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Abstract This article investigates extremality, stationarity, and regularity properties of infinite collections of sets in

Banach spaces. Our approach strongly relies on the machinery developed for finite collections. When dealing with an

infinite collection of sets, we examine the behaviour of its finite subcollections. This allows us to establish certain primal-

dual relationships between the stationarity/regularity properties some of which can be interpreted as extensions of the

Extremal principle. Stationarity criteria developed in the article are applied to proving intersection rules for Fréchet

normals to infinite intersections of sets in Asplund spaces.
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1 Introduction

Starting with the pioneering work by Dubovitskii and Milyutin [1], it has become natural, when dealing with optimization

and other related problems, to reformulate optimality or some other property under investigation as a kind of extremal

behaviour of a certain collection of sets. Considering collections of sets is a rather general scheme of investigating extremal

problems. For instance, any set of extremality conditions leads to some optimality conditions for the original problem.

The concept of a finite extremal collection of sets (see Definition 2.1) was introduced and investigated in [2–4].

This is a very general model embracing many optimality notions. A dual necessary extremality condition in terms of
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Fréchet ε-normal elements was established in [3, 4] (formulated without proof in [2]) for a collection of closed sets in

the setting of a Banach space admitting an equivalent norm Fréchet differentiable away from zero. It was extended

in [5] to general Asplund spaces and is now known as the Extremal principle (see Theorem 2.1). This result can be

considered as a generalization of the convex separation theorem to collections of nonconvex sets and is recognized as one

of the cornerstones of the contemporary variational analysis. It can substitute the latter theorem, when proving optimality

conditions and subdifferential calculus formulas. We refer the reader to [6] for other applications and historical comments.

In recent years, finite collections of sets have been a subject of intensive research [7–29]. Similar to the classical

analysis, besides extremality, the concepts of stationarity and regularity have been introduced and investigated. It was

established in [17, 18] that the conclusion of the Extremal principle actually characterizes a much weaker than local

extremality property of approximate stationarity (see Definition 2.2). Several versions of this property (under various

names) can be found in [14–21].

Replacing in the Extremal principle local extremality with approximate stationarity produces a stronger statement

– the Extended extremal principle: approximate stationarity of a finite collection of closed sets in an Asplund space is

equivalent to its separability (Fréchet normal approximate stationarity) (see Theorem 2.2). Some earlier formulations of

this result can be found in [14–16].

If a collection of sets is not approximately stationary, it is uniformly regular [21] (see also Definition 3.1 (UR)). The

latter property is the direct analogue for collections of sets of the metric regularity of multifunctions. The corresponding

dual property is called Fréchet normal uniform regularity [21] (see Definition 3.1 (FNUR)).

This article extends the discussed above extremality, stationarity, and regularity properties of collections of sets to

infinite collections in Banach spaces having in mind applications to problems of infinite and semi-infinite programming

that are developed in the forthcoming article [30]. The definitions of regularity properties for infinite collections of sets

suggested in this article provide a partial answer to a question on the list of open problems compiled at the Metric

Regularity Days Workshop, Paris, October 25–26, 20111.

Recently, there have appeared a few other attempts to consider regularity properties of infinite collections of sets

[31–33]. The authors of these three articles study the so called linear regularity (which is in general weaker than uniform

regularity considered in the current article) and several related regularity properties for a collection of infinitely many

convex or subsmooth sets.

In [34], necessary optimality conditions are established for broad classes of semi-infinite programs where the feasible

set is given by a parameterized system of infinitely many linear inequalities. The optimality conditions in this article are

formulated in asymptotic form, involving the weak∗ closure of the so-called second moment cone. Under the so-called

Farkas-Minkowski type constraint qualification (FMCQ, in short), ordinary KKT optimality conditions are easily derived.

A FMCQ was previously applied in [35] to a convex optimization problem with constraints. If the constraint system

enjoys the FMCQ, then every continuous linear consequence of the system is also a consequence of a finite subsystem,

and the converse holds if the system is linear [35, Proposition 1].

In [35], a weaker local Farkas-Minkowski constraint qualification (LFMCQ, in brief) is introduced. It can be proved

that FMCQ implies LFMCQ. This property is also closely related (equivalent, in fact, under quite natural assumptions) to

the basic constraint qualification (BCQ, in short), introduced in [36, p. 307] relatively to an ordinary convex programming

problem with equality/inequality constraints and extended to systems of infinitely many convex constraints in [37] (see

also [22]).

FMCQ and LFMCQ are quite strong properties as they entail a kind of finite reducibility, allowing for KKT-type

necessary optimality conditions in infinitely constrained optimization. A very deep study of constraint qualifications

1 M. Théra, personal communication.



Stationarity and Regularity of Infinite Collections of Sets 3

related to BCQ is carried out in [38]. An attempt to bring some order into the variety of existing constraint qualifications

was undertaken in [39,40].

Out of the convex scenario, in [24] a general optimization problem with countable inequality constraints is approached

by applying some tangential extremal principles and related calculus rules for infinite intersections. Asymptotic and non-

asymptotic KKT conditions are derived in [24] in the locally Lipschitz case under certain constraint qualifications (CHIP,

SQC and SCC).

Our approach in this article strongly relies on the machinery developed for finite collections. When dealing with an

infinite collection of sets, we examine the behaviour of its finite subcollections. In all the original definitions, we introduce

an additional parameter – a finite subset of the given set of indices (see e.g. Definition 2.3). This allows us to establish the

primal-dual relationships between the stationarity/regularity properties of infinite collections of sets (see Theorem 2.3)

using the techniques developed for finite collections.

An important feature of the proposed approach is the fact that the proof of the primal-dual relationships does not

depend on the method of choice of finite subcollections of sets (as long as primal and dual conditions are considered for

the same subcollection). This gives us freedom to define rules governing the choice of such subcollections. When dealing

with families (sequences) of subcollections, it can be important to impose growth restrictions on the size (cardinality of

the set of indices) of subcollections. This is done in the article by using an abstract gauge function Φ (see Definition 2.4).

The primal-dual relationships between the stationarity/regularity properties of infinite collections of sets remain valid for

corresponding Φ-stationarity/Φ-regularity properties (see Theorem 2.4). Specific Φ-stationarity/Φ-regularity properties

depend on the choice of the gauge function.

The plan of the article is as follows. Section 2 contains a more detailed list of important definitions and theorems

partially mentioned above and needed in the sequel together with the preliminary discussion of the new developments

which are the subject of the current article.

In Section 3, we summarize and partially modernize stationarity and regularity conditions for finite collections of

sets from [19–21]. All the properties are defined in terms of certain constants characterizing the mutual arrangement of

the sets in space. Among new results, note Proposition 3.1 providing conditions guaranteeing nontriviality of the normal

elements corresponding to a certain subcollection of sets, and Theorem 3.1 which refines the core arguments from the

proofs of [21, Theorem 4] and [18, Theorem 1] and provides the tools for proving the primal/dual relationships between

stationarity and regularity properties of finite and infinite collections of sets.

In Section 4, the definitions and relationships of Section 3 are extended to infinite collections of sets utilizing the

idea of replacing an infinite index set by a sequence of its finite subsets with and without growth restrictions on the

cardinality of the subsets of indices.

Section 5 is devoted to applications of stationarity criteria from Section 4 to developing several intersection rules for

Fréchet normals to infinite intersections of sets in Asplund spaces. Besides the general form of the intersection rule, we

formulate also its normal form under the assumption of Fréchet normal regularity of the collection of sets from Section 4.

Other applications of the results of the current article (mostly to optimality conditions) will be presented in the

forthcoming article [30].

While preparing this article for publication, we came across the article [23] by Mordukhovich and Phan where the

authors also consider infinite collections of sets and establish so called rated extremal principles. Rated extremality

investigated in this article is a useful property which ensures approximate stationarity of the collection of sets. The main

results of [23] follow from the corresponding theorems of the current article as the appropriate in-text remarks point out.
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2 Preliminaries

This Section contains a list of important definitions and theorems partially mentioned in the Introduction and needed in

the sequel together with the preliminary discussion of the new developments which are the subject of the current article.

It illustrates the evolution of the main ideas.

Definition 2.1 [4, 6] A collection of sets {Ωi}i∈I , 1 < |I| < ∞, in a normed linear space X, is called locally extremal

at x̄ ∈
∩

i∈I Ωi iff there exists a ρ > 0 such that for any ε > 0 there are ai ∈ X (i ∈ I) such that

max
i∈I

∥ai∥ < ε and
∩
i∈I

(Ωi − ai)
∩

Bρ(x̄) = ∅. (1)

Condition (1) means that an appropriate arbitrarily small shift of the sets makes them unintersecting in a neigh-

bourhood of x̄. This is a very general model embracing many optimality notions.

Theorem 2.1 [2, 4–6] If a collection of closed sets {Ωi}i∈I , 1 < |I| < ∞, in an Asplund space, is locally extremal at

x̄ ∈
∩

i∈I Ωi, then for any ε > 0 there exist xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ I) such that∥∥∥∥∥∥
∑
i∈I

x∗i

∥∥∥∥∥∥ < ε
∑
i∈I

∥x∗i ∥, (2)

where NF
Ωi

(xi) is the Fréchet normal cone to Ωi at xi.

This result can be considered as a generalization of the convex separation theorem to collections of nonconvex sets.

Similar to the classical analysis, besides extremality, the concepts of stationarity and regularity have been introduced

and investigated. The conclusion (2) of the Extremal principle actually characterizes a much weaker than local extremality

(1) property which can be interpreted as kind of stationary behaviour of the collection of sets.

Definition 2.2 [21] A collection of sets {Ωi}i∈I , 1 < |I| < ∞, is approximately stationary at x̄ ∈
∩

i∈I Ωi iff for any

ε > 0 there exist ρ ∈]0, ε[; ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X (i ∈ I) such that

max
i∈I

∥ai∥ < ερ and
∩
i∈I

(Ωi − ωi − ai)
∩

(ρB) = ∅. (3)

Conditions (3) look more complicated than (1): here, instead of the common point x̄, each of the sets Ωi is considered

near its own point ωi and the size of the “shifts” is related to that of the neighbourhood in which the sets become

unintersecting, namely maxi∈I ∥ai∥/ρ → 0 as ε ↓ 0.

Replacing in the Extremal principle local extremality with approximate stationarity produces a stronger statement

– the Extended extremal principle.

