ut

The following counterexample shows that neither the relation 4FV nor the relation 4SC is
transitive in general. Thus, neither relation satisfies the condition (c) of Theorem 4.1. Con-
sider the simple bilevel problem

min
x

xu− xl

subject to xl = argmin
x̄l

{
x̄l : x̄l ∈ [ 1

2 (xu−1),5]
}
,

xu ∈ [0,5]

(11)

with a scalar decision and a scalar outcome at both levels. Let x = (1,0), x̄ = (3,1), and
x̂ = (3,3). Using the notation introduced for (2), it is readily seen that x, x̄, x̂ ∈ X and x, x̄ ∈
XI. It follows that f̄FV(x) 4FV f̄FV(x̄) and f̄FV(x̄) 4FV f̄FV(x̂), but f̄FV(x) 64FV f̄FV(x̂). Hence,
the relation 4FV is not transitive, which is also the case for the relation 4SC. Furthermore,
f̄FV(x) 4SC f̄FV(x̄), f̄FV(x̄) 4SC f̄FV(x̂), and f̄FV(x̂) 4SC f̄FV(x), which demonstrates that the
relation 4SC not only is not transitive, it is cyclic.

Because of nontransitivity and cyclicity, the relation 4SC is not a suitable replacement
for the relation 4FV in general. While this conclusion is not surprising given the simple
structure of 4SC, the relation is still useful in certain special cases of problem (2). Two such
special cases will be introduced in the next section.

Both the relations 4FV and 4SC fail to satisfy the sufficient conditions given in Theo-
rem 4.1 because of the lack of transitivity. While transitivity is an essential property of any
relation to be used within numerical solution methods, we note that based on the proof of
Theorem 4.1, the condition (c) does not need to be satisfied for all x, x̄, x̂ ∈ X . Instead, the
result holds even if the condition (c) is satisfied only for all x, x̂ ∈ X and x̄ ∈ XI such that
x̄u = x̂u and fl(x̄)≤ fl(x̂). That is, if one is willing to consider also nontransitive relations,
the sufficient conditions given in Theorem 4.1 can be relaxed.

It can be seen that the relation 4FV satisfies the sufficient conditions given in Theo-
rem 4.1 if they are relaxed as above. Let x, x̄, x̂ ∈ X be three decisions such that x̄u = x̂u
and fl(x̄) ≤ fl(x̂), and let f̄FV(x̄) 4FV f̄FV(x̂) and f̄FV(x̂) 4FV f̄FV(x). It follows that x̂ /∈ XI
and, consequently, that x̂u = xu and fl(x̂) ≤ fl(x). Therefore, x̄u = xu and fl(x̄) ≤ fl(x)
and, hence, f̄FV(x̄) 4FV f̄FV(x). In contrast, the relation 4SC does not satisfy even the re-
laxed conditions: in the above counterexample, f̄FV(x̄) 4SC f̄FV(x̂) and f̄FV(x̂) 4SC f̄FV(x),
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but f̄FV(x̄) 64SC f̄FV(x) despite the fact that x̄u = x̂u, x̄l < x̂l , and x̄ ∈ XI. This is consistent
with the fact that the relation 4FV fully captures the structure of problem (2) whereas the
relation 4SC does not.

5 Special Cases

In this section, we formulate two special cases of problem (2) and show that in those special
cases the relation 4SC is transitive, and thus satisfies all the conditions of Theorem 4.1.
Therefore, the special cases can be solved as MOPs using the relation 4SC.

The first special case is a BMOP with such a structure that all the objectives that depend
on the lower-level decision xl either appear only at the lower level or at both the upper and
the lower level. In other words, any objective present at the upper level that is not present at
the lower level must depend only on the upper-level decision xu.

Let X ∈ Rn be defined as in (2), and let fa : Xu→ Rpa , fb : X → Rpb , and fc : X → Rpc

be three vector-valued functions. The problem described above can be written as

min
x

( fa(xu), fb(x))
subject to xl ∈ E

(
Xl(xu),( fb, fc)(xu, ·),≤

)
,

xu ∈ Xu,

(12)

where any one of the functions fa, fb, or fc may be omitted. The upper-level and the lower-
level objective functions are fu = ( fa, fb) and fl = ( fb, fc)(xu, ·), respectively.

