
A SHOOTING ALGORITHM FOR OPTIMAL CONTROL

PROBLEMS WITH SINGULAR ARCS1,2
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Abstract. In this article, we propose a shooting algorithm for a class
of optimal control problems for which all control variables appear lin-
early. The shooting system has, in the general case, more equations than
unknowns and the Gauss-Newton method is used to compute a zero of
the shooting function. This shooting algorithm is locally quadratically
convergent, if the derivative of the shooting function is one-to-one at the
solution. The main result of this paper is to show that the latter holds
whenever a sufficient condition for weak optimality is satisfied. We note
that this condition is very close to a second order necessary condition.
For the case when the shooting system can be reduced to one having
the same number of unknowns and equations (square system), we prove
that the mentioned sufficient condition guarantees the stability of the
optimal solution under small perturbations and the invertibility of the
Jacobian matrix of the shooting function associated to the perturbed
problem. We present numerical tests that validate our method.

1. Introduction

The classical shooting method is used to solve boundary value problems.
Hence, it is used to compute the solution of optimal control problems by
solving the boundary value problem derived from the Pontryagin Maximum
Principle.

Some references can be mentioned regarding the shooting method. The
first two works we can find in the literature, dating from years 1956 and
1962, respectively, are Goodman-Lance [1] and Morrison et al. [2]. Both
present the same method for solving two-point boundary value problems
in a general setting, not necessarily related to an optimal control problem.
The latter article applies to more general formulations. The method was
studied in detail in Keller’s book [3], and later on Bulirsch [4] applied it to
the resolution of optimal control problems.

The case we deal with in this paper, where the shooting method is used
to solve optimal control problems with control-affine systems, is treated in,

Key words and phrases. optimal control, singular arc, bang-singular control, shooting
algorithm, second order optimality condition, Gauss-Newton method, stability analysis.

1This work is supported by the European Union under the 7th Framework Programme
FP7-PEOPLE-2010-ITN Grant agreement number 264735-SADCO

2This article was accepted for publication in Journal of Optimization, Theory and
Applications.

1

ar
X

iv
:1

20
6.

08
39

v2
  [

m
at

h.
O

C
] 

 2
5 

Ju
l 2

01
3



2 M.S. ARONNA, J.F. BONNANS, AND P. MARTINON

e.g., Maurer [5], Oberle [6, 7], Fraser-Andrews [8], Martinon [9] and Vossen
[10]. These works provide a series of algorithms and numerical examples
with different control structures, but no theoretical foundation is supplied.
In particular, Vossen [10] deal with a problem in which the control can be
written as a function of the state variable, i.e. the control has a feedback
representation. He propose an algorithm that involves a finite dimensional
optimization problem induced by the switching times. Actually, his formu-
lation and the transformation we use for control constrained problems (in
Section 8) have similar features, in the sense that both approaches treat the
problem by splitting the time interval whenever a switching occurs. The
main difference between Vossen’s work and the study here presented is that
we treat the general problem (no feedback law is necessary). Furthermore,
we justify the well-posedness and the convergence of our algorithm via sec-
ond order sufficient conditions of the original control problem. In some of
the just mentioned papers, the control variable had only some of its compo-
nents entering linearly. This particular structure is studied in more detailed
in Aronna [11], and in the present article we study problems having all affine
inputs.

In [12], Bonnard and Kupka study the optimal time problem of a generic
single-input affine system without control constraints, with fixed initial point
and terminal point constrained to a given manifold. For this class of prob-
lems they establish a link between the injectivity of the shooting function and
the optimality of the trajectory by means of the conjugate and focal points
theory. Bonnard et al. [13] provides a survey on a series of algorithms for
the numerical computation of these points, which can be employed to test
the injectivity of the shooting function in some cases. The reader is referred
to [13], Bonnard-Chyba [14] and references therein for further information
about this topic.

In addition, Malanowski-Maurer [15] and Bonnans-Hermant [16] deal with
a problem having mixed control-state and pure state running constraints and
satisfying the strong Legendre-Clebsch condition (which does not hold in our
affine-input case). They all establish a link between the invertibility of the
Jacobian of the shooting function and some second order sufficient condition
for optimality. They provide stability analysis as well.

We start this article by presenting an optimal control problem affine in the
control, with terminal constraints and free control variables. For this kind
of problem, we state a set of optimality conditions which is equivalent to the
Pontryagin Maximum Principle. Afterwards, the second order strengthened
generalized Legendre-Clebsch condition is used to eliminate the control vari-
able from the stationarity condition. The resulting set of conditions turns
out to be a two-point boundary value problem, i.e. a system of ordinary dif-
ferential equations having boundary conditions both in the initial and final
times. We define the shooting function as the mapping that assigns to each
estimate of the initial values, the value of the final condition of the corre-
sponding solution. The shooting algorithm consists of approximating a zero
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of this function. In other words, the method finds suitable initial values for
which the corresponding solution of the differential equation system satisfies
the final conditions.

Since the number of equations happens to be, in general, greater than the
number of unknowns, the Gauss-Newton method is a suitable approach for
solving this overdetermined system of equations. The reader is referred to
Dennis [17], Fletcher [18] and Dennis et al. [19] for details and implemen-
tations of Gauss-Newton technique. This method is applicable when the
derivative of the shooting function is one-to-one at the solution, and in this
case it converges locally quadratically.

The main result of this paper is to provide a sufficient condition for the
injectivity of this derivative, and to note that this condition is quite weak
since, for qualified problems, it characterizes quadratic growth in the weak
sense (see Dmitruk [20, 21]). Once the unconstrained case is investigated, we
pass to a problem having bounded controls. To treat this case, we perform
a transformation yielding a new problem without bounds, we prove that an
optimal solution of the original problem is also optimal for the transformed
one and we apply our above-mentioned result to this modified formulation.

It is interesting to mention that, by means of the latter result, we can
justify, in particular, the invertibility of the Jacobian of the shooting function
proposed by Maurer [5]. In this work, Maurer suggested a method to treat
problems having scalar bang-singular-bang solutions and provided a square
system of equations (i.e. a system having as many equations as unknowns),
meant to be solved by Newton’s algorithm. However, the systems that can
be encountered in practice may not be square and hence our approach is
suitable.

We provide a deeper analysis in the case when the shooting system can
be reduced to one having equal number of equations and unknowns. In this
framework, we investigate the stability of the optimal solution. It is shown
that the above-mentioned sufficient condition guarantees the stability of the
optimal solution under small perturbation of the data, and the invertibility
of the Jacobian of the shooting function associated to the perturbed problem.
Felgenhauer in [22, 23] provided sufficient conditions for the stability of the
structure of the optimal control, but assuming that the perturbed problem
had an optimal solution.

Our article is organized as follows. In Section 2, we present the optimal
control problem without bound constraints, for which we provide an opti-
mality system in Section 3. We give a description of the shooting method
in Section 4. In Section 5, we present a set of second order necessary and
sufficient conditions, and the statement of the main result. We introduce
a linear quadratic optimal control problem in Section 6. In Section 7, we
present a variable transformation relating the shooting system and the opti-
mality system of the linear quadratic problem mentioned above. In Section
8, we deal with the control constrained case. A stability analysis for both
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unconstrained and constrained control cases is provided in Section 9. Fi-
nally, we present some numerical tests in Section 10, and we devote Section
11 to the conclusions of the article.

2. Statement of the Problem

Consider the spaces U := L∞(0, T ;Rm) and X := W 1,∞(0, T ;Rn), as
control and state spaces, respectively. Denote by u and x their elements,
respectively. When needed, put w = (x, u) for a point in the product space
W := X × U . In this paper, we investigate the optimal control problem

J := ϕ0(x0, xT )→ min,(1)

ẋt =
m∑
i=0

ui,tfi(xt), a.e. on [0, T ],(2)

ηj(x0, xT ) = 0, for j = 1, . . . , dη,(3)

where final time T is fixed, u0 ≡ 1, fi : IRn → IRn for i = 0, . . . ,m and
ηj : IR2n → IR for j = 1, . . . , dη. Assume that data functions ϕ0, fi and ηj
have Lipschitz-continuous second derivatives. Denote by (P) the problem
defined by (1)-(3). An element w ∈ W satisfying (2)-(3) is called a feasible
trajectory.

Set X∗ := W 1,∞(0, T ; IRn,∗) the space of Lipschitz-continuous functions
with values in the n−dimensional space IRn,∗ of row vectors with real com-
ponents. Consider an element λ := (β, p) ∈ IRdη ,∗ × X∗ and define the
pre-Hamiltonian function

H[λ](x, u, t) := pt

m∑
i=0

uifi(x),

the initial-final Lagrangian function

`[λ](ζ0, ζT ) := ϕ0(ζ0, ζT ) +

dη∑
j=1

βjηj(ζ0, ζT ),

and the Lagrangian function

L[λ](w) := `[λ](x0, xT ) +

∫ T

0
pt
( m∑
i=0

ui,tfi(xt)− ẋt
)
dt.

We study a nominal feasible trajectory ŵ = (x̂, û). Next, we present a
qualification hypothesis that is assumed throughout the article. Consider
the mapping

G : IRn × U → IRdη

(x0, u) 7→ η(x0, xT ),

where xT is the solution of (2) associated to (x0, u).

Assumption 2.1. The derivative of G at (x̂0, û) is onto.

Assumption 2.1 is usually known as qualification of equality constraints.
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Definition 2.2. It is said that the trajectory ŵ is a weak minimum of problem
(P) iff there exists ε > 0 such that ŵ is a minimum in the set of feasible
trajectories w = (x, u) ∈ W satisfying

‖x− x̂‖∞ < ε, ‖u− û‖∞ < ε.

The following first order necessary condition holds for ŵ. See the book by
Pontryagin et al. [24] for a proof.

Theorem 2.3. If ŵ is a weak solution, then there exists an element λ =
(β, p), with β ∈ IRdη ,∗ and p ∈ X∗, such that p is solution of the costate
equation

(4) − ṗt = DxH[λ](x̂t, ût, t), a.e. on [0, T ],

with transversality conditions

p0 = −Dx0`[λ](x̂0, x̂T ),(5)

pT = DxT `[λ](x̂0, x̂T ),(6)

and the stationarity condition

(7) DuH[λ](x̂t, ût, t) = 0, a.e. on [0, T ],

is verified.

It follows easily that since the pre-HamiltonianH is affine in all the control
variables, (7) is equivalent to the minimum condition

(8) H[λ](x̂t, ût, t) = min
v∈IRm

H[λ](x̂t, v, t), a.e. on [0, T ].