Theorem 2.2 [17,18] A collection of closed sets {Ωi}i∈I , 1 < |I| < ∞, in an Asplund space, is approximately stationary

at x̄ ∈
∩

i∈I Ωi, if and only if for any ε > 0 there exist xi ∈ Ωi ∩ Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ I) such that (2) holds

true.

In the subsequent sections, we extend the discussed above extremality, stationarity, and regularity properties of

collections of sets to infinite collections in Banach spaces. In all the original definitions, we introduce an additional

parameter – a finite subset of the given set of indices. For example, the definition of approximate stationarity takes the

following form.

Definition 2.3 A collection of sets {Ωi}i∈I , |I| > 1, is approximately stationary at x̄ ∈
∩

i∈I Ωi iff for any ε > 0 there

exist ρ ∈]0, ε[; J ⊂ I, |J | < ∞; ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X (i ∈ J) such that

max
i∈J

∥ai∥ < ερ and
∩
i∈J

(Ωi − ωi − ai)
∩

(ρB) = ∅. (4)
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This allows us to establish the primal-dual relationships between the stationarity/regularity properties of infinite

collections of sets using the techniques developed for finite collections. In particular, the Extended extremal principle

holds.

Theorem 2.3 A collection of closed sets {Ωi}i∈I , |I| > 1, in an Asplund space is approximately stationary at x̄ ∈
∩

i∈I Ωi

if and only if for any ε > 0 there exist J ⊂ I, |J | < ∞; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J) such that∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε
∑
i∈J

∥x∗i ∥. (5)

Moreover, for any ε > 0, both properties in the above equivalence are satisfied with the same subset J of indices.

When dealing with families (sequences) of subcollections, it can be important to impose growth restrictions on the

size (cardinality of the set of indices) of subcollections. This is done in the article by using an abstract gauge function

Φ : R+ → R+∪{+∞}. Appropriate changes in the definitions lead to modified concepts of Φ-stationarity and Φ-regularity.

Definition 2.4 A collection of sets {Ωi}i∈I , |I| > 1, is Φ-approximately stationary at x̄ ∈
∩

i∈I Ωi iff for any ε > 0

there exist ρ ∈]0, ε[; α ∈]0, ε[; J ⊂ I, |J | < Φ(α); ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X (i ∈ J) such that

max
i∈J

∥ai∥ < αρ and
∩
i∈J

(Ωi − ωi − ai)
∩

(ρB) = ∅. (6)

Note that the parameter α in the above definition determines both the cardinality of the subset J of indices and the

upper bound of the size of “shifts” ai.

The primal-dual relationships between the stationarity/regularity properties of infinite collections of sets remain

valid for corresponding Φ-stationarity/Φ-regularity properties. In particular, the Extended Φ-extremal principle can be

formulated the following way.

Theorem 2.4 A collection of closed sets {Ωi}i∈I , |I| > 1, in an Asplund space is Φ-approximately stationary at

x̄ ∈
∩

i∈I Ωi if and only if for any ε > 0 there exist α ∈]0, ε[; J ⊂ I, |J | < Φ(α); xi ∈ Ωi ∩ Bε(x̄) and x∗i ∈ NF
Ωi

(xi)

(i ∈ J) such that ∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ < α
∑
i∈J

∥x∗i ∥. (7)

Moreover, for any ε > 0, both properties in the above equivalence are satisfied with the same number α and subset J

of indices.

Specific Φ-stationarity/regularity properties depend on the choice of the gauge function.

Our basic notation is standard, see [6, 41]. Throughout the article, X is a Banach space (although the definitions

are valid in a normed linear space). Its topological dual is denoted X∗ while ⟨·, ·⟩ denotes the bilinear form defining the

pairing between the two spaces. The closed unit balls in a normed space and its dual are denoted B and B∗ respectively.

Bδ(x) denotes the closed ball with radius δ and center x.

We say that a set Ω ⊂ X is locally closed near x̄ ∈ Ω iff Ω ∩ U is closed in X for some closed neighbourhood U of

x̄. Given a set I of indices, its cardinality (the number of elements in I) is denoted |I|.

In this article, we consider an abstract subdifferential operator ∂ defined on the class of extended real-valued functions

and satisfying the following conditions (axioms):

(A1) For any f : X → R∞ := R ∪ {+∞} and any x ∈ X, the subdifferential ∂f(x) is a (possibly empty) subset of

X∗.
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(A2) If f is convex, then ∂f coincides with the subdifferential of f in the sense of convex analysis.

(A3) If f(u) = g(u) for all u near x, then ∂f(x) = ∂g(x).

(A4) If x is a point of local minimum of f + g, where f : X → R∞ is lower semicontinuous and g : X → R is

convex and Lipschitz continuous, then for any ε > 0 there exist x1, x2 ∈ Bε(x), x
∗
1 ∈ ∂f(x1), x

∗
2 ∈ ∂g(x2) such that

|f(x1)− f(x)| < ε and ∥x∗1 + x∗2∥ < ε.

The majority of known subdifferentials satisfy conditions (A1)–(A3). The typical examples of subdifferentials satisfy-

ing all conditions (A1)–(A4) are Rockafellar-Clarke and Ioffe subdifferentials in Banach spaces and Fréchet subdifferentials

in Asplund spaces.

The corresponding to ∂ normal cone mapping N is defined for any Ω ⊂ X with the help of its indicator function δΩ

(δΩ(x) = 0 if x ∈ Ω and δΩ(x) = ∞ otherwise): NΩ(x) := ∂δΩ(x) if x ∈ Ω and NΩ(x) := ∅ otherwise. Another two

natural assumptions about normal cones need to be added to the list of axioms:

(A5) If x ∈ Ω, then NΩ(x) is a cone.

(A6) If X = X1 ×X2, x1 ∈ Ω1 ⊂ X1, x2 ∈ Ω2 ⊂ X2, then NΩ1×Ω2
(x1, x2) = NΩ1

(x1)×NΩ2
(x2).

The majority of known normal cones, particularly Fréchet, limiting and Clarke normal cones, satisfy conditions (A5)

and (A6).

Throughout this article, we assume that all axioms (A1)–(A6) are satisfied by the subdifferential and normal cone

operators ∂ and N .

We will use the denotations ∂F and NF for the Fréchet subdifferential and normal cone operators respectively. Recall

that

∂F f(x) =

{
x∗ ∈ X∗∣∣ lim inf

u→x

f(u)− f(x)− ⟨x∗, u− x⟩
∥u− x∥ ≥ 0

}
, (8)

NF
Ω (x) =

x∗ ∈ X∗∣∣ lim sup

u
Ω→x

⟨x∗, u− x⟩
∥u− x∥ ≤ 0

 (9)

if f(x) is finite in the case of the first formula and x ∈ Ω in the case of the second one. The denotation u
Ω→ x in the

last formula means that u → x with u ∈ Ω. In the convex case, sets (8) and (9) reduce to the subdifferential and normal

cone in the sense of convex analysis. In this case, the superscript ‘F ’ will be omitted.

3 Finite Collections of Sets

In this section we summarize stationarity and regularity conditions for finite collections of sets from [19–21].

Given a collection of sets Ω := {Ωi}i∈I ⊂ X, where 1 < |I| < ∞, and a point x̄ ∈
∩

i∈I Ωi, define nonnegative

(possibly infinite) constants:

θρ[Ω](x̄) := sup
{
r ≥ 0

∣∣ ∩
i∈I

(Ωi − ai)
∩

Bρ(x̄) ̸= ∅, ∀ai ∈ rB
}
, ρ ∈]0,∞], (10)

θ[Ω](x̄) := lim inf
ρ↓0

θρ[Ω](x̄)

ρ
, (11)

θ̂[Ω](x̄) := lim inf
ρ↓0;ωi

Ωi→x̄, i∈I

θρ[{Ωi − ωi}i∈I ](0)

ρ
. (12)

Evidently θρ[Ω](x̄) is nondecreasing as a function of ρ. Moreover, limρ↓0 θρ[Ω](x̄) = 0, unless x̄ ∈ int ∩i∈I Ωi [19,

Proposition 3].
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If ρ = ∞, then Bρ(x̄) = X and

θ∞[Ω](x̄) := sup
{
r ≥ 0

∣∣ ∩
i∈I

(Ωi − ai) ̸= ∅, ∀ai ∈ rB
}
.

Constants (10)–(12) characterize the mutual arrangement of sets Ωi (i ∈ I) in space and are convenient for defining

their extremality, stationarity and regularity properties. We demonstrate below that these constants simplify establishing

dual characterizations of these properties and provide estimates for the rates/moduli of the regularity properties. The

terminology and abbreviations for the properties in the definition below are taken from [21].

Definition 3.1 The collection of sets Ω is

(E) extremal at x̄ iff θ∞[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist ai ∈ X (i ∈ I) such that maxi∈I ∥ai∥ < ε and

∩
i∈I

(Ωi − ai) = ∅;

(LE) locally extremal at x̄ iff θρ[Ω](x̄) = 0 for some ρ > 0, i.e.,

there exists a ρ > 0 such that for any ε > 0 there are ai ∈ X (i ∈ I) such that maxi∈I ∥ai∥ < ε and

∩
i∈I

(Ωi − ai)
∩

Bρ(x̄) = ∅; (13)

(S) stationary at x̄ iff θ[Ω](x̄) = 0, i.e.,

for any ε > 0 there exists a ρ ∈]0, ε[ and ai ∈ X (i ∈ I) such that maxi∈I ∥ai∥ < ερ and (13) holds true;

(AS) approximately stationary at x̄ iff θ̂[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist ρ ∈]0, ε[; ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X (i ∈ I) such that maxi∈I ∥ai∥ < ερ and

∩
i∈I

(Ωi − ωi − ai)
∩

(ρB) = ∅; (14)

(R) regular at x̄ iff θ[Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that

∩
i∈I

(Ωi − ai)
∩

Bρ(x̄) ̸= ∅

for any ρ ∈]0, ε[ and any ai ∈ X (i ∈ I) satisfying maxi∈I ∥ai∥ ≤ αρ;

(UR) uniformly regular at x̄ iff θ̂[Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that

∩
i∈I

(Ωi − ωi − ai)
∩

(ρB) ̸= ∅

for any ρ ∈]0, ε[; ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X (i ∈ I) satisfying maxi∈I ∥ai∥ ≤ αρ.

