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Abstract Inconsistency issue of pairwise comparison matrices has been an important 

subject in the analytical network process. The most inconsistent elements can 

efficiently be identified by inducing a bias matrix only based on the original matrix. 

This paper further discusses the induced bias matrix, and integrates all related 

theorems and corollaries into the induced bias matrix mode. The theorem of 

inconsistency identification is proved mathematically using the maximum eigenvalue 

method and the contradiction method. In addition, a fast inconsistency identification 

method for one pair of inconsistent elements is proposed and proved mathematically. 

Two examples are used to illustrate the proposed fast identification method. The 

results show that the proposed new method is easier and faster than the existing 

method for the special case with only one pair of inconsistent elements in the original 

comparison matrix.  
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1. Introduction 

The pair-wise comparison method is a well-established technique, and widely used in 

multi-criteria decision making (MCDM) methods [1, 2]. The consistency test of 

pair-wise comparison matrix in the AHP and ANP, two of the widely used MCDM 

methods, has been studied extensively over the past few decades [3-14]. To improve 

the consistency ratio of the pair-wise comparison matrix in the AHP and ANP and 

preserve the original comparison information as much as possible, literature [15] 

introduced an induced bias matrix (IBM, hereinafter), which can be derived by the 

original reciprocal pairwise comparison matrix (RPCM hereinafter), to identify and 

adjust the inconsistent elements.  

IBM is based on the theorems of matrix multiplication and vectors dot product as 

well as the definitions and notations of the pair-wise comparison matrix. The IBM 

method has been applied in questionnaire design [16], risk analysis [17], and task 

scheduling [18]. If the comparison matrix A is perfectly consistent, we 

mathematically proved that the IBM should be a zero matrix in [15]. If the 

comparison matrix A is approximately consistent, we also mathematically proved that 

the IBM should be as close as possible to a zero matrix in [19]. This corollary can be 

used to estimate the uncertain or missing values in an RPCM. If the pair-wise matrix 

A is inconsistent, there must be some inconsistent elements in the induced bias matrix 

(IBM) deviating far away from zero (Corollary 2 in [15]). This corollary shows that 



the farthest value should be identified as the most inconsistent element from the 

induced bias matrix (IBM). However, this critical corollary for identifying the most 

inconsistent element has not been proved mathematically in [15].  

The objective of this paper is to prove the theorem of aforementioned critical 

corollary mathematically, and integrates all related theorems and corollaries into the 

induced bias matrix model (IBMM), which simplifies and refines the proposed 

inconsistency identification method. In addition, this paper proposes a fast 

inconsistency identification method to extend the proposed IBMM for the special case 

of one pair of inconsistent elements in the original RPCM. 

The remaining parts of this paper are organized as follows. The next section 

integrates all related theorem and corollaries into one model and provides two 

mathematic proofs of Corollary 2.2 (i.e. Theorem 2.3 in IBMM) by maximum 

eigenvalue method and contradiction method. Section 3 analyzes the inconsistency 

identification method; proposes and proves a fast inconsistency identification method; 

describes the sign of non-zero of the induced bias matrix; and introduces two numeric 

examples with one pair of inconsistent elements to demonstrate the proposed fast 

inconsistency identification method. Section 4 concludes the paper. 

2. Theorems and Proofs of the Induced Bias Matrix Model (IBMM) 

In order to efficiently identify the inconsistent elements and preserve most of the 

original pair-wise comparison information, we proposed an induced bias matrix 

(IBM), which is only based on the original RPCM in [15], and the following theorem 

and corollaries were derived. 



Theorem 2.1: The induced bias matrix (IBM) nAAAC   should be a zero matrix, 

if comparison matrix A  is perfectly consistent. 

Corollary 2.1: The induced bias matrix (IBM) nAAAC   should be as close as 

possible to zero matrix, if comparison matrix A  is approximately consistent. 

Corollary 2.2:  There must be some inconsistent elements in induced bias matrix 

(IBM) C  deviating far away from zero, if the pair-wise matrix A is inconsistent. 

The correctnesses of Theorem 2.1 and Corollary 2.1 have been proved 

mathematically in Section 3.1 of [15] and in Section 2.1 of [19], respectively. Besides, 

some special cases, where there are some errors in the original RPCM of order 3, have 

been addressed as examples in [19]. To determine whether a comparison pairwise 

matrix is reciprocal, Corollary 2.3 is proposed and illustrated using 33  comparison 

pair-wise matrix, as an example in [19].  

