
Beyond Canonical Difference-of-Convex Programs:

the Single Reverse Polar Problem

Giancarlo Bigi1 Antonio Frangioni2 Qinghua Zhang3

Abstract

We propose a novel generalization of the Canonical DC problem (CDC), and we study the

convergence of outer approximation algorithms for its solution, which use an approximated

oracle for checking the global optimality conditions. Although the approximated optimality

conditions are similar to those of CDC, this new class of problems is shown to significantly

differ from its special case. Indeed, outer approximation approaches for CDC need be substan-

tially modified in order to cope with the more general problem, bringing to new algorithms.

We develop a hierarchy of conditions that guarantee global convergence, and we build three

different cutting plane algorithms relying on them.

Keywords: Single reverse polar problems, approximate optimality conditions, cutting plane

algorithms

AMS Subject Classification: 90C26, 90C46, 90C33

1Dipartimento di Informatica, Università di Pisa, Largo B.Pontecorvo, 3, 56127 Pisa, Italia.

email: giancarlo.bigi@di.unipi.it – corresponding author

2Dipartimento di Informatica, Università di Pisa, Largo B.Pontecorvo, 3, 56127 Pisa, Italia.

email: frangio@di.unipi.it

3Wuhan University, School of Mathematics and Statistics, Wuchang, Luojia Hill, 430072 Wuhan, China.

email: Qinghuazhang@whu.edu.cn

1

1 Introduction

DC optimization problems are those nonconvex programs in which the objective function is the

difference of two convex functions and the constraint is given by the set difference of two convex sets.

It is well-known that all of them can be transformed into the so-called Canonical DC problem [1,2].

Since a large number of nonconvex optimization problems can be reduced to DC optimization

problems [3–12], the Canonical DC problem (CDC, shortly) has a wide set of applications.

In this paper, we introduce the Single Reverse Polar problem (SRP, shortly) as a generalization

of CDC. In effect, SRP allows to directly address a host of different problems of practical interest

other than all the applications that can be formulated as DC programs (see, for instance, [2,14,15]).

Among them, Separable Linear Complementarity Programs (SLCP, shortly) have many practical

applications. For instance, the l0-norm could be easily reformulated as a linear complementarity

form [16], thus convex programs with an additional l0 constraint [17–19], such as compressed

sensing problems, can be easily formulated as SLCPs. Many other structures, such as value-at-risk

minimization problem in portfolio selection, also admit a linear complementarity reformulation

(see, for instance, [16,20,21] and the references therein). Furthermore, separable bilevel problems,

where leader and follower variables are only “tied” in the objective function, are also easily reduced

to SLCPs; in turn, these can be used to reformulate several families of Mixed-Integer (Non)Linear

Programs along the lines of [22].

We extend the outer approximation algorithms for CDC of [3] to the new class of problems, as

this approach should have similar cost per iteration for SRP and CDC. In fact, these algorithms

are based on an approximated oracle for checking the global optimality conditions, which is the

most computationally demanding part of the approach. As shown in Section 2, the optimality

conditions for SRP are a minimal modification of those for CDC. Both entail the solution of an

optimization problem with a non-convex objective function and a convex feasible region. The

“difficult” part (the objective function) of both is the same, while the “easy” part (the feasible set)

is very similar; hence, it is likely that the difference does not substantially impact the practical cost

of solving the problems. Furthermore, allowing not to solve them up to proven global optimality

can substantially improve the efficiency of the overall cutting-plane method. Yet, this also requires

to properly characterize the impact of approximations in the oracle on the quality of the obtained

solution. After that is done, one can devise different ways to exploit the information produced by

the oracle to construct globally convergent algorithms. This analysis gives rise to three different

implementable algorithms for SRP. Our analysis shows that, despite the similarities, SRP have

2

markedly different properties than CDC, which substantially impact on the way in which algorithms

can be constructed, thereby shedding some new light on the algorithms for the original problem too.

The paper is organized as follows. In Section 2 we describe and analyze the main properties

of SRP and contrast them with those of CDC. Then, in Section 3 we extend our approximate

optimality conditions for CDC [3] to the new problem. In Section 4, we develop a hierarchy of

conditions that guarantee the convergence of cutting plane algorithms; relying on these conditions,

in Section 5 we build three cutting plane algorithms for solving SRP, and we discuss possible

strategies to enhance their effectiveness in practice. Finally, Section 6 draws some conclusions.

2 The Single Reverse Polar Problem

In this paper, we study the following type of global optimization problem

(SRP) min{f(x) + g(w) | x ∈ Ω, w ∈ Γ, wx ≥ α},

where f : Rn → R̄ = R ∪ {+∞} and g : Rn → R̄ are convex extended-valued functions, Ω,Γ ⊂ Rn

are full-dimensional compact and convex sets, and wx denotes the scalar product of the vectors w

and x. Without any loss of generality, we suppose Ω ⊆ dom f and Γ ⊆ dom g. Up to scaling, one

can always assume α ∈ {−1, 0, 1}.

Problem (SRP) arises as a generalization of the canonical DC problem

(CDC) min{dx | x ∈ Ω \ int Γ∗},

where d ∈ Rn and Γ∗ := {y ∈ Rn | yw ≤ 1, ∀w ∈ Γ} is the polar set of Γ. In turn, (CDC) can

be rewritten as

min{dx | x ∈ Ω, w ∈ Γ, wx ≥ 1}, (1)

i.e., a convex program with a nonconvex constraint [3, 13]. Thus, (CDC) can be considered a

special case of (SRP) with α = 1, f(x) = dx and g(w) = 0. This is why we consider the single

complicating constraint wx ≥ α in (SRP) a reverse polar constraint, and we name the problem

as the Single Reverse Polar problem.

In order to avoid that (SRP) could be reduced to a convex minimization problem, we also

suppose that the set

Aα = {(x,w) ∈ Rn × Rn | wx ≥ α}

provides an essential constraint, i.e.,

min{f(x) + g(w) | (x,w) ∈ Ω× Γ} < γ∗ (2)

3

where

γ∗ = min{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩Aα}.

Assumption (2) can be equivalently stated as the existence of a “low point” (x̄, w̄) ∈ Ω×Γ satisfying

f(x) + g(w) > f(x̄) + g(w̄) = γ̄ ∀(x,w) ∈ (Ω× Γ) ∩Aα. (3)

Clearly, any pair minimizing f+g over Ω×Γ provides such a point if (2) holds. Since the interiors of

Ω and Γ are not empty, then there exists also some (x̄, w̄) ∈ int Ω× int Γ satisfying (3). Therefore,

we suppose also this further condition throughout all the paper. These assumptions guarantee that

any feasible solution (x,w) ∈ (Ω×Γ)∩ intAα provides a better feasible solution taking the unique

intersection between the segment with (x̄, w̄) and (x,w) as end points and the boundary of Aα,

i.e., (x′, w′) ∈ conv ({(x̄, w̄), (x,w)})∩∂Aα satisfies f(x′)+g(w′) < f(x)+g(w). As a consequence,

the nonconvex constraint wx ≥ α is active at every optimal solution (x,w) of (SRP), i.e.,

wx = α. (4)

Therefore, one can equivalently assume that the reverse polar constraint is an equality con-

straint. This allows to formulate separable programs with linear complementarity constraints in

the (SRP) format. In fact, Separable Linear Complementarity Programs of the form

(SLCP) min{f(x) + h(y) | (x, y) ∈ Ω× Y, (q +My)x = 0},

where Ω, Y ⊂ Rn are full-dimensional compact convex sets and M ∈ Rn×n is full-rank, can be easily

reduced to (SRP) by defining Γ = {q+My | y ∈ Y } (which is full-dimensional since Y is and M

is full-rank) and g(w) = min{h(y) | y ∈ Y, w = q+My} (which is convex and extended-valued).

Thus, the complementary constraint can be brought in the reverse polar form (4).

Notice that the boundedness of Ω and Γ guarantees the existence of an optimal solution and

therefore, due to (3), that γ∗ > γ̄ always hold: this property will be useful later on. Although

optimal solutions must lie in the boundary of Aα, they don’t necessarily belong to the boundary

of Ω× Γ, as the following example shows.