In order words, the element (ŵ, λ) in Theorem 2.3 satisfies the qualified
Pontryagin Maximum Principle and λ is a Pontryagin multiplier. On the
other hand, it is known that the Assumption 2.1 implies also uniqueness of
multiplier. We denote this unique multiplier by λ̂ = (β̂, p̂).

Let the switching function Φ : [0, T ]→ IRm,∗ be defined by

(9) Φt := DuH[λ̂](x̂t, ût, t) = (p̂tfi(x̂t))
m
i=1.

Observe that the stationarity condition (7) can be written as

(10) Φt = 0, a.e. on [0, T ].

3. Optimality System

In this section, we present an optimality system, i.e. a set of equations
that are necessary for optimality. We obtain this system from the condi-
tions in Theorem 2.3 above and assuming that the strengthened generalized
Legendre-Clebsch condition (to be defined below) holds.

Observe that, since H is affine in the control, the switching function Φ
introduced in (9) does not depend explicitly on u. Let an index i = 1, . . . ,m,
and (dMiΦ/dtMi) be the lowest order derivative of Φ in which ui appears
with a coefficient that is not identically zero on ]0, T [. These derivatives of
the switching function were used to state necessary condition in Kelley [25],
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Goh [26, 27, 28], Kelley et al. [29] and Robbins [30]. Under the hypothesis
that the extremal is normal (as it is the case here by Assumption 2.1), they

proved that the order Mi is even. Hence, the first order derivative Φ̇ does
not depend explicitly on u and a further derivation in time yields

(11) Φ̈t = 0, a.e. on [0, T ].

Observe that the latter expression can give explicit information of the con-
trol. Actually, in [26, 27, 28, 29, 30] it is showed that a necessary condition
for weak optimality is that the coefficient of u in (11) satisfies

(12) − ∂

∂u
Φ̈t � 0, on [0, T ].

Here, by X � 0 we mean that the matrix X is positive semidefinite. The
equation (12) is known as generalized Legendre-Clebsch condition. In order
to be able to express û in terms of (p̂, x̂) from (11), we assume that (12)
holds with strict inequality, i.e. we make the following hypothesis.

Assumption 3.1. The strengthened generalized Legendre-Clebsch condition
holds, i.e.

(13) − ∂

∂u
Φ̈t � 0, on [0, T ].

Note that function Φ̈ is affine in u, and thus û can be written in terms
of (p̂, x̂) from (11) by inverting the matrix in (13). Due to the regularity
hypothesis imposed on the data functions, û turns out to be a continuous
function of time. Hence, condition (11) follows from the optimality system
and we can use it to compute û in view of Assumption 3.1. In order to guar-
antee the stationarity condition (10) we consider the endpoint conditions

(14) ΦT = 0, Φ̇0 = 0.

Remark 3.1. We could choose another pair of endpoint conditions among the
four possible ones: Φ0 = 0, ΦT = 0, Φ̇0 = 0 and Φ̇T = 0, always including
at least one of order zero. The choice we made in (14) will simplify the
presentation of the results afterwards.

Notation: Denote by (OS) the set of equations composed by (2)-(3),
(4)-(6), (11), (14), i.e. the system

(OS)



ẋt =
m∑
i=0

ui,tfi(xt), a.e. on [0, T ],

ηj(x0, xT ) = 0, for j = 1, . . . , dη,

−ṗt = DxH[λ](x̂t, ût, t), a.e. on [0, T ],

p0 = −Dx0`[λ](x̂0, x̂T ), pT = DxT `[λ](x̂0, x̂T ),

Φ̈t = 0, a.e. on [0, T ],

ΦT = 0, Φ̇0 = 0.
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Let us give explicit expressions for Φ and Φ̇.DefineA : IRn+m →Mn×n(IR)
and B : IRn →Mn×m(IR) by

(15) A(x, u) :=
m∑
i=0

uif
′
i(x), B(x)v :=

m∑
i=1

vifi(x),

for every v ∈ IRm. Note that the ith. column of B(x) is fi(x). For (x, u) ∈ W
satisfying (2), let B1(xt, ut) ∈Mn×m(IR) given by

(16) B1(xt, ut) := A(xt, ut)B(xt)−
d

dt
B(xt).

In view of (15) and (16), the expressions in (14) can be rewritten as

(17) Φt = ptB(xt), Φ̇t = −ptB1(xt, ut).

4. Shooting Algorithm

The aim of this section is to present an appropriated numerical scheme
to solve the system (OS). For this purpose, define the shooting function
(18)
S : D(S) := IRn × IRn+dη ,∗ → IRdη × IR2n+2m,∗,

(
x0, p0, β

)
=: ν 7→ S(ν) :=

à
η(x0, xT )

p0 +Dx0`[λ](x0, xT )
pT −DxT `[λ](x0, xT )

pTB(xT )
p0B1(x0, u0)

í
,

where (x, u, p) is a solution of (2),(4),(11) corresponding to the initial con-
ditions (x0, p0), and with λ := (β, p). Here, we denote either by (a1, a2) orÇ
a1

a2

å
an element of the product space A1 ×A2. Note that the control u re-

trieved from (11) is continuous in time, as we have already pointed out after
Assumption 3.1. Hence, we can refer to the value u0, as it is done in the
right hand-side of (18). Observe that in a simpler framework having fixed
initial state and no final constraints, the shooting function would depend
only on p0. In our case, since the initial state is not fixed and a multiplier
associated with the initial-final constraints must be considered, S has more
independent variables. Note that solving (OS) consists of finding ν ∈ D(S)
such that

(19) S(ν) = 0.

Since the number of equations in (19) is greater than the number of un-
knowns, the Gauss-Newton method is a suitable approach to solve it. This
algorithm will solve the equivalent least squares problem

min
ν∈D(S)

∣∣∣S (ν)∣∣∣2 .
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At each iteration k, given the approximate values νk, it looks for ∆k that
gives the minimum of the linear approximation of problem

(20) min
∆∈D(S)

∣∣∣S(νk) + S ′(νk)∆
∣∣∣2 .

Afterwards it updates

(21) νk+1 ← νk + ∆k.

In order to solve the linear approximation of problem (20) at each iteration
k, we look for ∆k in the kernel of the derivative of the objective function,
i.e. ∆k satisfying

(22) S ′(νk)>S ′(νk)∆k + S ′(νk)>S(νk) = 0.

Hence, to compute direction ∆k the matrix S ′(νk)>S ′(νk) must be non-
singular. Thus, Gauss-Newton method will be applicable, provided that
S ′(ν̂)>S ′(ν̂) is invertible, where ν̂ := (x̂0, p̂0, β̂). Easily follows that S ′(ν̂)>S ′(ν̂)
is nonsingular if and only if S ′(ν̂) is one-to-one. Summarizing, the shoot-
ing algorithm we propose here consists of solving the equation (19) by the
Gauss-Newton method defined by (21)-(22).

Since the right hand-side of system (19) is zero, the Gauss-Newton method
converges locally quadratically if the function S has Lipschitz-continuous
derivative. The latter holds here given the regularity assumptions on the
data functions. This convergence result is stated in the proposition below.
See, e.g., Fletcher [18] or Bonnans [31] for a proof.

Proposition 4.1. If S ′(ν̂) is one-to-one then the shooting algorithm is lo-
cally quadratically convergent.

The main result of this article is to present a condition that guarantees
the quadratic convergence of the shooting method near the optimal (lo-

cal) extremal (ŵ, λ̂). This condition involves the second variation studied in
Dmitruk [20, 21], more precisely, the sufficient optimality conditions therein
presented.

4.1. Linearization of a Differential Algebraic System. For the aim of
finding an expression of S ′(ν̂), we make use of the linearization of (OS) and
thus we introduce the following concept.

Definition 4.2 (Linearization of a Differential Algebraic System). Consider
a system of differential algebraic equations (DAE) with endpoint conditions

ζ̇t = F(ζt, αt), 0 = G(ζt, αt), 0 = I(ζ0, ζT ),

where F : IRm+n → IRn, G : IRm+n → IRdG and I : IR2n → IRdI are
C1−functions. Let (ζ0, α0) be a C1−solution. We call linearized system at
point (ζ0, α0) the following DAE in the variables ζ̄ and ᾱ,

˙̄ζt = LinF |(ζ0t ,α0
t )

(ζ̄t, ᾱt), 0 = LinG |(ζ0t ,α0
t )

(ζ̄t, ᾱt), 0 = Lin I |(ζ00 ,ζ0T ) (ζ̄0, ζ̄T ),
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where
LinF |(ζ0t ,α0

t )
(ζ̄t, ᾱt) := F ′(ζ0

t , α
0
t )(ζ̄t, ᾱt),

and the analogous definitions hold for LinG and LinH.

The technical result below will simplify the computation of the lineariza-
tion of (OS). Its proof is immediate.

Lemma 4.3 (Commutation of linearization and differentiation). Given G
and F as in the previous definition, it holds

(23)
d

dt
LinG = Lin

d

dt
G, d

dt
LinF = Lin

d

dt
F .

4.2. Linearized Optimality System. In the sequel, whenever the argu-
ment of functions A,B,B1, etc. is omitted, assume that they are eval-
uated at the reference extremal (ŵ, λ̂). Define the m × n−matrix C, the
n× n−matrix Q and the m× n−matrix M by

(24) C := Hux, Q := Hxx, M := B>Q− Ċ − CA.
Note that the ith. row of matrix C is the function pf ′i , for i = 1, . . . ,m.
Denote with (z, v, λ̄ := (β̄, q)) the linearized variable (x, u, λ = (β, p)). In
view of equations (17) and (24) we can write

(25) Lin Φt = qtBt + z>t C
>
t .

The linearization of system (OS) at point (x̂, û, λ̂) consists of the linearized
state equation

(26) żt = Atzt +Btvt, a.e. on [0, T ],

with endpoint conditions

(27) 0 = Dη(x̂0, x̂T )(z0, zT ),

the linearized costate equation

(28) − q̇t = qtAt + z>t Qt + v>t Ct, a.e. on [0, T ],

with endpoint conditions

q0 = −

z>0 D2
x20
`+ z>TD

2
x0xT

`+

dη∑
j=1

β̄jDx0ηj


(x̂0,x̂T )

,(29)

qT =

z>TD2
x2T
`+ z>0 D

2
x0xT

`+

dη∑
j=1

β̄jDxT ηj


(x̂0,x̂T )

,(30)

and the algebraic equations

0 = Lin Φ̈ = − d2

dt2
(qB + Cz), a.e. on [0, T ],(31)

0 = Lin ΦT = qTBT + CT zT ,(32)

0 = Lin Φ̇0 = − d

dt
(qB + Cz)t=0.(33)
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Here we used equation (25) and commutation property of Lemma 4.3 to
write (31) and (35). Observe that (31)-(35) and Lemma 4.3 yield

(34) 0 = Lin Φt = qtBt + z>t C
>
t , on [0, T ],

and

0 = Lin Φ̇t = −qB1 − z>M> + v>(−CB +B>C>), a.e. on [0, T ].