Corollary 2.3: Despite that the comparison matrix A  is consistent or not, all entries 

in the main diagonal of the induced bias matrix (IBM) nAAAC   should be 

zeroes, giving that the comparison matrix A  is satisfied with the reciprocal 

condition. 

The inconsistent elements are identified by inducing a bias matrix C from the 

original RPCM, and the critical component of the above mentioned theorem and 

corollaries is the induced bias matrix (IBM). To simplify and refine the proposed 

inconsistency identification method, and make the proposed method more 

comprehensive and systematic, we integrate these theorem and corollaries into one 



model, say induced bias matrix model (IBMM), which includes the following three 

theorems. 

The Theorem of the Induced Bias Matrix Model (IBMM): 

Theorem 2.2: The induced bias matrix (IBM) nAAAC   should be equal (or 

close) to a zero matrix, if comparison matrix A  is perfectly (or approximately) 

consistent. That is, 
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where A  is the original RPCM and ija  represents the values of RPCM. The “ n ” 

denotes the order of RPCM. 

Theorem 2.3: There must be some inconsistent elements in the induced bias matrix 

(IBM) C  deviating far away from zero, if the pair-wise matrix is inconsistent. 

Especially, any row or column of matrix C contains at least one positive element. 

Theorem 2.4: All entries in the main diagonal of the induced bias matrix (IBM) 

nAAAC   should be zeroes whether matrix A is consistent or not, as long as the 

comparison matrix A satisfies the reciprocal condition. 

We provided the proof of Theorem 2.2 for consistent case in [15]. The principles 

of Theorem 2.3 and Theorem 2.4 are demonstrated by introducing some errors into a 

33  RPCM in [19]. The following subsections mathematically prove Theorem 2.3 

and Theorem 2.4. 

2.1 The Proof of Theorem 2.3 by Maximum Eigenvalue Method 

Proof: If the RPCM A is inconsistent, the induced bias matrix  nAAAC   



cannot be zero. More precisely, any row of C contains at least one positive element. 

It is known, e.g. literature [20], that for the maximal eigenvalue max  of A, 

nmax , and the corresponding unique eigenvector max  is a positive vector. 

Furthermore, A is consistent if and only if nmax . By applying  

                    m a xm a xm a x  A         (2) 

at the appropriate places, we get 
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   Since n>max , maxC  is a positive vector. Consequently, C cannot have any 

row containing only zeros. Moreover, since both maxC  and max  are positive 

vectors, any row of C must contain at least one positive element.        □ 

2.2 The Proof of Theorem 2.3 by Contradiction  

Proof: It has been proved in [15] that, if a reciprocal pairwise comparison matrix 

(RPCM) is perfectly consistent, that is, kjikij aaa   for all kji ,, , then  
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If an RPCM A is inconsistent, kjikij aaa   holds at least for one of the kji ,,  

 nkji ,,2,1,,  . Moreover, if A is inconsistent, for any i, there exist j and k such 

that kjikij aaa   (Corollary 2 in [21]). Assume that an RPCM A is inconsistent, but 

the i-th row of the induced bias matrix C contains only non-positive elements. Then 

kjikij aaa   with some j and k, and 0,,0,0 21  inii ccc  . We get the following 

inequalities:  
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Adding all the inequalities together in the system of inequalities (6), we get 
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The inequality (8) or (9) can be unfolded to the following matrix form: 
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Since matrix A is a reciprocal matrix, that is, 
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0ika , from the expansion inequality (9), any of the above inequalities (7)-(10) can 

be simplified as the following inequality:   
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Since there are 
2

)1( nn
 sum term at the left side of the inequality (12), and 
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a , namely, jkikij aaa   for all j and k. However, this result contradicts the 

previous assumption that kjikij aaa   for some j and k. Therefore, one of the 

inequalities, at least, does not hold. Thus, inequality (12) holds with > sign. This 

entails that at least one of elements in the i-th row the induced bias matrix C is 

positive.                  □ 

Based on the above two proofs for rows, the same proofs for columns can also be 

induced. If A is a pairwise comparison matrix with the reciprocal property, the 

transpose of A is also a pairwise comparison matrix with the reciprocal property. In 

addition, A is consistent if and only if the transpose of A is consistent. 