Example 2.1 Consider (SRP) with n = 2, α = 3,

Ω = {x ∈ R2 | (x1 − 1)2 + (x2 − 1)2 ≤ 2}, f(x) = 3(x1 − 1)2 + 2(x2 − 1)2,

Γ = {w ∈ R2 | (w1 − 1)2 + (w2 − 1)2 ≤ 2}, g(w) = 2(w1 − 1)2 + 5(w2 − 1)2.

4

The point (x̄, w̄) ∈ int Ω× int Γ with x̄ = w̄ = (1, 1) satisfies (3) and therefore γ̄ = 0. All the other

points (x,w) ∈ Ω×Γ satisfy f(x)+g(w) > 0, thus γ∗ > γ̄ and condition (2) holds. If x ∈ ∂Ω, then

f(x) = 2
(
(x1−1)2 +(x2−1)2

)
+(x1−1)2 = 4+(x1−1)2 ≥ 4. Similarly, if w ∈ ∂Γ, then g(w) ≥ 4.

Therefore, the objective value of all the feasible points (x,w) /∈ int Ω × int Γ is not less than 4.

However, the point (x,w) with x = w = (1.5, 1.5) is feasible and f(x) + g(w) = 3. Therefore, the

set of all the optimal solutions is contained into int Ω× int Γ.

Example 2.1 relies on the strict convexity of f and g. Indeed, when the objective function of

(SRP) is linear, then there has to be some optimal solution lying in the boundary of Ω× Γ.

Theorem 2.1 Suppose that f and g are linear, i.e., f(x) = dx and g(w) = ew for some d, e ∈ Rn.

If n ≥ 2, then at least one optimal solution of (SRP) belongs to ∂Ω× ∂Γ.

Proof. Take any optimal solution (x∗, w∗). Suppose x∗ ∈ int Ω: the compactness of Ω implies

{x ∈ Rn | w∗x = α} ∩ ∂Ω 6= ∅. Take two points x1 and x2 in the above intersection such that

x∗ ∈ [x1, x2]: we have min{dx1, dx2} ≤ dx∗, so either (x1, w∗) or (x2, w∗) is optimal. The thesis

can be proved analogously in case w∗ ∈ int Γ. 2

The level set

R(γ) := {(x,w) ∈ Ω× Γ | f(x) + g(w) ≤ γ},

which is bounded due to the compactness assumptions on Ω and Γ, is helpful to check whether

or not a feasible value, i.e., a value γ ≥ γ∗ is optimal. In fact, it is straightforward that γ = γ∗

implies the inclusion

R(γ) ∩ int Aα = ∅. (5)

The optimality condition (5) will be proved in Section 3.2 in a more general form, and it is

equivalent to

v(OCγ) = max{vz − α | (z, v) ∈ R(γ)} ≤ 0. (6)

This is analogous to the “optimization form” of the optimality condition

{z ∈ Rn | z ∈ Ω, v ∈ Γ, dz ≤ γ} ⊆ Γ∗

of the canonical DC problem, which becomes sufficient under mild assumptions (see [2, 3]). Simi-

larly, the necessary optimality condition (5) is also sufficient when (SRP) is regular, i.e.,

γ∗ = inf{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩ intAα}. (7)

5

Furthermore, regularity will be exploited to relate approximations in the stopping criteria with the

quality of the corresponding approximate optimal solutions, as discussed in the following section.

3 Approximate Optimality Conditions

In this section, we study the global optimality conditions (5) and (6) for (SRP), introducing their

approximated forms and comparing the results with those available for the canonical DC problem.

3.1 Optimality Conditions and (Approximate) Oracles

As in the (CDC) case, we plan to approach the “geometrical” optimality condition (5) via its

optimization counterpart (6). Since the latter’s objective function is not concave, the problem

is a difficult one. Yet, the advantage of employing it is that one can at least easily define a

computationally relevant concept of approximate optimality conditions.

The first step towards this aim is to consider the relaxation of (6)

v(OCγ) = max{vz − α | z ∈ S, v ∈ Q, f(z) + g(v) ≤ γ} (8)

where Ω and Γ are replaced by two convex sets S and Q, respectively, satisfying

Ω ⊆ S, Γ ⊆ Q. (9)

The idea is to start with some “rough estimate” of the original sets, e.g. where S and Q are

polyhedra with few vertices or facets, and iteratively refine it as needed. Any choice of S and Q

satisfying (9) ensures that v(OCγ) ≥ v(OCγ) (cf. (6)); thus, the inequality v(OCγ) ≤ 0 provides

a convenient sufficient optimality condition for (SRP). Assuming that (8) is significantly easier

to solve than (6), one can then devise iterative schemes that check that condition, and then

either discover that S and Q are not appropriate approximations of (respectively) Ω an Γ, and

improve them, or find that γ is not the optimal value and improve it. This is what has been

done in [3] for (CDC), and is repeated here for (SRP). Our analysis will show that the different

structural characteristics of the latter problem over the former imply that the strategies by which

the information produced by an “oracle” for (8) can be used to devise a convergent algorithm for

(SRP) are rather different from those that work for (CDC). However, what remains very similar

is the actual form of the oracle, and therefore the appropriate notion of “approximate solution”

that can be employed. Indeed, in the following we will make the following assumptions about the

6

approximate oracle for (8), which are taken almost verbatim from [3]: a procedure Θ is available

which, given S, Q, γ, and two positive tolerances ε and ε′,

• either produces an upper bound

εv(OCγ) ≤ l such that l ≤ ε′ (10)

• or produces a pair

(z̄, v̄) feasible for (8) such that v̄z̄ − α ≥ εv(OCγ) > ε′. (11)

This clearly is a pretty weak requirement about the way in which (8) need to be solved; that

is, one has either to compute a feasible solution (z̄, v̄) that is “sufficiently close” to the optimal

one, or prove that any such solution is uninteresting by computing an upper bound l ≥ v(OCγ)

that demonstrates that the optimal value is “small”. Algorithmically, the two parts of (10)—

(11) usually even correspond to two entirely different classes of approaches: feasible solutions are

produced by heuristics, while upper bounds are produced by solving suitable relaxations. We direct

the interested reader to the discussion in [3,13], which applies with relatively little changes to the

current environment.

What does need a specific discussion, instead, is the fact that condition (10) requires the lower

bound to be “small enough”, but allows it to be positive. This means that when (10) holds, and

the algorithm is (as we shall see) stopped, the obtained solution is not guaranteed to be optimal.

Thus, as in [3] a study of the relationships between the tolerances ε and ε′ and the quality of the

obtained solution (actually, of the current upper bound γ on the true optimal value γ∗) is required.

This turns out to be significantly different from the canonical DC case, as the next Section will

show.

3.2 Approximate Optimality Conditions

We are interested in characterizing the values γ for which the stopping criterion (10) holds, which

is better analyzed when rewritten as v(OCγ) ≤ δ in terms of the single parameter δ = ε′/ε. These

values are strictly related to the approximated problem

(SRPδ) min{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩Aα+δ}

obtained by perturbing the right-hand side of the reverse-polar constraint in (SRP) by the critical

parameter δ. In particular, it is convenient to consider the value function

φ(δ) := inf{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩ intAα+δ}, (12)

7

which involves a further restriction of the feasible region to the interior of the nonconvex set Aα+δ.

Clearly, φ(δ) can be greater than the optimal value of (SRPδ) as no regularity assumption is

required in our analysis.

Proposition 3.1 For any δ ≥ 0, the following statements are equivalent:

(i) v(OCγ) ≤ δ;

(ii) R(γ) ∩ intAα+δ = ∅;

(iii) γ ≤ φ(δ).

Proof. The equivalence between (i) and (ii) readily follows from the definition of v(OCγ). Analo-

gously, (ii) implies (iii) by the definition of φ(γ). We prove that (iii) implies (ii) by contradiction:

if (ii) does not hold, there exists some (x,w) ∈ R(γ)∩ intAα+δ. Take any (x1, w1) in the intersec-

tion between intAα+δ and the open line segment with (x,w) and (x̄, w̄) as its end points. Since

(x1, w1) ∈ Ω× Γ, we get φ(δ) ≤ f(x1) + g(w1) < f(x) + g(w) ≤ γ in contradiction with (iii). 2

As an immediate consequence of the proposition, we also have

φ(δ) = sup{γ | R(γ) ∩ intAα+δ = ∅}.