By means of Theorem 5.2, to be stated in Section 5 afterwards, we can see
that the coefficient of v in previous expression vanishes, and hence,

(35) 0 = Lin Φ̇t = −qB1 − z>M>, on [0, T ].

Note that both equations (34) and (35) hold everywhere on [0, T ] since all
the involved functions are continuous in time.
Notation: denote by (LS) the set of equations (26)-(35).

Once we have computed the linearized system (LS), we can write the
derivative of S in the direction ν̄ :=

(
z0, q0, β̄

)
as follows.

S ′(ν̂)ν̄ =



Dη(x̂0, x̂T )(z0, zT )

q0 +
[
z>0 D

2
x20
`+ z>TD

2
x0xT

`+
∑dη
j=1 β̄jDx0ηj

]
(x̂0,x̂T )

qT −
[
z>TD

2
x2T
`+ z>0 D

2
x0xT

`+
∑dη
j=1 β̄jDxT ηj

]
(x̂0,x̂T )

qTBT + z>T C
>
T

q0B1,0 + z>0 M
>
0


,

where (v, z, q) is the solution of (26),(28),(31) associated with the initial
condition (z0, q0) and the multiplier β̄. Thus, we get the property below.

Proposition 4.4. S ′(ν̂) is one-to-one if the only solution of (26)-(28),(31)
is (v, z, q) = 0.

5. Second Order Optimality Conditions

In this section we summarize a set of second order necessary and sufficient
conditions. At the end of the section we state a sufficient condition for the
local quadratic convergence of the shooting algorithm presented in Section
4. The latter is the main result of this article.

Recall the matrices C and Q defined in (24), and the space W given at
the beginning of Section 2. Consider the quadratic mapping on W,

(36) Ω(z, v) := 1
2D

2` (z0, zT )2 + 1
2

∫ T

0

î
z>Qz + 2v>Cz

ó
dt.

It is a well-known result that for each (z, v) ∈ W,

(37) 1
2D

2L (z, v)2 = Ω(z, v).
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We next recall the classical second order necessary condition for optimality
that states that the second variation of the Lagrangian function is nonneg-
ative on the critical cone. In our case, the critical cone is given by

(38) C := {(z, v) ∈ W : (26)-(27) hold},
and the second order optimality condition is as follows.

Theorem 5.1 (Second order necessary optimality condition). If ŵ is a weak
minimum of (P), then

(39) Ω(z, v) ≥ 0, for all (z, v) ∈ C.

A proof of previous theorem can be found in, e.g., Levitin, Milyutin and
Osmolovskii [32].

In the sequel we present a necessary condition due to Goh [27] and a
second order sufficient condition from Dmitruk [20]. The idea behind these
results lies on the following observation. Note that the mapping Ω in the
necessary condition of Theorem 3 does not contain a quadratic term on v
(since Huu ≡ 0). Hence, one cannot deduce a necessary condition from (39)
in terms of the positive semidefiniteness of some matrix, as it is done in
the non-affine control case. Furthermore, one cannot attempt to obtain a
sufficient condition by strengthening the inequality (39). In order to over-
come this inconvenience, Goh introduced a change of variables in [26] and
employed it to derive necessary conditions in [26, 27]. Afterwards, Dmitruk
in [20] stated a second order sufficient condition in terms of the coercivity
of Ω in the corresponding transformed space of variables. Let us give the
details of this transformation and the transformed second variation. Given
(z, v) ∈ W, define

(40) yt :=

∫ t

0
vsds, ξt := zt −B(x̂t)yt.

This change of variables can be performed in any linear system of differential
equations, and it is known as Goh’s transformation.

We aim to perform Goh’s transformation in (36). To this end, consider the
spaces U2 := L2(0, T ; IRm), X2 := W 1

2 (0, T ; IRn), the function g : IR2n+m →
IR, with

g(ζ0, ζT , h) := D2` (ζ0, ζT +BTh)2 + h>CT (2ζT +BTh),

and the quadratic mapping Ω̄ : X2 × U2 × IRm → IR, given by
(41)

(ξ, y, h) 7→ Ω̄(ξ, y, h) := 1
2g(ξ0, ξT , h) + 1

2

∫ T

0
{ξ>Qξ + 2y>Mξ + y>Ry}dt,

where the involved matrices where introduced in (15), (24) and (42).
The following result is due to Goh [27] and it is a nontrivial consequence

of Theorem 5.1. Define the m×m−matrix

(42) R := B>QB − CB1 − (CB1)> − d

dt
(CB).
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Theorem 5.2 (Goh’s Necessary Condition). If ŵ is a weak minimum of
(P), then

(43) CB is symmetric.

Furthermore,

Ω(z, v) = Ω̄(ξ, y, yT ),

whenever (z, v) ∈ W and (ξ, y, yT ) ∈ X × Y × IRm satisfy (40), and the
coefficient of the quadratic term in y in Ω̄ satisfies

(44) R � 0.

Theorem 5.2 was first proved by Goh in [27], but the notation used here
differs a lot from the one employed by Goh. For a proof of this Theorem in
the present notation the reader can consult the recent article by Aronna et
el. [33].

Remark 5.1. Following the analysis in Goh [28] (see also Kelley et al. [29],

Bell-Jacobson [34] and references therein), we have that R = − ∂

∂u
Φ̈t, and

hence, conditions (44) and (12) are equivalent.

Remark 5.2. Observe that (43) is equivalent to pf ′ifj = pf ′jfi, for every pair
i, j = 1, . . . ,m. These identities can be written in terms of Lie brackets as

p[fi, fj ] = 0, for i, j = 1, . . . ,m.

Here [g, h] denotes the Lie bracket of two smooth vector fields g, h : IRn →
IRn and it defined by

[g, h](x) := g′(x)h(x)− h′(x)g(x).

Note that (43) implies, in view of (42), that R is symmetric. The latter
expressions involving Lie brackets can be often found in the literature.

Define the order function γ : IRn × U2 × IRm → IR as

γ(ξ0, y, h) := |ξ0|2 +

∫ T

0
|yt|2dt+ |h|2.

We call (δx, v) ∈ W a feasible variation for ŵ if (x̂ + δx, û + v) satisfies
(2)-(3).

Definition 5.3. We say that ŵ satisfies the γ−growth condition in the weak
sense iff there exists ρ > 0 such that, for every sequence of feasible variations
{(δxk, vk)} converging to 0 in W,

J(û+ vk)− J(û) ≥ ργ(ξk0 , y
k, ykT ),

holds for big enough k, where ykt :=
∫ t
0 v

k
sds, and ξk is given by (40).

In the previous definition, given that (δxk, vk) is a feasible variation for
each k, the sequence {(δxk, vk)} goes to 0 in W if and only if {vk} goes to
0 in U .
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Observe that, if (z, v) ∈ W satisfies (26)-(27), then (ξ, y, h := yT ) given
by transformation (40) verifies

ξ̇ = Aξ +B1y,(45)

Dη(x̂0, x̂T )(ξ0, ξT +BTh) = 0.(46)

Set the transformed critical cone

P2 := {(ξ, y, h) ∈ X2 × U2 × IRm : (45)-(46) hold} .
The following is an immediate consequence of the sufficient condition

established in Dmitruk [20] (or [21, Theorem 3.1]).

Theorem 5.4. The trajectory ŵ is a weak minimum of (P) satisfying γ−
growth condition in the weak sense if and only if (43) holds and there exists
ρ > 0 such that

(47) Ω̄(ξ, y, h) ≥ ργ(ξ0, y, h), on P2.

The result presented in [20] applies to a more general case having finitely
many equalities and inequalities constraints on the initial and final state,
and a set of multipliers consisting possibly of more than one element.

Remark 5.3. If (47) holds, then necessarily

(48) R � ρ Im,
where Im represents the m×m−identity matrix. Hence, in view of Remark
5.1, the uniform positivity (47) implies the strengthened Legendre-Clebsch
condition in Assumption 3.1.

Theorem 5.5. If ŵ is a weak minimum of (P) satisfying (47), then the
shooting algorithm is locally quadratically convergent.

We present the proof of previous theorem at the end of Section 7.

Remark 5.4. It is interesting to observe that condition (47) is a quite weak
assumption in the sense that it is necessary for γ−growth and its corre-
sponding relaxed condition (39) holds necessarily for every weak minimum.

Remark 5.5 (Verification of (47)). The sufficient condition in (47) can be
sometimes checked analytically. On the other hand, when the initial point ξ0

is fixed, it can be characterized by a Riccati-type equation and/or the nonex-
istence of a focal point as it was established in Zeidan [35]. Furthermore,
under certain hypotheses, the condition (47) can be verified numerically as
proposed in [36] by Bonnard, Caillau and Trélat (see also the survey in [13]).

6. Corresponding Linear-quadratic Problem

In this section, we study the linear-quadratic problem (LQ) given by

Ω̄(ξ, y, hT )→ min,(49)

(45)-(46),(50)

ḣ = 0, h0 free.(51)
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Here, y is the control, ξ and h are the state variables. Note that, if con-
dition (47) holds, then (LQ) has a unique optimal solution (ξ, y, h) = 0.
Furthermore, recall that (47) yields (48) as it was said in Remark 5.3. In
other words, (47) implies that the strengthened Legendre-Clebsch condition
is verified at (ξ, y, h) = 0. Hence, the unique local optimal solution of (LQ)
is characterized by the first optimality system, that we denote afterwards by
(LQS). In Section 7, we present a one-to-one linear mapping that transforms
each solution of (LS) (introduced in paragraph 4.2) into a solution of this
new optimality system (LQS). Theorem 5.5 will follow.

Denote by χ and χh the costate variables corresponding to ξ and h,
respectively; and by βLQ the multiplier associated to the initial-final lin-
earized state constraint (46). Note that the qualification hypothesis in

Assumption 2.1 implies that {Dηj(x̂0, x̂T )}dηj=1 are linearly independent.

Hence any weak solution (ξ, y, h) of (LQ) has a unique associated multi-
plier λLQ := (χ, χh, β

LQ) solution of the system that we describe next. The
pre-Hamiltonian of (LQ) is

H[λLQ](ξ, y) := χ(Aξ +B1y) + 1
2(ξ>Qξ + 2y>Mξ + y>Ry).

