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ABSTRACT

A possible mean to stabilize the LEO debris population is to remove each year 5 heavy debris 
like spent satellites or launchers stages from that space region. This paper investigates the ΔV 
requirement for such a Space Debris Collecting mission. The optimization problem is 
intrinsically hard since it mixes combinatorial optimization to select the debris among a list of 
candidates and functional optimization to define the orbital maneuvers. The solving 
methodology proceeds in two steps : firstly a generic transfer strategy with impulsive 
maneuvers is defined so that the problem becomes of finite dimension, secondly the problem is 
linearized around an initial reference solution. A Branch and Bound algorithm is then applied 
to optimize simultaneously the debris selection and the orbital maneuvers, yielding a new 
reference solution. The process is iterated until the solution stabilizes on the optimal path. The 
trajectory controls and dates are finally re-optimized in order to refine the solution. The 
method is applicable whatever the numbers of debris (candidate and to deorbit) and whatever 
the mission duration. It is exemplified on an application case consisting in selecting 5 SSO 
debris among a list of 11. 
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I INTRODUCTION 

 

A) Space debris 

A drastic growth of the space debris population in the LEO region under 2000 km is foreseen in 

the next decades with high collision risks for future space flights13,15. A particularly crowded 

region is the vicinity of the SSO and polar orbits in the range 600-1200 km altitude and 80-

105deg inclinations with a density peak around the altitudes of 800-900 km. These orbits are 

well adapted to Earth observation and are therefore intensively used. The most efficient ways to 

mitigate this scenario are to avoid the creation of new debris by appropriate spacecrafts 

conception and to actively remove the existing debris1,18. Several studies have led to the 

conclusion that removing 5 heavy LEO debris per year, like spent satellites or launchers upper 

stages, is mandatory to stabilize the debris population2. This paper deals with such a Space 

Debris Collecting mission that would meet this requirement. 

 

B) Mission definition 

The Space Debris Collecting (SDC) mission aims at deorbiting 5 heavy debris per year. The 

debris must be selected in a list of N candidates, so that the required propellant consumption 

for the mission is minimized. 

The deorbitation consists in clearing the LEO region (altitude below 2000 km) : this can be 

achieved by either making the debris re-enter the atmosphere (preferred solution if possible) or 

re-orbiting the debris at a higher altitude1. For the SSO debris considered in this paper, only 

the reentry solution is envisioned. 

Two deorbitation scenarios can be envisioned after the vehicle has captured the debris : 
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• Either the vehicle realizes the deorbitation manoeuvre. The debris is then released on 

the reentry trajectory while the vehicle returns on a stable orbit in order to pursue the 

mission. 

• Or the vehicle supplies the debris with a deorbitation device (booster, tether, …). The 

debris performs then the deorbitation manoeuvre by itself, while the vehicle pursues 

the mission from the initial debris orbit. 

The mission starts from the first debris selected on the path. It is assumed that the launcher has 

realized the rendezvous maneuvers in order to bring the SDC vehicle to this first debris. The 

cost and duration to reach this first debris are therefore not counted into the mission cost and 

duration. 

 

C) Global optimization problem 

The global SDC problem is a mix of hard embedded optimization problems :  

• several continuous transfer problems consisting in optimizing the trajectory from one 

debris to the other. 

• a combinatorial path problem consisting in selecting the debris and the collecting order. 

Table 1 gives an overview of these problems features. 
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 Transfer problem Path problem 

Goal Optimize the trajectories  Select the debris and the order 

Category Optimal control theory Graphs theory 

Algorithms Non linear programming Integer programming 

Complexity Functional optimization 
→   infinite dimension 
→   hard continuous problem 

NP problem  (TSP like) 
→  exponential 
→   hard combinatorial problem 

Problem nature Non linear time dependent graph problem 

 

Table 1 : Two embedded optimization problems 

 

It will not be possible to tackle directly the global problem in its general complexity. The 

methodology to solve the problem follows the successive steps : 

• Write the global problem formulation (Part II) 

• Investigate the existing numerical methods in order to choose the most adapted 

• Simplify the transfer problem considering the mission specificities (Part III) 

• Linearize the formulation and iterate on the local solution (Part IV) 

• Issue the optimal path (debris selection and order) 

• Reoptimize the controls and dates on the selected path 

This solving methodology is depicted on Figure 1. 
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Figure 1 : Solving methodology 
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II PROBLEM FORMULATION 

This section presents the mathematical formulation of the two embedded optimization 

problems and gives an overview of the available numerical methods. 

 

A) Transfer problem 

The transfer problem consists in going from a debris i to another debris j. In terms of optimal 

control theory, the SDC vehicle is represented by a 7-state vector X(t). The components of this 

state vector are : 
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To ease the subsequent formulation of the optimal control problem, we introduce the 6-vector 

Y(t) representing the 6 first components of X(t), i.e. the position and the velocity. An 

equivalent state representation is given by the 6 orbital parameters instead of the 3 position and 

the 3 velocity components. This equivalent representation will be considered when simplifying 

the problem formulation. 

The 6-state vector of the debris k at the date t defining the debris position and velocity (or 

orbital parameters) is similarly denoted Yk(t). 

The SDC vehicle trajectory is controlled by the 3-command vector U(t)  representing the 

vehicle thrust at each instant t. We denote : 

• the thrust magnitude U(t)u(t) = , with maxuu0 ≤≤  

• the thrust direction (t)d
r

 

The vehicle dynamics is represented by the first order ODE : 
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  where ve is the burned propellant exhaust velocity. 

 

We denote d
it and a

jt are the respective dates of departure from the debris i and arrival to the 

debris j. The vehicle state (position and velocity) must coincide : 

• with the debris i state at the beginning of the transfer : ( ) ( )d
ii

d
i tYtY =  

• with the debris j state at the end of the transfer :  ( ) ( )a
jj

a
j tYtY =  

The propellant consumption (or cost) Cij and duration Tij required for the transfer from the 

debris i to the debris j are respectively : 
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and d
i

a
jij ttT −=  (4) 

The optimal control problem of the transfer from a debris i to a debris j is then formulated as : 
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The upper bound max ijT on the transfer duration is necessary in order to have a well posed 

problem8,10. The unknowns are the initial date d
it , the final date a

jt , and the command law 

[ ]a
j

d
iij tt t(t),U ≤≤  which is a function of the time. 

 

B) Path problem 

The Travelling Salesman Problem 

The archetype of path problems is the Travelling Salesman Problem (TSP). The salesman has 

to visit successively N towns. Each town must be visited once and once only. The distance (or 

cost) from any town i to any other town j is Cij and the associated duration is Tij (Figure 2). 

 

 

Figure 2 : The Traveling Salesman Problem 

 

In an instance of the classical TSP, every town is linked to any other and the distances are 

constant. The goal is to minimize the total distance covered. There is no other constraint on the 

solution than to visit every town once and once only. 

Town i 
Town j 

Distance Cij

Time Tij
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In order to formulate the SDC path problem, we start from the classical TSP with three 

additional features : 

• Only n debris among the N must be visited 

• There is a global duration constraint on the solution : T < Tmax 

• There is a minimum duration Tdeorb required to process a debris (capture, deorbitation, 

release). It corresponds to a minimum waiting phase once a debris has been reached 

before starting the next transfer. 

 

Path problem formulation 

In terms of graphs theory, the debris are the nodes and a transfer from a debris i to a debris j is 

represented by an edge from the node i to the node j. To write down the mathematical 

formulation of the path problem, we introduce several variables and related constraints3. 

Firstly we need to select the edges that will compose the path. 

• sij , i,j=1 to N is a binary selection variable for the edge (i-j) with i≠j: 

sij = 1 if the edge is selected on the path 

sij = 0 if not 

In order to select n debris amongst N, we must select n-1 edges : 1ns
ji,

ij −=∑  

There are N(N-1) variables sij and 1 related constraint. 

Secondly we need to constrain the number of edges arriving and departing from each debris. 

• xk , k=1 to N is the number of edges arriving to the node k : 

Since there will be at most one edge arriving to each debris, we can consider xk  

as a binary variable satisfying :  ∑=
i

ikk sx  
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There are N variables xk and N related constraints. 

• yk , k=1 to N is the number of edges departing from the node k : 

Since there will be at most one edge departing from each debris, we can consider yk 

as a binary variable satisfying :  ∑=
j

kjk sy  

There are N variables yk and N related constraints. 

Thirdly we need to build a physical path wrt the chronology (increasing dates) and to forbid 

loops. 

• a
kt and d

kt  , k=1 to N are the dates of arrival to and departure from the debris k 

The mission is assumed to start at t0=0 and end at t < Tmax (1 year) 

a
kt and d

kt  are therefore real variables representing comprised between 0 and Tmax . 

The constraints related to the events chronology are : 

deorb
a
k

d
k Ttt ≥−   (for the debris operations)  

minmaxijmax
a
j

d
i T-Ts.Ttt ≤+−  

Tmin represents a lower bound on the transfer duration in order to exclude unrealistic 

durations. It can for example be set to 1 day. 

This last constraint ensures that the dates are still increasing throughout the selected 

path. Indeed min
a
j

d
i T-tt ≤  if the edge (i-j) is selected on the path. It therefore 

prevents from the solution from any loop. 

There are 2N variables a
kt and d

kt  and N+N(N-1)=N² related constraints. 

Fourthly we need to make the path connex in order to be physically feasible by the SDC 

vehicle. 



 11

• zk , k=1 to N is the product of  xk and yk : kkk y.xz =  

zk is therefore a binary variable such that 

zk = 1 if there is one edge arriving and one edge departing from the debris k 

zk = 0 else 

By adding the constraints : kkk y.xz =  and 2nz
k

k −=∑ to the previous ones, we 

ensure that the path becomes connex (see below). 

There are N variables zk and N+1 related constraints. 

 

The path connexity stems from the combination of the previous constraints : 

• From :  1nsx
ki,

ik
k

k −== ∑∑   (number of “arrival” debris) 

  And  2nz
k

k −=∑                (number of “mid path” debris) 

We deduce that there is only one debris which is an arrival without departure (end of the 

mission). 