Considering the optimal value of (SRPδ) as γ in Proposition 3.1, we get that (ii) is a necessary

optimality condition for (SRPδ). Furthermore, the condition is also sufficient if (SRPδ) is regular,

i.e., φ(δ) is actually the optimal value. When δ = 0, (SRPδ) coincides with (SRP) and therefore

Proposition 3.1 provides optimality conditions for (SRP), too. In particular, (ii) provides the

necessary condition (5) and (i) its equivalent “optimization form” v(OCγ) ≤ 0, while regularity,

if it holds, guarantees that they are also sufficient. Therefore, inclusion (ii) can be considered as

an approximate optimality condition for (SRP), and condition (iii) provides the adequate tool to

evaluate the quality of the approximation. In fact, if (SRP) is regular, i.e., φ(0) = γ∗,then

0 ≤ γ − γ∗ ≤ φ(δ)− γ∗ = φ(δ)− φ(0)

holds for any feasible value γ which satisfies (i). The following result guarantees that the approx-

imation approaches the optimal value as δ goes to 0.

Proposition 3.2 The value function φ is right-continuous at 0, i.e. lim
δ↓0

φ(δ) = φ(0).

8

Proof. Clearly φ is nonincreasing, that is φ(δ1) ≥ φ(δ2) whenever δ1 ≥ δ2 ≥ 0. As it is also

bounded below by φ(0), there exists γ̃ = limδ↓0 φ(δ) and γ̃ ≥ φ(0). Since γ̃ ≤ φ(δ) for any δ > 0,

Proposition 3.1 implies v(OCγ̃) ≤ δ for any δ > 0. Since v(OCγ̃) does not depend upon δ, we get

v(OCγ̃) ≤ 0. Therefore, Proposition 3.1 guarantees γ̃ ≤ φ(0). 2

Although the approximation always converges to the optimal value, the rate of convergence

may be less than linear. Indeed, the following example shows that not even regularity is enough

to achieve a linear rate of convergence.

Example 3.1 Consider (SRP) with n = 2, α = 1,

Ω = {(x1, x2) ∈ R2 × R2 | x2
1 + (x2 − 1)2 ≤ 4}, f(x) = x2,

Γ = conv {(0, 1), (0,−1/2), (1/2, 0), (−1/2, 0)}, g(w) = w1.

A standard computation shows Γ∗ = {(−2,−2), (2,−2), (−2, 1), (2, 1)}. Since any feasible solution

(x,w) must satisfy x /∈ int Γ∗, which implies x2 ≥ 1, then x∗ = (−2, 1) and w∗ = (−1/2, 0)

provide the unique optimal solution and the optimal value is γ∗ = 1/2. Therefore, the point

(02, 02) ∈ int Ω× int Γ satisfies (3) and thus the problem satisfies assumption (2). The problem is

regular. In fact, choosing x(δ) = (−
√

4− δ2, 1 + δ) and w(δ) = (−0.5 + δ, 2δ) with 0 ≤ δ ≤ 1/2,

we have (x(δ), w(δ))→ (x∗, w∗) as δ ↓ 0 (x(δ), w(δ)) ∈ Ω× Γ, w(δ)x(δ) > 1 if δ > 0 and moreover

lim
δ↓0

f(x(δ)) + g(w(δ)) = lim
δ↓0

1/2 + 2δ = 1/2 = γ∗.

Given any δ > 0, any feasible solution (x,w) to problem (SRPδ) satisfies wx ≥ 1 + δ and

therefore x2 ≥ 1 + δ. Since (x̂, ŵ) with x̂ = (−|x1|, x2) and ŵ = (−|w1|, |w2|) is also feasible

and f(x) + g(w) ≥ f(x̂) + g(x̂), then any optimal solution (x,w) to (SRPδ) satisfies x1 ≤ 0,

w2 ≥ 0 and −1/2 ≤ w1 ≤ 0. By Theorem 2.1 there exists an optimal solution that satisfies also

x2
1 +(x2−1)2 = 4, and w2 = 2w1 +1. Taking into account (4), we get w1 = (1+δ−x2)/(x1 +2x2).

Therefore, we have

φ(δ) ≥ min{x2 +
1 + δ − x2

x1 + 2x2
| 1 + δ ≤ x2 ≤ 3, x2

1 + (x2 − 1)2 ≤ 4}

≥ min{x2 +
1 + δ − x2

2x2 − 2
| 1 + δ ≤ x2 ≤ 3}

≥ min{ 1 + τ +
δ − τ

2τ
| δ ≤ τ ≤ 2}

≥ 1 +
√
δ/2 +

δ −
√
δ/2

2
√
δ/2

= 1/2 +
√

2δ.

9

Thus, the rate of convergence is not linear, i.e., the value function φ is not locally Lipschitz at 0,

since

lim
δ→0

φ(δ)− φ(0)

δ
≥ lim
δ→0

1/2 +
√

2δ − γ∗

δ
= lim
δ→0

√
2δ

δ
= +∞.

In the canonical DC problem both regularity and the locally Lipschitz continuity of the value

function φ at 0 are guaranteed by the existence of an optimal solution x∗ such that the following

relationship

T (Ω, x∗) * T (Γ∗, x∗) (13)

holds between the (Bouligand) tangent cones of Ω and Γ at x∗ [23, Theorem 3.7]. Besides, condition

(13) is actually equivalent to regularity if Γ∗ (or equivalently Γ) is a polyhedron [23, Theorem 3.8].

These relevant properties are lost in (SRP). In fact, Example 3.1 provides a case in which φ is not

locally Lipschitz at 0 although (SRP) is regular and (13) holds. The following example provides

a case in which the problem is not regular while (13) holds, though both Ω and Γ are polyhedra.

Example 3.2 Consider (SRP) with the same data of Example 3.1 except for

Ω = conv {(0, 3), (0,−1), (2, 1), (−2, 1)}.

A standard computation shows Ω∗ = {(−1,−1), (1,−1), (−1/3, 1/3), (1/3, 1/3)}. Since the feasible

region is included in the one of the previous example and the point (x∗, w∗) with x∗ = (−2, 1)

and w∗ = (−1/2, 0) keeps being feasible, then it is the unique optimal solution and the optimal

value is γ∗ = 1/2. Again, the point (02, 02) ∈ int Ω × int Γ satisfies (3) and thus the problem

satisfies assumption (2). The problem is not regular. In fact, (x,w) ∈ (Ω × Γ) ∩ intA1 implies

both x /∈ Γ∗ and w /∈ Ω∗ and therefore x2 > 1 and w1 > −1/3. As a consequence, we have

φ(0) ≥ 1 − 1/3 = 2/3 > γ∗. On the contrary, condition (13) holds since T (Γ∗, x∗) = R+ × R−

while T (Ω, x∗) = {∈ R2 | x1 ≥ 0, −x1 ≤ x2 ≤ x1}.

When recast in the format (1), the canonical DC problem has a very peculiar structure: the

variables w do not appear in the objective function. This feature is reflected also by condition

(13), in which the role played by the sets Ω and Γ is not symmetric. Therefore, it is reasonable to

expect (SRP) to call for additional conditions in order to guarantee regularity and the Lipschitz

property.

Theorem 3.1 If there exists an optimal solution (x∗, w∗) to (SRP) such that at least one of the

following conditions

{x∗ + λu | λ > 0} ∩ Ω 6= ∅ and w∗u > 0 (14)

10

{w∗ + λu | λ > 0} ∩ Γ 6= ∅ and ux∗ > 0 (15)

holds for some direction u ∈ Rn, then the problem is regular and the value function φ is locally

Lipschitz at 0, i.e., there exist L > 0 and δ̄ > 0 such that

φ(δ)− φ(0) ≤ Lδ ∀ δ ∈ [0, δ̄].

Proof. Suppose (14) holds. Therefore, there exists some λ̄ > 0 such that x(λ) := x∗ + λu ∈ Ω

for all λ ∈ [0, λ̄] due to the convexity of Ω. Up to scaling the direction u, we can suppose λ̄ = 1.