Observe that H does not depend on h since the latter has zero dynamics
and does not appear in the running cost. The endpoint Lagrangian is given
by

`LQ[λLQ](ξ0, ξT , hT ) := 1
2g(ξ0, ξT , hT ) +

dη∑
j=1

βLQj Dηj(ξ0, ξT +BThT ).

The costate equation for χ is

(52) − χ̇ = DξH[λLQ] = χA+ ξ>Q+ y>M,

with endpoint conditions

χ0 = −Dξ0`
LQ[λLQ]

= −
[
ξ>0 D

2
x20
`+ (ξT +BTh)>D2

x0xT
`+

∑dη
j=1 β

LQ
j Dx0ηj

]
,

(53)

χT = DξT `
LQ[λLQ]

= ξ>0 D
2
x0xT

`+ (ξT +BTh)>D2
x2T
`+ h>CT +

∑dη
j=1 β

LQ
j DxT ηj .

(54)

For costate variable χh we get the equation

(55) χ̇h = 0, χh,0 = 0, χh,T = Dh`
LQ[λLQ].

Hence, χh ≡ 0 and thus, the last identity in (55) yields

(56) 0 = ξ>0 D
2
x0xT

`BT + (ξT +BTh)>(D2
x2T
`BT +C>T ) +

dη∑
j=1

βLQj DxT ηjBT .

The stationarity with respect to the new control y implies

(57) 0 = DyH = χB1 + ξ>M> + y>R.
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Notation: Denote by (LQS) the set of equations consisting of (45)-(46),
(51),(52)-(54),(56) and (57), i.e. (LQS) is the system

ξ̇ = Aξ +B1y,

Dη(x̂0, x̂T )(ξ0, ξT +BTh) = 0,

ḣ = 0,

−χ̇ = DξH[λLQ] = χA+ ξ>Q+ y>M,

χ0 = −

ξ>0 D2
x20
`+ (ξT +BTh)>D2

x0xT
`+

dη∑
j=1

βLQj Dx0ηj

 ,
χT = ξ>0 D

2
x0xT

`+ (ξT +BTh)>D2
x2T
`+ h>CT +

dη∑
j=1

βLQj DxT ηj ,

0 = ξ>0 D
2
x0xT

`BT + (ξT +BTh)>(D2
x2T
`BT + C>T ) +

dη∑
j=1

βLQj DxT ηjBT ,

0 = χB1 + ξ>M> + y>R.

Note that (LQS) is a first order optimality system for problem (49)-(51).

7. The Transformation

In this section we show how to transform a solution of (LS) into a solution
of (LQS) via a one-to-one linear mapping. Given (z, v, q, β̄) ∈ X ×U ×X∗×
IRdη ,∗, define
(58)

yt :=

∫ t

0
vsds, ξ := z −By, χ := q + y>C, χh := 0, h := yT , β

LQ
j := β̄j .

The next Lemma shows that the point (ξ, y, h, χ, χh, β
LQ) is solution of

(LQS) provided that (z, v, q, β̄) is solution of (LS).

Lemma 7.1. The one-to-one linear mapping defined by (58) converts each
solution of (LS) into a solution of (LQS).

Proof. Let (z, v, q, β̄) be a solution of (LS), and set (ξ, y, χ, βLQ) by (58).
Part I. We shall prove that (ξ, y, χ, βLQ) satisfies conditions (45) and (46).
Equation (45) follows by differentiating expression of ξ in (58), and equation
(46) follows from (27).
Part II. We shall prove that (ξ, y, χ, βLQ) verifies (52)-(54) and (56). Dif-
ferentiate χ in (58), use equations (28) and (58), recall the definition of M
in (24) and obtain

−χ̇ = −q̇ − v>C − y>Ċ = qA+ z>Q− y>Ċ
= χA+ ξ>Q+ y>(−CA+B>Q− Ċ) = χA+ ξ>Q+ y>M.
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Hence (52) holds. Equations (53) and (54) follow from (29) and (30). Com-
bine (30) and (32) to get

0 = qTBT + z>T C
>
T

=
[
z>TD

2
x2T
`+ z>0 D

2
x0xT

`+
∑dη
j=1 β̄jDxT ηj

]
(x̂0,x̂T )

BT + z>T C
>
T .

Performing transformation (58) in the previous equation yields (56).
Part III. We shall prove that (57) holds. Differentiating (34) we get

0 =
d

dt
Lin Φ =

d

dt
(qB + z>C>).

Consequently, by (26) and (28),

(59) 0 = −(qA+ z>Q+ v>C)B + qḂ + (z>A> + v>B>)C> + z>Ċ>,

where the coefficient of v vanishes in view of (43). Recall (16) and (24).
Performing transformation (58) in (59) leads to

0 = −χB1 − ξ>M> + y>(CB1 −B>QB +B>A>C> +B>Ċ>).

Equation (57) follows from (42) and condition (43).
Parts I, II and III show that (ξ, y, χ, βLQ) is a solution of (LQS), and

hence, the result follows.
�

Remark 7.1. Observe that the unique assumption we needed in previous
proof was Goh’s condition (43) that follows from the weak optimality of ŵ.

Proof. [of Theorem 5.5] We shall prove that (47) implies that S ′(ν̂) is one-to-
one. Take (z, v, q, β̄) a solution of (LS), and let (ξ, y, χ, χh, β

LQ) be defined
by (58), that we know by Lemma 7.1 is solution of (LQS). As it has been
already pointed out at the beginning of Section 6, condition (47) implies
that the unique solution of (LQS) is 0. Hence (ξ, y, χ, χh, β

LQ) = 0 and thus
(z, v, q, β̄) = 0. Conclude that the unique solution of (LS) is 0. The latter
assertion implies, in view of Proposition 4.4, that S ′(ν̂) is one-to-one. The
result follows from Proposition 4.1. �

8. Control Constrained Case

In this section, we add the following bounds to the control variables

(60) 0 ≤ ui,t ≤ 1, a.e. on [0, T ], for i = 1, . . . ,m.

Denote with (CP) the problem given by (1)-(3) and (60).

Definition 8.1. A feasible trajectory ŵ ∈ W is a Pontryagin minimum of
(CP) iff for any positive N, there exists εN > 0 such that ŵ is a minimum
in the set of feasible trajectories w = (x, u) ∈ W satisfying

‖x− x̂‖∞ < εN , ‖u− û‖1 < εN , ‖u− û‖∞ < N.
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Given i = 1, . . . ,m, we say that ûi has a bang arc on an interval I ⊂ [0, T ]
iff ûi,t = 0 a.e. on I, or ûi,t = 1 a.e. on I, and it has a singular arc iff
0 < ûi,t < 1 a.e. on I.

Assumption 8.2. Each component ûi is a finite concatenation of bang and
singular arcs.

A time t ∈]0, T [ is called switching time iff there exists an index 1 ≤ i ≤ m
such that ûi switches at time t from singular to bang, or vice versa, or from
one bound in (60) to the other.

Remark 8.1. Assumption 8.2 rules out the solutions having an infinite num-
ber of switchings in a bounded interval. This behavior is usually known as
Fuller’s phenomenon (see Fuller [37]). Many examples can be encountered
satisfying Assumption 8.2 as is the case of the three problems presented in
Section 10.

With the purpose of solving (CP) numerically, we assume that the struc-
ture of the concatenation of bang and singular arcs of the optimal solution
ŵ and an approximation of its switching times are known. This initial guess
can be obtained, for instance, by solving the nonlinear problem resulting
from the discretization of the optimality conditions or by a continuation
method. See Betts [38] or Biegler [39] for a detailed survey and descrip-
tion of numerical methods for nonlinear programming problems. For the
continuation method the reader is referred to Martinon [9].

This section is organized as follows. From (CP) and the known structure
of û and its switching times we create a new problem that we denote by
(TP). Afterwards we prove that we can transform ŵ into a weak solution Ŵ

of (TP). Finally we conclude that if Ŵ satisfies the coercivity condition (47),
then the shooting method for problem (TP) converges locally quadratically.
In practice, the procedure will be as follows: obtain somehow the structure
of the optimal solution of (CP), create problem (TP), solve (TP) numerically

obtaining Ŵ , and finally transform Ŵ to find ŵ.
Next, we present the transformed problem.

Assumption 8.3. Assume that each time a control ûi switches from bang to
singular or vice versa, there is a discontinuity of first kind.

Here, by discontinuity of first kind we mean that each component of û has
a finite nonzero jump at the switching times, and the left and right limits
exist.

By Assumption 8.2 the set of switching times is finite. Consider the
partition of [0, T ] induced by the switching times:

{0 =: T̂0 < T̂1 < . . . < T̂N−1 < T̂N := T}.
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Set Îk := [T̂k−1, T̂k], and define for k = 1, . . . , N,

Sk := {1 ≤ i ≤ m : ûi is singular on Îk},

Ek := {1 ≤ i ≤ m : ûi = 0 a.e. on Îk},

Nk := {1 ≤ i ≤ m : ûi = 1 a.e. on Îk}.

Clearly Sk ∪ Ek ∪Nk = {1, . . . ,m}.

Assumption 8.4. For each k = 1, . . . , N, denote by uSk the vector with com-
ponents ui with i ∈ Sk. Assume that the strengthened generalized Legendre-
Clebsch condition holds on Îk, i.e.

− ∂

∂uSk
ḦuSk

� 0, on Îk.

Hence, uSk can be retrieved from equation

(61) ḦuSk
= 0,

since the latter is affine on uSk as it has been already pointed out in Section
3. Observe that the expression obtained from (61) involves only the state
variable x̂ and the corresponding adjoint state p̂. Hence, it results that ûSk
is continuous on Îk with finite limits at the endpoints of this interval. As
the components ûi with i /∈ Sk are either identically 1 or 0, we conclude that

(62) û is continuous on Îk.

By Assumption 8.3 and condition (62) (derived from Assumption 8.4) we
get that there exists ρ > 0 such that

(63) ρ < ûi,t < 1− ρ, a.e. on Îk, for k = 1, . . . , N, i ∈ Sk.