• From :  1nsy
jk,

kj
k

k −== ∑∑    (number of “departure” debris) 

  And  2nz
k

k −=∑                (number of “mid path” debris) 

We deduce that there is only one debris which is a departure without arrival (beginning of 

the mission). 

• From :  min
a
j

d
i T-tt ≤    if sij = 1 (increasing dates along the path) 

And 1ns
ji,

ij −=∑    (number of edges) 
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 And  2nz
k

k −=∑                (number of “mid path” debris) 

We deduce that the path is made of a n-1 consecutive edges without loops. There cannot 

be 2 separate paths as pictured on Figure 3. 

 

 

Figure 3 : Non connex path with loop 

 

 

The SDC mission is composed of transfer phases between the successive selected debris and 

debris operations phases (capture, deorbiting, releasing). The respective costs and durations are :  

• Cij and Tij for the transfer (i-j) with :  d
i

a
jij ttT −=  

• Ck and Tk for the debris k operations with : a
k

d
kk ttT −=  

In order to formulate the path total cost and duration, we define for each debris k a binary 

selection variable sk. These N variables sk with one index k are attached to each debris, and 

must not be confused with the N.(N-1) variables sij with two indexes i,j attached to each 

transfer.  The variable sk is related to the binary variables xk, yk, zk previously defined by : 

sk = xk + yk – zk = xk + yk – xk.yk 

Thus : sk = 1 if the debris is selected on the path (either xk = 1 or yk = 1) 

sk = 0 if not (xk = yk = 0) 
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The path total cost C and duration T are then :  
⎪
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C) Space Debris Collecting problem 

The SDC problem is a non linear time dependent variant of the classical TSP. The main 

differences with the TSP come from the embedded transfer problems : 

• The towns locations are replaced by the debris locations on their orbits (therefore 

varying with the time) 

• There are an infinite number of possible trajectories to go from any debris i to any other 

debris j, depending on the departure date d
it  and arrival date a

jt  and on the command 

law [ ]a
j

d
iij tt t(t),U ≤≤  applied during the transfer (Figure 4). Each possible trajectory 

requires thus a propellant consumption (cost) ( ) ( ) [ ]( )a
j

d
iij

a
j

d
i

a
j

d
iij tt t(t),U,tX,tX,t,tC ≤≤  

and a duration d
i

a
jij ttT −= . 



 14

 

Figure 4 : Trajectories between debris 

 

The SDC problem formulation is then : 
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where :  

• N and n are respectively the total number of debris and the number of debris to deorbit 

• S is the number of transfers :        ∑=
ji,

ijsS  

• C is the mission cost :         ∑∑ +=
k

kk
ji,

ijij CsCsC  

• T is the mission duration :         ∑∑ +=
k

kk
ji,

ijij TsTsT  

• Y is the location state vector :       ⎟⎟
⎠

⎞
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⎝

⎛
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m(t)
Y(t)

X(t)  

• Cij is the cost of the transfer (i-j) :   ( ) ( ) [ ]( ) ∫=≤≤
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• Ck is the cost of the debris k operations : ( ) ( )( )d
kk

a
kk

d
k

a
kk tY,tY,t,tC  

• Tij is the duration of the transfer (i-j) :  d
i

a
jij ttT −=  

• Tk is the duration of the debris k operations :  a
k

d
kk ttT −=  

 

The mission cost and duration are assessed from the first debris selected on the path. It is 

assumed that a launcher has realized the rendezvous maneuvers in order to bring the SDC 

vehicle to this first debris. If this is not the case, the same formulation (Equation 6) applies by 

adding a fictitious debris numbered 0 corresponding to orbit of injection of the SDC vehicle. 

This fictitious debris is fixed as the start of the path by setting the related variables (x0=0, 

y0=1, z0=0 and s0=1). The mission assessment takes thus into account the transfer from this 

debris 0 to the first selected debris. 

 

This formulation mixes : 
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• binary variables : sij, xk, yk, zk, sk 

• real variables :    ( ) ( )a
k

d
k

a
k

d
k tX,tX,t,t  

• functions :     [ ]a
j

d
iij tt t(t),U ≤≤  

 

D) Numerical methods 

The SDC problem stated above is a mix of hard optimization problems : 

• Several embedded functional optimization problems consisting in finding the optimal 

control law of a dynamic system 

• A combinatorial optimization problem consisting in selecting the optimal path in a 

graph 

The features of these two problems are recalled here after with an overview of the existing 

resolution methods. 

 

Functional optimization 

Functional optimization deals with infinite dimension problems, one at least of the unknowns 

being a function. For such problems, even simple, there is generally no systematic solution. For 

each instance of the problem, a numerical solution must be searched with iterative algorithms. 

The numerical methods split into two main categories14,19 : 

• Direct methods discretize the command law with time steps. The functional problem is 

transformed into a large size finite dimension problem for which NLP algorithms can 

be applied. The direct methods are relatively easy to initialize, but the convergence is 

generally slow and inaccurate. 
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• Indirect methods try to solve the infinite dimension problem using the PMP. A costate 

vector of the same dimension of the state vector is introduced, which obeys the Euler-

Lagrange equations. The problem reduces to finding the initial values of the costate 

vector in order to match the optimality necessary conditions. A shooting method with a 

correct initialization can be used to solve these non linear equations. The indirect 

methods are very difficult to initialize, but the convergence is generally quick and 

accurate. 

 

Combinatorial optimization 

Combinatorial optimization deals with problems in which all or part of the unknowns are integer 

variables. The classification of combinatorial problems lies on the existence or not of polynomial 

algorithm, on one hand to solve the problem, on the other hand to check a solution17. 

The P-class includes problems with a known polynomial solving algorithm. The same algorithm 

can therefore be used to check the solution. 

The NP-class includes problems with a known polynomial checking algorithm, but no known  

polynomial solving algorithm. The set of NP complete problems denoted NPC is formed by all 

NP problems that can be transformed in each other by a polynomial algorithm. If one day a 

polynomial solving algorithm was found for one problem of NPC, then any problem of NPC 

could also be solved polynomially and we would have NP=P. 

The TSP and all its variants are NP complete (or NP-hard or NP-difficult).  For these hard 

combinatorial problems, the resolution methods fall into three main categories12,17 : 

• Explicit enumeration of all the possible combinations ensures to find the exact solution 

i.e. the global optimum. The total number of arrangements of n debris amongst N is 
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equal to 
n)!-(N

N!An
N = . Taking into account the constraints leads to formulate the 

problem with large numbers of binary variables. With m binary variables, the total 

number of combinations amounts to 2m. The explicit enumeration is practically 

restricted only to small size problem with a few ten variables. For m=50, the 

enumeration would take one year with a computer assessing one billion combinations 

per second. 

• Implicit enumeration (Branch and Bound, Branch and Cut) consists in exploring the 

tree of all possible combinations with a cut-off of branches during the exploration7,16. 

The cut-off is based on an assessment of the best potential solution contained in a 

branch, and the comparison of this solution with a reference admissible solution. 

Likewise explicit enumeration, implicit enumeration yields the exact solution. The 

method efficiency is highly dependent on the branching strategy. Also the computation 

time grows exponentially with the problem size. These methods are therefore 

applicable to medium size problem (a few hundred variables). 

• Approximate solutions can be found by stochastic programming methods like genetic 

algorithm, tabu search, simulated annealing…9,12. These methods limit a priori the 

number of combinations assessed and thus the computation time. The full combinations 

space is explored using an oriented random strategy. If the best solution found is judged 

unsatisfying, the search may be resumed with new tunings in order to improve the 

exploration strategy. There is generally no guarantee on the local optimality of the 

solution nor on its difference from the true global optimum. These methods are the only 

ones applicable for large size problems (more than thousands variables). 
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Selected algorithms for the SDC problem 

The SDC problem features are : 

• The medium size : 5 debris must be selected amongst lists of typically 10 debris. The 

number of variables and related constraints required to formulate the path problem 

ranges between 100 and 1000. Although the problem is NP-complete, this medium size 

favours the choice of an implicit enumeration method like Branch and Bound in order 

to get the exact solution. 

• The difficulty due to the infinite dimension embedded control problems, which are 

themselves intrinsically hard in the general case. The cost of going from any debris to 

the other depends on the starting date and on the allocated duration. The mission 

overall duration being constrained to less than one year, there is a strong coupling 

between the optimal control laws of the successive transfers from one debris to the 

other. 

 

To hope finding the global optimum, the cost and duration couplings between the successive 

transfers must be taken into account within the path problem resolution. This holds whatever 

the resolution method selected, approximate or exact. In order to get a tractable formulation, 

the embedded optimal control problem must first be simplified. The simplification aims at : 

• reducing sufficiently the problem dimension so that it can be solved in reasonable 

computation times 

• formulating the problem so that it can be solved by a robust and efficient algorithm as 

many times as needed 
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• keeping a realistic modelling wrt to physical trajectories. 

In view of a Branch and Bound algorithm, a linear formulation of the problem is desirable, in 

order to ensure the required solving robustness and efficiency. The simplifications steps 

leading to a practical formulation that can be solved by a Branch and Bound algorithm consist 

in : 

• Defining a generic transfer strategy in order to restrict the general optimal control 

problem and reduce the problem size 

• Formulating the problem wrt the generic transfer strategy selected (transfer variables 

and constraints) 

• Linearizing the resulting formulation around an initial solution in order to apply linear 

programming methods within the Branch and Bound algorithm. 

Due to the linearization step, an iterative process must also be set up in order to update the 

linearization around the new solution, until the solution stabilizes. These successive 

simplifications steps detailed in the next sections. 

 

III TRANSFER STRATEGY 

There is no known general transfer strategy that would be optimal whatever the initial and final 

orbits, the mission constraints and the vehicle capabilities. For the SDC mission it is 

nevertheless possible to define a specific transfer strategy that takes advantages of the mission 

particularities, particularly regarding the debris orbits and the mission duration. 