Since w∗(x∗+λu) = w∗x∗+λw∗u > α, we have (x(λ), w∗) ∈ (Ω×Γ)∩ intAα and therefore (SRP)

satisfies the regularity condition (7) as x(λ)→ x∗ for λ ↓ 0. Thus, φ(0) = f(x∗)+g(w∗). Choosing

any positive δ ≤ w∗u/2, we have λδ := 2δ/w∗u ∈ (0, 1] and moreover

w∗(x∗ + λδu) = w∗x∗ + (2δ/w∗u)w∗u = α+ 2δ > α+ δ.

Therefore, (x∗ + λδu,w
∗) ∈ (Ω× Γ) ∩ intAα+δ. If δ is small enough, we have

φ(δ)− φ(0) ≤ f(x∗ + λδu) + g(w∗)− f(x∗)− g(w∗)

≤ f(x∗ + λδu)− f(x∗) ≤Mλδ

for some suitable M > 0 due to the locally Lipschitz continuity of the convex function f . Setting

L = 2M/w∗u, we get φ(δ)−φ(0) ≤ Lδ. The proof is analogous in case (15) holds, just exchanging

the roles of the variables x and w. 2

Remark 3.1 Relying on the reverse polar constraint, condition (14) can be equivalently formu-

lated as (Ω× {w∗}) ∩ intAα 6= ∅ while condition (15) as ({x∗} × Γ) ∩ intAα 6= ∅.

Notice that condition (14) cannot hold at any optimal solution (x∗, w∗) if f ≡ 0. Otherwise,

(x(λ), w∗) would be an optimal solution for any λ > 0 sufficiently small too and w∗x(λ) > α would

contradict the property that all the optimal solutions satisfy (4). Similarly, condition (15) cannot

hold at any optimal solution if g ≡ 0.

Since (14) and (13) are equivalent in the case of the canonical DC problem [23, Proposition

3.6], i.e., essentially (SRP) with α = 1 and g ≡ 0, then Theorem 3.7 in [23] follows from Theorem

3.1. Notice that if α = 1 but g 6≡ 0 (14) implies (13) but not vice versa as shown in Example 3.2.

11

4 Convergence Conditions and the Basic Subprocedure

In this section, we first establish abstract conditions ensuring global (approximate) convergence of

oracle-based algorithms for (SRP), and then present a generic subprocedure which is crucial for

building actual implementable algorithms, discussing its properties.

4.1 General Convergence Conditions

The algorithms we will develop follow the generic cutting plane scheme sketched in Subsection

3.1. A non increasing sequence of feasible values {γk} is produced, and the oracle Θ is called for

each γk, providing either a value lk such that condition (10) holds or points zk and vk satisfying

conditions (11). By calling the oracle, repeatedly if needed, we can build a procedure which either

proves that γk satisfies condition (10) or produces a better feasible value γk+1 < γk. In the latter

case, γk+1 is produced (directly or indirectly) by points xk and wk such that

(xk, wk) ∈ (Ω× Γ) ∩ ∂Aα. (16)

The rationale for (16) is that any optimal solution must satisfy this condition, due to feasibility

and (4). A pair (xk, wk) may provide (potentially) different feasible values (see Subsection 5.5).

Anyway, in the following we will always set γk+1 = f(xk) + g(wk) for the sake of simplicity.

With the above notation, we can introduce the prototype of our algorithms.

Algorithm 1 Prototype algorithm

0. γ1 = +∞; k = 1;

1. If the optimality condition (5) holds, then stop (γk is the optimal value);

2. Select (xk, wk) satisfying (16) such that γk+1 = f(xk) + g(wk) < γk;

set k = k + 1; goto 1.

Clearly, if at the initialization Step 0 a feasible pair (x0, w0) is known, one can alternatively

set γ1 = f(x0) + g(w0). An important feature of Algorithm 1 is that {γk} is a decreasing sequence

bounded below:

γ̄ < γ∗ ≤ γ∞ = lim
k→∞

γk < · · · < γk < γk−1 < · · · < γ1.

Therefore, { R(γk) } is a “non-increasing sequence”, i.e.,

R(γ∞) ⊆ · · · ⊆ R(γk+1) ⊆ R(γk) ⊆ · · · ⊆ R(γ1).

12

Obviously, Algorithm 1 is too general to deduce any meaningful property. Indeed, something more

has to be said about how exactly optimality condition (5) is checked, and how (xk, wk) such that

f(xk) + g(wk) < γk is selected once one knows that (5) is not fulfilled. Clearly, the two points are

strictly interwoven, in that finding (xk, wk) such that f(xk) + g(wk) < γk immediately proves that

γk is not optimal. Vice versa, assume that we have any constructive procedure that produces a

point (zk, vk) ∈ R(γk) such that vkzk > α when γk is not optimal. Pick (xk, wk) in the intersection

between ∂Aα and the segment with (x̄, w̄) and (zk, vk) as the end points: clearly, (xk, wk) ∈ R(γk)

and f(xk) + g(wk) < f(zk) + g(vk) ≤ γk. Not surprisingly, without further qualification such a

method does not provides a convergent algorithm ([3, Example 4.1]).

Thus some care is needed in choosing the sequences xk and wk. Indeed, the most general

assumptions under which we can prove convergence are not stated in terms of xk and wk, but

rather in terms of the two corresponding sequences zk and vk produced by (6), out of which xk

and wk are constructed:

lim inf
k→∞

vkzk ≤ α, (17)

vkzk − α ≥ εmax{vz − α | (z, v) ∈ R(γk)}. (18)

Condition (18), where ε ∈ (0, 1), basically says that vk and zk must be produced by some process

attempting to solve the non-concave problem (6) with γ = γk, although the process may be

“terminated early” due to the optimality tolerance ε. Condition (17) rather requires the two

sequences to be asymptotically jointly feasible, and, as we will see, there are several different

implementable ways for ensuring that this holds. Anyway, as far as abstract conditions go, (17)

and (18) are already sufficient to guarantee convergence to the optimal value.

Proposition 4.1 If (17) and (18) hold, then the sequence of feasible values {γk} in Algorithm 1

converges to the optimal value γ∗.

Proof. Since each γk is a feasible value, we have γ∗ ≤ γ∞, i.e. γ∞ is a feasible value, too. Hence,

(18) implies that vkzk − α ≥ εmax{vz − α | (z, v) ∈ R(γ∞)} for all k. Taking the limit, (17)

implies max{vz − α | (z, v) ∈ R(γ∞)} ≤ 0, and therefore γ∞ is the optimal value. 2

When developing a “concrete” algorithm for (SRP), the abstract condition (17) can not be

directly imposed on the sequences {zk} and {vk}. In fact, these are the results of “complex” opti-

mization process, i.e. approximately solving (6), upon which we want to impose as few conditions

as possible, in order to leave as much freedom as possible to different implementations of this

13

critical task. Therefore, we seek alternative ways for obtaining (17). However, given zk and vk

as produced by the oracle we have full control on how xk and wk are constructed, provided that

(16) is satisfied; we can use this to enforce (17) through either one of the following two pairs of

conditions: 
lim supk→∞ vk(zk − xk) ≤ 0 (a)

lim supk→∞ vkxk ≤ α (b)

(19)


lim supk→∞(vk − wk)zk ≤ 0 (a)

lim supk→∞ wkzk ≤ α (b)

(20)

Lemma 4.1 If either (19) or (20) hold, then (17) holds.

Proof. Joining (19a) and (19b) we get lim supk→∞ vkzk − α ≤ 0, whence (17); the proof for (20)

is analogous. 2

Therefore, we can define the two sets of conditions which, separately, guarantee convergence for

Algorithm 1: B1 ≡ (18) and (19); B2 ≡ (18) and (20). Indeed, all the implementable algorithms

we propose in the following imply at least one of these, and therefore provably solve (SRP) to

optimality.