Extremality properties (E) and (LE) were introduced in [2] and [3,4] respectively as a general model for investigating

various settings of optimization problems (see historical comments in [6]). Several modifications of the (AS) property

(under different names) can be found in [14–20]. Properties (S), (R), and (UR) were introduced in [19,20]. The definitions

of (AS) and (UR) given above follow [20], while the terms ‘approximate stationarity’ and ‘uniform regularity’ (and the

corresponding abbreviations) were suggested in [21].
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The relationships between the extremality, stationarity and regularity properties are straightforward and easily follow

from comparing the corresponding constants:

(E) ⇒ (LE) ⇒ (S) ⇒ (AS), (15)

(UR) ⇒ (R). (16)

The regularity properties (R) and (UR) are negations of the corresponding stationarity properties (S) and (AS) respec-

tively. When positive, constants (11) and (12) provide quantitative characterizations of the regularity properties. They

coincide with the supremum of all α in the definitions of properties (R) and (UR) respectively.

All implications in (15) and (16) can be strict. Some examples can be found in [21]. The chain of implications (15)

shows, in particular, that the approximate stationarity property (AS) is the weakest of all extremality and stationarity

properties in Definition 3.1. It is in a sense also the most important one: it lies at the heart of the Extremal principle. Its

direct counterpart – the uniform regularity property (UR) – can be interpreted as a realization (for a collection of sets) of

the fundamental in variational analysis property of metric regularity (see the comparison of these properties in [19–21]).

The mutual arrangement of sets in space can also be characterized with the help of dual space elements. The next

constant plays a crucial role in such characterizations:

η̂[Ω](x̄) := lim inf
xi

Ωi→ x̄, x∗
i
∈NΩi

(xi) (i∈I)∑
i∈I∥x∗

i ∥=1

∥∥∥∥∥∥
∑
i∈I

x∗i

∥∥∥∥∥∥ . (17)

It obviously depends on the type of normal cone used in the definition. In the case of the Fréchet normal cone, we will

write η̂F [Ω](x̄).

Definition 3.2 The collection of sets Ω is

(NAS) normally approximately stationary at x̄ iff η̂[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ I) such that∥∥∥∥∥∥

∑
i∈I

x∗i

∥∥∥∥∥∥ < ε
∑
i∈I

∥x∗i ∥; (18)

(FNAS) Fréchet normally approximately stationary at x̄ iff η̂F [Ω](x̄) = 0, i.e.,

for any ε > 0 there exist xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ I) such that (18) holds true;

(NUR) normally uniformly regular at x̄ iff η̂[Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that ∥∥∥∥∥∥
∑
i∈I

x∗i

∥∥∥∥∥∥ ≥ α
∑
i∈I

∥x∗i ∥ (19)

for any xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ I);

(FNUR) Fréchet normally uniformly regular at x̄ iff η̂F [Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that (19) holds true for any xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ I).

The normal approximate stationarity property (NAS) can be interpreted as a kind of separation property for a

collection of sets. Its first version (in terms of Fréchet ε-normal elements) was considered in [2–4] as a dual necessary

condition of extremality. Later on, the property called here Fréchet normal approximate stationarity has been used in

numerous publications. The current formulations of the (FNAS) and (FNUR) properties follow [20, 21]. Constant (17)

coincides with the supremum of all α in the definition of property (NUR).
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When dealing with normally approximately stationary collections of sets, it can be important to have conditions

guaranteeing nontriviality of elements x∗i in the definition of property (NAS) corresponding to a certain subcollection of

sets. Not surprisingly, such conditions are provided by normal uniform regularity of the complement of this subcollection.

Proposition 3.1 Let a collection of sets Ω = {Ωi}i∈I be normally approximately stationary at x̄. Suppose I = I1 ∪ I2,

I1 ̸= ∅, I2 ̸= ∅ and I1 ∩ I2 = ∅. If the collection of sets {Ωi}i∈I2 is normally uniformly regular at x̄, then for any ε > 0

and γ ∈]0, 1[ there exist xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ I) such that (18) holds true and∑

i∈I1

∥x∗i ∥ > γc
∑
i∈I

∥x∗i ∥,

where c := (1 + (η̂[{Ωi}i∈I2 ])
−1)−1.

Proof Let the collection of sets {Ωi}i∈I2 be normally uniformly regular at x̄ and numbers ε > 0 and γ ∈]0, 1[ be given.

Take any γ′ ∈]γ, 1[. By definition (NUR) and taking into account that η̂ is the supremum of all α in the definition of

property (NUR), there exists an α > 0 and a δ > 0 such that α/(α+ 1) = (1 + α−1)−1 > γ′c and∥∥∥∥∥∥
∑
i∈I2

x∗i

∥∥∥∥∥∥ ≥ α
∑
i∈I2

∥x∗i ∥

for any xi ∈ Ωi∩Bδ(x̄) and x∗i ∈ NΩi
(xi) (i ∈ I2). Chose a ξ ∈]0,min{ε, δ}[ such that (α−ξ)/(α+1) > γc. By definition

(NAS), there exist xi ∈ Ωi ∩Bξ(x̄) and x∗i ∈ NΩi
(xi) (i ∈ I) such that∥∥∥∥∥∥
∑
i∈I

x∗i

∥∥∥∥∥∥ < ξ
∑
i∈I

∥x∗i ∥.

Then xi ∈ Ωi ∩Bε(x̄), (18) holds true and

∑
i∈I1

∥∥x∗i ∥∥ ≥

∥∥∥∥∥∥
∑
i∈I1

x∗i

∥∥∥∥∥∥ ≥

∥∥∥∥∥∥
∑
i∈I2

x∗i

∥∥∥∥∥∥−

∥∥∥∥∥∥
∑
i∈I

x∗i

∥∥∥∥∥∥
> α

∑
i∈I2

∥∥x∗i ∥∥− ξ
∑
i∈I

∥∥x∗i ∥∥
= α

∑
i∈I

∥∥x∗i ∥∥− α
∑
i∈I1

∥∥x∗i ∥∥− ξ
∑
i∈I

∥∥x∗i ∥∥ .
Hence,

(1 + α)
∑
i∈I1

∥∥x∗i ∥∥ > (α− ξ)
∑
i∈I

∥∥x∗i ∥∥ ,
yielding ∑

i∈I1

∥∥x∗i ∥∥ >
α− ξ

1 + α

∑
i∈I

∥∥x∗i ∥∥ > γc
∑
i∈I

∥∥x∗i ∥∥ . ⊓⊔

The main tools for comparing primal and dual space stationarity and regularity properties of finite and infinite

collections of sets are provided by the next theorem. It refines the core arguments from the proofs of [18, Theorem 1]

and [21, Theorem 4].

Theorem 3.1 Let x̄ ∈
∩

i∈I Ωi, 1 < |I| < ∞.

(i) Suppose ωi ∈ Ωi, x
∗
i ∈ NF

Ωi
(ωi) (i ∈ I),

∑
i∈I

∥∥x∗i ∥∥ = 1 and

∥∥∥∥∥∥
∑
i∈I

x∗i

∥∥∥∥∥∥ < α (20)

for some α > 0. Then for any ε > 0, there exists a ρ ∈]0, ε[ and points ai ∈ X (i ∈ I) such that maxi∈I ∥ai∥ < αρ

and (14) holds true.
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(ii) Suppose that numbers α > 0; ε > 0; ε1 ≥ 0, ε2 > 0, ε1 + ε2 ≤ ε; and ρ ∈]0, ε2/(α+ 1)[ and points ωi ∈ Ωi ∩Bε1(x̄)

and ai ∈ X (i ∈ I) are given such that the sets Ωi ∩ Bε(x̄) (i ∈ I) are closed near x̄, condition (14) is satisfied and

maxi∈I ∥ai∥ < αρ. Then there exist points xi ∈ Ωi ∩ Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ I) such that conditions (20) are

satisfied.

Proof (i) Chose positive numbers ε1 and ε2 such that
∥∥∑

i∈I x
∗
i

∥∥ < α− |I|(ε1 + ε2).

By definition (9) of the Fréchet normal cone, for sufficiently small ρ < ε, the inequalities

⟨x∗i , ω − ωi⟩ ≤
ε1

α+ 1
∥ω − ωi∥ ≤ ε1ρ

hold true for all ω ∈ Ωi ∩B(α+1)ρ(ωi) and all i ∈ I.

For any i ∈ I, chose a point ai ∈ X, such that

∥ai∥ < αρ and ⟨x∗i , ai⟩ > αρ
∥∥x∗i ∥∥− ε2ρ. (21)

To complete the proof, it is sufficient to show that condition (14) holds true. If it does not, then there exists an

x ∈
∩

i∈I(Ωi−ωi−ai)∩ρB. For any i ∈ I, we have x = ω′
i−ωi−ai for some ω′

i ∈ Ωi, and
∥∥ω′

i − ωi

∥∥ = ∥x+ ai∥ < (α+1)ρ.

Thus, applying (21), we obtain:

⟨x∗i , x⟩ = ⟨x∗i , ω
′
i − ωi⟩ − ⟨x∗i , ai⟩ < −αρ

∥∥x∗i ∥∥+ (ε1 + ε2)ρ,

and consequently ∑
i∈I

⟨x∗i , x⟩ < −αρ+ |I|(ε1 + ε2)ρ.

On the other hand, ⟨∑
i∈I

x∗i , x

⟩
> −(α− |I|(ε1 + ε2))ρ.

A contradiction.

(ii). Put γ := (α+ 1)−1 and chose numbers α1, α2, satisfying

ρ−1 max
i∈I

∥ai∥ < α1 < α2 < α.

Note that α2 < γ−1 − 1, γα2 < 1− γ, and ρ < γε2.

Without loss of generality, let I = {1, 2, . . . , n}. Consider the Banach space Xn+1 with the norm ∥ · ∥γ defined by

∥(u, v1, . . . , vn)∥γ := max{∥u∥, γ max
1≤i≤n

∥vi∥}

and a function f1 : Xn+1 → R+:

f1(u, v1, . . . , vn) := max
1≤i≤n

∥vi − ωi − ai − u∥.

By (14), f1(u, v1, . . . , vn) > 0 for all u ∈ ρB and vi ∈ Ωi ∩Bε(x̄), i = 1, 2, . . . , n. At the same time,

f1(0, ω1, . . . , ωn) = max
1≤i≤n

∥ai∥ < α1ρ.