 

A) Debris orbits 

For each debris, the orbital parameters are given at the mission starting date t0 : 
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• a(t0)   =  semi-major axis (m) 

• e(t0)   =  eccentricity (-) 

• I(t0)   =   inclination (deg) 

• Ω(t0) =   right ascension of the ascending node (RAAN) (deg) 

• ω(t0) =   argument of the perigee 

• ν(t0) =   true anomaly 

These parameters define the orbit shape (a,e), the orbit plane (I,Ω) and the location on the orbit 

(ω,ν). 
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  Figure 5 : Orbital parameters 

 

The Space Debris Collecting mission aims at Low Earth Orbits (LEO) or Sun-Synchronous 

Orbits (SSO) old satellites. During their operational life the orbital parameters have been 

controlled to keep precise values matching the mission purposes, e.g. observation or 

telecommunication. Similar missions lead to very close operational orbits. For example typical 

SSO are circular at altitudes ranging from 600 to 1000 km, and inclination ranging from 96 to 
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100 deg. Similarly the launchers upper stages used to bring the satellites on their operational 

orbit have been left in the vicinity of these orbits, and constitute also targets for the SDC 

mission. 

After their end of life, the satellites have been left uncontrolled and their orbits are subjected to 

perturbations (Earth gravitational perturbations, Sun and Moon attraction, atmospheric drag, 

pressure radiation, geomagnetic field, ...).  For nearly circular LEO or SSO, the average effect 

of the perturbations on the orbit semi-major axis, the eccentricity and the inclination is very 

small : this is confirmed both by numerical simulations and by the observation of the debris 

orbits evolution4. A SDC mission targets therefore at series of abandoned spacecrafts moving 

on nearly circular orbits, at very close altitudes and inclinations. 

In the altitude range [600 km – 1000 km] the main orbital perturbation is due to the Earth 

flattening, which adds the first zonal term J2  in the Earth gravitational potential. The Earth 

equatorial bulge creates a torque on the debris orbit. The debris rotating on its orbit behaves as 

a gyroscope : the angular momentum rotates around the Earth polar axis causing a precession 

of the orbital plane and a secular drift of the node along the Equator (Figure 6). 
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Figure 6 : Orbit precession due to the Earth flattening 

 

The secular precession rate of the RAAN is expressed as5 : 
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where : - RT is the Earth equatorial radius (= 6378137 m) 

- J2 is the first zonal coefficient (= 1.086 10-3), 182
T2J2 10 1.318 RμJ

2
3C ==  

- μ is the Earth gravitational constant (= 3.986 1014 m3/s²) 

- n is the mean motion : 3a
μn=  

The other parameters a, e and I are not subjected to secular effects from the J2 perturbation and 

they can be considered as constant throughout the SDC mission. In particular, the debris orbit 

 

Nodes line 

Node precession 

Debris motion 
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remains nearly circular and the debris location on its orbit can be defined by the longitude from 

the ascending node L=ω+ν which replaces the two parameters ω and ν. 

The RAAN precession rate which depends on a,e,I (Equation 7) is therefore constant : 

00  )t(  t)( Ω=Ω=Ω &&&  

and the RAAN is a linear function of the time : )t-t( )t(  t)( 000 ×Ω+Ω=Ω &  

For a Sun-Synchronous Orbit the precession rate is adjusted to be equal to the Earth revolution 

rate around the Sun (360 deg in 1 year, i.e. 0.986 deg/day). The orbital plane makes a complete 

revolution around the polar axis in one year keeping a constant angle with the Sun direction, as 

illustrated on Figure 7. 

 

Figure 7 : Sun-Synchronous Orbit 

 

Table 2 gives the range of values of the RAAN precession rates for near SSO debris. 
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Semi major axis 
RAAN precession rate 

7000 km 7200 km 
98 deg 1.002 deg/day 0.908 deg/day 

Inclination 
99 deg 1.126 deg/day 1.020 deg/day 

 

Table 2 : RAAN precession rates for near SSO debris 

 

In summary, the targeted debris orbital parameters can be split into : 

• 3 constants :  a, e, I  with e ≈ 0 

• 1 slow variable : )t-t( )t(  t)( 000 ×Ω+Ω=Ω &    with     
222

7J20

)e(1a

IcosC-  
−

=Ω&  

• 1 fast variable : )t-t(n )t(L  L(t) 00 ×+=         with    3a
μn =  

The transfer strategy is investigated through the following steps : 

• Assess the performances (impulsive cost and duration) of a direct strategy 

• Assess the performances (impulsive cost and duration) of a drift strategy  

• Analyze the influence of the duration constraint. 

• Analyze the influence of the thrust level. 

• Define the generic strategy meeting the SDC mission specificities. 

 

B) Direct strategy 

The debris orbits are quasi-circular at close altitudes and inclinations : 

⎩
⎨
⎧

≤≤
≤≤

deg 99    I   deg 98
km 900H km 700

    with   a = RT + H  for a circular orbit 
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To gain some insight into the features of an optimal transfer strategy, we first assess the 

impulsive costs required for direct orbital parameters changes starting from a typical circular 

SSO (altitude H=800 km, inclination I=98.6 deg) : 

• ΔH = ± 100 km ⇒ ΔV = 50 m/s  (altitude correction) 

• ΔI = ± 1 deg  ⇒ ΔV = 130 m/s  (inclination correction) 

• ΔΩ = ± 1 deg  ⇒ ΔV = 130 m/s  (RAAN correction) 

ΔΩ = ± 10 deg ⇒ ΔV = 1300 m/s 

The anomaly correction necessary for the rendezvous with the targeted debris is also assessed 

considering a one revolution Lambert manoeuvre :  

• ΔL = ± 10 deg  ⇒ ΔV = 150 m/s  (anomaly correction) 

ΔL = - 90 deg  ⇒ ΔV = 1010 m/s 

ΔL = + 90 deg  ⇒ ΔV = 1640 m/s 

All the debris altitudes and inclinations being very close, the changes of H and I to go from 

any debris to any other can be performed directly at moderate costs, typically less than 

200 m/s, whatever the date. On the other hand, the RAAN differences changes with the time 

since each debris has a its own precession rate. The required RAAN correction may therefore 

take any values between -180 deg and +180 deg depending on the manoeuvre date. The 

impulsive cost increases roughly proportionally to the angle difference as illustrated in the 

above numerical example (ΔV ≈ 130.⎥ΔΩ⎥). The same remark applies to the anomaly 

correction if the manoeuvre date cannot be chosen freely. 

A direct change strategy would lead therefore to prohibitive costs wrt to the RAAN and 

anomaly corrections. 
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C) Drift strategy 

An alternative strategy consists in waiting until the J2 precession has nullified the RAAN 

difference. For two debris of respective orbital parameters (a1, e1, I1, Ω1) and (a2, e2, I2, Ω2) at 

an initial date t0, the respective RAAN evolutions due to the J2 precession are : 

• )t-t( )t(  t)( 01011 ×Ω+Ω=Ω &    with     
22

1
2
7

1

1
J21

)e(1a

IcosC- 
−

=Ω&  

• )t-t( )t(  t)( 02022 ×Ω+Ω=Ω &   with    
22

2
2
7

2

2
J22

)e(1a

Icos
C- 

−
=Ω&  

Considering debris 1 as the chaser and debris 2 as the target, the RAAN correction is 

performed when the chaser has caught-up the target : t)(  t)( 21 Ω=Ω . The required duration  is: 

ΩΔ
ΔΩ

−=
Ω−Ω
Ω−Ω

=
&&&

12

12- ΔT .  The value of ΔΩ is to take modulo 360 deg in order to match the 

sign of ΩΔ &  and have a positive duration. 

This purely waiting strategy is not time efficient for 2 reasons : 

• The debris orbits are very close in terms of altitudes and inclinations, and the 

precession rates difference ΩΔ &  is therefore rather small (typically ΩΔ &  < 0.2 deg/day 

from Table 2). 

• The sign of ΩΔ &  may not match the optimal correction sense. This is illustrated on 

Figure 8 in the case of positive precession rate (retrograde orbits like SSO). 
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Figure 8 : Forwards or backwards correction 

 

If the chaser is initially backwards (ΔΩ < 180 deg), it should try to overtake the target 

( 021 <ΩΔ⇒Ω>Ω &&& ). If the chaser is initially forwards (ΔΩ > 180 deg), it should try to w the 

target ( 021 <ΩΔ⇒Ω<Ω &&& ). 

In the worst cases (small ΩΔ & , wrong sense) waiting for a natural correction would take hundreds 

of days. 

Similarly a waiting strategy for the anomaly correction is not time efficient, since it depends on 

the respective mean motions of the debris which can be very close. 

 

In order to control the waiting duration, a more effective strategy consists in transferring the 

vehicle on an intermediate drift orbit where the RAAN correction will be speeded up. The choice 

of the drift orbit parameters allow to control both the sense of the correction (depending on 

whether the drift altitude is lower or higher than the chaser) and the correction speed (depending 

ΔΩ  

21

deg180
Ω>Ω

<ΔΩ
&&
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on the difference of the precession rates). A compromise has to be made between the cost of the 

additional transfer manoeuvres and the duration allocated to achieve the RAAN correction. 

By the same way, a significant difference between the mean motions on the drift orbit and on the 

targeted debris orbit ensures that the anomaly phasing can be quickly (i.e. within a few 

revolutions) achieved whatever the initial anomaly difference. The additional cost due to the 

rendezvous constraint on the final orbit is then negligible, provided that the return transfer from 

the drift orbit to the debris orbit takes place at the adequate phasing opportunity once the RAAN 

correction is achieved. 

 

D) Duration constraint 

The duration constraint is necessary to have a well posed problem else the optimal solution is 

in infinite time8,10. Qualitatively we can distinguish : 

• A weak duration constraint if it makes the drift strategy is possible. The RAAN 

correction using the J2 precession may then require several months, depending on the 

initial state. In that case the rendezvous cost can be considered as negligible wrt the 

orbit changes manoeuvres. 