4.2 A Generic Outer Approximation Subprocedure

As already discussed in Subsection 3.1, one key idea to make (6) more tractable is to replace Γ and

Ω by two “simpler” approximating convex sets Q and S. Clearly, this requires some appropriate

machinery to update S and Q in order to make them “good enough” approximations of Ω and Γ

as required. Convexity of both sets allows to rely on cutting plane procedures based on standard

separation tools [24]. Given some point x ∈ S \ Ω, we assume to be able to find an hyperplane

strictly separating x from Ω. If the constraining function for Ω is known, for instance, this requires

finding s ∈ (x̄, x)∩ ∂Ω for some x̄ ∈ int Ω and a subgradient of the constraining function at s. It is

worth noting that the condition x̄ ∈ int Ω, which implies x̄ ∈ intS due to (9), is needed to ensure

that s 6= x, and therefore that the hyperplane actually separates S and x strictly. Obviously, we

make analogous assumptions for Γ.

Exploiting the above separation tools and relying on an approximate oracle Θ, we can build a

generic outer approximation procedure which allows implementations of Algorithm 1 satisfying the

sufficient convergence conditions introduced in Subsection 4.1. We call this procedure “generic”

14

because it does not provide any specific rule for selecting xi and wi from zi and vi. In the next

section we will discuss different rules which lead to implementable algorithms.

Subprocedure 1 Outer approximation subprocedure

Input: S and Q, closed convex sets satisfying (9), a feasible value γ

0. S1 = S; Q1 = Q; i = 1;

1. call the oracle Θ on Si, Qi, and γ, with tolerances ε̄ (> ε) and ε′;

if Θ produces an upper bound li satisfying (10)

then stop.

else Θ produces (z̄i, v̄i) satisfying v̄iz̄i − α ≥ ε̄v(OCγ);

2. if z̄i /∈ Ω then use Si and z̄i to produce Si+1 63 z̄i;

else Si+1 = Si;

3. if v̄i /∈ Γ then use Qi and v̄i to produce Qi+1 63 v̄i;

else Qi+1 = Qi;

4. let (zi, vi) = (1− βi)(z̄i, v̄i) + βi(x̄, w̄) for the smallest βi ≥ 0

such that zi ∈ Ω and vi ∈ Γ.

5. if vizi − α < εv(OCγ) then i = i+ 1 and goto 1.

6. select xi ∈ Ω and wi ∈ Γ such that wixi = α relying on zi and vi; stop.

Output: Qi and Si; either li, or xi, wi, zi, vi.

The following properties are independent of the selection rule for xi and wi:

1. We assume (9) for S1 and Q1: adding cutting planes at steps 2 and/or 3 ensures (9) for any

i, i.e., we get “non-increasing” sequences

Ω ⊆ · · · ⊆ Si+1 ⊆ Si ⊆ · · · ⊆ S1, (21)

Γ ⊆ · · · ⊆ Qi+1 ⊆ Qi ⊆ · · · ⊆ Q1. (22)

2. The choice of (zi, vi) at step 4 guarantees

f(zi) + g(vi) ≤ max{ f(z̄i) + g(v̄i), f(x̄) + g(w̄) } ≤ γ,

i.e., zi and vi are also feasible for the maximization problem which is approximately solved

by the oracle. Note that the step βi can be 0: this happens when (z̄i, v̄i) ∈ Ω× Γ.

3. The choices of (zi, vi) and (xi, wi) guarantee they belong to Ω × Γ and thus they have a

finite value of the objective function since Ω×Γ ⊆ dom f × dom g. This may not happen for

(z̄i, v̄i), but it has no influence on the algorithm.

15

4. The condition “vizi−α < εv(OCγ)” at step 5 may be difficult to check directly, as the value

of v(OCγ) is not known (although a suitable upper bound must be computed by the oracle

Θ). A stronger condition that can be surely checked is the following:

vizi − α ≥ (v̄iz̄i − α)(ε/ε̄).

Indeed, if it holds, then we are guaranteed that (zi, vi) satisfies (11) and therefore (18), and

the algorithm can advance to step 5, otherwise it loops.

5. If the algorithm loops at step 5, then at least one between Qi 6= Qi+1 and Si 6= Si+1 holds.

In fact, if z̄i ∈ Ω and v̄i ∈ Γ then zi = z̄i and vi = v̄i, so that the condition at step 5 cannot

be true.

In the algorithm, we are forced to require a “stricter” tolerance ε̄ to the oracle Θ in order to be

able to guarantee convergence to a solution that is optimal only to within δ = ε′/ε for the “looser”

tolerance ε < ε̄; the exact role of this assumption will be discussed in details later on. However,

nothing is required to the ratio ε/ε̄ except being smaller than one, so the two tolerances can be

taken arbitrarily close to each other.

It is clear from the previous discussion that the subprocedure will never repeat the same iterates:

if it does not stop, then at least one between the inclusions Si \ {z̄i} ⊃ Si+1 and Qi \ {v̄i} ⊃ Qi+1

holds, so at least one between z̄i+1 6= z̄i and v̄i+1 6= v̄i holds. We now prove the basic properties

of the subprocedure, which lead to finite termination under ε′ > 0.

Lemma 4.2 If the subprocedure never ends, then all the cluster points of {z̄i} and {v̄i} belong to

Ω and Γ, respectively.

Proof. Consider the sequence {z̄i}: either z̄i ∈ Ω for all large enough i, and therefore the thesis

follows from the closeness of Ω, or z̄i ∈ Si \ Ω for infinitely many indices. In the latter case, the

general Basic Outer Approximation Theorem [24, Theorem II.1] ensures that all the cluster points

of {z̄i} belong to Ω. The same reasoning works for {v̄i}. 2

It is crucial to ensure that the sequences {z̄i} and {v̄i} do indeed have cluster points. Since

both Ω and Γ are compact, then it is natural to assume that the sequences {z̄i} and {v̄i} are

bounded; in view of (21) and (22), this holds e.g. if S1 and Q1 are compact. We therefore assume

both sequences to be bounded in all the following development. Besides, all the other sequences are

bounded; in fact they belong to the bounded sets Ω and Γ. We can now prove that the “original”

sequence {(z̄i, v̄i)} and the “modified” one {(zi, vi)} share the same set of cluster points.

16

Lemma 4.3 If infinitely many iterates i are produced, then there is a one-to-one correspondence

between the cluster points of {(z̄i, v̄i)} and those of {(zi, vi)}.

Proof. It is enough to prove that 0 is the only cluster point of {βi}. Assume by contradiction

that βi → β̄ ∈ (0, 1]. By taking subsequences, if needed, let (z̄i, v̄i) → (z̄, v̄). Then, we have

(zi, vi)→ (ẑ, v̂) = (1−β̄)(z̄, v̄)+β̄(x̄, w̄). Since β̄ > 0, (x̄, w̄) ∈ int Ω×int Γ and (z̄, v̄) ∈ Ω×Γ, then

we get (ẑ, v̂) ∈ int Ω × int Γ. Therefore, we have (zi, vi) = βi(x̄, w̄)+(1−βi)(z̄i, v̄i) ∈ int Ω×int Γ

for sufficiently large i, and thus the segment with (zi, vi) and (z̄i, v̄i) as end points has a nonempty

intersection with the set (int Ω × int Γ). This contradicts the assumption that βi is the smallest

non-negative value such that zi ∈ Ω and vi ∈ Γ. 2

Hence, the subprocedure cannot loop infinitely many times as step 5.

Proposition 4.2 If ε′ > 0, then the subprocedure finitely stops.

Proof. If the subprocedure never ends, then

(vizi − α)/ε < v(OCγ) ≤ (v̄iz̄i − α)/ε̄

holds for all the indices i. Take any common cluster point (z̄, v̄) of {(zi, vi)} and {(z̄i, v̄i)}.

Therefore, we get the contradiction 1 = (v̄z̄ − α)/(v̄z̄ − α) ≤ ε/ε̄ < 1, just taking the limit in the

above chain of inequalities for the subsequence providing the cluster point. 2

The above proof shows the need for requiring ε′ > 0, since the subprocedure may never stop for

ε′ = 0: it can not finitely prove that the optimal value is optimal. That is why it is important to

clarify the relationship between approximated optimal values and the optimal value. Furthermore,

the proof also shows that requiring the “tighter” tolerance ε̄ on (z̄i, v̄i) is needed in order to ensure

that the “looser” tolerance ε is attained on the modified iterates (zi, vi), and therefore to guarantee

finite termination.