Next step is application of the Ekeland variational principle to the restriction of f1 to the complete metric space

ρB×Ω1∩Bε(x̄)× . . . Ωn∩Bε(x̄) (with the induced metric). Take ρ′ := ρα1/α2. It follows that there exist points u
′ ∈ ρ′B

and ω′
i ∈ Ωi ∩Bρ′/γ(ωi) such that

f1(u, v1, . . . , vn)− f1(u
′, ω′

1, . . . , ω
′
n) + α2∥(u− u′, v1 − ω′

1, . . . , vn − ω′
n)∥γ ≥ 0
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for all u ∈ ρB and vi ∈ Ωi ∩Bε(x̄), i = 1, 2, . . . , n. Since ρ′ < ρ, u′ is an internal point of ρB. Since ε1 + ρ′/γ < ε, ω′
i is

an internal point of Bε(x̄). Hence (u′, ω′
1, . . . , ω

′
n) is a local minimum (on Xn+1) for the sum f1 + f2 + f3, where

f2(u, v1, . . . , vn) := α2∥(u− u′, v1 − ω′
1, . . . , vn − ω′

n)∥γ ,

f3(u, v1, . . . , vn) :=

 0 if vi ∈ Ωi, i = 1, 2, . . . , n,

∞ otherwise.

Functions f1 and f2 are convex and Lipschitz continuous. We can apply the fuzzy sum rule (A4). Note that

max1≤i≤n ∥ω′
i − ωi − ai − u′∥ > 0. It is easy to check that the subdifferentials of f1, f2, and f3 possess the follow-

ing properties:

1) If (u∗1, v
∗
11, . . . , v

∗
1n) ∈ ∂f1(u, v1, . . . , vn) then

u∗1 = −
n∑

i=1

v∗1i,
n∑

i=1

∥v∗1i∥ = 1 (22)

for any (u, v1, . . . , vn) near (u′, ω′
1, . . . , ω

′
n). Indeed, f1 is a composition of the linear mapping h : Xn+1 → Xn given

by h(u, v1, . . . , vn) := (v1 − ω1 − a1 − u, . . . , vn − ω1 − an − u and the convex function g : Xn → R given by

g(v1, . . . , vn) := max1≤i≤n ∥vi∥. Note that g is a norm on Xn. The corresponding dual norm has the form (v∗1 , . . . , v
∗
n) 7→∑n

i=1 ∥v
∗
i ∥. Note also that g(ω′

1 − ω1 − a1 − u′, . . . , ω′
n − ωn − an − u′) ̸= 0 and, thanks to continuity, g(ω1 − ω1 −

a1 − u, . . . , ωn − ωn − an − u) ̸= 0 for all (u, v1, . . . , vn) near (u′, ω′
1, . . . , ω

′
n). The claimed assertion follows from the

convex chain rule and the representation of the subdifferential of a norm at a nonzero point [42, Corollary 2.4.16].

2) If (u∗2, v
∗
21, . . . , v

∗
2n) ∈ ∂f2(u, v1, . . . , vn) then

∥u∗2∥+ γ−1
n∑

i=1

∥v∗2i∥ ≤ α2 (23)

for any (u, v1, . . . , vn) ∈ Xn+1.

3) ∂f3(u, v1, . . . , vn) = {0X∗} ×
∏n

i=1 NΩi
(vi) for any u ∈ X and vi ∈ Ωi, i = 1, 2, . . . , n (by (A6)).

Chose a ξ ∈ (0, γ) such that (α2+2)ξ/(γ− ξ) < α−α2 and note that ρ/γ < ε2. Applying the fuzzy sum rule, we find

three points (u1, v11, . . . , v1n), (u2, v21, . . . , v2n), (u3, x1, . . . , xn) ∈ Xn+1 close to (u′, ω′
1, . . . , ω

′
n) (We will assume that

max1≤i≤n ∥xi − ω′
i∥ < ε2 − ρ/γ.) and elements of the three subdifferentials (u∗1, v

∗
11, . . . , v

∗
1n) ∈ ∂f1(u1, v11, . . . , v1n),

(u∗2, v
∗
21, . . . , v

∗
2n) ∈ ∂f2(u2, v21, . . . , v2n) and (0X∗ , v∗31, . . . , v

∗
3n) ∈ ∂f3(u3, x1, . . . , xn) such that

xi ∈ Ωi, i = 1, 2, . . . n,

∥(u∗1 + u∗2, v
∗
11 + v∗21 + v∗31, . . . , v

∗
1n + v∗2n + v∗3n)∥ < ξ.

It follows that v∗3i ∈ NΩi
(xi), i = 1, 2, . . . , n; (22) and (23) hold true and

∥u∗1 + u∗2∥ < ξ,

n∑
i=1

∥v∗1i + v∗2i + v∗3i∥ < ξ. (24)

Then ∥xi − x̄∥ ≤ ∥xi − ω′
i∥+ ∥ω′

i − ωi∥+ ∥ωi − x̄∥ < ε. Denote β :=
∑n

i=1 ∥v
∗
2i∥. By (23), 0 ≤ β ≤ γα2 < 1− γ. By the

second inequality in (24) and the second equality in (22), we have

n∑
i=1

∥v∗3i∥ ≥ 1− β − ξ > γ − ξ > 0.

The second inequality in (24) implies also ∥
∑n

i=1(v
∗
1i + v∗2i + v∗3i)∥ < ξ, and consequently∥∥∥∥∥

n∑
i=1

v∗3i

∥∥∥∥∥ <

∥∥∥∥∥
n∑

i=1

v∗1i

∥∥∥∥∥+ β + ξ.
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Applying successively the first equality in (22), the first inequality in (24), and inequality (23) and recalling the definition

of γ, we obtain ∥∥∥∥∥
n∑

i=1

v∗3i

∥∥∥∥∥ ≤ ∥u∗2∥+ β + 2ξ ≤ α2 + (1− γ−1)β + 2ξ < α2(1− β) + 2ξ.

Put x∗i = v∗3i/
∑n

i=1 ∥v
∗
3i∥, i = 1, 2, . . . , n. Then obviously x∗i ∈ NΩi

(xi), i = 1, 2, . . . , n,
∑n

i=1 ∥x
∗
i ∥ = 1, and∥∥∥∥∥

n∑
i=1

x∗i

∥∥∥∥∥ <
α2(1− β) + 2ξ

1− β − ξ
= α2 +

(α2 + 2)ξ

1− β − ξ
< α2 +

(α2 + 2)ξ

γ − ξ
< α.

⊓⊔

Next theorem is the limiting form of Theorem 3.1. It establishes the relationship between constants (12) and (17),

and consequently between the pairs of primal space properties (AS) and (UR), on one hand, and dual space ones (NAS)

and (NUR) (or their Fréchet versions), on the other hand.

Theorem 3.2 Let x̄ ∈
∩

i∈I Ωi, where 1 < |I| < ∞.

(i) θ̂[Ω](x̄) ≤ η̂F [Ω](x̄).

(ii) If the sets Ωi (i ∈ I) are locally closed near x̄, then θ̂[Ω](x̄) ≥ η̂[Ω](x̄).

Part (i) of Theorem 3.2 was proved in [18], while part (ii) was established in [21] in the Asplund space setting and

with Fréchet normal cones. A slightly weaker estimate can be found in [18,20].

Proof (i) Let α > η̂F [Ω](x̄). By definition (17), for any ε > 0 there exist ωi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(ωi) (i ∈ I), such

that conditions (20) hold true. It follows from Theorem 3.1 (i) and definitions (12) and (10) that θ̂[Ω](x̄) < α.

(ii). Let α > θ̂[Ω](x̄) and ε > 0. By definitions (12) and (10), there exists a positive number ρ < (α + 1)−1ε/2,

and points ωi ∈ Ωi ∩ Bε/2(x̄) and ai ∈ X (i ∈ I), such that maxi∈I ∥ai∥ < αρ and (14) holds true. It follows from

Theorem 3.1 (ii) and definition (17) that η̂[Ω](x̄) < α. ⊓⊔

There are several important corollaries of Theorem 3.2.

Corollary 3.2.1 Let x̄ ∈
∩

i∈I Ωi, where 1 < |I| < ∞.

(i) If the collection of sets Ω is Fréchet normally approximately stationary at x̄, then it is approximately stationary at

x̄.

(ii) If the sets Ωi (i ∈ I) are locally closed near x̄ and the collection of sets Ω is

(a) extremal at x̄, or

(b) locally extremal at x̄, or

(c) stationary at x̄, or

(d) approximately stationary at x̄,

then the collection of sets Ω is normally approximately stationary at x̄.

Obviously, only assumption (d) is critical in part (ii) of Corollary 3.2.1. Assumptions (a)–(c) are sufficient thanks to

the chain of implications (15).

Corollary 3.2.1 (ii) in the Asplund space setting and with Fréchet normal cones under assumption (b) was established

in [5] as a generalization of the original theorem in [2] formulated in the setting of a Banach space admitting a Fréchet

differentiable renorm and with Fréchet ε-normals under assumption (a) (and in [4] under assumption (b)). This result

is now known as the Extremal principle and is generally recognized as one of the corner-stones of the contemporary

variational analysis (see [6]). Using Corollary 3.2.1 (ii), one can formulate a stronger statement – the Extended extremal

principle [17, 18] (cf. Theorem 2.2). Some earlier formulations can be found in [14–16].
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Corollary 3.2.2 Let x̄ ∈
∩

i∈I Ωi, where 1 < |I| < ∞. Suppose the sets Ωi (i ∈ I) are locally closed near x̄ and X is

Asplund. The collection of sets Ω is approximately stationary at x̄ if and only if it is Fréchet normally approximately

stationary at x̄.

Note that the “if” part of Corollary 3.2.2 is valid in general Banach spaces. On the other hand, the “only if” part

cannot be extended beyond Asplund spaces and provides an equivalent extremal characterization of Asplund spaces

(see [5, 6]).

One can easily formulate the analogues of Corollaries 3.2.1 and 3.2.2 for regularity properties.

Corollary 3.2.3 Let x̄ ∈
∩

i∈I Ωi, where 1 < |I| < ∞.

(i) If the collection of sets Ω is uniformly regular at x̄, then it is Fréchet normally uniformly regular at x̄.

(ii) If the sets Ωi (i ∈ I) are locally closed near x̄ and the collection of sets Ω is normally uniformly regular at x̄, then it

is uniformly regular at x̄.

Corollary 3.2.4 Let x̄ ∈
∩

i∈I Ωi, where 1 < |I| < ∞. Suppose the sets Ωi (i ∈ I) are locally closed near x̄ and X is

Asplund. The collection of sets Ω is uniformly regular at x̄ if and only if it is Fréchet normally uniformly regular at x̄.