• A strong duration constraint if there is not enough time to use efficiently the J2 

precession for RAAN correction. In that case, the direct change strategy must be 

considered, taking directly into account the rendezvous constraint at the expense of 

higher mission costs. For example reference11 presents a Lambert based strategy in 

order to deorbit 3 LEO debris within a few days. 
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E) Thrust level 

The term ‘thrust level’ will be used, although it would be more correct to speak of the 

acceleration level which reflects the orbit change capability of the vehicle. The way the 

transfer is optimized depends highly on the thrust level and on the transfer strategy : 

• In the case of a high thrust engine, the manoeuvres durations can be considered as 

negligible wrt the coast phases durations, making the impulsive modelling adequate. It 

is then possible to analyze the transfer in a “patched-conics” manner, and to define a 

generic strategy based on Hohmann transfers (for the orbits changes) and Lambert 

transfers (for the rendezvous). 

• In the case of a low thrust engine, the manoeuvres durations are no longer negligible. A 

global optimization is required taking into account the coupling between the successive 

phases of the transfer. In the case of the drift strategy, approximate solutions can be 

derived from the impulsive solution by taking into account the cost and duration 

penalty of low thrust manoeuvres. This approach is realistic provided that the 

manoeuvres durations remain compliant of the drift strategy. It this assumption is not 

satisfied, it is necessary to directly tackle the global transfer optimization problem 

through optimal control methods. 

 

F) Selected transfer strategy 

The SDC mission start from the first selected debris and requires four successive transfers that 

must be realized within one year. The mean duration allocated for each transfer is 3 months. 

This leaves time to use the J2 precession (weak duration constraint). The drift transfer strategy 

is therefore adequate for the SDC mission in order to minimize the mission overall cost. 
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In order to simplify the analysis and obtain a preliminary assessment of the mission cost, we 

assume in the following that the SDC vehicle is equipped with a high thrust engine, so that the 

impulsive approximation can be considered as valid. Extensions to low thrust engines is the 

subject of future work. 

For each transfer from a debris 1 to a debris 2, the generic drift strategy is composed of 3 phases 

and it requires 4 manoeuvres : 

• A first Hohmann transfer starting at the date t1 to go from the debris 1 orbit to the 

intermediate drift orbit requires 2 apsidal manoeuvres ΔVP1 (perigee) and ΔVA1 

(apogee) 

• A waiting phase of duration ΔT12 on the drift orbit until the RAAN correction is 

completed 

• A second Hohmann transfer starting at the date t2 to go from the intermediate drift orbit 

to the debris 2 orbit requires 2 apsidal manoeuvres ΔVA2 (apogee) and ΔVP2 (perigee) 

 

The transfer strategy is depicted on Figure 9 in the case of a drift orbit higher than the debris 

orbits. In the problem resolution there will be no a priori assumption regarding the relative 

altitudes of the 3 orbits. The drift orbit can be either below, or between or over the initial and 

final debris orbits. 
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Figure 9 : Transfer maneuvers and successive orbits 

 

The Hohmann transfers durations are considered as negligible (typically a half revolution, i.e. 

about 2h) wrt the drift duration (several weeks). The orbital parameters of the successive orbits 

are denoted : 

• Debris 1 orbit departure at t1 :   a1,e1,I1 and Ω1(t1)  

• Drift orbit arrival at t1 :     ad,ed,Id and Ωd(t1)=Ω1(t1)  

• Drift orbit departure at t2= t1+ΔT12 :   ad,ed,Id and Ωd(t2)=Ω2(t2) 

• Debris 1 orbit arrival at t2 :    a2,e2,I2 and Ω2(t2)  

Transfer from debris 1 orbit to drift orbit Transfer from drift orbit to debris 2 orbit 

Debris 1 

ΔVA1 

Drift orbit 

ΔVP1 

Debris 2 

Debris 1 ΔVA2 

Drift orbit 

ΔVP2 

Debris 2 
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In order to formulate the RAAN correction constraint we consider the RAAN evolution of the 

debris and of the SDC vehicle along their respective orbits with their respective precession 

rates since the mission starting date t0 : 

• Debris 1 : )t-t( )t(  )t( 0110111 ×Ω+Ω=Ω &  

• Debris 2 : )t-t( )t(  )t( 0220222 ×Ω+Ω=Ω &  

• Vehicle : )t(  )t( 111 Ω=Ω       (start at t1 from the debris 1 orbit) 

)t(  )t( 222 Ω=Ω    (arrival at t2 on the debris 2 orbit) 

)t-t( )t(  )t( 12d12 ×Ω+Ω=Ω &   (coast from t1 to t2 on the drift orbit) 

The drift orbit precession rate dΩ&  depends on the drift orbit parameters ad,ed,Id : 

 

22
d

2
7

d

d
J2d

)e(1a

cosI
C- Ω

−
=&  (8) 

The RAAN correction constraint can thus be written relatively to the mission starting date t0 : 

 ( ) ( ) ( ) ( ) 0 )t(  )t(t-tt-t 0102011212d2 =Ω−Ω+×Ω−Ω+×Ω−Ω &&&&  (9) 

The duration required to complete the RAAN correction is given by : 

 ( ) ( )
2d

01120102
12

t-t)t(  )t(
t-t

Ω−Ω
×Ω−Ω+Ω−Ω

=
&&

&&
 (10) 

The anomaly rendezvous constraint is not considered since it can be satisfied with a negligible 

additional cost and duration by selecting the appropriate date of second transfer once the 

RAAN correction is achieved. 

 

The overall cost of this generic transfer strategy is the sum of the 4 manoeuvres : 
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 P2A2A1P1 ΔVΔVΔVΔV  ΔV +++=  (11) 

Each impulsive manoeuvre is assessed as the difference of the velocity vectors before and after 

the orbit change. The velocity modulus is given by the keplerian formula :  

 
⎟
⎠
⎞

⎜
⎝
⎛ −=

a
1

r
2μ  V  (12) 

where   a is the orbit semi-major axis 

r is the radius vector at the manoeuvre location. 

In the case an inclination change is performed simultaneously with a shape change, the 

impulsive manoeuvre is assessed as the norm of the vectors difference (Figure 10) : 

 ( )abba
2
b

2
aba iicosV2VVVVV  V −−+=−=Δ

rr
 (13) 

where  : bV
r

, ib are the velocity and inclination before the maneuver 

aV
r

, ia are the velocity and inclination after the maneuver 

 

 

 

 

 

 

Figure 10 : Simultaneous inclination and shape change 
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G) Problem formulation with the selected transfer strategy 

The parameters of the intermediate drift orbit related to each transfer (i-j) are denoted aij, eij, Iij 

with the corresponding precession rate :  

 

22
ij

2
7

ij

ij
J2ij

)e(1a

cosI
C- Ω

−
=&  (14) 

 

 

 With the selected strategy composed of Hohmann transfers and drift waiting phases, the 

control problem (Equation 5) is simplified as follows : 

• The command law [ ]a
j

d
iij tt t(t),U ≤≤  for each transfer (i-j) is replaced by the drift orbit 

parameters aij, eij, Iij. There are no longer function unknowns and the problem becomes 

a non linear optimization problem of finite dimension. 

• The dynamical constraint a
j

d
iij tttfor,t](t),Uf[X(t),  (t)X ≤≤=&  disappears from the 

formulation since the trajectories are modelled by keplerian arcs (for the Hohmann 

transfers) with secular J2 RAAN precession (for the drift orbits). 

• The initial and final state constraints on ( )d
itY and ( )a

jtY  are directly taken into 

account in the transfer modelling from the initial debris orbit to the final one (the 

anomaly rendezvous constraint is neglected). They can thus be discarded from the 

problem formulation. 

• The transfers costs Cij are measured by the required impulsive velocities ΔVij, which 

depend only on the parameters of the initial, drift and final orbit. The mass can thus be 

discarded from the state vector. 
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• The transfers durations Tij also depend directly on the parameters of the initial, drift and 

final orbit :   
( ) ( )

jij

0
d
iij0i0jd

i
a
jij ΩΩ

t-tΩΩ)(tΩ  )(tΩ
t-tT

&&

&&

−

×−+−
==  

With these simplifications the SDC problem (Equation 6) becomes a mixed integer-real finite 

dimension problem whose formulation is : 
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 (15) 

     

where :  

• S is the number of transfers :        ∑=
ji,

ijsS  

• C is the mission cost :         ∑∑ +=
k

kk
ji,

ijij CsCsC  

• T is the mission duration :         ∑∑ +=
k

kk
ji,

ijij TsTsT  

The cost Cij and duration Tij of the transfer (i-j) depend on the parameters of the initial orbit 
(debris i : iiiii Ω ,Ω,I ,e ,a & ), the final orbit (debris j : jjjjj Ω ,Ω,I ,e ,a & ), the drift orbit 

( ijijijijij Ω ,Ω,I ,e ,a & ). The duration depends also on the date of the transfer beginning d
it : 
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The numbers of variables and constraints are : 

• N² + 3N binary variables : N(N-1) for the sij  and  4N for the xk, yk, zk, sk 

• 3N² - N real variables :    3N(N-1) for the aij,eij,Iij  and  2N for the a
k

d
k t,t  

• N² + 4N + 3 constraints 

 

H) Further simplifications 

It is possible to reduce further the problem dimension by investigating the influence of the drift 

orbit eccentricity and inclination on the transfer duration and cost. 

 

Drift orbit eccentricity 

The drift orbit eccentricity is a free parameter that influences both the cost of the Hohmann 

manoeuvres and the required duration in order to complete the RAAN correction. 

We examine two extreme scenarios  : 

• The first scenario uses an elliptical drift orbit having the same perigee (or apogee) as 

the initial debris orbit. This scenario requires only three manoeuvres (one for the first 

transfer, two for the second transfer on the final debris orbit). 

• The second scenario uses a circular drift orbit. This scenario requires four manoeuvres 

(two for the first transfer, two for the second transfer) as depicted on Figure 9. 