If the subprocedure stops at step 1, then γ is approximately optimal with positive tolerances

ε̄ and ε′; if it stops at step 6, the existence and convergence properties of (xi, wi) would depend

on the exact choice of the selection rule. A detailed discussion on this issue and the corresponding

convergence proofs will be given in the following sections.

We end this section with a further result which greatly simplifies the analysis of convergence

of the algorithms. For several of them, it is necessary to impose a further condition (other than

17

γ1 ≥ γ∗) on the initial value, i.e.,

γ1 ≤ min{γx̄, γw̄}, (23)

where

γx̄ = f(x̄) + min{g(w) | w ∈ Γ, wx̄ ≥ α},

γw̄ = g(w̄) + min{f(x) | x ∈ Ω, w̄x ≥ α}.

Note that γx̄ and γw̄ are the optimal values of two convex problems, hence “easily” available.

Furthermore, if (23) holds at the first iteration, then it automatically holds at all subsequent ones

since {γk} is a decreasing sequence. However, it has to be remarked that either one (and even

both) can be +∞, as there is no guarantee that the corresponding feasible regions are nonempty.

This surely happens if α > 0 and (x̄, w̄) = (0, 0), which can always be assumed without loss of

generality in the (CDC) case [3].

Lemma 4.4 If (23) holds, then g(vi) ≥ g(w̄) implies w̄zi ≤ α and f(zi) ≥ f(x̄) implies vix̄ ≤ α.

Proof. We only prove the first implication, as the proof of the other is symmetric. By con-

tradiction, suppose that both g(vi) ≥ g(w̄) and w̄zi > α hold. Since w̄x̄ < α, the mean

value theorem implies that there exists some x̃ ∈ (x̄, zi) such that w̄x̃ = α. Hence, we have

f(x̄) + g(w̄) < γ ≤ γw̄ ≤ f(x̃) + g(w̄) and therefore f(x̄) < f(x̃) < f(zi). Thus, we have the

contradictory chain of inequalities γw̄ ≤ f(x̃) + g(w̄) < f(zi) + g(vi) ≤ γ ≤ γw̄. 2

5 Implementable Algorithms

The results of Section 4 can be exploited to define implementable versions of the prototype Algo-

rithm 1, as described in Algorithm 2.

Algorithm 2 Implementable outer approximation algorithm

0. γ1 = +∞; Select S1 ⊇ Ω, Q1 ⊇ Γ; k = 1;

1. Call subprocedure 1 with Sk, Qk, and γk;

2. If subprocedure 1 stops at Step 1, then stop.

3. Set xk, wk, zk and vk as the output of subprocedure 1;

4. Set Qk+1 and Sk+1, possibly using the output of subprocedure 1;

5. Set γk+1 = f(xk) + g(wk) < γk; set k = k + 1; goto 1.

18

At Step 4 the obvious possibility for Qk+1 and Sk+1 is to choose the sets Qi and Si produced by

subprocedure 1. However, this leads to accumulation of all the cutting planes generated along the

iterates in Qk and Sk so that one may want to “purge” some of the accumulated cutting planes.

This can always be done since only (9) needs to be satisfied.

In order for Algorithm 2 to work, at least one between the set of conditions B1 and B2 must hold.

This requires appropriate ways of constructing xk and wk out of zk and vk, which have not been

specifed in the subprocedure. In all the concrete algorithms below xk and wk are obtained from

zk and vk moving along the directions which “lead towards the low point” (x̄, w̄) with appropriate

non-negative stepsizes, i.e.,

xk = zk − λk1yk, wk = vk − λk2uk

with λk1 , λ
k
2 ≥ 0 and

yk = N(zk − x̄), uk = N(vk − w̄), (24)

where N(q) denotes the normalized direction associated to any q ∈ Rn, i.e., N(q) = q/‖q‖ if q 6= 0

while N(q) = 0 if q = 0. The algorithms differ just by the selection of the stepsizes. Anyway, all

the selection rules impose λk1 ∈ [0, ‖zk − x̄‖] and λk2 ∈ [0, ‖vk − w̄‖] so that

xk ∈ [x̄, zk], wk ∈ [w̄, vk] (25)

hold. In this way the required conditions xk ∈ Ω and wk ∈ Γ are guaranteed by the convexity of

the sets Ω and Γ.

Thanks to (11), (21) and (22), condition (18) is always satisfied by all possible variants of

Algorithm 2. Therefore, B1 and B2 actually reduce to (19) and (20), respectively. Indeed, a

sufficient condition for them to hold is that the steps vanish, i.e.,

λk1 → 0, λk2 → 0, (26)

provided that wkxk = α. In fact, (26) implies vk(zk − xk) = vkλk1y
k → 0, and therefore,

vkxk = (wk + λk2u
k)xk = α + λk2u

kxk → α, i.e., condition (19). Analogously, it ensures also

(20). Notice that convergence is achieved if either condition B1 or B2 hold, while (26) implies

both. Of course, if steps vanish so does the difference in objective function value, i.e., (26) implies

(f(zk) + g(vk))− (f(xk) + g(wk))→ 0 (27)

while the converse need not be true. In the next subsections we discuss different stepsize rules

which guarantee the existence of (xk, wk) satisfying wkxk = α and the vanishing step condition

(26), therefore ensuring the convergence of Algorithm 2.

19

5.1 Algorithm R1

The first implementable algorithm we propose employs the stepsizes

λk1 = λk‖zk − x̄‖, λk2 = λk‖vk − w̄‖, (28)

where λk ∈]0, 1[. The rationale of (28) is that we want to reduce the relative distance between zk

and vk and their respective low points (x̄ and w̄) at the same rate; in fact, λk is the fraction of the

distance that is travelled, and it must be the same in the x-space and in the w-space.

The existence of (xk, wk) satisfying wkxk = α is obvious: in fact, we get wkxk = vkzk > α

if λk = 0 while wkxk = w̄x̄ < α if λk = 1, and the result follows by continuity. An explicit

formula can be easily derived for the correct value of λk, but it has no relevance in the analysis of

convergence.

Lemma 5.1 If (24) and (28) hold, then (26) holds.

Proof. The assumptions guarantee (xk, wk) = λk(x̄, w̄) + (1− λk)(zk, vk), and therefore

γ̄ = f(x̄) + g(w̄) < f(xk) + g(wk) ≤ f(zk) + g(vk) ≤ γk (29)

follows from the convexity of f and g. Since γk ≤ f(xk−1) + g(wk−1), then {f(xk) + g(wk)}

is a non-increasing sequence bounded below and hence convergent. As a consequence, we have

(f(xk−1) + g(wk−1)) − (f(xk) + g(wk)) → 0 and thus (27) follows from (29). Furthermore, the

convexity of f and g implies

f(zk)− f(xk) + g(vk)− g(wk) ≥ λk[f(zk)− f(x̄) + g(zk)− g(w̄)] ≥ λk(γ∗ − γ̄).

Thus, (27) implies λk → 0 and (26) follows immediately from (28) since the sequences {‖zk − x̄‖}

and {‖vk − w̄‖} are bounded. 2

5.2 Algorithm R2

“Abstract” conditions ensuring (26) are the following

λk1 > 0 =⇒ f(zk)− f(xk) ≥ τ‖zk − xk‖, (30)

λk2 > 0 =⇒ g(vk)− g(wk) ≥ τ‖vk − wk‖, (31)

where τ is a small enough positive value.

20

Lemma 5.2 If (30) and (31) hold, then (26) holds.

Proof. Conditions (30) and (31) imply that f(zk) ≥ f(xk) and g(vk) ≥ g(wk), which in turn

guarantee f(zk) + g(vk) ≥ f(xk) + g(wk) and therefore (27) follows just arguing as in the proof of

Lemma 5.1. Since both terms are non-negative, we have f(zk)−f(xk)→ 0 and g(vk)−g(wk)→ 0.

Therefore, (30) and (31) imply λk1‖yk‖ → 0 and λk2‖uk‖ → 0, which guarantee (26). 2

At first glance, it is not obvious how the rather abstract conditions (30) and (31) can be

guaranteed. However, any stepsize rule providing (25) ensures that at least a suitable τ exists.

Lemma 5.3 If (25) holds, then there exists τ > 0 such that either f(zk) − f(xk) ≥ τ‖zk − xk‖

or g(vk)− g(wk) ≥ τ‖vk − wk‖ holds at each iteration.

