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ZERO-SUM STOCHASTIC GAMES WITH PARTIAL INFORMATION

AND AVERAGE PAYOFF

SUBHAMAY SAHA

Abstract. We consider discrete time partially observable zero-sum stochastic game with
average payoff criterion. We study the game using an equivalent completely observable
game. We show that the game has a value and also we come up with a pair of optimal
strategies for both the players.

1. Introduction

Stochastic games were introduced by Shapley in [9]. Following this pioneering work there

has been a lot of work on stochastic games. For a survey on zero-sum games we refer to [10].

Most of the available literature in this category concerns stochastic games with complete

observation, i.e., at each stage, the state of the game is completely known to the play-

ers. Although there is considerable amount of literature (see [2], [3], [4] and the references

therein) available on partially observable Markov decision processes (POMDP) of which

stochastic games are a generalisation, the corresponding literature in partially observable

stochastic games is rather sparse. In [5] the authors study zero-sum games for partially

observable stochastic games under discounted payoff criterion. In this article we investigate

the same problem with the average payoff criterion. In [3] the authors study POMDP

under the average cost criteria using the approach based on Athreya-Ney-Nummelin con-

struction of pseudo-atoms ([1], [8]) as described in [7]. In this article we extend those ideas

to the zero-sum game case. Zero-sum stochastic games are generally studied by solving the

corresponding dynamic programming or Shapely equations [10]. This approach has also

been carried out for partially observable games in [5]. In this paper instead of solving the

appropriate Shapely equations we solve two dynamic programming type inequalities, which

in turn lead to the existence of a value and saddle point strategies. Also our article extends

the idea of using the pseudo-atom approach in solving MDP, to the stochastic game setup.

Under certain Lyapunov assumption we use the pseudo-atom construction to carry out a

coupling argument, which gives us appropriate bound on the relative α−discounted value

function. This bound then enables us to make appropriate limiting arguments.
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The rest of the paper is organized as follows. In Section 2 we describe the model. In

Section 3 we use the vanishing discount approach to prove the existence of a value and a

saddle-point equilibrium for the POSG. We conclude with a few remarks in Section 4.

2. Preliminaries and Model Description

Let X,Y and U, V be Polish spaces representing state, observation and action spaces for

player 1 and player 2 respectively. We further assume that U and V are compact. For any

Polish space S, we denote by P(S) the Polish space of probability measures on S and by

B(S) the Borel σ-field on S. Let {Xn} be an X-valued partially observed controlled Markov

chain with Y -valued observation process {Yn}. Let

(x, u, v) ∈ X × U × V → p(dz, dy|x, u, v) ∈ P(X × Y )

be a transition kernel which is assumed to be continuous in its arguments. Let λ denote a

regular Borel radon measure on X. We assume the existence of a probability measure η on

Y and a ϕ ∈ Cb(X × U × V ×X × Y ), with ϕ(·) > 0 such that

p(dz, dy|x, u, v) = ϕ(x, u, v, z, y)λ(dz)η(dy) .

The chain is controlled by two players. The first player chooses his actions from U and

player 2 chooses his actions from V . Let {Un} be an U -valued control sequence of player 1

and {Vn} be a V -valued control sequence of player 2. The transition probability function of

the controlled chain {Xn} together with the observation chain {Yn} is given by

P(Xn+1 ∈ A,Yn+1 ∈ B|Xm, Ym, Um, Vm,m ≤ n) =

∫

A

∫

B

ϕ(Xn, Un, Vn, z, y)λ(dz), η(dy)

for A ∈ B(X) and B ∈ B(Y ). The partially observed stochastic game (POSG) under

ergodic payoff criteria is the following:

(i) The initial distribution of the (unobservable) state process is ψ which is known to both

the players; Y0 is deterministic, say Y0 = y∗ for some fixed element y∗ in Y .

(ii) At the 0th epoch the players based on the knowledge that the initial distribution of

the state process is ψ, independently choose actions u0 ∈ U and v0 ∈ V . Consequently,

conditional on the event X0 = x0 player 1 gets an (unobservable) payoff c(x0, u0, v0) from

player 2. Here

c : X × U × V → R+

is assumed to be a bounded continuous function. The next state and observation pair

(X1, Y1) is generated according to the stochastic kernel p(dz, dy|x0, u0, v0).