Remark 3.3 If dimX < ∞, then the normal approximate stationarity and uniform regularity conditions can be refor-

mulated equivalently in ‘exact’ form. It is sufficient to observe that, in finite dimensions, constant (17) coincides with

the following one:

η̄[Ω](x̄) = min
x∗
i
∈N̄Ωi

(x̄), i∈I∑
i∈I∥x∗

i ∥=1

∥∥∥∥∥∥
∑
i∈I

x∗i

∥∥∥∥∥∥ , (25)

where NΩ(x̄) is the limiting normal cone to Ω at x̄:

NΩ(x̄) := Lim sup

x
Ω→x̄

NΩ(x). (26)

If dimX = ∞, then the limiting normal cone is still defined by (26), where Lim sup is understood as the sequential

upper/outer limit. However, constants (17) and (25) are not equal in general. It is still possible to formulate ‘exact’

versions of the normal approximate stationarity and uniform regularity conditions (not equivalent to the original (NAS)

and (NUR)!) in terms of limiting normal cones under the sequential normal compactness requirement imposed on all but

one sets Ωi, i ∈ I (see [6] for the definition and discussion of the sequential normal compactness condition.)

Remark 3.4 It is easy to see from the definitions that the approximate stationarity and uniform regularity properties are

determined by the ratio of the numbers r := maxi∈I ∥ai∥ and ρ in formula (14). For instance, approximate stationarity

means the existence of sequences ρk ↓ 0, ωik
Ωi→ x̄, and aik → 0 as k → ∞ such that (14) holds and the corresponding

sequence rk satisfies rk/ρk ↓ 0. This is obviously true for the stronger properties (LE) and (E). Some other sufficient

conditions, specifying the rate of convergence of rk/ρk to 0 can be of interest in applications. For example, one can

consider “rated extremal systems” [23] satisfying rk < γραk with some γ > 0 and α > 1 (or equivalently ρk > γrαk with

some γ > 0 and α ∈]0, 1[). Theorems 3.5, 3.7, 3.8, and 3.9 in [23] follow from Theorem 3.2 (ii) above.

4 Infinite Collections of Sets

In this section, we still consider a collection of sets Ω = {Ωi}i∈I ⊂ X, but now the index set I is not assumed finite.

The goal is to extend Theorem 3.2 to this more general setting.

Note that the proofs of statements like Theorem 3.2 (ii) (see [18, 20, 21]) strongly rely on the assumption that I is

finite. The idea exploited in this section is to extend definitions (10)–(12) and (17), allowing for the infinite index set I

to be replaced by a sequence of its finite subsets.



14 Alexander Y. Kruger, Marco A. López

4.1 Finite Subsystems

It is assumed that |I| > 1 and x̄ ∈
∩

i∈I Ωi. To simplify the definitions, we are going to use the following notation:

J := {J ⊂ I| 1 < |J | < ∞}.

Next three constants can be considered as extensions of (10), (12) and (17) respectively.

θρ[Ω](x̄) := inf
J∈J

θρ[{Ωi}i∈J ](x̄), ρ ∈]0,∞], (27)

θ̂[Ω](x̄) := sup
ε>0

inf
ρ∈]0,ε[, J∈J

ωi∈Bε(x̄)∩Ωi (i∈J)

θρ[{Ωi − ωi}i∈J ](0)

ρ
, (28)

η̂[Ω](x̄) := sup
ε>0

inf
J∈J

xi∈Ωi∩Bε(x̄), x
∗
i ∈NΩi

(xi) (i∈J)∑
i∈J∥x

∗
i ∥=1

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ . (29)

Indeed, if I is a finite set, then constants (27), (28) and (29) reduce to (10), (12) and (17) respectively. Constant θ[Ω](x̄)

can still be defined by (11). Note that NΩ in (29) is an abstract normal cone mapping discussed in Section 2. In the case

of the Fréchet normal cone, we will write η̂F [Ω](x̄).

Next definition extends Definitions 3.1 and 3.2. We keep the same abbreviations for the corresponding properties.

Definition 4.1 The collection of sets Ω is

(E) extremal at x̄ iff θ∞[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist J ∈ J and ai ∈ X (i ∈ J) such that maxi∈J ∥ai∥ < ε and∩
i∈J

(Ωi − ai) = ∅;

(LE) locally extremal at x̄ iff θρ[Ω](x̄) = 0 for some ρ > 0, i.e.,

there exists a ρ > 0 such that for any ε > 0 there are J ∈ J and ai ∈ X (i ∈ J) such that maxi∈J ∥ai∥ < ε and∩
i∈J

(Ωi − ai)
∩

Bρ(x̄) = ∅; (30)

(S) stationary at x̄ iff θ[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist ρ ∈]0, ε[; J ∈ J ; and ai ∈ X (i ∈ J) such that maxi∈J ∥ai∥ < ερ and (30) holds true;

(R) regular at x̄ iff θ[Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that ∩
i∈J

(Ωi − ai)
∩

Bρ(x̄) ̸= ∅ (31)

for any ρ ∈]0, ε[; J ∈ J ; and ai ∈ X (i ∈ J) satisfying maxi∈J ∥ai∥ ≤ αρ;

(AS) approximately stationary at x̄ iff θ̂[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist ρ ∈]0, ε[; J ∈ J ; ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X (i ∈ J) such that maxi∈J ∥ai∥ < ερ and∩
i∈J

(Ωi − ωi − ai)
∩

(ρB) = ∅; (32)

(UR) uniformly regular at x̄ iff θ̂[Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that∩
i∈J

(Ωi − ωi − ai)
∩

(ρB) ̸= ∅ (33)

for any ρ ∈]0, ε[; J ∈ J ; ωi ∈ Ωi ∩Bε(x̄), and ai ∈ X (i ∈ J) satisfying maxi∈J ∥ai∥ ≤ αρ;
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(NAS) normally approximately stationary at x̄ iff η̂[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist J ∈ J ; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ J) such that∥∥∥∥∥∥

∑
i∈J

x∗i

∥∥∥∥∥∥ < ε
∑
i∈J

∥x∗i ∥; (34)

(FNAS) Fréchet normally approximately stationary at x̄ iff η̂F [Ω](x̄) = 0, i.e.,

for any ε > 0 there exist J ∈ J ; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J) such that (34) holds true;

(NUR) normally uniformly regular at x̄ iff η̂[Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that ∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ ≥ α
∑
i∈J

∥x∗i ∥ (35)

for any J ∈ J ; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ J);

(FNUR) Fréchet normally uniformly regular at x̄ iff η̂F [Ω](x̄) > 0, i.e.,

there exists an α > 0 and an ε > 0 such that (35) holds true for any J ∈ J ; xi ∈ Ωi ∩ Bε(x̄) and x∗i ∈ NF
Ωi

(xi)

(i ∈ J).

All the implications in (15) and (16) remain true for these modified extremality, stationarity and regularity properties.

Remark 4.1 In the normal approximate stationarity definitions (NAS) and (FNAS) above, the small parameter ε is

present in the right hand side of (34). Sometimes conditions of this type are formulated in a different way (see e.g. [6,23]),

with (34) replaced by a stronger pair of conditions:
∥∥∑

i∈J x∗i
∥∥ = 0 and

∑
i∈J ∥x∗i ∥ = 1 at the expense of relaxing the

requirement on x∗i : x
∗
i ∈ NΩi

(xi)+ εB∗. It is easy to check that in the case of a finite collection of sets these two settings

are equivalent. However, when |I| = ∞ the second setting can lead to accumulation of errors and triviality of the Extremal

principle as discussed in [23].

Example 4.2 Consider the collection Ω of sets Ωi = {(u, v) ∈ R2| u2 − v ≥ −1/i}, Ω′
i = {(u, v) ∈ R2| u2 + v ≥ −1/i},

i = 1, 2, . . .. Then x̄ := (0, 0) ∈ int (Ωi ∩ Ω′
i) for all i = 1, 2, . . ., and (0, 0) ∈ bd ∩∞

i=1 (Ωi ∩ Ω′
i). We are going to show

that collection Ω is stationary but not locally extremal at x̄.

Let ρ > 0 be given. Chose an ε ∈]0, ρ[ such that (ρ − ε)2 − ε > 0. Then for any numbers α and β satisfying |α| < ε

and |β| < ε, it holds (ρ+α)2 −β > 0 and (ρ+α)2 +β > 0. Hence, (ρ, 0) ∈ (Ωi − ai) and (ρ, 0) ∈ (Ω′
i − bi) for any i ∈ N

and any ai, bi ∈ R2 satisfying ∥ai∥ < ε and ∥bi∥ < ε. This means that collection Ω is not locally extremal at x̄.

Let ε > 0 be given. Chose a ρ ∈]0, ε[ and an index i > [ρ(ε− ρ)]−1. Then ρ2 +1/i < ρ2 + ρ(ε− ρ) = ερ, and one can

chose an α ∈]ρ2 + 1/i, ερ[. Taking into account the definitions of Ωi and Ω′
i, we have

[Ωi − (0, α)] ∩ [Ω′
i + (0, α)] ∩ (ρB) = {(u, v) ∈ ρB| |v| ≤ u2 + 1/i− α} ⊂ {(u, v) ∈ R2| |v| ≤ ρ2 + 1/i− α} = ∅.

Hence, collection Ω is stationary at x̄.

It is easy to check that condition (FNAS) in Definition 4.1 is satisfied too.

The next theorem is an extension of Theorem 3.2. It establishes the relationship between constants (28) and (29).

Theorem 4.3 Let x̄ ∈
∩

i∈I Ωi, |I| > 1.

(i) θ̂[Ω](x̄) ≤ η̂F [Ω](x̄).

Moreover, if the collection of sets Ω is Fréchet normally approximately stationary at x̄, then it is approximately

stationary at x̄ and, for any ε > 0, condition (AS) is satisfied with the same set of indices J the existence of which

is guaranteed by condition (FNAS).
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(ii) If the sets Ωi (i ∈ I) are locally closed near x̄, then θ̂[Ω](x̄) ≥ η̂[Ω](x̄).

Moreover, if the collection of sets Ω is approximately stationary at x̄, then it is normally approximately stationary at

x̄ and, for any ε > 0, condition (NAS) is satisfied with the same set of indices J the existence of which is guaranteed

by condition (AS).

Proof (i) Let η̂F [Ω](x̄) < α. By definition (29), for any ε > 0 there exist J ∈ J ; ωi ∈ Ωi ∩ Bδ(x̄) and x∗i ∈ NF
Ωi

(ωi)

(i ∈ J) such that

∑
i∈J

∥∥x∗i ∥∥ = 1 and

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ < α. (36)

It follows from Theorem 3.1 (i) and definitions (28) and (10) that θ̂[Ω](x̄) < α.