Proof. If xk = zk or wk = vk, then the thesis is obvious. Otherwise, consider the value

M = supk{max{‖xk − x̄‖, ‖wk − w̄‖}}, which is finite since the sequence {(xk, wk)} is bounded.

Taking any positive τ ≤ (γ∗ − γ̄)/2M we have

(f(xk) + g(wk))− (f(x̄) + g(w̄)) ≥ γ∗ − γ̄ ≥ 2τM ≥ τ‖xk − x̄‖+ τ‖wk − w̄‖,

and therefore either f(xk) − f(x̄) ≥ τ‖xk − x̄‖ or g(wk) − g(w̄) ≥ τ‖wk − w̄‖ holds. Since (25)

holds, then xk = x̄+ λk(zk − x̄) with λk = ‖xk − x̄‖/‖zk − x̄‖ ∈]0, 1[. Therefore, the convexity of

f implies

[f(zk)− f(xk)]/‖zk − xk‖ ≥ [f(xk)− f(x̄)]/‖xk − x̄‖.

Similarly, we can prove the corresponding inequality for vk, wk and g and therefore the thesis

follows immediately exploiting these two inequalities. 2

Although a suitable τ exists, it remains to show how the stepsizes can be chosen to guarantee

(30) and (31). In particular, one has to detect which of the two directions must be given a nonzero

stepsize. Just arguing as in Lemma 5.3, we can show also that f(zk) − f(x̄) ≥ τ‖zk − x̄‖ or

g(vk) − g(w̄) ≥ τ‖vk − w̄‖ holds at each step for any small enough positive τ . Therefore, we

propose the following rule:

(λk1 , λ
k
2) =


(
0, vkzk−α

(vk−w̄)zk
‖vk − w̄‖

)
, if f(zk)−f(x̄)

‖zk−x̄‖ ≤ g(vk)−g(w̄)
‖vk−w̄‖ ,(

vkzk−α
vk(zk−x̄)

‖zk − x̄‖, 0
)

otherwise.

(32)

The positive stepsize is chosen in such a way that the corresponding (xk, wk) satisfies wkxk = α.

Under an additional condition on the initial value, the selection rules (24) and (32) provide a

convergent algorithm.

21

Lemma 5.4 Suppose (23) holds. If (24) and (32) hold, then also (25), (30) and (31) hold.

Proof. Suppose [f(zk)−f(x̄)]/‖zk−x̄‖ ≤ [g(vk)−g(w̄)]/‖vk−w̄‖. Then, we have g(vk) ≥ g(w̄) and

Lemma 4.4 implies w̄zk ≤ α. Since vkzk > α, the stepsize rule (32) implies 0 < λk2 ≤ ‖vk−w̄‖, and

therefore (25) holds. The thesis follows immediately as Lemma 5.3 guarantees that the inequality

g(vk) − g(w̄) ≥ τ‖vk − w̄‖ holds for some τ > 0, while λk2 > 0, i.e., condition (31), and λk1 = 0

guarantees (30). The proof of the other case is analogous. 2

5.3 Algorithm R3

Yet another different choice for the stepsizes would be to take them equal, i.e.,

λk1 = λk2 = λk, (33)

which would imply λk = ‖zk − xk‖ = ‖vk − wk‖. Anyway, this choice does not fall within the

framework of Algorithm 2 as the following example shows.

Example 5.1 Consider (SRP) with n = 1, α = 1,

Ω = [−1/2, 20], f(x) = x,

Γ = [−1/2, 1/2], g(w) = −2w,

together with the low point (x̄, w̄) = (0, 0) ∈ int Ω×Γ. The optimal solution is (x∗, w∗) = (2, 1/2),

with optimal value γ∗ = 1. Take S1 = Ω and Q1 = Γ and set ε = 0.9, ε̄ = 1 and γ1 = 19.

The subprocedure gives (z1, v1) = (z̄1, v̄1) = (20, 1/2). The directions (24) are y1 = u1 = 1

and the stepsize rule (33) chooses λ1
1 = λ1

2 ≈ 0.44885. Then, (x1, w1) ≈ (19.55115, 0.05115) and

f(x1) + g(w1) ≈ 19.44885 > γ1, which does not satisfy the monotonicity of the objective value

required by Algorithm 2.

It is worth noting that in the above example we have g(w̄) > g(v1) and hence moving from

v1 towards w̄ cannot lead to any improvement for “g-part” of the objective function. This simple

remark suggests to modify the rule (33) in the following way:

λk1 =

 λk, if f(zk) > f(x̄),

0 otherwise
λk2 =

 λk, if g(vk) > g(w̄),

0 otherwise.
(34)

Indeed, this modification guarantees convergence.

22

Lemma 5.5 If (24) and (34) hold, then (26) holds.

Proof. The stepsize rule (34) guarantees f(zk) ≥ f(xk) and g(vk) ≥ g(wk). In fact, it implies

xk = zk whenever f(zk) ≤ f(x̄) and vk = wk whenever g(vk) ≤ g(w̄) while in the other cases

the inequalities follow from the convexity of f and g in view of (25). Moreover, we clearly have

f(zk)+g(vk) > f(xk)+g(wk), otherwise it would be f(zk)+g(vk) = γ̄ contradicting (3). Therefore,

the thesis follows just arguing as in the proof of Lemma 5.1. 2

Anyway, there is no guarantee that choosing the stepsizes according to (34) allows to get a

point (xk, wk) ∈ Γ× Ω satisfying wkxk = α. This is true taking an initial value satisfying (23).

Lemma 5.6 If (23) holds, then there exists λk > 0 such that (24) and (34) guarantee (25) and

wkxk = α.

Proof. If f(zk) ≤ f(x̄), then λk1 = 0, i.e., xk = zk, and also g(vk) > g(w̄), which implies

w̄xk = w̄zk ≤ α by Lemma 4.4. Since vkzk > α, then there exists wk ∈ [w̄, vk[such that wkxk = α

and therefore λk = ‖vk − wk‖ provides the required stepsize. Analogously, if g(vk) ≤ g(w̄), then

we have wk = vk and λk = ‖zk − xk‖ for some suitable xk ∈ [x̄, zk[.

Finally, if both f(zk) > f(x̄) and g(vk) > g(w̄) hold, consider the real-valued function

ζ(λ) = (vk − λuk)(zk − λyk). Clearly, we have both ζ(0) = vkzk > α and ζ(λ) < α for

λ = min{‖zk − x̄‖, ‖vk − w̄‖}. In fact, ζ(λ) = wx̄ for some w ∈ [w̄, vk[or ζ(λ) = w̄x for some

x ∈ [x̄, zk[and w̄x̄ < α. Lemma 4.4 guarantees w̄zk ≤ α and vkx̄ ≤ α. Thus, the continuity of ζ

implies the existence of λk such that wkxk = ζ(λk) = α. Since λk ≤ λ, then (25) follows too. 2

Remark 5.1 The idea behind the stepsize rule (34) can be applied to modify rule (28) corre-

spondingly, i.e.,

λk1 =

 λk‖zk − x̄‖, if f(zk) > f(x̄),

0 otherwise

λk2 =

 λk‖vk − w̄‖, if g(vk) > g(w̄),

0 otherwise.

Indeed, this new rule provides a convergent algorithm. Actually, it is a sort of combination of the

algorithms R1 and R3: if f(zk) > f(x̄) and g(vk) > g(w̄) hold, then it performs the same iteration

that R1 would, otherwise the one that R3 would.

23

5.4 Numerical Illustrations

The algorithms R1, R2 and R3 are indeed different, in the sense that they may produce different

optimizing sequences even if the same problem and the same starting conditions are given. We

suppose the oracle Θ to always choose the same (z, v) when S, Q and γ are the same; nonetheless,

the three algorithms construct different optimization sequences for (SRP) with α = 1, n = 2,

Γ = {(w1, w2) | w2
1 + w2

2 ≤ 1/4}, f(x) = x2,

Ω = {(x1, x2) | −1 ≤ x1 ≤ 1, x2 ≥ −1}, g(w) = w1/2.