   The transpose of the IBM C generated by A is the IBM generated by the 

transpose of A. Consequently, if C is inconsistent, any column of C contains at least 

one positive element. The same statement for the rows was stated earlier 



2.3 The Proof of Theorem 2.4 

Proof: According to the principle of matrix multiplication, all values in the main 

diagonal of the induced bias matrix C can be calculated by the formula (13): 
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□ 

3. The Inconsistency Identification Method 

In this section, the mathematic principles of the proposed “Method of Maximum”, 

“Method of Minimum” and “Method for identifying
ij

a ” in [15], are firstly discussed. Next, 

a fast inconsistency identification method for special case is proposed and proved 

mathematically. Two numerical examples are introduced to illustrate the proposed 

method in Section 3.3. Details are given next. 

3.1 Clarification of the Proposed Inconsistency Identification Method 

If the RPCM A is inconsistent, the above proof shows that any row of the IBM C 

contains at least one non-zero element, that is, kjikij aaa   holds at least for one 

group of kji ,, , which means that there is at least one pair of inconsistent elements 

existing in the original RPCM A. Suppose ijc , the element with largest absolute value 

in the IBM C, is identified. The second step is to analyze that which element makes 

ijc  to be far away from zero. According to the rule of matrix multiplication, the value 



of ijc  is calculated by all values on the 
thi  row and 

thj  column of matrix A and 

ija , that is,  
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Clearly, the farthest value of ijc  can be impacted by any term of ijkjik aaa   on 

the right side of the sum equality (15). In order to identify the inconsistent elements 

that caused the value of ijc  to be far away from zero, the scalar product of vectors in 

n dimension technique is introduced. The impact of each term can easily be observed 

by the scalar product of vectors in n dimension technique, that is,  
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If kjikij aaa  , then 0 ijkjik aaa . Therefore, the non-zero element(s), which 

caused the value of ijc  to be far away from zero, can be identified through observing 

all elements in the bias identifying vector f . In addition, the inequality kjikij aaa   

can be caused by ija  or any kjikaa   nk ,,2,1  , or both. 

Obviously, if the inconsistent element is ija , other elements are consistent. 

Assume ijijkjik aaaa  , namely, ija  is too small. We can get that all values in the 

bias identifying vector f  are positive except jik , , as 0 ijijii aaa  and 

0 ijjjij aaa . Vice versa, if ija  is too large, all the values in the bias identifying 

vector f  will be negative except two values jik , . Therefore, the “Method for 

identifying ija ” inconsistency identification method is proposed [15].  



Besides, the farthest value of ijc  must be caused by some outliers either too 

large or too small located at the bias identifying vector f ; therefore, “Method for 

Maximum” and “Method for Minimum” inconsistency identification methods are 

proposed [15]. 

In order to further identify the inconsistent element for those elements whose 

values are close to the largest or smallest simultaneously, therefore the “Method of 

matrix order reduction” inconsistency identification method is proposed [15].  

3.2 Fast Identification Method for Special Case and Its Proof 

In this section, one fast inconsistency identification method is proposed to quickly 

identify the inconsistent elements when there is only one pair of inconsistent elements 

in the original RPCM.   

Assume that RPCM A is inconsistent, and there is one pair of inconsistent 

elements ipa  and its corresponding reciprocal element 
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elements are consistent, namely, ijkjik aaa   for all k  except pk   ( ijpjip aaa  ). 

Therefore, the two inconsistent elements are elements at the thi  and thp  rows, and 

the thp  and thi  columns. According to the rule of matrix multiplication, all 

elements, which are located at the thi , thp  rows, and the thi , thp  columns in the 

induced bias matrix nAAAC  , will be impacted by ipa  and pia . Since it is 

assumed that ijkjik aaa    ,; pjpk   and ipkpik aaa  , suppose ipkpik aaa  , all 

the values in the thi  row of the IBM C can be computed by formula (18), that is, 
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In order to analyze the sign change of each element on the thi  row, the 

equalities in (18) are further unfolded, as shown below. 
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If ipa , then 
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If ipa , then 
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where the symbols “ ” and “ ” denote “increase” and “decrease”, respectively 



(hereinafter).  

Likewise, for the thp  row: 
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Therefore, if ipa , then 
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a
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Likewise, if ipa , then 
ip

pi
a

a
1

,  
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If ipa , all values on the thi  row of IBM C will be more than zeroes 

( pjandnjcij  ,,2,1,0  ) except 0ipc , and all values on the thp  row of 

IBM C will be less than zeroes ( pjandnjcij  ,,2,1,0  ) except 0ipc . 