(ii). Let α > θ̂[Ω](x̄) and ε > 0. By definitions (28) and (10), there exists a positive number ρ < (α + 1)−1ε/2, a

subset J ∈ J , and points ωi ∈ Ωi ∩ Bε/2(x̄) and ai ∈ X (i ∈ J) such that maxi∈J ∥ai∥ < αρ and (32) holds true. It

follows from Theorem 3.1 (ii) and definition (29) that η̂[Ω](x̄) < α. ⊓⊔

Theorem 3.2 follows from Theorem 4.3 due to the observation made after the definitions of constants (27)–(29). All

the corollaries formulated in Section 3 remain valid with the assumption |I| < ∞ omitted. In particular, Theorem 4.3

implies Theorem 2.3.

4.2 Finite Subsystems with Growth Condition

In the definitions of stationarity and regularity properties considered above, it is allowed that |J | → ∞. For example,

in the definition of property (S), it is required that for any ε > 0 there exists a finite subset J of indices such that the

corresponding finite collection of sets satisfies certain properties. When ε → 0, the cardinality |J | can grow very quickly

in order to have (30) fulfilled. It can be important to impose restrictions on the rate of growth of |J |. For that purpose,

we are going to use a gauge function Φ : R+ → R+ ∪ {+∞}. Given α > 0, denote:

Jα := {J ⊂ I| 1 < |J | < Φ(α)}.

Obviously Jα ⊂ J and Jα = J if Φ(α) = ∞.

The following definition introduces modified versions of the stationarity and regularity properties.

Definition 4.2 The collection of sets Ω is

(SΦ) Φ-stationary at x̄ iff for any ε > 0 there exist ρ ∈]0, ε[; α ∈]0, ε[; J ∈ Jα; and ai ∈ X (i ∈ J) such that

maxi∈J ∥ai∥ < αρ and (30) holds true;

(RΦ) Φ-regular at x̄ iff there exists an α0 > 0 and an ε > 0 such that (31) holds true for any α ∈]0, α0[; ρ ∈]0, ε[; J ∈ Jα;

and ai ∈ X (i ∈ J) satisfying maxi∈J ∥ai∥ ≤ αρ;

(ASΦ) approximately Φ-stationary at x̄ iff for any ε > 0 there exist ρ ∈]0, ε[; α ∈]0, ε[; J ∈ Jα; ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X

(i ∈ J) such that maxi∈J ∥ai∥ < αρ and (32) holds true;

(URΦ) uniformly Φ-regular at x̄ iff there exists an α0 > 0 and an ε > 0 such that (33) holds true for any α ∈]0, α0[; ρ ∈]0, ε[;

J ∈ Jα; ωi ∈ Ωi ∩Bε(x̄), and ai ∈ X (i ∈ J) satisfying maxi∈J ∥ai∥ ≤ αρ;

(NASΦ) normally approximately Φ-stationary at x̄ iff for any ε > 0 there exist α ∈]0, ε[; J ∈ Jα; xi ∈ Ωi ∩ Bε(x̄) and

x∗i ∈ NΩi
(xi) (i ∈ J) such that ∥∥∥∥∥∥

∑
i∈J

x∗i

∥∥∥∥∥∥ < α
∑
i∈J

∥x∗i ∥; (37)
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(FNASΦ) Fréchet normally approximately Φ-stationary at x̄ iff for any ε > 0 there exist α ∈]0, ε[; J ∈ Jα; xi ∈ Ωi ∩Bε(x̄) and

x∗i ∈ NF
Ωi

(xi) (i ∈ J) such that (37) holds true;

(NURΦ) normally uniformly Φ-regular at x̄ iff there exists an α0 > 0 and an ε > 0 such that (35) holds true for any α ∈]0, α0[;

J ∈ Jα; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ J);

(FNURΦ) Fréchet normally uniformly Φ-regular at x̄ iff there exists an α0 > 0 and an ε > 0 such that (35) holds true for any

α ∈]0, α0[; J ∈ Jα; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J).

The supremum of all α0 > 0 in properties (RΦ), (URΦ), (NURΦ), and (FNURΦ) (with the convention inf ∅ = 0) will be

denoted θΦ[Ω](x̄), θ̂Φ[Ω](x̄), η̂Φ[Ω](x̄), and η̂FΦ [Ω](x̄), respectively.

It would be good to have limiting representations of constants θΦ[Ω](x̄), θ̂Φ[Ω](x̄), and η̂Φ[Ω](x̄) similar to formulas

(11), (28), and (29). Unfortunately this is not possible in general because in all conditions (RΦ), (URΦ), (NURΦ), and

(FNURΦ), the number α is present twice: in the inequality defining the property in question and in the growth condition

|J | < Φ(α).

The stationarity (regularity) properties in Definition 4.2 are obviously stronger (weaker) than the corresponding

properties in Definition 4.1.

If I is a finite set, then one can take a constant function Φ(α) = |I| + 1 for all α > 0 (in fact, one can take any

function Φ satisfying Φ(α) > |I|). The stationarity and regularity properties in Definition 4.2 will coincide with the

corresponding properties in Definitions 3.1 and 3.2. Considering constant functions Φ(α) ≡ m satisfying m ≤ |I| can

also lead to meaningful conditions. Basically, such functions specify explicitly the number of sets participating in the

corresponding stationarity and regularity conditions. For different numbers, the conditions can be significantly different.

Example 4.4 Consider the collection Ω of three halfplanes in R2:

Ω1 := {(x, y)| y ≥ 0}, Ω2 := {(x, y)| x ≥ 0}, and Ω3 := {(x, y)| x+ y ≤ 0}.

Obviously (0, 0) ∈ Ω1∩Ω2∩Ω3, and it is easy to establish the representations for the Fréchet normal cones (which coincide

in this setting with the normal cones in the sense of convex analysis) to these sets at (0, 0): NF
Ω1

(0, 0) = {(0, v)| v ≤ 0},

NF
Ω2

(0, 0) = {(u, 0)| u ≤ 0}, and NF
Ω3

(0, 0) = {(u, u)| u ≥ 0}.

The collection Ω is Fréchet normally approximately stationary at (0, 0) (In fact, the sets are convex and this

can be interpreted as a separation property.) Indeed, take a positive number c. Then x∗1 := (0,−c) ∈ NF
Ω1

(0, 0),

x∗2 := (−c, 0) ∈ NF
Ω2

(0, 0), x∗3 := (c, c) ∈ NF
Ω3

(0, 0), x∗1 + x∗2 + x∗3 = 0 while ∥x∗1∥+ ∥x∗2∥+ ∥x∗3∥ > 0.

Take a constant gauge function Φ(α) ≡ m.

If m > 3, then obviously the collection Ω is Fréchet normally approximately Φ-stationary at (0, 0).

If m = 3, then the collection Ω is Fréchet normally uniformly Φ-regular at (0, 0). To show this, one needs to consider

all pairs of sets from Ω. For simplicity, we will assume that the primal space R2 is equipped with the maximum norm:

∥x, y∥ = max{|x|, |y|}. Then the dual norm is of the sum type: ∥u, v∥ = |u|+ |v|.

Consider arbitrary x∗1 := (0, v) ∈ NF
Ω1

(0, 0) and x∗2 := (u, 0) ∈ NF
Ω2

(0, 0) such that ∥x∗1∥ + ∥x∗2∥ = 1, that is,

|u|+ |v| = 1. Then ∥x∗1 + x∗2∥ = ∥u, v∥ = |u|+ |v| = 1.

Consider arbitrary x∗1 := (0, v) ∈ NF
Ω1

(0, 0) and x∗2 := (u, u) ∈ NF
Ω3

(0, 0) such that ∥x∗1∥ + ∥x∗2∥ = 1, that is,

2|u|+ |v| = 2u− v = 1. Then ∥x∗1 + x∗2∥ = ∥u, u+ v∥ = u+ |u+ v| = u+ |3u− 1| ≥ 1/3.

Similarly, consider arbitrary x∗1 := (v, 0) ∈ NF
Ω2

(0, 0) and x∗2 := (u, u) ∈ NF
Ω3

(0, 0) such that ∥x∗1∥ + ∥x∗2∥ = 1, that

is, 2|u|+ |v| = 2u− v = 1. Then ∥x∗1 + x∗2∥ = ∥u+ v, u∥ ≥ 1/3.

Thus in all three cases, it holds ∥x∗1 + x∗2∥ ≥ 1/3 as long as ∥x∗1∥ + ∥x∗2∥ = 1. Since in the convex case the normal

cone mapping is upper semicontinuous, there is no need to consider points in the neighbourhood of (0, 0), since (35) holds

true for any 0 < α < 1/3.
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When dealing with infinite systems, it seems reasonable to consider gauge functions Φ such that Φ(α) → ∞ as

α ↓ 0. For instance, this assumption is necessary for the implication (LE) ⇒ (SΦ) to be true. However, the definitions

of stationarity and regularity properties as well as their characterizations in the statements below are valid without this

requirement.

The implication (SΦ) ⇒ (ASΦ) is always true (with the same ρ, α, J , and ai). The next theorem establishes the

relationship between the approximate Φ-stationarity properties. It complements Theorem 4.3.

Theorem 4.5 Let x̄ ∈
∩

i∈I Ωi, |I| > 1.

(i) If the collection of sets Ω is Fréchet normally approximately Φ-stationary at x̄, then it is approximately Φ-stationary

at x̄.

Moreover, for any ε > 0, condition (ASΦ) is satisfied with the same number α and set of indices J the existence of

which is guaranteed by condition (FNASΦ).

(ii) Suppose the sets Ωi (i ∈ I) are locally closed near x̄. If the collection of sets Ω is approximately Φ-stationary at x̄,

then it is normally approximately Φ-stationary at x̄.

Moreover, for any ε > 0, condition (NASΦ) is satisfied with the same number α and set of indices J the existence of

which is guaranteed by condition (ASΦ).

Proof (i) Let ε > 0. By Definition 4.2 (FNASΦ), there exist α ∈]0, ε[; J ∈ Jα; ωi ∈ Ωi ∩ Bε(x̄), and x∗i ∈ NF
Ωi

(ωi)

(i ∈ J) such that conditions (36) hold true. It follows from Theorem 3.1 (i) that all conditions in Definition 4.2 (ASΦ)

are satisfied.