The point (x̄, w̄) ∈ int Ω× int Γ with x̄ = w̄ = 0 satisfies (3), and therefore γ̄ = 0. Take S1 = Ω and

Q1 = Γ, and set ε̄ = 0.8, ε = 0.5 and γ1 = 4. All the algorithms start calling the subprocedure with

S1, Q1 and γ1 as input data. Suppose the oracle outputs the solution z̄1 = (1, 2), v̄1 = (2/9, 4/9),

which indeed satisfies

ε̄v(OCγ1) = ε̄(
√

5/2− 1) = 0.8(−1 +
√

5/2) ' 0.094 ≤ 0.111 ' (v̄1z̄1 − 1).

Since z̄1 ∈ Ω and v̄1 ∈ Γ, then β1 = 0, i.e., (z1, v1) = (z̄1, v̄1). Since εv(OCγ1) ' 0.059 ≤ (v1z1−1),

the subprocedure immediately stops. However, the new iterates x1 and w1 and the corresponding

new feasible value γ2 are different in the three cases: algorithm R1 provides x1 = (3, 6)/
√

10

and w1 =
√

10(1/15, 2/15), therefore γ2 = 19
√

10/30 ' 2.003; algorithm R2 provides and

x1 = (9/10, 9/5) and w1 = (2/9, 4/9), therefore γ2 = 86/45 ' 1.911; algorithm R3 provides

x1 ' 0.98(1, 2) and w1 ' 0.202(1, 2), therefore γ2 ' 2.061. Thus, the three algorithms produce

different values γ2 starting from the same situation. Furthermore, it is possible to prove [13, Ex-

amples 3.4.4-5] that these algorithms are also different from those for (CDC) described in [3, 13].

5.5 Possible Practical Improvements

While all the algorithms proposed in this section are (approximately) globally convergence, little

is known about their actual rate of convergence. Interestingly, a simple technique can be used to

try to improve the convergence speed of γk to the optimal value γ∗; this can be done, at each

iteration, by finding a “better” feasible value than γk+1 = f(xk) + g(wk). In fact, once xk and

wk are selected, we can fix one of the two and optimize over the other; in other words, one may

consider solving the two convex minimization problems

w̄k ∈ argmin{g(w) | w ∈ Γ, wxk ≥ α}

24

x̄k ∈ argmin{f(x) | x ∈ Ω, wkx ≥ α}

and set γk+1 = min{f(xk)+g(w̄k), f(x̄k)+g(wk)}. Since wkxk = α, both problems are feasible and

this definition of γk+1 cannot provide a larger (hence worse) value than the standard one. There-

fore, it is easy to see that this modification retains the global convergence of the original algorithms,

although it would not in general be easy to prove this convergence with the modified sequences.

Remarkably, the process can be iterated: whenever, say, f(xk) + g(w̄k) < f(xk) + g(wk), one

may re-solve the second optimization problem above with wk = w̄k, and keep doing so (alternating

between the two blocks of variables) until no further improvement is possible.

6 Conclusions

We have shown how to extend the oracle-based outer approximation solution methods developed for

the canonical DC problem to the larger class of the single reverse polar problems, which comprises

interesting problems such as separable linear complementarity and separable bilevel ones. As this

class seems to be new, a thorough analysis (approximate) of optimality condition and properties of

optimal solutions in (SRP) has been performed, as well as the comparison with the corresponding

features of (CDC). The concept of approximated oracle devised for (CDC) directly extends

to (SRP); this has the potential to make oracle-based algorithms practical even for large-scale

instances, in contrast to the vertex enumeration techniques usually touted for the (CDC) case.

To this purpose we have developed a general hierarchy of conditions ensuring convergence of

oracle-based outer approximation algorithms for (SRP), a general algorithmic scheme based on

the hierarchy, and three different implementable algorithms which can generate an approximate

optimal value in a finite number of steps, where the error can be managed and controlled. To the

best of our knowledge, there are no existing algorithms devoted to (SRP). Despite the fact that

(CDC) is just a special case of (SRP) with α = 1, f(x) = dx, g(w) = 0 and Γ = C∗, oracle-based

outer approximation algorithms for (CDC) can not be applied to (SRP) directly: some crucial

properties of (CDC) are lost in (SRP), which requires a significant update both for the theory

and for the algorithms.

References

[1] Tuy, H.: Canonical DC programming problem: outer approximation methods revisited. Oper.

Res. Lett. 18, 99–106 (1995)

25

[2] Tuy, H.: D.C. optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M.

(eds.): Handbook of global optimization, Nonconvex optimization and its applications, vol. 2,

pp. 149–216. Kluwer Academic Publishers, Dordrecht (1995)

[3] Bigi, G., Frangioni, A., Zhang Q.H.: Outer approximation algorithms for canonical DC

problems. J. Global Optim. 46, 163–189 (2010)

[4] Fulop, J.: A finite cutting plane method for solving linear programs with an additional reverse

constraint. Eur. J. Oper. Res. 44, 395–409 (1990)

[5] Nghia, M.D., Hieu, N.D.: A method for solving reverse convex programming problems. Acta

Math. Vietnam. 11, 241–252 (1986)

[6] Tao, P.D., El Bernoussi, S.: Numerical methods for solving a class of global nonconvex

optimization problems. International Series of Numerical Mathematics 87, 97–132 (1989)

[7] Thach, P.T.: Convex programs with several additional reverse convex constraints. Acta Math.

Vietnam. 10, 35–57 (1985)

[8] Tuy, H.: A general deterministic approach to global optimization via d.c. programming. In:

Hiriart-Urruty, J.B. (ed.) FERMAT days 85: mathematics for optimization, North-Holland

Math. Stud., 129, pp. 273–303. North-Holland Publishing Co., Toulouse (1986)

[9] Tuy, H.: Convex programs with an additional reverse convex constraint. J. Optim. Theory

Appl 52, 463–486 (1987)

[10] Tuy, H.: On nonconvex optimization problems with separated nonconvex variables. J. Global

Optim. 2, 133–144 (1992)

[11] Tuy, H.: Convex analysis and global optimization. Kluwer Academic Publishers, Dordrecht

(1998)

[12] Tuy, H., Tam, B.T.: Polyhedral annexation vs outer approximation for the decomposition of

monotonic quasiconcave minimization problems. Acta Math. Vietnam. 20, 99–114 (1995)

[13] Zhang, Q.H.: Outer approximation algorithms for DC programs and beyond. Ph.D. thesis,

Università di Pisa (2008)

[14] Blanquero, R., Carrizosa, E., Hansen, P.: Locating objects in the plane using global opti-

mization techniques. Math. Oper. Res. 34, 837–858 (2009)

26

[15] Wozabal, D., Hochreiter, R., Pflug, G.C.: A difference of convex formulation of value-at-risk

constrained optimization. OR. Spectrum. 3, 377–400 (2010)

[16] Hu, J.: On linear programs with linear complementarity constraints. Ph.D. thesis, Rensselaer

Polytechnic Institute (2008)

[17] Lu, Z.S., Zhang, Y.: Penalty Decomposition Methods for l0-Norm Minimization. Computing

Research Repository arxiv.org/abs/1105.2782, Cornell University Library (2010)

[18] Miller, A.: Subset Selection in Regression. Chapman and Hall, London (2002)

[19] Tropp, J.: Convex programming methods for identifying sparse signals in noise. IEEE T.

Inform. Theory. 52, 1030–1051 (2006)

[20] Han, L.S., Tiwari, A., Camlibel, M.K., Pang, J.S.: Convergence of time-stepping schemes

for passive and extended linear complementarity systems. SIAM J. Numer. Anal. 47, 3768–

3796 (2009)

[21] Hu, J., Mitchell, J.E., Pang, J.S., Bennett, K.P., Kunapuli, G.: On the global solution of linear

programs with linear complementarity constraints. SIAM J. on Optim. 19, 445–471 (2008)

[22] Frangioni, A.: On a new class of bilevel programming problems and its use for reformulating

mixed integer problems. Eur. J. Oper. Res. 82, 615–646 (1995)

[23] Bigi, G., Frangioni, A., Zhang, Q.H.: Approximate optimality conditions and stopping criteria

in canonical DC programming. Optim. Method. Softw. 25, 19–27 (2010)

[24] Horst, R., Tuy, H.: Global optimization. Springer, Berlin (1990)

27