Therefore, only the elements on the thi  row and thp  row are non-zeroes, and the 

sign form of the values on the thi  row and thp  row of the IBM C can be derived, as 

shown in the following matrix, 
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Likewise, the signs of each element on the thi  column and thp  column can be 

derived similarly.  
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If ipa , then 
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a

a
1
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For the thp  column,  
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If ipa ,  
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Therefore, the sign forms of the elements on the thi  and thp  columns of the 



IBM C can be obtained, as shown in (30) 
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To sum up, if ipa , the signs of all the values, which are located at the thi  row 

and the thi  column, the thp  row and thp  column, become:  
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Therefore, we can obtain the following fast inconsistency identification method: 

Method of non-zero rows (columns) and signs identification:  

If there are two rows (the thi  row and thp  row) and two columns (the thi  

column and thp  column) with non-zeroes, and other elements are zero, the 

inconsistent elements must be ipa  and pia .  

If the 0ipc  and other elements located at the thi  row or thp  column are 

more than zeroes, ipa  is too large and should be decreased. Vice versa, ipa  is too 

small and should be increased. 



If the 0pic  and other elements located at the thp  row or thi  column are less 

than zeroes, ipa  is too large and should be decreased. Vice versus, ipa  is too small 

and should be increased. 

In addition,  
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    (32) 

To make the RPCM A be consistent, the value of ipc  should be equal to zero. 

Therefore, inconsistent element ipa  can be adjusted by formula (33). 
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pik

kpikip aa
n

a            (33) 

In this case, since there is only one pair of inconsistent elements, ipa  and pia  

in the RPCM, any ipkpik aaa    ,, pik   can be used as the revised value of ipa . 

3.3 Illustrative Examples for Fast Inconsistency Identification 

Method 

The Example 2 and Example 3 in [15] are used in this study as Example 3.1 and 

Example 3.2, respectively, to demonstrate the proposed fast inconsistency 

identification method. 

Example 3.1: The induced bias matrix C, computed by the proposed IBM method 

in the Example 2 in [15], is 

.
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It can easily be observed that there are only two non-zero rows (the 1
st
 and 4

th
), 

and two non-zero columns (the 1
st
 and 4

th
) in the IBM C, which is identical to the 



formula (31). In addition, there is only one sign different from those elements whether 

located at the 1
st
 and 4

th
 rows or columns. Therefore, according to the principle of 

above proposed fast inconsistency identification method, the inconsistent elements are 

14a  and 41a . Specifically, 14a  is too small and should be increased since 

075.1514 c . According to the revising formula (33) of ipa , we get  
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41 
a

a  

The identified inconsistent element and its revised result are the same as shown in 

Example 2 of [15].  

Example 3.2：The induced bias matrix C, computed by the proposed IBMM in the  

Example 3 of [15], is showed below. 
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It can easily be observed that there are only two non-zero rows (the 2
nd

 and 3
rd

 ), 

and two non-zero columns (the 2
nd

 and 3
rd

) in above IBM C. Likewise, there is only 

one sign different from those elements whether located at the 2
nd

 and 3
rd

 rows or 

columns. Both are identical to the formula (31). Therefore, according to the above fast 

identification method, the inconsistent elements are 23a  and 32a . Besides, since 

05.2223 c  and 05.2232 c , we can get that 23a  is too large, and 32a  is too 

small. 
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k

kkaaa , and 432 a . For 

simplicity, since 23a  is inconsistent, assume 2332 aaa kk
 ,  8,7,6,5,4,1k ; we can 

use 23a to be the value of 23a  in order to let it be consistent. Clearly, any value of 

pair of 2332 aaa kk
  8,7,6,5,4,1k  is 

4

1
, which is the same as shown in Example 3 

of [15]. 

The above examples show that the inconsistent elements can be determined by 

observing and analyzing the non-zero row (column), and sign identification of the bias 

elements in the IBM C instead of following the seven steps of inconsistency 

identification developed in [15]. Therefore, the proposed method is simpler and faster 

than the previous one for the special case with only one pair of inconsistent elements 

in the original RPCM.   

4. Conclusion 

This paper discussed the principle of the proposed inconsistency identification 

method. A fast inconsistency identification method for the special case with only one 

pair of inconsistent elements in the original RPCM was also proposed and proved 

mathematically. Two examples indicate that the inconsistent elements can be easily 

and quickly identified by the proposed fast inconsistency identification method if 

there are only two rows and corresponding two columns with non-zero elements.  

Although the special case with only one pair of inconsistent elements in the 

original RPCM can easily and quickly be identified by the proposed fast inconsistency 



identification method, such cases where there are more than one pair of inconsistent 

elements in RPCM will be relatively complicated by the proposed method, and it 

remains to be studied in future.  
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