This special case has been motivated by an integrated design and control problem with
multiple objectives and the control problem fully discretized (see, e.g., [42]). The problem
is formulated with the design problem at the upper level and the control problem, which has
to be parameterized by the design, at the lower level. In this kind of a problem, the upper-
level objectives, such as investment cost, that are directly related to the design aspects are
naturally independent of the control variables. On the other hand, the lower-level objectives
that are relevant for the design are repeated at the upper level.

The following proposition provides means to solve (12) as a MOP using the binary
relation 4SC from Section 4.

Proposition 5.1 Let the set X and the functions fu and fl be defined as in (12). The efficient
set E

(
X , f̄FV,4SC

)
is equal to the efficient set E

(
XI, fu,≤

)
of problem (12).

Proof By Proposition 4.1 and Corollary 4.1, it is sufficient to show that the relation 4SC

is transitive for problem (12), that is, for all x, x̄, x̂ ∈ X , it follows from f̄FV(x̄) 4SC f̄FV(x̂)
and f̄FV(x̂) 4SC f̄FV(x) that f̄FV(x̄) 4SC f̄FV(x). Because of the disjunction in 4SC, the proof
consists of four parts. For the purpose of the proof, we consider an omitted function fa, fb,
or fc to be constant.

1. If x̄u = x̂u∧ fl(x̄)≤ fl(x̂) and x̂u = xu∧ fl(x̂)≤ fl(x), then x̄u = xu∧ fl(x̄)≤ fl(x) and,
hence, f̄FV(x̄)4SC f̄FV(x).

2. If ¬
(
x̂u = x̄u∧ fl(x̂)≤ fl(x̄)

)
∧ fu(x̄)≤ fu(x̂) and x̂u = xu∧ fl(x̂)≤ fl(x), it follows that

fa(x̂u) = fa(xu), fb(x̂)5 fb(x), and, therefore, fu(x̂)5 fu(x).
(a) If x̂u 6= x̄u, then xu 6= x̄u.
(b) If x̂u = x̄u, then fl(x̂)� fl(x̄) and, therefore, fl(x)� fl(x̄).
In both cases, it follows that ¬

(
xu = x̄u ∧ fl(x) ≤ fl(x̄)

)
∧ fu(x̄) ≤ fu(x) and, hence,

f̄FV(x̄)4SC f̄FV(x).
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3. If x̄u = x̂u∧ fl(x̄)≤ fl(x̂) and ¬
(
xu = x̂u∧ fl(x)≤ fl(x̂)

)
∧ fu(x̂)≤ fu(x), it follows that

fa(x̄u) = fa(x̂u), fb(x̄)5 fb(x̂), and, therefore, fu(x̄)5 fu(x̂).
(a) If xu 6= x̂u, then xu 6= x̄u.
(b) If xu = x̂u, then fl(x)� fl(x̂) and, therefore, fl(x)� fl(x̄).
In both cases, it follows that ¬

(
xu = x̄u ∧ fl(x) ≤ fl(x̄)

)
∧ fu(x̄) ≤ fu(x) and, hence,

f̄FV(x̄)4SC f̄FV(x).
4. If ¬

(
x̂u = x̄u∧ fl(x̂)≤ fl(x̄)

)
∧ fu(x̄)≤ fu(x̂) and ¬

(
xu = x̂u∧ fl(x)≤ fl(x̂)

)
∧ fu(x̂)≤

fu(x), it follows that fu(x̄) ≤ fu(x). If xu = x̄u, which is possible only if fb is noncon-
stant, it follows that fa(x̄u) = fa(xu) and fb(x̄)≤ fb(x), which implies that fb(x)� fb(x̄)
and, thus, that fl(x)� fl(x̄). Therefore, ¬

(
xu = x̄u∧ fl(x)≤ fl(x̄)

)
∧ fu(x̄)≤ fu(x) and,

hence, f̄FV(x̄)4SC f̄FV(x), which completes the proof. ut

The second special case is a problem that originated from considering a multiobjective prob-
lem decomposed into a collection of subproblems each involving some subset of the original
objectives [43, 44]. The aim is to find the decisions that are efficient both with respect to all
the objectives and with respect to a given subset of the objectives. That is to say, we look
for those efficient decisions that would remain efficient if only the given subset of objectives
were retained.