Next, we present a new control problem obtained in the following way. For
each k = 1, . . . , N, we perform the change of time variable that converts
the interval Îk into [0, 1], afterwards we fix the bang control variables to
their bounds and finally, we associate a free control variable to each index
in Sk. More precisely, consider for k = 1, . . . , N, the control variables uki ∈
L∞(0, 1; IR), with i ∈ Sk, and the state variables xk ∈ W 1,∞(0, 1; IRn). Let
the constants Tk ∈ IR, for k = 1, . . . , N−1, which will be considered as state
variables of zero-dynamics. Set T0 := 0, TN := T and define the problem on



A SHOOTING ALGORITHM FOR PROBLEMS WITH SINGULAR ARCS 19

the interval [0, 1]

ϕ0(x1
0, x

N
1 )→ min,

(64)

ẋk = (Tk − Tk−1)

Ñ ∑
i∈Nk∪{0}

fi(x
k) +

∑
i∈Sk

uki fi(x
k)

é
, k = 1, . . . , N,

(65)

Ṫk = 0, k = 1, . . . , N − 1,

(66)

η(x1
0, x

N
1 ) = 0,

(67)

xk1 = xk+1
0 , k = 1, . . . , N − 1.

(68)

Denote by (TP) the problem consisting of equations (64)-(68). The link
between the original problem (CP) and the transformed one (TP) is given
in Lemma 8.5 below. Set for each k = 1, . . . , N :

x̂ks := x̂(T̂k−1 + (T̂k − T̂k−1)s), for s ∈ [0, 1],(69)

ûki,s := ûi(T̂k−1 + (T̂k − T̂k−1)s), for i ∈ Sk, a.a. s ∈ [0, 1].(70)

Set

(71) Ŵ := ((x̂k)Nk=1, (û
k
i )
N
k=1,i∈Sk , (T̂k)

N−1
k=1 ).

Lemma 8.5. If ŵ is a Pontryagin minimum of (CP), then Ŵ is a weak
solution of (TP).

Proof. The idea of the proof is to derive the weak optimality of Ŵ from
the Pontryagin optimality of ŵ and condition (63). Since ŵ is a Pontryagin
minimum for (CP), there exists ε > 0 such that ŵ is a minimum in the set
of feasible trajectories w = (x, u) satisfying

(72) ‖x− x̂‖∞ < ε, ‖u− û‖1 < ε, ‖u− û‖∞ < 1.

Consider δ̄, ε̄ > 0, and a feasible solution ((xk), (uki ), (Tk)) for (TP) such
that

(73) |Tk − T̂k| ≤ δ̄, ‖uki − ûki ‖∞ < ε̄, for all k = 1, . . . , N.

We shall relate ε in (72) with δ̄ and ε̄ in (73). Consider an index k = 1, . . . , N.
Denote Ik := [Tk−1, Tk], and define for each i = 1, . . . ,m :

(74) ui,t :=


0, if t ∈ Ik and i ∈ Ek,

uki

(
t−Tk−1

Tk−Tk−1

)
, if t ∈ Ik and i ∈ Sk,

1, if t ∈ Ik and i ∈ Nk.
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Let x be the solution of (2) associated to u and having x0 = x1
0. We shall

prove that (x, u) is feasible for the original problem (CP). Observe that

condition (68) implies that xt = xk
(
t−Tk−1

Tk−Tk−1

)
when t ∈ Ik, and thus x1 =

xN1 . It follows that (3) holds. We shall check condition (60). For i ∈ Ek∪Nk,
it follows from the definition in (74). Consider now i ∈ Sk. Since (63) holds,
by (70) we get

ρ < ûki,s < 1− ρ, a.e. on ]0, 1[.

Thus, by (73) and if ε̄ < ρ, we get 0 < uki,s < 1 a.e. on [0, 1]. This yields

0 < ui,t < 1, a.e. on Ik,

and thus the feasibility of (x, u) for (CP).
We now estimate ‖u− û‖1. For k = 1, . . . , N and i ∈ Sk,

(75)

∫
Ik∩Îk |ui,t − ûi,t|dt ≤

∫
Ik∩Îk

∣∣∣uki ( t−Tk−1

Tk−Tk−1

)
− ûki

(
t−Tk−1

Tk−Tk−1

)∣∣∣ dt
+
∫
Ik∩Îk

∣∣∣∣ûki ( t−Tk−1

Tk−Tk−1

)
− ûki

Å
t−T̂k−1

T̂k−T̂k−1

ã∣∣∣∣ dt.
Note that, by Assumption 8.3 and condition (62), each ûki is uniformly

continuous on Îk, and thus, there exists θki > 0 such that |ûki,s − ûki,s′ | <
ε̄, whenever |s − s′| < θki. Set θ̄ := min θki > 0. Let δ̄ be such that, if

|Tk − T̂k| < δ̄, then

∣∣∣∣ t−Tk−1

Tk−Tk−1
− t−T̂k−1

T̂k−T̂k−1

∣∣∣∣ < θ̄. From (73) and (75) we get

(76)

∫
Ik∩Îk

|ui,t − ûi,t|dt < 2ε̄meas (Ik ∩ Îk).

Assume, w.l.o.g., that Tk < T̂k and note that
(77)∫ T̂k

Tk

|ui,t − ûi,t|dt ≤
∫ T̂k

Tk

∣∣∣∣∣uki
Ç
t− Tk−1

Tk − Tk−1

å
− ûki

(
t− T̂k−1

T̂k − T̂k−1

)∣∣∣∣∣ dt < δ̄ ε̄,

where we used (73) in the last inequality. From (76) and (77) we get that
‖ui − ûi‖1 < ε̄(2T + (N − 1)δ̄). Thus ‖u− û‖1 < ε if

(78) ε̄(2T + (N − 1)δ̄) < ε/m.

We conclude from (72) that ((xk), (uki ), (Tk)) is a minimum on the set of

feasible points satisfying (73) and (78). Thus Ŵ is a weak solution of (TP),
as it was to be proved. �

We shall next propose a shooting function associated to (TP). The pre-
Hamiltonian of the latter is

H̃ :=
N∑
k=1

(Tk − Tk−1)Hk,

where, denoting by pk the costate variable associated to xk,

(79) Hk := pk

Ñ ∑
i∈Nk∪{0}

fi(x
k) +

∑
i∈Sk

uki fi(x
k)

é
.



A SHOOTING ALGORITHM FOR PROBLEMS WITH SINGULAR ARCS 21

Observe that Assumption 8.4 made on û yields

− ∂

∂u
¨̃Hu � 0, on [0, 1],

i.e. the strengthened generalized Legendre-Clebsch condition holds in prob-
lem (TP) at ŵ. Hence we can define the shooting function for (TP) as it was
done in Section 4 for (P).

The endpoint Lagrangian is

˜̀ := ϕ0(x1
0, x

N
1 ) +

dη∑
j=1

βjηj(x
1
0, x

N
1 ) +

N−1∑
k=1

θk(x
k
1 − xk+1

0 ).

The costate equation for pk is given by

ṗk = −(Tk − Tk−1)DxkH
k,

with endpoint conditions

p1
0 = −Dx10

˜̀= −Dx10
ϕ0 −

dη∑
j=1

βjDx10
ηj ,(80)

pk1 = θk, for k = 1, . . . , N − 1,
pk0 = θk−1, for k = 2, . . . , N,

(81)

pN1 = DxN1
˜̀= DxN1

ϕ0 +

dη∑
j=1

βjDxN1
ηj .(82)

For the costate variables pTk associated with Tk we get the equations

(83) ṗTk = −Hk +Hk+1, pTk0 = 0, pTk1 = 0, for k = 1, . . . , N − 1.

Remark 8.2. We can sum up the conditions in (83) integrating the first one

and obtaining
∫ 1

0 (Hk+1−Hk)dt = 0, and hence, since Hk is constant on the
optimal trajectory, we get the equivalent condition

(84) Hk
1 = Hk+1

0 , for k = 1, . . . , N − 1.

So we can remove the shooting variable pTk and keep the continuity condition
on the pre-Hamiltonian.

Observe that (68) and (81) imply the continuity of the two functions
obtained by concatenating the states and the costates, i.e. the continuity of
X and P defined by

X0 := x1
0, Xs := xk(s− (k − 1)), for s ∈ (k − 1, k], k = 1, . . . , N,

P0 := p1
0, Ps := pk(s− (k − 1)), for s ∈ (k − 1, k], k = 1, . . . , N.

Thus, while iterating the shooting method, we can either include the condi-
tions (68) and (81) in the definition of the shooting function or integrate the

differential equations for xk and pk from the values xk−1
1 and pk−1

1 previously
obtained. The latter option reduces the number of variables and hence the
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size of the problem, but is less stable. We shall present below the shooting
function for the more stable case. To this end define the n× n−matrix

Ak :=
∑

i∈Nk∪{0}
f ′i(x̂

k) +
∑
i∈Sk

ûki f
′
i(x̂

k),

the n× |Sk|−matrix Bk with columns fi(x̂
k) with i ∈ Sk, and

Bk
1 := AkBk − d

dt
Bk.

We shall denote by gi(x
k, uk) the ith. column of Bk

1 for each i in Sk. Here
uk is the |Sk|−dimensional vector of components uki . The resulting shooting
function for (TP) is given by
(85)

S : IRNn+N−1 × IRNn+dη ,∗ → IRdη+(N−1)n × IR(N+1)n+N−1+2
∑
|Sk|,∗,

Ä
(xk0), (Tk), (p

k
0), β

ä
=: ν 7→ S(ν) :=



η(x1
0, x

N
1 )

(xk1 − xk+1
0 )k=1,...,N−1

p1
0 +Dx10

˜̀[λ](x1
0, x

N
1 )

(pk1 − pk+1
0 )k=1,...,N−1

pN1 −DxN1
˜̀[λ](x1

0, x
N
1 )

(Hk
1 −Hk+1

0 )k=1,...,N−1

(pk0fi(x
k
0))k=1,...,N, i∈Sk

(pk0gi(x
k
0, u

k
0))k=1,...,N, i∈Sk



.

Here, we put both conditions H̃u = 0 and ˙̃Hu = 0 at the beginning of the
interval since we have already pointed out in Remark 3.1 that all the possible
choices were equivalent.

Since problem (TP) has the same structure than problem (P) in Section
2, i.e. they both have free control variable (initial-final constraints), we can
apply Theorem 5.5 and obtain the analogous result below.

Theorem 8.6. Assume that ŵ is a Pontryagin minimum of (CP) such

that Ŵ defined in (71) satisfies condition (47) for problem (TP). Then the
shooting algorithm for (TP) is locally quadratically convergent.

Remark 8.3. Once system (85) is obtained, observe that two numerical im-
plementations can be done: one integrating each variable on the interval
[0, 1] and the other one, going back to the original interval [0, T ], and using
implicitly the continuity conditions (68), (81) and (84) at each switching
time. The latter implementation is done in the numerical tests of Section
10 below. In this case, the sensitivity with respect to the switching times is
obtained from the derivative of the shooting function.
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8.1. Reduced Systems. In some cases we can show that some of the con-
ditions imposed to the shooting function in (85) are redundant. Hence,
they can be removed from the formulation yielding a smaller system that
we will refer as reduced system and which is associated to a reduced shooting
function.