In order to compare the two scenarios, we consider a representative numerical example with 

the initial and final debris on the same SSO at the altitude of 800 km and inclination of 98.6 

deg. We assume also that the drift orbit altitude is comprised between 600 km and 1000 km. 
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The plots of Figure 11 show for the two scenarios the manoeuvres costs depending on the drift 

orbit altitude (or perigee or apogee in the elliptical scenario) and the precession duration 

required for a RAAN correction of one degree. 

 

 

Figure 11 : Elliptical vs. circular drift orbit 

 

These plots show that the fastest RAAN correction rate that can be hoped with the elliptical 

scenario is about 20 day/deg, with a related manoeuvres costs of 100 m/s. This means that a 

single RAAN correction of 10 deg could not be achieved in less than 200 days. This strategy 

risks therefore not being compliant with the SDC mission global duration of one year. 

On the other hand the circular drift orbit scenario allows a doubling of the RAAN correction 

rate, but at the expenses of higher impulsive costs. 

This numerical example shows that considering elliptical drift orbits can help reduce the 

mission cost, but makes the solution more sensitive to the duration constraint. 

For a first approach, we will consider only circular drift orbits and fix the drift eccentricities eij 

at zero. This assumption is the most conservative wrt the duration constraint, since it 
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maximizes the RAAN correction rates of each transfer. It can later be relaxed when post-

optimizing the trajectory (once the path is selected) in order to reduce the mission cost. 

 

Drift orbit inclination 

Regarding the drift orbit inclination a similar analysis can be made as for the eccentricity. 

The respective inclinations on the initial and final debris orbits are I1 and I2. In order to 

minimize the overall transfer cost, the inclination change has to be performed simultaneously 

with one of the four manoeuvres of the transfer. 

From the impulsive formula (Equation 13) : ( )abba
2
b

2
aba iicosV2VVVVV  V −−+=−=Δ

rr
 

the minimum coupling cost is achieved for the minimum product of the velocities modulus 

VaVb. 

 

For the SDC mission, the targeted debris are moving on nearly circular orbits at close altitudes. 

Assuming that the initial and the final debris altitudes are at the same altitudes  Z1 = Z2 with 

respective inclinations I1 and I2, we can see that there are two cost equivalent opportunities for 

the inclination change (Figure 12). These opportunities correspond to the apogee manoeuvres : 

• If the drift orbit is above the debris orbits, these opportunities are at the 2nd and the 3rd 

manoeuvres 

• If the drift orbit is under the debris orbits, these opportunities are at the 1st and the 4rd 

manoeuvres 
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Figure 12 : Optimal inclination change opportunity 

 

It is thus always possible to perform the inclination change either before or after the drift 

phase, without cost penalty. The criterion of choice is then to speed up the RAAN correction 

by maximizing the precession rate difference between the drift orbit and the final debris orbit. 

For retrograde orbits (I > 90 deg), the precession rate is positive : 0
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The optimal choice of the drift orbit inclination depending on the respective altitudes and 

inclinations is summarized in Table 3 : 

 

ΔVP1 

ΔVA2

ΔVA1

ΔVP2 

Drift orbit 

Debris orbit 

ΔI 

ΔVP1 

ΔVA2 

ΔVA1 

ΔVP2 

Debris orbit 

Drift orbit 

ΔI 

Drift orbit above the debris orbits Drift orbit under the debris orbits 
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Drift inclination choice Zdrift < Z2 Zdrift > Z2 

I1 < I2 Idrift = Max(I1 ,I2) = I2 Idrift = Min(I1 ,I2) =  I1 

I1 > I2 Idrift = Max(I1 ,I2) =  I1 Idrift = Min(I1 ,I2) =  I2 

 

Table 3 : Optimal drift inclination vs. RAAN correction duration 

 

For a first approach, we will fix the drift inclinations Iij at their optimal values wrt RAAN 

correction duration. In the practical context of the SDC mission this assumption is quasi-

optimal in terms of cost as long as the debris move at very close altitudes. If not, the 

inclination change opportunities would not be equivalent and a compromise should to be made 

between minimizing the transfer cost and minimizing the RAAN correction duration. 

 

Debris operations 

In addition to the previous assumptions regarding the drift orbit parameters, we assume that : 

• the durations Tk for the debris operations are fixed (Tk = Tdeorb) and identical for all the 

debris 

• the minimum duration transfer Tmin is fixed to zero (it plays indeed a redundant role with 

Tdeorb in the problem formulation). 

• the costs Ck for the debris operations are constant and depend only on the debris orbits 

(cost of the rendezvous and deorbitation maneuvers)  

• the vehicle leaves each debris as soon as possible once the deorbiting operations are 

completed : deorb
a
k

d
k Ttt += . 
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Delaying the departure is indeed a loss of time : it is preferable to go as soon as possible on the 

next drift orbit in order to speed up the RAAN correction. It must also be noted that a drift orbit 

identical to the initial debris orbit is a possible solution, so that the above assumption fixing the 

departure date should in fact be close to the optimal solution. 

The arrival date on the debris k will then be noted without superscript : k
a
k tt = . 

 

I) Problem simplified formulation 

With these simplifying assumptions, the SDC problem formulation (Equation 15) becomes : 
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 (16) 

 

where :  

• S is the number of transfers :        ∑=
ji,

ijsS  

• C is the mission cost :         ∑∑ +=
k

kk
ji,

ijij CsCsC  

• T is the mission duration :         ∑∑ +=
k

kk
ji,

ijij TsTsT  
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The numbers of variables and constraints are : 

• N² + 3N binary variables : N(N-1) for the sij  and  4N for the xk, yk, zk, sk 

• N²  real variables :     N(N-1) for the aij  and  N for the tk 

• N² + 3N + 3 constraints 

 

IV PRACTICAL RESOLUTION 

The above simplifications have removed the function unknowns and led to a finite reduced 

dimension problem. But the problem is still non linear, and therefore not adapted to a Branch 

and Bound approach. Indeed we will need to solve repeatedly instances of this problem, 

throughout the tree exploration. In order to guarantee both the global optimum and the time 

efficiency, every problem instance must be solved reliably and quickly. 

It is very difficult, if not impossible, to ensure the required robustness (guaranteed 

convergence whatever the problem data) for a non linear problems. Such problems present 

generally local minima causing NLP algorithms to be sensitive to the initialization. Also it is 

nearly impossible to find algorithmic settings robust whatever the problem. For these reasons a 

non linear formulation cannot offer a sufficient guarantee of convergence and a user’s control 

would be systematically necessary to check the solution optimality. 

In order to get the required convergence guarantee and time efficiency, the most effective 

approach consists in linearizing the problem. The advantages are the elimination of local 

minima and the possibility to use reliable linear programming methods. The drawback is that 



 44

the solution found is only valid in the vicinity of the starting point. Therefore the linearization 

and resolution must be iterated within an iterative process until the solution stabilizes. 

 

A) Problem linearization 

The non linear terms in the above formulation (Equation 16) are : 

• The transfers costs :  ( )ijij aC  

• The transfers durations : ( )iijij t,aT  

• The variables products :  ( ) ( ) ( )kkijijijij yx,Ts,Cs  

 

Transfer cost and duration linearization 

The cost and duration are linearized for each transfer around reference values of the drift orbit 

semi-major axis aij and of the transfer starting date ti. In order to ease the explanation of the 

linearization process, we denote : 

• ad and td the reference values of the semi major axis and the starting date 

• a  and t  the actual values 

• α and τ the differences between the actual and the reference values : 
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• [amin;amax] and [tmin;tmax] the intervals in which the linearization is considered as valid. 

This notion of validity will be discussed when detailing the iterative process. The 

corresponding intervals on the variables α and τ are [αmin;αmax] and [τmin;τmax]. 
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The non linear functions C(a) and T(a,t) depending on a and t are approximated in the intervals 

[amin;amax] and [tmin;tmax] by linear functions CL(α) and TL(α,τ) depending on the differences of 

a and t with the reference values ad and td. These linear functions are built by a first 

linearization wrt the a variable, then by adding the time derivative for the duration function TL. 
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The cost C and the duration T partial derivatives are approximated in the linearization intervals 

by secant formulae :  
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This linearization choice for the duration function T is driven by the function shape. Denoting 

the initial and final debris with indexes 1 and 2, the duration function is : 

( ) ( )
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This function is linear wrt td and highly nonlinear wrt ad with an asymptote at a=a2 (same 

precession rate, and thus infinite duration) and an upwards concavity apart the asymptote 

(Figure 13). 
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Figure 13 : Duration function linear approximation 

 

The first linearization terms ( ) ( )mindmin a
Tt,aT αα −
∂
∂

+  yield an upper approximation of the 

true duration at the reference date td, while the last term τ
t
T
∂
∂  accounts for the linear 

dependence on the starting date. 

The choice of an upper approximation ensures that the linearized solution overestimates the 

true duration of each transfer. The linearized solution is therefore sub-optimal wrt to the global 

duration constraint. The way to converge on the optimal solution within the iteration process 

will consist in tightening the intervals [αmin;αmax] and [τmin;τmax] from one iteration to the other 

after the linearized solution stabilizes. 
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Alternative linearization approaches 

Two alternative linearization approaches wrt the semi-major axis variable have been 

envisioned. 

The first one consists in considering directly the tangent at the linearization point instead of the 

secant on the linearization interval : ( ) ( ) ( ) ( )τατα .t,a
t
T.t,a

a
Tt,aT,T ddddddL ∂

∂
+

∂
∂

+=  

This linearized duration function underestimates the true duration (the tangent is below the 

curve). The mission real duration corresponding to the linearized solutions is therefore 

systematically higher than 1 year. The intermediate iterations yield never feasible solutions wrt 

that constraint until the convergence is achieved. This first approach has proved practically 

difficult to control within the iteration process. 

The second approach aims at meeting more accurately the true duration constraint at every 

iteration. It consists in approximating the duration function by 2 half segments as pictured on 

Figure 14 : 
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Figure 14 : Duration function approximation with two half segments 

 

This approach makes necessary to take into account the sign of αij when linearizing the 

duration of the transfer (i-j) and it leads to an increase of the linearized problem dimension. 