(ii). Let ε > 0. By Definition 4.2 (ASΦ), there exist positive numbers α < ε and ρ < (ε+ 1)−1ε/2, a subset J ∈ Jα,

and points ωi ∈ Ωi∩Bε/2(x̄) and ai ∈ X (i ∈ J) such that maxi∈J ∥ai∥ < αρ and (32) holds true. Then ρ < (α+1)−1ε/2

and it follows from Theorem 3.1 (ii) that there exist points xi ∈ Ωi∩Bε(x̄) and x∗i ∈ NΩi
(xi) (i ∈ J) such that conditions

(36) hold true. Hence all conditions in Definition 4.2 (NASΦ) are satisfied. ⊓⊔

Corollary 4.5.1 Let x̄ ∈
∩

i∈I Ωi, |I| > 1. Suppose X is Asplund and the sets Ωi (i ∈ I) are locally closed near x̄. The

collection of sets Ω is approximately Φ-stationary at x̄ if and only if it is Fréchet normally approximately Φ-stationary

at x̄.

Moreover, for any ε > 0, conditions (ASΦ) and (FNASΦ) are satisfied with the same number α and set of indices J .

The above corollary implies Theorem 2.4.

Once again, the “if” part of Corollary 4.5.1 is valid in general Banach spaces while the “only if” part cannot be

extended beyond Asplund spaces and provides an equivalent extremal characterization of Asplund spaces.

Since the regularity properties in Definition 4.2 are negations of the corresponding stationarity properties, the asser-

tions of Theorem 4.5 and Corollary 4.5.1 can be reformulated in terms of regularity properties.

Corollary 4.5.2 Let x̄ ∈
∩

i∈I Ωi, |I| > 1.

(i) If the collection of sets Ω is uniformly Φ-regular at x̄, then it is Fréchet normally uniformly Φ-regular at x̄.

(ii) Suppose the sets Ωi (i ∈ I) are locally closed near x̄. If the collection of sets Ω is normally uniformly Φ-regular at x̄,

then it is uniformly Φ-regular at x̄.

Corollary 4.5.3 Let x̄ ∈
∩

i∈I Ωi, |I| > 1. Suppose X is Asplund and the sets Ωi (i ∈ I) are locally closed near x̄. The

collection of sets Ω is uniformly Φ-regular at x̄ if and only if it is Fréchet normally uniformly Φ-regular at x̄.
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Remark 4.6 In the case of an infinite index set I, stationarity and regularity properties in Definition 4.2 depend in

general on the choice of the gauge function Φ, which determines the “growth rate” of the cardinality |J | of finite subsets

J ⊂ I. Since the same gauge function participates in the assumptions and conclusions of Theorem 4.5 and its corollaries,

when applying them for characterizing stationarity (regularity) of a specific collection of sets, it can be important to find

the smallest (largest) function such that the property in question still holds true. Then the theorem or a corollary provides

the strongest conclusion.

Possible choices of Φ that could be of interest:

– Φ(α) = +∞ for all α > 0. This means that no restrictions are imposed on the growth of the cardinality |J |, and

stationarity and regularity properties in Definition 4.2 reduce to the corresponding properties in Definition 4.1.

– αΦ(α) → 0 as α ↓ 0. Φ can be an increasing function, but its growth must be much slower than that of α−1:

Φ(α) = o(α−1). A growth condition of this type was used in [23] when defining “R-rated extremal systems”, “R-per-

turbed extremal systems”, and the “rated extremal principle”. Theorems 4.6 and 4.10 in [23] follow from Theo-

rem 4.5 (ii) above, which allows to establish the conclusions of these two theorems under significantly weaker assump-

tions.

– Φ(α) = γαk where γ > 0 and k > 0.

One can consider other growth conditions: exponential, logarithmic, etc.

5 Normals to Infinite Intersections

An important group of calculus results in variational analysis consists of rules which allow to represent normals (of a

certain type: convex, Fréchet, limiting or other) to the finite (|I| < ∞) intersection Ω :=
∩

i∈I Ωi of a collection of sets at

a point x̄ ∈ Ω via normals to particular sets at or around this point. Such intersection rules in the convex and nonconvex

settings are well known [4,6, 27,28,41,43].

Using Theorem 4.5 (ii) (or its Corollary 4.5.1) it is possible to develop an intersection rule for Fréchet normals to

infinite intersections Ω :=
∩

i∈I Ωi in Asplund spaces. In this section, we assume that I is a nonempty set of indices,

possibly infinite. From now on, we drop the assumption that |J | > 1 in the definitions of J and Jα:

J := {J ⊂ I| 0 < |J | < ∞},

Jα := {J ⊂ I| 0 < |J | < Φ(α)}.

Recalling that Φ-stationarity properties introduced in Definition 4.2 in fact reduce consideration of an infinite col-

lection of sets to that of a sequence of its finite subcollections, it is clear that techniques based on Theorem 4.5 can be

applicable not to arbitrary Fréchet normals to the intersection, but only to those which are “approximately normal” to

the intersections of certain finite subcollections.

In the definition below, a gauge function Φ : R+ → R+∪{+∞} is used. Such functions were discussed in the previous

section.

Definition 5.1 An element x∗ ∈ X∗ is

(i) Fréchet Φ-normal to the intersection Ω =
∩

i∈I Ωi at x̄ ∈ Ω iff for any ε > 0 there exist ρ > 0, α ∈]0, ε[, and J ∈ Jα

such that

⟨x∗, x− x̄⟩ < α∥x− x̄∥ ∀x ∈
∩
i∈J

Ωi

∩
Bρ(x̄) \ {x̄}; (38)
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(ii) Fréchet finitely normal to the intersection Ω =
∩

i∈I Ωi at x̄ ∈ Ω iff for any ε > 0 there exists a ρ > 0 and a subset

J ∈ J such that

⟨x∗, x− x̄⟩ < ε∥x− x̄∥ ∀x ∈
∩
i∈J

Ωi

∩
Bρ(x̄) \ {x̄}. (39)

Note that Definition 5.1 takes into account that Ω is the intersection of a family of sets and is not applicable to

arbitrary sets. Part (ii) of Definition 5.1 is a particular case of part (i) corresponding to Φ(α) = ∞ for all α > 0. It is

immediate from the definition that every Fréchet Φ-normal element to the intersection Ω =
∩

i∈I Ωi is Fréchet finitely

normal to this intersection, while every Fréchet finitely normal element is Fréchet normal to Ω in the sense of definition

(9). If the collection is finite and Φ(α) > |I| for all α > 0, then every Fréchet normal element to Ω is automatically

Fréchet Φ-normal to the intersection Ω =
∩

i∈I Ωi. If |I| = ∞, then there can be Fréchet normals which are not finitely

generated.

Example 5.1 Let Ωi = {(u, v) ∈ R2| v ≥ iu2}, i = 1, 2, . . .. Then x̄ := (0, 0) ∈ Ω := ∩∞
i=1Ωi = 0 × R+ and

NF
Ω (x̄) = R × R−. At the same time, for any finite set J of natural numbers, ∩i∈JΩi = Ωj , where j is the maximal

number in J . If an element x∗ ∈ (R2)∗ satisfies (39) for some ε > 0, then x∗ ∈ 0× R− + εB∗. It follows that the set of

all Fréchet finitely normal elements to the intersection ∩∞
i=1Ωi coincides with 0×R− and is strictly smaller than NF

Ω (x̄).

Next theorem provides an intersection rule for Fréchet Φ-normal elements to an infinite intersection of sets.

Theorem 5.2 Let x̄ ∈ Ω =
∩

i∈I Ωi. Suppose X is Asplund and the sets Ωi (i ∈ I) are locally closed near x̄. If x∗ ∈ X∗

is Fréchet Φ-normal to the intersection
∩

i∈I Ωi at x̄, then for any ε > 0 there exist α ∈]0, ε[; J ∈ Jα; xi ∈ Ωi ∩Bε(x̄),

x∗i ∈ NF
Ωi

(xi) (i ∈ J); and a λ ≥ 0 such that

∑
i∈J

∥x∗i ∥+ λ∥x∗∥+ 2λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < α. (40)

Unlike the traditional ways of proving an intersection rule based on some form of extremal principle (see, e.g. [6,

Lemma 3.1]), where one of the sets in the collection is modified in a special way to make the extremal principle applicable,

in the proof below (based largely on the same ideas), all the sets are left unchanged; instead, another set with a simple

structure is added to the collection, and Corollary 4.5.1 is applied. This makes the idea of the proof clearer and the proof

itself much shorter.

Proof Let an element x∗ ∈ X∗ be Fréchet Φ-normal to the intersection Ω =
∩

i∈I Ωi at x̄ ∈ Ω.

Consider the Banach space X ×R with the maximum norm: ∥(x, µ)∥ = max{∥x∥, |µ|}, x ∈ X, µ ∈ R. For each i ∈ I,

introduce a set Ω̃i := Ωi ×R+. Without loss of generality assume that 0 /∈ I and denote Ĩ := I ∪ {0}. Consider now the

collection of sets {Ω̃i}i∈Ĩ in X ×R, where

Ω̃0 := {(x, µ)| µ ≤ ⟨x∗, x− x̄⟩}.

Obviously (x̄, 0) ∈
∩

i∈Ĩ Ω̃i and the sets Ω̃i, i ∈ Ĩ, are locally closed near (x̄, 0). We claim that the collection of sets

{Ω̃i}i∈Ĩ is Φ̃-stationary at (x̄, 0), where Φ̃(α) = Φ(α) + 1. Indeed, by Definition 5.1, for any ε > 0 there exist ρ ∈]0, ε[;

α ∈]0, ε[; J ∈ Jα, such that (38) holds. Take a0 = (0, αρ/2) and ai = (0,−αρ/2), i ∈ J . Then maxi∈J̃ ∥ai∥ < αρ, where

J̃ = J ∪ {0}. Next we show that ∩
i∈J̃

(Ω̃i − ai)
∩

Bρ(x̄, 0) = ∅.

If this is not true, then there exists an (x, µ) ∈ Bρ(x̄, 0) such that (x, µ) + ai ∈ Ω̃i, i ∈ J̃ . Thus x ∈ Ωi
∩

Bρ(x̄), i ∈ J ;

µ ≥ αρ/2, and µ+ αρ/2 ≤ ⟨x∗, x− x̄⟩. Hence x ̸= x̄ and

⟨x∗, x− x̄⟩ ≥ αρ ≥ α∥x− x̄∥,
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which contradicts (38).