Recall that, when defining S, we are implicitly imposing that ¨̃Hu ≡ 0.

The latter condition together with ˙̃Hu,0 = H̃u,1 = 0, both included in the

definition of S, imply that ˙̃Hu ≡ H̃u ≡ 0. Hence,

(86) pk1fi(x
k
1) = pk1gi(x

k
1, u

k
1) = 0, for k = 1, . . . , N, i ∈ Sk,

and, in view of the continuity conditions (68) and (81),

(87) pk+1
0 fi(x

k+1
0 ) = pk+1

0 gi(x
k+1
0 , uk+1

0 ) = 0, for k = 1, . . . , N−1, i ∈ Sk.
Therefore, if a component of the control is singular on Ik and remains being
singular on Ik+1, then there is no need to impose the boundary conditions

on H̃u and ˙̃Hu since they are a consequence of the continuity conditions and

the implicit equation ¨̃Hu ≡ 0.
Observe now that from (79), (85) and previous two equations (86) and

(87) we obtain,

Hk
1 = pk1

∑
Nk∪{0}

fi(x
k
1) = pk+1

0

∑
Nk∪{0}\Sk+1

fi(x
k+1
0 ).

On the other hand,

Hk+1
0 = pk+1

0

∑
Nk+1∪{0}\Sk

fi(x
k+1
0 ).

Thus, Hk
1 = Hk+1

0 if Nk ∪ {0}\Sk+1 = Nk+1 ∪ {0}\Sk. The latter equality
holds if and only if at instant Tk all the switchings are either bang-to-singular
or singular-to-bang.

Definition 8.7 (Reduced shooting function). We call reduced shooting func-
tion and we denote it by Sr the function obtained from S defined in (85) by

removing the condition Hk
1 = Hk+1

0 whenever all the switchings occurring
at Tk are either bang-to-singular or singular-to-bang, and removing

pk0fi(x
k
0) = 0, pk0gi(x

k
0, u

k
0) = 0,

for k = 2, . . . , N and i ∈ Sk−1 ∩ Sk.

8.2. Square Systems. The reduced system above-presented can occasion-
ally result square, in the sense that the reduced function Sr has as many
variables as outputs. This situation occurs, e.g., in problems 1 and 3 of
Section 10. The fact that the reduced system turns out to be square is a
consequence of the structure of the optimal solution. In general, the optimal
solution û yields a square reduced system if and only if each singular arc is in
the interior of [0, T ] and at each switching time only one control component
switches. This can be interpreted as follows: each singular arc contributes to
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the formulation with two inputs that are its entry and exit times, and with
two outputs that correspond to pk0fi(x

k
0) = gi(x

k
0, u

k
0) = 0, being Ik the first

interval where the component is singular and i the index of the analyzed
component. On the other hand, whenever a bang-to-bang transition occurs,
it contributes to the formulation with one input for the switching time and
one output associated to the continuity of the pre-Hamiltonian (which is
sometimes expressed as a zero of the switching function).

9. Stability under Data Perturbation

In this section, we investigate the stability of the optimal solution under
data perturbation. We shall prove that, under condition (47), the solution is
stable under small perturbations of the data functions ϕ0, fi and η. Assume
for this stability analysis that the shooting system of the studied problem
can be reduced to a square one. We gave a description of this situation
in Subsection 8.2. Even if the above-mentioned square systems appear in
control constrained problems, we start this section by establishing a stability
result of the optimal solution for an unconstrained problem. Afterwards, in
Subsection 9.2, we apply the latter result to problem (TP) and this way we
obtain a stability result for the control constrained problem (CP).

9.1. Unconstrained Control Case. Consider then problem (P) presented
in Section 2, and the family of problems depending on the real parameter µ
given by:

(Pµ)

ϕµ0 (x0, xT )→ min,

ẋt =
m∑
i=0

ui,tf
µ
i (xt), a.e. on [0, T ],

ηµ(x0, xT ) = 0.

Assume that ϕµ0 : IR2n+1 → IR and ηµ : IR2n+1 → IRdη have Lipschitz-
continuous second derivatives in the variable (x0, xT ) and continuously dif-
ferentiable with respect to µ, and fµi : IRn+1 → IRn is twice continuously
differentiable with respect to x and continuously differentiable with respect
to the parameter µ. In this formulation, the problem (P0) associated to
µ = 0 coincides with (P), i.e. ϕ0

0 = ϕ0, f
0
i = fi for i = 0, . . . ,m and η0 = η.

Recall (47) in Theorem 5.4, and write the analogous condition for (Pµ) as
follows:

(88) Ω̄µ(ξ, y, h) ≥ ργ(ξ0, y, h), on Pµ2 ,
where Ω̄µ and Pµ2 are the second variation and critical cone associated to
(Pµ), respectively. Let Sµ be the shooting function for (Pµ). Thus, we can
write

Sµ : IRM × IR→ IRM , ( ν , µ ) 7→ Sµ(ν),

where we indicate with M the dimension of the domain of S. The following
stability result will be established.



A SHOOTING ALGORITHM FOR PROBLEMS WITH SINGULAR ARCS 25

Theorem 9.1 (Stability of the optimal solution). Assume that the shooting
system generated by problem (P) is square and let ŵ be a solution satisfying
the uniform positivity condition (47). Then there exists a neighborhood J ⊂
IR of 0, and a continuous differentiable mapping µ 7→ wµ = (xµ, uµ), from
J to W, where wµ is a weak solution for (Pµ). Furthermore, wµ verifies
the uniform positivity (88). Therefore, in view of Theorems 5.4 and 5.5, the
γ− growth holds, and the shooting algorithm for (Pµ) is locally quadratically
convergent.

Let us start showing the following stability result for the family of shooting
functions {Sµ}.

Lemma 9.2. Under the hypotheses of Theorem 9.1, there exists a neigh-
borhood I ⊂ IR of 0 and a continuous differentiable mapping µ 7→ νµ =
(xµ0 , p

µ
0 , β

µ), from I to IRM , such that Sµ(νµ) = 0. Furthermore, the so-
lutions (xµ, uµ, pµ) of the system of equations (2), (4), (11) with initial
condition (xµ0 , p

µ
0 ) and associated multiplier βµ provide a family of feasible

trajectories wµ := (xµ, uµ) verifying

(89) ‖xµ − x̂‖∞ + ‖uµ − û‖∞ + ‖pµ − p̂‖∞ + |βµ − β̂| = O(µ).

Proof. Since (47) holds, the result in Theorem 5.5 yields the non-singularity
of the square matrix DνS

0(ν̂). Hence, the Implicit Function Theorem is
applicable and we can then guarantee the existence of a neighborhood B ⊂
IRM of ν̂, a neighborhood I ⊂ IR of 0, and a continuously differentiable
function Γ : I → B such that

(90) Sµ(Γ(µ)) = 0, for all µ ∈ I.

Finally, write νµ := Γ(µ) and use the continuity of DΓ on I to get the first
part of the statement.

The feasibility of wµ holds since equation (90) is verified. Finally, the es-
timation (89) follows from the stability of the system of differential equation
provided by the shooting method. �

Once we obtained the existence of this wµ feasible for (Pµ), we may
wonder whether it is locally optimal. For this aim, we shall investigate the
stability of the sufficient condition (47). Denote by Ω̄µ and Pµ2 the quadratic
mapping and critical cone related to (Pµ), respectively. Given that all the
functions involved in Ω̄µ are continuously differentiable with respect to µ,
the mapping Ω̄µ itself is continuously differentiable with respect to µ. For
the perturbed cone we get the following approximation result.

Lemma 9.3. Assume the same hypotheses as in Theorem 9.1. Take µ ∈ I
and
(ξµ, yµ, hµ) ∈ Pµ2 . Then there exists (ξ, y, h) ∈ P2 such that

|ξµ0 − ξ0|+ ‖yµ − y‖2 + |hµ − h| = O(µ).

The definition below will be useful in the proof of previous Lemma.
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Definition 9.4. Define the function η̄ : U × IRn → IRdη , given by

η̄(u, x0) := η(x0, xT ),

where x is the solution of (2) associated to (u, x0).

Proof. [of Lemma 9.3] Recall that Dη̄(û, x̂0) is onto by Assumption 2.1.
Call back the definition of the critical cone C given in (38), and note that we
can rewrite it as C = {(z, v) ∈ W : G(z, v) = 0} = KerG, where G is an onto
linear application from W to IRdη , defined by G(z, v) := Dη(x̂0, x̂T )(z0, zT ).
In view of Goh’s Transformation (40),

Dη(x̂0, x̂T )(z0, zT ) = Dη(x̂0, x̂T )(ξ0, ξT +BT yT ),

for (z, v) ∈ W and (ξ, y) being its corresponding transformed direction.
Thus, the cone P2 can be written as P2 = {ζ ∈ H : K(ζ) = 0} = KerK,
with ζ := (ξ, y, h),H := X2×U2×IRn, and K(ζ) := Dη(x̂0, x̂T )(ξ0, ξT+BTh).
Then K ∈ L(H, IRdη) and it is surjective. Analogously, one has the identity
Pµ2 = {ζ ∈ H : Kµ(ζ) = 0} = KerKµ, with

(91) ‖Kµ −K‖L(H,IRdη ) = O(µ).

Let us now prove the desired stability property. Take ζµ ∈ Pµ2 = KerKµ
having ‖ζ‖µH = 1. Hence K(ζµ) = Kµ(ζµ) + (K−Kµ)(ζµ), and by estimation
(91),

(92) |K(ζµ)| = O(µ).

Observe that, since H = KerK ⊕ ImK>, there exists ζµ,∗ ∈ H∗ such that

(93) ζ := ζµ +K>(ζµ,∗) ∈ KerK.

This yields 0 = K(ζ) = K(ζµ) + KK>(ζµ,∗) = (K − Kµ)(ζµ) + KK>(ζµ,∗).
Given that K is onto, the operator KK> is invertible and thus

ζµ,∗ = −(KK>)−1(K −Kµ)(ζµ).

The estimation (92) above implies ‖ζµ,∗‖H∗ = O(µ). It follows then from
(93) that ‖ζµ − ζ‖H = O(µ), and therefore, the desired result holds. �

Proof. [of Theorem 9.1] We shall begin by observing that Lemma 9.2 pro-
vides a neighborhood I and a class of solutions {(xµ, uµ, pµ, βµ)}µ∈I satisfy-
ing (89). We shall prove that wµ = (xµ, uµ) satisfies the sufficient condition
(88) close to 0.