The time of solving this larger dimension problem can nevertheless be balanced by a reduction 

of the number of iterations necessary to meet accurately the global duration constraint. The 

choice must be made case by case, depending on the iterations behaviour and on the 

computation time observed. 
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Variables products linearization 

A product of a binary variable { }0;1x∈  by a real variable [ ]max;min;yyy∈  is linearized by 

introducing one additional real variable z representing the product (x.y) and four additional 

constraints3 : 
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 (19) 

The variable z is then used in the problem formulation in order to replace everywhere the 

products (x.y). This transformation is applied to all the products (sij.αij) , (sij.τi) and (xk.yk), 

adding thus 2N²-N real variables and 8N²-4N constraints. 

 

Linearized problem 

The linearized problem formulation is obtained by successively : 

• Choosing for each transfer (i-j) reference values of aij and ti 

• Replacing the true cost Cij and duration Tij by their respective linear approximations CLij 

and TLij (Equation 18), 

• Replacing all the products by the associated variables and constraints (Equation 19). 

We denote CLij and TLij the linearized cost and duration functions with their respective 

linearization coefficients (C0ij , C1ij) and (T0ij , T1ij, T2ij) : 
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The products linearization variables are denoted : 
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The linearized formulation of the SDC problem (Equation 16) becomes : 
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where :  

• CL is the linearized cost :         ∑∑∑ ++=
k

kk
ji,

1ijij
ji,

0ijijL CsCpCsC  

• TL is the linearized duration :         ∑∑∑∑ +++=
k

kk
ji,

2ijij
ji,

1ijij
ji,

0ijijL TsTqTpTsT  

The numbers of variables and constraints of the linearized problem are : 

• N² + 3N binary variables : N(N-1) for the sij  and  4N for the xk, yk, zk, sk 

• 3N²-2N  real variables :    3N(N-1) for the αij, pij, qij and  N for the τi 

• 9N² - 2N + 3 constraints + variables bounds constraints. 

 

B) Initialization 

The initialization goals are: 

• To pre-optimize the parameters of the drift orbit for each transfer in order to start with 

an already good solution and limit the number of iterations 
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• To detect the unfeasible or too expensive transfers in order to eliminate them of the 

possible paths and thus reduce the problem dimension. 

 

Pre-optimization problem 

Considering a single transfer from a debris 1 to a debris 2, we denote as before the successive 

orbital parameters : 

• Debris 1 orbit departure at t1 :   a1,e1,I1 and Ω1(t1)  

• Drift orbit arrival at t1 :     ad,ed,Id and Ωd(t1)=Ω1(t1)  

• Drift orbit departure at t2= t1+ΔT12 :   ad,ed,Id and Ωd(t2)=Ω2(t2) 

• Debris 1 orbit arrival at t2 :    a2,e2,I2 and Ω2(t2)  

The RAAN correction constraint relatively to the mission starting date t0 is : 
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with the drift orbit precession rate dΩ&  : 
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The duration required to complete the RAAN correction is given by : 
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The transfer pre-optimization consists in minimizing the transfer cost ΔV12 in less than a given 

duration T0 :    01212t,t,I,a
TTs.t.VMin

21dd

≤Δ  
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Duration constraint 

The duration inequality constraint is active in most cases. Indeed shorter durations require higher 

precession rates differences and more expensive drift orbits. The constraint is inactive only if the 

debris precession rates are sufficiently different so that the RAAN correction is naturally 

completed within the prescribed duration. In that case the drift can occur on the initial orbit. 

 

The SDC mission is composed of 4 transfers than must be completed is less than one year. The 

average duration per transfer is thus 3 months. Setting T0 to 3 months at the pre-optimization 

step is in fact not robust. Indeed the linearized duration function TL used in the linear is an 

overestimate of the true duration in the linearization interval and this would make the linearized 

problem unfeasible wrt to the duration constraint. 

The transfer maximal duration T0 must therefore be set to strictly less than 3 months (e.g. 2 

months), in order to keep a margin wrt the linearization error and have a feasible initialization of 

the linearized problem. The linearized solution will tend progressively to saturate the global 

duration constraint throughout the iterations. 

 

Solutions diagnosis and linearization 

For each transfer, the pre-optimization diagnoses if the transfer is unfeasible in the prescribed 

duration T0 or more expensive than a prescribed cost threshold ΔVmax. Such a transfer (i-j) is 

eliminated by fixing the corresponding selection variable sij to zero. For a feasible transfer, the 

pre-optimization yields values of the semi-major axis ad, the inclination Id and the initial date 

t1. These values are taken as starting linearization values, with adapted linearization intervals. 

The linearization intervals [αmin;αmax] and [τmin;τmax] must be compliant with : 
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• The drift altitude bounds : maxdmin aaa << . 

For SSO debris, the operational altitude range is [400 km ; 1200 km]. 

• The mission initial and final dates : 
⎩
⎨
⎧

+<<
+<<

max020

max010
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. 

In order to have a valid linearized modelling of the transfer duration, the drift altitude interval 

must lies entirely on the same side of the targeted debris altitude. Indeed the transfer duration 

function has an asymptote for ad=a2 and Id=I2 (drift orbit identical to target orbit) and the 

linearization is subject to growing errors when one of the bounds (ad+αmin) or (ad+αmax) 

approaches the limit ad=a2 (Figure 13). This holds even if Id is not strictly equal to I2, since all 

debris and drift orbits are in a narrow inclination range. 

For each transfer, the side chosen for ad (lower or higher than a2) at the initialization step is 

thus definitive for the subsequent iterations, since the linearized solution is bounded on one 

side of the asymptote. Consequently the selected inclination (either Id=I1 or Id=I2) is kept 

unchanged throughout the iterations.  

These initial assumptions about the drift altitudes and inclinations are re-examined at the end of 

the iterations, in order to check their validity wrt to the optimal path found. Since all orbits are 

close on practical cases (debris orbits and drift orbits) these preliminary choices are generally 

optimal at the first attempt. 

 

C) Iteration process 

We denote with a superscript (k) the drift orbit parameters at the kth iteration. The problem is 

linearized around the local solution (k)
ij

(k)
ij

(k)
ij

(k)
i I,e,a,t  using the difference variables (k)

ij
(k)
i ,ατ . 
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The eccentricity and inclinations are determined once and for all at the initialization step as 

explained in Part III :  
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The iteration process is depicted on Figure 15. 

 

Figure 15 : Iteration process 

 

Two successive phases are observed throughout the iterations : 
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• The first phase starts from the pre-optimized solution with large linearization intervals. 

During that phase the drift orbits parameters may vary widely from one iteration to the 

next one. Consequently the optimal path may change. As long as the path changes, it is 

better to keep the linearization intervals large, or even not to change the initial ones. 

• Once the optimal path stabilizes, the second phase consists in converging accurately on 

the mission duration constraint. Indeed large linearization intervals have led to an over-

constrained solution, since the duration linearization function was an overestimate of the 

true one. This convergence is obtained by reducing progressively the linearization 

intervals, for example by halving them. Although this was not observed on practical 

cases, the path may again change during that phase : in that case it is better to restore 

larger linearization intervals until the stabilization on a new path. 

 

When the convergence on the mission duration is completed, one must check the solution 

optimality wrt the choices made at the initialization step regarding the side (lower or higher) 

of the transfers orbit wrt to targeted debris orbit (ad) and the inclination of the transfer orbit. 

The initial choices were based on a pre-optimization of each transfer with a fixed duration 

upper bound T0. For different values of T0, the optimal sense for the RAAN correction may 

be inverted, and these choices must be changed. If the linearized solution exhibits drift 

altitudes on their bounds, it indicates that the iterations should be resumed with updated 

assumptions. In practical cases, this was not observed. The debris selected on the initial path 

are indeed very close in terms of RAAN values, so that the initial sense of RAAN correction 

remains valid at the end of the iterations. 
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D) Transfers re-optimization 

Solving the simplified problem yields an optimal paths passing through selected debris. This 

path has been obtained assuming impulsive manoeuvres to go to and from the drift orbits. In 

order to get more realistic trajectories, a re-optimization of the manoeuvres and dates can be 

performed considering a continuous thrust modelling. The path is fixed (debris selection and 

order) so that the problem is becomes a classical optimal control problem with continuous 

variables and command laws. The path found with the impulsive approximation can be 

considered as optimal as long as the Hohmann transfers duration (thrusting manoeuvres and 

coasts arcs) remains small (less than a few days) wrt the drift durations (typically several 

weeks). In the case of a very low thrust engine, this approach is no longer valid, since the 

RAAN corrections must be performed simultaneously with the other orbital parameters 

corrections. A specific formulation will have to be devised for these difficult problems. 

 

E) Algorithms 

The solving process requires three optimization algorithms respectively for the problem 

initialization and post-optimization, the linearized problem resolution and the Branch and 

Bound search. 

 

Problem initialization 

For every pair of debris, the transfer pre-optimization is a small size (3 variables, 1 constraint) 

nonlinear problem. A reduced gradient method is used. In order to ensure the solution 

robustness, several optimizations are repeated for the same problem starting from different 

initialization values. The best result is retained as initial reference solution for the linearization. 
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Branch and Bound 

For a problem with binary variables, the set of all possible combinations is represented as a 

binary tree16. A node of the tree is an instance of the optimization problem where part of the 

binary variables has been fixed either to 0 or to 1. The root node corresponds to the fully relaxed 

problem, i.e. with the binary variables considered as real ones. Each node is separate into two 

children who correspond to fixing a selected binary variable at 0 or 1. These relaxed instances 

are thus of decreasing dimension when going downwards since more and more binary variables 

become fixed. 