Let X ⊂ Rn be a nonempty set, and let fa : X → Rpa and fb : X → Rpb be two vector-
valued functions. The above-described problem can be written as

min ( fa, fb)(x) subject to x ∈ E
(
X , fb,≤

)
, (13)

where the function fb encompasses the objectives that belong to the given subset and the
function fa the objectives that do not. At the lower level, the optimization is with respect
to all decision variables, that is, xl = x, and the lower-level problem is not parameterized
by any upper-level decision xu. The upper-level and the lower-level objective functions are
fu = ( fa, fb) and fl = fb, respectively.

Because there is no upper-level decision xu in (13), the relation 4SC can be written as

f̄FV(x̄)4SC f̄FV(x) ⇐⇒ fl(x̄)≤ fl(x)∨
(

fl(x)� fl(x̄)∧ fu(x̄)≤ fu(x)
)

⇐⇒ fl(x̄)≤ fl(x)∨ fu(x̄)≤ fu(x).
(14)

The latter equivalence follows from the fact that fu(x̄)≤ fu(x) implies fl(x)� fl(x̄), which
thus becomes redundant in the conjunction. The following proposition provides means to
solve (13) as a MOP.

Proposition 5.2 Let the set X and the functions fu and fl be defined as in (13). The efficient
set E

(
X , f̄FV,4SC

)
is equal to the efficient set E

(
XI, fu,≤

)
of problem (13).

Proof The proof is similar to that of Proposition 5.1. By Proposition 4.1 and Corollary 4.1,
it is sufficient to show that the relation 4SC is transitive for problem (13). The simplified
expression given by (14) is used. Because of the disjunction in 4SC, the proof consists of
four parts.

1. If fl(x̄) ≤ fl(x̂) and fl(x̂) ≤ fl(x), it follows that fl(x̄) ≤ fl(x) and, hence, f̄FV(x̄) 4SC

f̄FV(x).
2. If fu(x̄) ≤ fu(x̂) and fl(x̂) ≤ fl(x), it follows that fb(x̄) 5 fb(x̂) ⇐⇒ fl(x̄) 5 fl(x̂).

Thus, fl(x̄)≤ fl(x) and, hence, f̄FV(x̄)4SC f̄FV(x).
3. If fl(x̄) ≤ fl(x̂) and fu(x̂) ≤ fu(x), it follows that fb(x̂) 5 fb(x) ⇐⇒ fl(x̂) 5 fl(x).

Thus, fl(x̄)≤ fl(x) and, hence, f̄FV(x̄)4SC f̄FV(x).
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4. If fu(x̄)≤ fu(x̂) and fu(x̂)≤ fu(x), it follows that fu(x̄)≤ fu(x) and, hence, f̄FV(x̄)4SC

f̄FV(x), which completes the proof. ut

The special case (13) is distinct from the special case (12) because in the latter an objective
function depending on the lower-level decision xl is not allowed to appear only at the upper
level. However, with fa, fb, and X as in (13), the special case (13) is equivalent to BMOP

min fb(x) subject to x ∈ E
(
X ,( fa, fb),≤

)
(15)

which is a valid instantiation of (12). The equivalence of problems (13) and (15) is easily
verified by repeating the derivation given in (14) for problem (15); the resulting relation,
when written in terms of fa and fb, will be identical to the relation derived in (14) and, thus,
the efficient sets of (13) and (15) must be equal.

6 Conclusion

In this paper, we brought together theorems connecting bilevel optimization and multiobjec-
tive optimization and provided sufficient conditions for a binary relation to reduce a BMOP
to a MOP. We generalized the results that assumed scalar-valued objective functions for
bilevel multiobjective optimization and presented all the results in a unified form for the
first time. We also proposed a simple binary relation satisfying the sufficient conditions in
certain special cases. In those special cases, the proposed relation allows a BMOP to be
reduced to a single-level MOP, which may result in considerable savings in the computa-
tional effort required to solve such problems. Two special cases of a general BMOP, both
originally motivated by the needs of applications, were introduced and successfully reduced
to MOPs. The two special cases were found to be distinct, but closely related. It remains
unclear, however, whether there exists a common formulation covering both special cases
and allowing a comparable reduction.

Possible directions for future research include studying the practical aspects of imple-
menting a solution approach based on the results presented, applying existing solution meth-
ods to the multiobjective problems resulting from the reduction to learn how difficult they
are to solve, and designing new algorithms for bilevel multiobjective optimization that make
use of the achieved reduction.
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