Suppose on the contrary that there exists a sequence of parameters µk → 0
and critical directions (ξµk , yµk , hµk) ∈ Pµk2 with γ(ξµk0 , yµk , hµk) = 1, such
that

Ω̄µk(ξµk , yµk , hµk) ≤ o(1).

Since Ω̄µ is Lipschitz-continuous in µ, from previous inequality we get

(94) Ω̄(ξµk , yµk , hµk) ≤ o(1).
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In view of Lemma 9.3, there exists for each k, a direction (ξk, yk, hk) ∈ P2

satisfying

(95) |ξk0 − ξ
µk
0 |+ ‖y

k − yµk‖2 + |hk − hµk | = O(µk).

Hence, by inequality (94) and given that ŵ satisfies (47),

ργ(ξk0 , y
k, hk) ≤ Ω̄(ξk, yk, hk) ≤ o(1).

However, the left hand-side of last inequality cannot go to 0 since (ξk0 , y
k, hk)

is close to (ξµk0 , yµk , hµk) by estimation (95), and the elements of the latter
sequence have unit norm. This leads to a contradiction. Hence, the result
follows. �

9.2. Control Constrained Case. In this paragraph, we aim to investigate
the stability of the shooting algorithm applied to the problem with control
bounds (CP) studied in Section 8. Observe that previous Theorem 9.1
guarantees the weak optimality for the perturbed problem when the control
constraints are absent. In case we have control constraints, this stability
result is applied to the transformed problem (TP) (given by equations (64)-
(68) of Section 8) yielding a similar stability property, but for which the
nominal point and the perturbed ones are weak optimal for (TP). This
means that they are optimal in the class of trajectories having the same
control structure, and switching times and singular arcs sufficiently close
in L∞. A trajectory satisfying optimality in this sense will be called weak-
structural optimal, and a formal definition would be as follows.

Definition 9.5 (Weak-structural optimality). A feasible trajectory ŵ for
problem (CP) is called a weak-structural solution iff its transformed tra-

jectory Ŵ given by (69)-(71) is a weak solution of (TP).

Theorem 9.6 (Sufficient condition for the extended weak minimum in the
control constrained case). Let ŵ be a feasible solution for (CP) satisfying
Assumptions 8.2 and 8.3. Consider the transformed problem (TP) and the

corresponding transformed solution Ŵ given by (69)-(71). If ŵ satisfies (47)
for (TP), then ŵ is an extended weak solution for (CP).

Proof. It follows from the sufficient condition in Theorem 5.4 applied to
(TP). �

Consider the family of perturbed problems

(CPµ)

ϕµ0 (x0, xT )→ min,

ẋt =
m∑
i=0

ui,tf
µ
i (xt), a.e. on [0, T ],

ηµ(x0, xT ) = 0,
0 ≤ ut ≤ 1, a.e on [0, T ].

The following stability result follows from Theorem 9.1.
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Theorem 9.7 (Stability in the control constrained case). Assume that the
reduced shooting system generated by the problem (CP) is square. Let ŵ

be a solution of (CP) and {T̂k}Nk=1 its switching times. Denote by Ŵ its

transformation via equation (71). Suppose that Ŵ satisfies the uniform
positivity condition (47) for problem (TP). Then there exists a neighborhood
J ⊂ IR of 0, such that for every parameter µ ∈ J , there exists a weak-
structural optimal trajectory wµ of (CPµ) with switching times {Tµk }Nk=1,
satisfying the estimation

N∑
k=1

|Tµk − T̂k|+
N∑
k=1

∑
i∈Sk

‖uµi − ûi‖∞,Iµ
k
∩Îk + ‖xµ − x̂‖∞ = O(µ),

where Iµk := [Tµk−1, Tk]. Furthermore, the transformed perturbed solution Wµ

verifies the uniform positivity (88) and hence, the quadratic growth in the
weak sense for problem (TP) holds, and the shooting algorithm for (CPµ) is
locally quadratically convergent.

9.3. Additional Analysis for the Scalar Control Case. Consider a
particular case where the control û is scalar. The lemma below shows that
the perturbed solutions are Pontryagin minima for (CPµ), provided that the
following assumption holds.

Assumption 9.8. (a) The switching function Hu is never zero in the interior
of a bang arc. Hence, if û = 1 on ]t1, t2[⊂ [0, T ], then Hu < 0 on ]t1, t2[, and
if û = 0 on ]t1, t2[, then Hu > 0 on ]t1, t2[.

(b) If T̂k is a bang-to-bang switching time then Ḣu(T̂k) 6= 0.

The property (a) is called strict complementarity for the control con-
straint.

Lemma 9.9. Suppose that û satisfies Assumption 9.8. Let wµ be as in
Theorem 9.7 above. Then wµ is a Pontryagin minimum for (CPµ).

Proof. We intend to prove that wµ satisfies the minimum condition (8) given
by the Pontryagin Maximum Principle. Observe that on the singular arcs,
Hµ
u = 0 since wµ is the solution associated to a zero of the shooting func-

tion. It suffices then to study the stability of the sign of Hµ
u on the bang

arcs around a switching time. First suppose that û has a bang-to-singular
switching at T̂k. Assume, without any loss of generality, that û ≡ 1 on Îk
and û is singular on [T̂k, T̂k+1]. Let us write

(96) Ḧµ
u = aµ + uµbµ,

where aµ and bµ := ∂
∂uḦ

µ
u are continuous functions on [0, T ], and contin-

uously differentiable with respect to µ, since they depend on xµ and pµ.
Assumption 8.4 yields b0 < 0 on [T̂k, T̂k+1] and, therefore,

(97) bµ < 0, on [Tµk , T
µ
k+1].
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Due to (96), the sign of Ḧµ
u around Tµk depends on uµ(Tµk +) − uµ(Tµk −).

However, this quantity is negative since uµ passes from its upper bound to
a singular arc. From the latter assertion and (97) it follows

Ḧµ
u (Tµk −) < 0,

and thus, Hµ
u is concave at the junction time Tµk . Since Hµ

u is null on
[Tµk , T

µ
k+1], its concavity implies that it has to be negative before entering

this arc. Hence, wµ respects the minimum condition on the interval Îk.
Consider now the case when û has a bang-to-bang switching at T̂k. Let us

begin by showing that Hµ
u (Tµk ) = 0. Suppose, on the contrary, that we have

Hµ
u (Tµk ) 6= 0. Then Hµ(Tµk +)−Hµ(Tµk −) 6= 0, contradicting the continuity

condition imposed on H in the shooting system. Hence Hµ
u (Tµk ) = 0. On the

other hand, since Ḣu(T̂k) 6= 0 by Assumption 9.8, the value Ḣµ
u (Tµk ) has the

same sign for small values of µ. This implies that Hµ
u has the same sign that

Hu, before and after Tµk (or before and after T̂k). The result follows. �

Remark 9.1. We end this analysis by mentioning that, if the transformed
solution Ŵ satisfies the uniform positivity (47) for (TP), then ŵ verifies the
sufficient condition established in Aronna et al. [33] and hence it is actually
a Pontryagin minimum. This follows from the fact that in condition (47) we
are allowed to perturb the switching times, and hence (47) is more restrictive
(or demanding) than the condition in [33].

10. Numerical Simulations

Now we aim to check numerically the extended shooting method described
above. More precisely, we want to compare the classical n × n shooting
formulation to an extended formulation with the additional conditions on
the pre-Hamiltonian continuity. We test three problems with singular arcs:
a fishing and a regulator problem, and the well-known Goddard problem,
which we have already studied in [40, 41]. For each problem, we perform
a batch of shootings on a large grid around the solution. We then check
the convergence and the solution found, as well as the singular values and
condition number of the Jacobian matrix of the shooting function.

10.1. Test Problems.

10.1.1. Fishing Problem. The first example we consider is a fishing problem
described in [42]. The state xt ∈ IR represents the fish population (halibut),
the control ut ∈ IR is the fishing activity, and the objective is to maximize
the net revenue of fishing over a fixed time interval. The coefficient (E−c/x)
takes into account the greater fishing cost for a low fish population. The
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problem is

(P1)


max

∫ T

0
(E − c/xt) ut Umaxdt,

ẋt = r xt (1− xt/k) − ut Umax,
0 ≤ ut ≤ 1, a.e. on [0, T ],
x0 = 70, xT free,

with T = 10, E = 1, c = 17.5, r = 0.71, k = 80.5 and Umax = 20.

Remark 10.1. The state and control were rescaled by a factor 106 compared
to the original data for a better numerical behavior.

Remark 10.2. Since we have an integral cost, we add a state variable to
adapt (P1) to the initial-final cost formulation. It is well-known that its
corresponding costate variable is constantly equal to 1.

The pre-Hamiltonian for this problem is

H := (c/x− E)uUmax + p[r x (1− x/k)− uUmax],

and hence the switching function

Φt = DuHt = Umax(c/xt − E − pt), ∀t ∈ [0, T ].

The optimal control follows the bang-bang law®
ût = 0 if Φt > 0,
ût = 1 if Φt < 0.

Over a singular arc, where Φ = 0, we assume that the relation Φ̈ = 0 gives
the expression of the singular control (t is omitted for clarity)

ûsingular =
k r

2(c/x̂− p̂)Umax

Ç
c

x̂
− c

k
− p̂+

2p̂x̂

k
− 2p̂x̂2

k2

å
.

The solution obtained for (P1) has the structure bang-singular-bang, as
shown in Figure 1. All the graphics in this article have been done with
Matlab.
Shooting formulations. Assuming the control structure, the shooting
unknowns are the initial costate and the endpoints of the singular arc,

ν := (p0, t1, t2) ∈ IR3.

The classical shooting formulation uses the entry conditions on t1

S1(ν) := (pT ,Φt1 , Φ̇t1).

The equation S1(ν) = 0 is a square nonlinear system, for which a quasi-
Newton method can be used. Note that, even if there is no explicit condition
on t2 in S, the value of pT does depend on t2 via the control switch.

The extended shooting formulation adds two conditions corresponding to
the continuity of the pre-Hamiltonian at the junctions between bang and
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Figure 1. Fishing Problem

singular arcs. We denote [H]t := Ht+−Ht− the pre-Hamiltonian jump, and
define

S̃1(ν) := (p10,Φt1 , Φ̇t1 , [H]t1 , [H]t2).