Since the whole tree can potentially be explored, the search strategy must be implemented using 

as little computer memory as possible5. For that purpose only the active nodes (i.e. the nodes 

still not fully separated in their two children) are stored in a stack. Each node is dynamically 

allocated as a derived data type, containing the relaxed problem data and a pointer linking the 

node either to its parent (depth search) or to the next best one in the stack (breadth search). The 

linked list of active node starts with only one node (root node), is updated by eliminations 

and/or separations as the search goes on, until it becomes empty when the tree exploration is 

completed. 

The principle of Branch and Bound methods consists in exploring the binary tree downwards 

from the root node14,17. Separating a node consists is solving the associated relaxed problem, 

where a part of the binary variables are fixed to 0 or 1, while the others are treated as real 

variables. After the relaxed problem is solved, the following situations may occur : 

• The relaxed problem yields a feasible solution wrt the integrity constraints. This solution 

is compared to the best feasible solution already available from the previous nodes. If 
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better, this new best solution is stored replacing the previous one. There can be no other 

solution in the branches outgoing from that node. The node is pruned and all its outgoing 

sub-branches are cut off. 

• The relaxed problem is unfeasible because the fixed binary variables are not compliant 

with the constraints, or the relaxed solution is worse than the reference best solution 

stored. There can be no better solution in the branches outgoing from that node. The node 

is pruned and all its outgoing sub-branches are cut off. 

• The relaxed problem yields a solution that is neither feasible wrt the integrity constraints 

nor worse than the reference best solution. The exploration is continued from that node 

by separating it into two children. Each child is a copy of the parent node with one 

selected variable (the separation variable) being fixed respectively to 0 and 1. 

Having a good reference solution as soon as possible is desirable in order to speed up the 

resolution by branches cut offs. For that purpose a greedy solution is built before starting the tree 

exploration by selecting the best arrangement meeting the mission constraint. This solution is 

stored as initial reference solution. 

 

The critical factors for the efficiency of a Branch and Bound method are : 

• The tree exploration strategy (“Branch”) 

• The node evaluation function (“Bound”). 

The exploration strategy specifies the way to choose the next node to separate and the separation 

variable. The depth search strategy consists in separating always the most downwards node in 

the hope to reach quickly a bottom node of the tree and issue a first reference solution. The 

breadth search strategy consists in separating the active node with the best evaluation hoping that 
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the best feasible solution lies in a sub-branch of that node (Figure 16). Several possible choices 

of the separation variable are among others : by numerical order (the most simple), or by 

constraints (the variable appearing in the maximum number of constraints), or by cost penalty 

(the variable producing the largest variation in the cost function when changed from 0 to 1). 

The separation rules (nodes and variables) must be tried case by case in order to assess their 

practical efficiency on a given problem. The number of nodes examined before issuing the 

problem solution may vary by large factors depending on these choices and the problem 

features. 
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Figure 16 : Depth and Breath search strategies 

 

The node evaluation consists in pricing the node, i.e. giving an assessment of the best solution 

that could be found among all the node children. There is a compromise to make between the 

Depth search Breadth search 
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time to evaluate the node, the evaluation accuracy and robustness. The goal is to assess as 

precisely as possible the best solution contained in the node, without consuming an excessive 

computation time. Solving the node relaxed problem by linear programming is the most robust 

approach. 

 

Linear programming 

Three linear programming algorithms are used within the Branch and Bound process to solve the 

relaxed problems associated to the successive tree nodes : 

• A primal simplex to solve the root problem at the top of the tree, when starting from 

scratch. 

• A dual simplex to solve the successive nodes. The parent node solution is used to restore 

a feasible dual basis, taking into account the additional binary fixed variable chosen to 

separate the node16. This warm-start procedure avoids the risk not to find an initial 

feasible basis for the current node. It results in robustness and computation time gains. 

• An interior point method as backup algorithm. When the simplex fails, either because of 

numerical rounding errors or degeneracy, the interior point solver is called to restart the 

node resolution. Similarly to the dual simplex, the parent node solution is retrieved as 

initialization. This interior point solver is generally more robust, but slower and less 

accurate than the simplex on medium size problems.  

 

Several techniques of reduction33 (like variables fixing by constraints elimination) are applied to 

reduce the size of the linear problem before trying to solve it. 
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Selected strategy 

For the SDC mission study, several strategies have been tried in order to select the most efficient 

one. On the practical run cases the breadth search strategy coupled with the separation on the 

most constrained variable has given the best performances in terms of number of nodes assessed. 

The depth and breadth strategies performances are compared for the application case presented 

in Part V. 

 

F) Assumptions and simplifications recap 

The method presented in the previous sections yields a valid solution (from the optimality 

point of view) under the following assumptions :  

• The mission starts from the first debris selected on the optimal path. The cost and 

duration required to reach that debris are null, assuming that a launcher has performed the 

required maneuvers. It is possible to release this assumption, by adding a fictitious 

starting debris located on the launcher injection orbit.  

• The vehicle uses a high thrust engine, so that the maneuvers durations are negligible wrt 

the coast arcs durations. An impulsive modeling is then representative and the problem 

becomes of finite dimension. 

• The global duration constraint is weak, allowing a drift strategy in order to perform the 

RAAN corrections at null cost. 

• The durations of the debris operations (capture, deorbitation, release) are assumed to be 

negligible wrt to the other mission phases. The date of arrival and departure from a debris 

are then assumed to be identical. 
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• The drift orbits are circular, with their inclinations fixed at the pre-optimization phase. 

The correctness of the inclination choice is checked a posteriori on the solution. Allowing 

non null eccentricities could improve the global optimum, at the expenses of increasing 

the problem dimension. 

• The contributions of the mission phases to the global cost and duration are summarized 

on Table 4. 

 Cost Duration 

Transfer manoeuvres Counted Neglected 

Drift phases Null Counted 

Debris operations Counted Neglected 

 

Table 4 : Cost and duration contributors 
 

 

G) Current status and further work 

The solving method has been automated. The initialization step, the problem linearization and 

the branch and bound resolution are processed sequentially and iterated until convergence. The 

user needs only to control the validity of each iteration result before running the next one, and 

if necessary restrict the linearization intervals. Medium size problems like the one presented in 

Part V can be thus solved in a short time, allowing sensitivities assessments to the mission 

data. 

The enhancements envisioned are the following : 

• Allowing non circular drift orbits may reduce the mission cost.  This additional degree 

of freedom leads to an increase of the problem dimension and it will slow down the 
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branch and bound resolution. If a SDC mission for debris on elliptic orbits (like 

launcher upper stages left on GTO) was envisioned, this enhancement would become 

necessary. Presently the targeted debris are on LEO and SSO. Before modifying the 

transfer strategy, it must be checked on a continuous problem (fixed path) if significant 

performance gains can be expected from elliptic drift orbits. 

• Considering non impulsive manoeuvres is possible from the initialization step. The 

linearized cost and duration function resulting from the transfer pre-optimization will 

then be more representative of the vehicle thrusting capabilities. The same solving 

method can then be applied as long as the durations of the transfer manoeuvres remain 

small wrt the drift durations. If not, a new formulation must be devised taking into 

account the coupling between the transfer and the drift phases since a part of the RAAN 

correction is realized during the transfer. The present approach using an intermediate 

drift orbit is therefore valid only for high or moderate thrust engine. 

• Refining the duration function linearization, with two half segments would help 

reducing the number of iterations, at the expense of larger size problems. The practical 

run cases have shows that the convergence is typically obtained in less than 10 

iterations (6 for the one presented in Part V). This enhancement seems for the moment 

not useful, but it should be re-examined if the transfer strategy model changes, either to 

introduce elliptical drift orbits, or to take into account non impulsive manoeuvres. 
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V APPLICATION CASE 

In order to illustrate the solving method, we consider an application case consisting in 

selecting 5 debris to deorbit among a list of 11. The problem initial dimensions (Equation 22) 

are for N=11 : 

• 154 binary variables 

• 341 real variables 

• 1070 constraints 

 

A) Debris orbits 

The 11 debris are on sun-synchronous orbits with regularly spaced inclinations ranging from 

98 to 99 deg, and initial RAAN ranging from 160.2 to 235 deg at the date of the mission 

beginning. The debris orbital parameters are given in Table 5. 
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 Semi-major axis 
(km) 

Eccentricity 
(-) 

Inclination 
(deg) 

Initial RAAN 
(deg) 

Debris 1 7030.5 0.0001 98.0 221.1 

Debris 2 7055.3 0.0001 98.1 188.3 

Debris 3 7080.0 0.0001 98.2 164.4 

Debris 4 7104.4 0.0003 98.3 235.0 

Debris 5 7128.5 0.0000 98.4 174.7 

Debris 6 7152.5 0.0001 98.5 194.1 

Debris 7 7176.3 0.0001 98.6 149.0 

Debris 8 7200.0 0.0001 98.7 180.3 

Debris 9 7223.2 0.0002 98.8 200.6 

Debris 10 7246.4 0.0001 98.9 191.0 

Debris 11 7269.3 0.0003 99.0 160.2 

Table 5 : List of 11 candidate debris 
 

The altitude of the drift orbits is bounded in the range 400 km – 1200 km. 

 

B) Initialization 

Every transfer from any debris to any other is pre-optimized for a fixed duration of 2 months. 

Once all the optimizations are completed, the unfeasible transfers are discarded from the 

problem by setting their selection variables sij to 0. The remaining feasible transfers are 

linearized around their solution in order to initialize the iteration process for the branch and 

bound. This pre-processing allows a reduction of the problem dimension from 500 to 200 

variables and from 1000 to 500 constraints. 
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At this initialization step, with fixed transfers duration set to 2 months, the optimal path would 

be : 5 → 8 → 2 → 10 → 6 , for a total ΔV of 711 m/s and a total duration of 8 months (2 months 

per transfer). The intermediate orbits on this initial path are presented in Table 6. 

It can be observed at this initialization steps that the mission cost is driven by the RAAN 

differences rather than the inclinations or the altitudes. The best strategy consists in selecting 

the debris with the minimum RAAN differences in order to have drift orbits as close as 

possible to the debris orbits. The drift orbits are lower than the debris orbits, with higher 

precession rates, so that the vehicle catches the debris forwards. The debris are therefore 

ordered by increasing RAAN values. 