Since the collection of sets {Ω̃i}i∈Ĩ is Φ̃-stationary at (x̄, 0), it is also approximately Φ̃-stationary and, by Corol-

lary 4.5.1, Fréchet normally approximately Φ̃-stationary at this point. For any ε ∈]0, 1[, there exist α ∈]0, ε[; J ∈ Jα

(the same as in the description of property (ASΦ)); (xi, µi) ∈ Ω̃i ∩ Bε(x̄, 0) and (x∗i , λi) ∈ NF
Ω̃i

(xi, µi) (i ∈ J̃), where

J̃ = J ∪ {0}, such that ∥∥∥∥∥∥
∑
i∈J̃

(x∗i , λi)

∥∥∥∥∥∥ < α
∑
i∈J̃

∥(x∗i , λi)∥.

Thus xi ∈ Ωi
∩

Bε(x̄), µi ≥ 0, x∗i ∈ NF
Ωi

(xi), λi ≤ 0, λiµi = 0, i ∈ J ; x0 ∈ Bε(x̄), µ0 ≤ ⟨x∗, x0 − x̄⟩, x∗0 = −λ0x
∗,

λ0 ≥ 0, and λ0(µ0 − ⟨x∗, x0 − x̄⟩) = 0. Hence∥∥∥∥∥∥
∑
i∈J

x∗i − λ0x
∗

∥∥∥∥∥∥+

∣∣∣∣∣∣
∑
i∈J̃

λi

∣∣∣∣∣∣ < α

∑
i∈J

∥x∗i ∥+ λ0∥x∗∥+
∑
i∈J̃

|λi|

 .

Note that

∑
i∈J̃

|λi| =

∣∣∣∣∣∣
∑
i∈J

λi

∣∣∣∣∣∣+ λ0 ≤

∣∣∣∣∣∣
∑
i∈J̃

λi

∣∣∣∣∣∣+ 2λ0,

and consequently ∥∥∥∥∥∥
∑
i∈J

x∗i − λ0x
∗

∥∥∥∥∥∥+ (1− α)

∣∣∣∣∣∣
∑
i∈J̃

λi

∣∣∣∣∣∣ < α

∑
i∈J

∥x∗i ∥+ λ0∥x∗∥+ 2λ0

 .

Since γ0 :=
∑

i∈J ∥x∗i ∥+ λ0∥x∗∥+2λ0 ̸= 0 and α < 1, the conclusion follows after replacing x∗i by x∗i /γ0 (i ∈ I) and λ0

by λ := λ0/γ0. ⊓⊔

Remark 5.3 Given a neighbourhood U of x̄, it is sufficient to require in Theorem 5.2 that only those sets Ωi are closed

for which U ̸⊂ Ωi.

The main feature of the first condition in (40) is that the elements x∗i (i ∈ J) and number λ cannot be zero

simultaneously. This point is expressed clearer in the next corollary with a slightly weaker conclusion.

Corollary 5.3.1 Let all assumptions of Theorem 5.2 be satisfied. Then for any ε > 0 there exist α ∈]0, ε[; J ∈ Jα;

xi ∈ Ωi ∩Bε(x̄), x
∗
i ∈ NF

Ωi
(xi) (i ∈ J); and a λ ≥ 0 such that

∑
i∈J

∥x∗i ∥+ λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < cα, (41)

where c := ∥x∗∥+ 2.

Proof It is sufficient to notice that

∑
i∈J

∥x∗i ∥+ λ∥x∗∥+ 2λ =
∑
i∈J

∥x∗i ∥+ cλ ≤ c

∑
i∈J

∥x∗i ∥+ λ

 .

Hence in the conclusion of Theorem 5.2, it holds γ0 :=
∑

i∈J ∥x∗i ∥ + λ ≥ c−1. The conclusion of the Corollary follows

after replacing in (40) x∗i by x∗i /γ0 (i ∈ I) and λ by λ/γ0, respectively. ⊓⊔

The number α and set of indices J in conditions in (40) and (41) are related by the growth condition |J | < Φ(α). If

the growth condition is not important, the intersection rule can be formulated in a more conventional way.
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Corollary 5.3.2 Let x̄ ∈ Ω =
∩

i∈I Ωi. Suppose X is Asplund and the sets Ωi (i ∈ I) are locally closed near x̄. If

x∗ ∈ X∗ is Fréchet finitely normal to the intersection
∩

i∈I Ωi at x̄, then for any ε > 0 there exist J ∈ J ; xi ∈ Ωi∩Bε(x̄),

x∗i ∈ NF
Ωi

(xi) (i ∈ J); and a λ ≥ 0 such that

∑
i∈J

∥x∗i ∥+ λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε. (42)

The last corollary generalizes the intersection rules for finite collections of sets (see e.g. [6, Lemma 3.1]). It also

generalizes and strengthens the recent “fuzzy intersection rule for R-normals” in [23].

Note that, strictly speaking, conditions (40), (41), and (42) do not provide representation formulas for x∗ in terms

of x∗i , i ∈ J . It is important to have normal versions of these conditions, that is, with λ ̸= 0. To this end, regularity

conditions need to be imposed on the collection of sets Ω := {Ωi}i∈I ⊂ X. The next corollary shows that (FNUR) acts

as a regularity condition.

Corollary 5.3.3 Let x̄ ∈ Ω =
∩

i∈I Ωi. Suppose X is Asplund, the sets Ωi (i ∈ I) are locally closed near x̄ and the

collection Ω = {Ωi}i∈I is Fréchet normally uniformly regular at x̄. If x∗ ∈ X∗ is Fréchet Φ-normal to the intersection∩
i∈I Ωi at x̄, then for any ε > 0 and γ ∈]0, 1[, there exist α ∈]0, ε[; J ∈ Jα; and xi ∈ Ωi ∩Bε(x̄), x

∗
i ∈ NF

Ωi
(xi) (i ∈ J)

such that ∥∥∥∥∥∥x∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < cα, (43)

where c := ∥x∗∥((γη̂F [Ω](x̄))−1 + 1) + 2.

Proof Let x∗ ∈ X∗ be Fréchet Φ-normal to the intersection
∩

i∈I Ωi at x̄ and let ε > 0 and γ′ ∈]γ, 1[ be given. Then

∥x∗∥(γ′η̂F [Ω](x̄))−1 = (γ/γ′)(c− ∥x∗∥ − 2) < c− ∥x∗∥ − 2. (44)

Since the collection Ω is Fréchet normally uniformly regular at x̄, by Definition (FNUR), there exists an α1 > γ′η̂F [Ω](x̄)

and a δ > 0 such that ∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ ≥ α1

∑
i∈J

∥x∗i ∥ (45)

for any J ∈ J ; xi ∈ Ωi ∩Bδ(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J).

By Theorem 5.2, there exist α ∈]0, ε[ satisfying

(γ/γ′)(c− ∥x∗∥ − 2) + ∥x∗∥+ 2

1− αα−1
1

< c; (46)

J ∈ Jα; xi ∈ Ωi∩Bmin{ε,δ}(x̄), x
∗
i ∈ NF

Ωi
(xi) (i ∈ J); and a λ ≥ 0 such that (40) holds true. The last condition together

with (45) implies the following estimates:

λ∥x∗∥ >

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥− α ≥ α1

∑
i∈J

∥x∗i ∥ − α = α1[1− λ(∥x∗∥+ 2)]− α,

and consequently, by virtue of (44) and (46),

λ−1 <
∥x∗∥+ α1(∥x∗∥+ 2)

α1 − α
=

∥x∗∥(α−1
1 + 1) + 2

1− αα−1
1

<
∥x∗∥((γ′η̂F [Ω](x̄))−1 + 1) + 2

1− αα−1
1

< c.

The conclusion follows after dividing the inequality in (40) by λ and replacing λ−1x∗i with x∗i . ⊓⊔
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Remark 5.4 The assumption of Fréchet normal uniform regularity of the collection Ω in Corollary 5.3.3 can be replaced

by a kind of strengthened Fréchet normal uniform Φ-regularity: there exists an α > 0 and an ε > 0 such that (35) holds

true for any α′ ∈]0, α[; J ∈ Jα′ ; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J). The last condition is in general weaker than

Fréchet normal uniform regularity. If Φ(α) → ∞ as α ↓ 0, then the two conditions are equivalent.

If the growth condition is not important, the intersection rule can be formulated in a conventional way.

Corollary 5.4.1 Let x̄ ∈ Ω =
∩

i∈I Ωi. Suppose X is Asplund, the sets Ωi (i ∈ I) are locally closed near x̄ and

the collection Ω = {Ωi}i∈I is Fréchet normally uniformly regular at x̄. If x∗ ∈ X∗ is Fréchet finitely normal to the

intersection
∩

i∈I Ωi at x̄, then for any ε > 0 there exist J ∈ J ; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J) such that∥∥∥∥∥∥x∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε. (47)

Thanks to Theorem 4.3 (i), the assumption of Fréchet normal uniform regularity of the collectionΩ in Corollaries 5.3.3

and 5.4.1 can be replaced by the corresponding primal space uniform regularity condition. For instance, next statement

is a consequence of Corollary 5.4.1.

Corollary 5.4.2 Let x̄ ∈ Ω =
∩

i∈I Ωi. Suppose X is Asplund and the sets Ωi (i ∈ I) are locally closed near x̄. If

x∗ ∈ X∗ is Fréchet finitely normal to the intersection
∩

i∈I Ωi at x̄, then for any ε > 0 there exist J ∈ J ; xi ∈ Ωi∩Bε(x̄)

and x∗i ∈ NF
Ωi

(xi) (i ∈ J) such that (47) holds true, provided that the collection Ω = {Ωi}i∈I is uniformly regular at x̄.

6 Concluding Remarks

In this article, we demonstrate how the existing theory of extremality, stationarity and regularity of finite collections of

sets can be successfully extended to infinite collections. The full set of definitions together with the primal-dual relations

between the corresponding properties are presented in a unified way. Applications of this extended theory to problems

of infinite and semi-infinite programming are considered in our forthcoming article.
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30. Kruger, A.Y., López, M.A.: Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained

optimization To be published

31. Li, C., Ng, K.F., Pong, T.K.: The SECQ, linear regularity, and the strong CHIP for an infinite system of closed convex sets in

normed linear spaces. SIAM J. Optim. 18(2), 643–665 (2007).

32. Zheng, X.Y., Ng, K.F.: Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J.

Optim. 14(3), 757–772 (2003).

33. Zheng, X.Y., Wei, Z., Yao, J.C.: Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets.

Nonlinear Anal. 73(2), 413–430 (2010)
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