To solve S̃1(ν) = 0 we use a nonlinear least-square algorithm (see paragraph
10.2 below for more details).

10.1.2. Regulator Problem. The second example is the linear-quadratic reg-
ulator problem described in Aly [43]. We want to minimize the integral of
the sum of the squares of the position and speed of a mobile over a fixed
time interval, the control being the acceleration.

(P2)



min 1
2

∫ T

0

Ä
x2

1,t + x2
2,t

ä
dt,

ẋ1,t = x2,t,
ẋ2,t = ut,
−1 ≤ ut ≤ 1, a.e. on [0, T ],
x0 = (0, 1), xT free, T = 5.

The corresponding pre-Hamiltonian and the switching function are

H := 1
2(x2

1 + x2
2) + p1x2 + p2u,

Φt := DuHt = p2,t.

The bang-bang optimal control satisfies

ût = −sign p̂2,t if Φt 6= 0.
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The singular control is again obtained from Φ̈ = 0 and verifies

ûsingular,t = x̂1,t.

The solution for this problem has the structure bang-singular, as shown
on Figure 2.
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Figure 2. Regulator Problem

Shooting formulations. Assuming the control structure, the shooting
unknown is

ν := (p1,0, p2,0, t1) ∈ IR3.

For the classical shooting formulation, in order to have a square system,
we can, for instance, combine the two entry conditions on Φ and Φ̇, since
we only have one additional unknown which is the entry time t1. Thus we
define

S2(ν) := (p1,T , p2,T ,Φ
2
t1 + Φ̇2

t2).

The extended formulation does not require such a trick, we simply have

S̃2(ν) := (p1,T , p2,T ,Φt1 , Φ̇t1 , [H]t1).

10.1.3. Goddard Problem. The third example is the well-known Goddard
problem, introduced in Goddard [44] and studied for instance in Seywald-
Cliff [45]. This problem models the ascent of a rocket through the atmo-
sphere, and we restrict here ourselves to vertical (unidimensional) trajec-
tories. The state variables are the altitude, speed and mass of the rocket
during the flight, for a total dimension of 3. The rocket is subject to gravity,
thrust and drag forces. The final time is free, and the objective is to reach a
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certain altitude with a minimal fuel consumption, i.e. a maximal final mass.

(P3)



max mT ,
ṙ = v,
v̇ = −1/r2 + 1/m(Tmaxu−D(r, v)),
ṁ = −bTmaxu,
0 ≤ ut ≤ 1, a.e. on [0, 1],
r0 = 1, v0 = 0, m0 = 1,
rT = 1.01, T free,

with the parameters b = 7, Tmax = 3.5 and the drag given by

D(r, v) := 310v2e−500(r−1).

The pre-Hamiltonian function here is

H := prv + pv
î
− 1/r2 + 1/m(Tmaxu−D(r, v))

ó
− pmbTmaxu,

where pr, pv and pm are the costate variables associated to r, v and m,
respectively. The switching function is

Φ := DuH = Tmax[−pmb+ pv/m].

Hence, the bang-bang optimal control is given by®
ût = 0 if Φt > 0,
ût = 1 if Φt < 0,

and the singular control can be obtained by formally solving Φ̈ = 0. The
expression of ûsingular, however, is quite complicated and is not recalled
here. The solution for this problem has the well-known typical structure
1-singular-0, as shown on Figures 3 and 4.
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Figure 3. Goddard Problem

Shooting formulations. Once again fixing the control structure, the
shooting unknowns are

ν = (p1,0, p2,0, p3,0, t1, t2, T ) ∈ IR6.
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Figure 4. Goddard Problem

Here it is the classical shooting formulation with the entry conditions on t1

S3(ν) := (x1,T − 1.01, p2,T , p3,T + 1,Φt1 , Φ̇t1 , HT ),

while the extended formulation is

S̃3(ν) := (x1,T − 1.01, p2,T , p3,T + 1,Φt1 , Φ̇t1 , HT , [H]t1 , [H]t2).

10.2. Results. All tests were run on a 12-core platform, with the paral-
lelized (OPENMP) version of the SHOOT ([46]) package. The ODE solver
is a fixed step 4th. order Runge Kutta method with 500 steps. The classical
shooting is solved with a basic Newton method, and the extended shooting
with a basic Gauss-Newton method. We do not use improved versions of
these schemes since we aim to study the behavior of the shooting algorithm
in its pure state. Both algorithms use a fixed step length of 1 and a max-
imum of 1000 iterations. In addition to the singular/bang structure, the
value of the control on the bang arcs is also fixed according to the expected
solution.

The values for the initial costates are taken in [−10, 10], and the values
for the entry/exit times in [0, T ] for (P1) and (P2). For (P3), the entry, exit
and final times are taken in [0, 0.2]. The number of grid points is set around
to 10000 for the three problems. These grids for the starting points are
quite large and rough, which explains the low success rate for (P1) and (P3).
However, the solution was found for all three problems.

For each problem, the results are summarized in 3 tables. The first table
indicates the total CPU time for all shootings over the grid, the success
rate of convergence to the solution, the norm of the shooting function at
the solution, and the objective value. The second table recalls the solution
found by both formulations: initial costate and junction times, as well as
final time for (P3). The third table gives the singular values for the Jacobian
matrix at the solution, as well as its condition number κ := σ1/σn.
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We observe that for all three problems (P1), (P2) and (P3), both formu-
lations converge to the same solution, ν̂ and the objective being identical to
more than 6 digits. The success rate over the grid, total CPU time and norm
of the shooting function at the solution are close for both formulations. Con-
cerning the singular values and condition number of the Jacobian matrix, we
note that, for (P2), the extended formulation has the smallest singular value
going from 10−8 to 1, thus improving the condition number by a factor 108.
This is caused by the combination of the two entry conditions into a single
one that we used in the classical formulation for this problem: as the sin-
gular arc lasts until tf , there is only one additional unknown, the entry time.

Overall, these results validate the extended shooting formulation, which
perform at least as well as the classical formulation and has a theoretical
foundation.

Remark 10.3. Several additional tests runs were made using the HYBRD
([47]) and NL2SNO ([19]) solvers for the classical and extended shootings
instead of the basic Newton and Gauss-Newton method. The results were
similar, apart from a higher success rate for the HYBRD solver compared
to NL2SNO.

Remark 10.4. We also tested both formulations using the sign of the switch-
ing function to determine the control value over the bang arcs, instead of
forcing the value. However, this causes a numerical instability at the exit of
a singular arc, where the switching function is supposed to be 0 but whose
sign determines the control at the beginning of the following bang arc. This
instability leads to much more erratic results for both shooting formulations,
but with the same general tendencies.

Problem 1
Shooting grid: [−10, 10]× [0, T ]2, 213 gridpoints, 9261 shootings.

Shooting CPU Success Convergence Objective
Classical 74 s 21.28 % 1.43E-16 -106.9059979
Extended 86 s 22.52 % 6.51E-16 -106.9059979

Table 1 (P1) CPU times, success rate, convergence and objective

Shooting p0 t1 t2
Classical -0.462254744307241 2.37041478456004 6.98877992494185
Extended -0.462254744307242 2.37041478456004 6.98877992494185

Table 2 (P1) solution ν̂ found

Shooting σ1 σ2 σ3 κ
Classical 3.61 0.43 5.63E-02 64.12
Extended 27.2 1.71 3.53E-01 77.05
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Table 3 (P1) singular values and condition number for the Jacobian

Problem 2
Shooting grid: [−10, 10]2 × [0, T ], 213 gridpoints, 9261 shootings.

Shooting CPU Success Convergence Objective
Classical 468 s 94.14 % 1.17E-16 0.37699193037
Extended 419 s 99.36 % 1.22E-13 0.37699193037

Table 4 (P2) CPU times, success rate, convergence and objective

Shooting p1,0 p2,0 t1
Classical 0.942173346483640 1.44191017584598 1.41376408762863
Extended 0.942173346476773 1.44191017581021 1.41376408762893

Table 5 (P2) solution ν̂ found

Shooting σ1 σ2 σ3 κ
Classical 24.66 5.19 1.96E-08 1.26E+09
Extended 24.70 5.97 1.13 21.86

Table 6 (P2) singular values and condition number for the Jacobian

Problem 3
Shooting grid: [−10, 10]3 × [0, 0.2]3, 43 × 53 gridpoints, 8000 shootings.

Shooting CPU Success Convergence Objective
Classical 42 s 0.82 % 5.27E-13 -0.634130666
Extended 52 s 0.85 % 1.29E-10 -0.634130666

Table 7 (P3) CPU times, success rate, convergence and objective

S. pr,0 pv,0 pm,0
C. -50.9280055899288 -1.94115676279896 -0.693270270795148
E. -50.9280055901093 -1.94115676280611 -0.693270270787320

t1 t2 tf
C. 0.02350968417421373 0.06684546924474312 0.174129456729642
E. 0.02350968417420884 0.06684546924565564 0.174129456733106

Table 8 (P3) solution ν̂ found (S.: Shooting, C.: Classical, E.: Extended)

Shooting σ1 σ2 σ3 σ4 σ5 σ6 κ
Classical 6182 9.44 8.13 2.46 0.86 1.09E-03 5.67E+06
Extended 6189 12.30 8.23 2.49 0.86 1.09E-03 5.67E+06

Table 9 (P3) singular values and condition number for the Jacobian
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11. Conclusions

Theorems 5.5 and 8.6 provide a theoretical support for an extension of
the shooting algorithm for problems with all the control variables entering
linearly and having singular arcs. The shooting functions here presented
are not the ones usually implemented in numerical methods as we have
already pointed out in previous section. They come from systems having
more equations than unknowns in the general case, while before in practice
only square systems have been used. Anyway, we are not able to prove the
injectivity of the derivative of the shooting function when we remove some
equations, i.e. we are not able to determine which equations are redundant,
and we suspect that it can vary for different problems.

The proposed algorithm was tested in three simple problems, where we
compared its performance with the classical shooting method for square
systems. The percentages of convergence are similar in both approaches, the
singular values and condition number of the Jacobian matrix of the shooting
function coincide in two problems, and are better for our formulation in one
of the problems. Summarizing, we can observe that the proposed method
works as well as the one currently used in practice and has a theoretical
foundation.

In the bang-singular-bang case, as in the fishing and Goddard’s problems,
our formulation coincides with the algorithm proposed by Maurer [5].

Whenever the system can be reduced to a square one, given that the
sufficient condition for the non-singularity of the Jacobian of the shooting
function coincides with a sufficient condition for optimality, we could estab-
lished the stability of the optimal local solution under small perturbations
of the data.
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