Initial path Semi-major axis 
(km) 

Inclination 
(deg) 

Cost ΔV 
(m/s) 

Duration ΔT 
(days) 

Debris 5 7128.5 98.4 ≈0 ≈0 

Drift 5 → 8 7019.6 98.7 173.3 61 

Debris 8 7200.0 98.7 ≈0 ≈0 

Drift 8 → 2 6947.9 98.7 246.9 61 

Debris 2 7055.3 98.1 ≈0 ≈0 

Drift 2 → 10 7140.9 98.9 176.5 61 

Debris 10 7246.4 98.9 ≈0 ≈0 

Drift 10 → 6 7125.5 98.9 114.1 61 

Debris 6 7152.5 98.5 ≈0 ≈0 

Total   710.8 244 

 

Table 6 : Initial path 
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C) Iterations 

The initial linearized problem is solved by a branch and bound method starting from the pre-

optimized path as feasible initialization. The depth and breadth search strategies are tried at 

this first iteration in order to determine the most efficient one for the further iterations. 

The numbers of nodes assessed are respectively 135 for the depth search and 99 for the breadth 

search. The difference may be explained by the fact that an already good reference solution is 

provided by the initial path. The depth search whose goal is to find a feasible solution as soon 

as possible, while neglecting nodes elimination (opposite to the breadth search) is therefore 

less efficient. The solutions issued from the successive iterations are presented in Table 7. 

 

Iteration Number of nodes Path Cost ΔV 
(m/s) 

Duration ΔT 
(days) 

0 99 5 → 8 → 2 → 10 → 6 710.8 244.0 

1 53 5 → 8 → 2 → 10 → 6 652.3 269.3 

2 41 5 → 8 → 2 → 10 → 6 594.8 299.1 

3 33 5 → 8 → 2 → 10 → 6 540.7 335.7 

4 41 5 → 8 → 2 → 6 → 10 508.0 363.3 

5 13 5 → 8 → 2 → 6 → 10 502.8 364.1 

6  5 → 8 → 2 → 6 → 10 500.7 366.0 

 

Table 7 : Iterations 
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The optimal path changes at the iteration 4 with a permutation of the two last debris, and 

becomes 5 → 8 → 2 → 6 → 10. This optimal path requires a total ΔV of 500 m/s and a total 

duration of 12 months (maximal duration allowed). 

The iterations require less and less nodes evaluations, while the solution approaches the 

optimum, because the initial reference solution is better and allows more efficient cut offs. The 

saturation of the duration constraint was expected since taking as long time as possible for the 

RAAN correction allow the drift orbits to be close to the debris orbits, and thus minimizes the 

manoeuvres cost. 

 

D) Optimal solution 

The intermediate orbits on the optimal path are presented in Table 8. 

It is observed at the optimal debris order is no longer by increasing RAAN values. It proves 

more favourable to change the sense of the RAAN correction for the last transfer, in order to 

reduce the inclination change manoeuvres. 

Taking into account the deorbitation manoeuvre (if the vehicle has to deorbit the debris) does 

not change the optimal path. Indeed the debris being on very close circular orbits, the 

deorbitation cost is quasi identical for all of them, and it does not influence the debris choice. 

In order to ensure a natural fall out, the deorbitation manoeuvre must lower the perigee inside 

the atmosphere. The order of magnitude of this manoeuvre is 200 m/s per debris, so that the 

total mission cost increase amounts to 1000 m/s. 
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Optimal path Semi-major axis 
(km) 

Inclination 
(deg) 

Cost ΔV 
(m/s) 

Duration ΔT 
(days) 

Debris 5 7128.5 98.4 0 0 

Drift 5 → 8 7090.6 98.7 107.9 103.0 

Debris 8 7200.0 98.7 0 0 

Drift 8 → 2 7042.6 98.7 165.2 100.8 

Debris 2 7055.3 98.1 0 0 

Drift 2 → 6 7028.2 98.5 126.4 92.8 

Debris 6 7152.5 98.5 0 0 

Drift 6 → 10 7247.7 98.5 101.2 69 .4 

Debris 10 7246.4 98.9 0 0 

Total   500.7 366 

 

Table 8 : Optimal path 

 

The vehicle trajectory (drift orbits), the RAAN evolution (difference between the vehicle 

RAAN and the debris RAAN), and the mission cost (before and after optimization) are plotted 

respectively on Figure 17, Figure 18 and Figure 19. 
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Figure 17 : Optimal path orbits 
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Figure 18 : RAAN correction 

 

 

Figure 19 : Mission cost before and after optimization 
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VI CONCLUSION

This paper proposes a method to optimize simultaneously the debris selection and the 

trajectories between them in view of a Space Debris Collecting mission. A generic transfer 

strategy with impulsive maneuvers is defined so that the problem becomes of finite dimension. 

The problem is then linearized around an initial reference solution in order to apply a Branch 

and Bound algorithm. The process is iterated until the solution stabilizes on the optimal path. 

The method is applicable whatever the numbers of debris (candidate and to deorbit) and 

whatever the mission duration. The main practical limitation comes from the problem size and 

the associated computation time that grow exponentially with the number of candidate debris. 

The initialization procedure includes a filtering of the unfeasible or too expensive solutions, 

allowing thus a subsequent size reduction and a time-efficient numerical resolution. 

An application case consisting in selecting 5 SSO debris among a list on 11 candidates is 

presented. The method proves reliable and an optimal path is issued in a few iterations. The 

optimal path can then be used as a basis for a more detailed mission analysis, taking into 

account the vehicle features (thrust level) and the operational constraints (rendezvous and 

deorbitation operations). Sensibilities to the mission main constraints (duration, altitudes 

bounds) can also be easily issued in order to support design trade-offs for a future SDC 

vehicle. 

The main enhancements envisioned are to allow non circular drift orbits and to account for non 

impulsive manoeuvres in the cost and durations assessment. The two interests in allowing 

elliptical drift orbits are : to reduce the SDC mission cost for LEO and SSO debris, and to 

apply the method to GTO debris which are on highly elliptical orbits. Considering continuous 

instead of impulsive thrusting is more representative of the vehicle capabilities when assessing 
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the mission cost. This is possible without changing the solving method as long as the 

manoeuvres durations remain small wrt the drift phase durations. For very low-thrust engine, 

the transfer and the drift phases become highly coupled, since a part of the RAAN correction is 

realized during the transfer. A specific transfer strategy has to be devised for this category of 

vehicles. 
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ACRONYMS 

LEO :  Low Earth Orbit 

SSO :  Sun-Synchronous Orbit 

GTO :  Geostationary Earth Orbit 
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SDC :  Space Debris Collecting 

TSP :  Travelling Salesman Problem 

PMP :  Pontryaguin Maximum Principle 

NLP :  Non Linear Programming 

LP :  Linear Programming 

BB :  Branch and Bound 

AN :  Ascending Node 

RAAN : Right Ascension of the Ascending Node 

 

 

VARIABLES NOMENCLATURE 

Vehicle 

X(t) State vector (position + velocity + mass) Real 7 

m(t) Mass Real 1 

Y(t) State vector (position + velocity) Real 6 

U(t) Command vector Real 3 

 

 

Mission 

N Number of candidate debris Integer 1 

n Number of debris to deorbit Integer 1 

Tdeorb Deorbitation operations duration Real 1 

Tmin Transfer minimum duration Real 1 

Tmax Mission maximum duration Real 1 

C Mission cost Real 1 

T Mission duration Real 1 

CL Mission linearized cost Real 1 

TL Mission linearized duration Real 1 
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Orbits 

RT Earth equatorial radius (= 6378137 m) Real 1 

μ Earth gravitational constant (= 3.986 1014 m3/s²) Real 1 

J2 First zonal coefficient (= 1.086 10-3) Real 1 

CJ2 182
T2J2 10 1.318 RμJ

2
3C ==  

Real 1 

a Semi major axis Real 1 

e Eccentricity Real 1 

I Inclination Real 1 

Ω Right ascension of the ascending node Real 1 

ω Argument of the perigee Real 1 

ν True anomaly Real 1 

L Longitude from the ascending node Real 1 

n Mean motion Real 1 

Ω&  RAAN precession rate Real 1 

H Altitude Real 1 

V Velocity Real 1 

ΔV Impulsive velocity Real 1 

ΔVP Perigee impulsive velocity (Hohmann transfer) Real 1 

ΔVA Apogee impulsive velocity (Hohmann transfer) Real 1 
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Debris k, k=1 to N 

ks  Debris selection Binary 1 

kx  Number of arriving edges Binary 1 

ky  Number of departing edges Binary 1 

kz  Product of xk and yk Binary 1 

a
kt  Arrival date Real 1 

d
kt  Departure date Real 1 

kC  Operations cost Real 1 

kT  Operations duration Real 1 

ak Semi major axis Real 1 

Yk(t) State vector (position + velocity) Real 6 

ek Eccentricity Real 1 

Ik Inclination Real 1 

Ωk Right ascension of the ascending node Real 1 

kΩ&  RAAN precession rate Real 1 
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Transfer i-j, i,j=1 to N, i≠j 

ijs  Transfer selection Binary 1 

ijC  Transfer cost Real 1 

ijT  Transfer duration Real 1 

ti Departure date Real 1 

tj Arrival date Real 1 

LijC  Transfer linearized cost Real 1 

LijT  Transfer linearized duration Real 1 

aij Drift orbit semi major axis Real 1 

eij Drift orbit eccentricity Real 1 

Iij Drift orbit inclination Real 1 

ijΩ&  Drift orbit RAAN precession rate Real 1 

ΔVij Transfer impulsive velocity Real 1 

αij Semi major axis difference wrt reference Real 1 

τi Departure date difference wrt reference Real 1 

pij Product of sij and aij Real 1 

qij Product of sij and ti Real 1 

amin, amin Bounds on semi major axis Real 1 

αmin, αmin Bounds on semi major axis difference Real 1 

τmin, τmin Bounds on departure date difference Real 1 

 