(iii) Now conditioned on the event Y1 = y1 the players again choose their actions and so on.

This process is repeated over an infinite time horizon.

(iv) Each player can recall at any time the observations and actions of the past.
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We now construct a probability space on which all the random variables are defined. the

canonical sample space is defined as

Ω := (X × Y × U × V )∞ .

A generic element is of the form

ω = (x0, y0, u0, v0, x1, · · · ) , xi ∈ X, yi ∈ Y, ui ∈ U, vi ∈ V .

The history spaces are defined as

H0 = X × Y, Hn+1 := Hn × U × V ×X × Y .

The state, observation, actions and history processes denoted by {Xn}, {Yn}, {Un}, {Vn}, {Hn}

respectively are defined by the projections

Xn(ω) = xn Yn(ω) = yn

Un(ω) = un Vn(ω) = vn

Hn(ω) = (x0, y0, u0, v0, · · · , un−1, vn−1, xn, yn) .

The entire history up to time n is not available to the players for decision making at time

n. The players have to make their decisions based on the observed history or information

vector

in := (y0, u0, v0, · · · , un−1, vn−1, yn)

and the initial distribution ψ. We define the information spaces as follows:

I0 := Y, In+1 := In × U × V × Y .

The information process is defined by

In(ω) = (y0, u0, v0, · · · , un−1, vn−1, yn) .

An admissible strategy for player 1 is a sequence π1 = {π1n} of stochastic kernels on U

given P(X) × In. The set of admissible strategies for player 1 is denoted by Π1. Similarly

an admissible strategy for player 2 is a sequence π2 = {π2n} of stochastic kernels on V

given P(X) × In. The set of admissible strategies for player 2 is denoted by Π2. With ψ in

P(X) and a pair of admissible strategies (π1, π2) ∈ Π1 ×Π2 specified, there exists a unique

probability measure P
π1,π2

ψ on (Ω,B(Ω)) defined by

P
π1,π2

ψ (dx0, dy0, du0, dv0, · · · , dun−1, dvn−1, dxn, dyn)

= ψ(dx0)δy∗(dy0)π
1
0(du0|ψ, y0)π

2
0(dv0|ψ, y0)p(dx1, dy1|x0, u0, v0) · · · (2.1)

π1n−1(dun−1|ψ, y0, u0, v0, · · · , yn−1)π
2
n−1(dun−1|ψ, y0, u0, v0, · · · , yn−1)p(dxn, dyn|xn−1, un−1, vn−1) .

We now describe the payoff criterion. Given the initial distribution ψ and a pair of strategies

(π1, π2) ∈ Π1 ×Π2, the average payoff criterion is given by

Vπ1,π2(ψ) = lim inf
n→∞

1

n
E
π1,π2

ψ

n−1
∑

k=0

c(Xk, Uk, Vk) (2.2)
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where E
π1,π2

ψ is the expectation with respect to the probability measure P
π1,π2

ψ . Player 1

wishes to maximise Vπ1,π2(ψ) over all his admissible strategies and player 2 wishes to min-

imise the same over all his admissible strategies. A strategy π∗1 is said to be optimal for

player 1 if

Vπ∗1,π2(ψ) ≥ inf
Π2

sup
Π1

Vπ1,π2(ψ)

for any π2 ∈ Π2. Similarly a strategy π∗2 is said to be optimal for player 2 if

Vπ1,π∗2(ψ) ≤ sup
Π1

inf
Π2

Vπ1,π2(ψ)

for any π1 ∈ Π1. The game is said to have a value if

inf
Π2

sup
Π1

Vπ1,π2(ψ) = sup
Π1

inf
Π2

Vπ1,π2(ψ) .

If a pair of optimal strategies (π∗1, π∗2) exists for both the players then the pair (π∗1, π∗2)

is called a saddle point equilibrium. Now since the original state process is unobservable we

define another state variable which is observable to the players. In order to achieve that, we

have by conditioning

Vπ1,π2(ψ) = lim inf
n→∞

1

n

n−1
∑

m=0

E
π1,π2

ψ [c̃(Ψm, Um, Vm)] , (2.3)

where {Ψn} is the regular conditional law of Xn given In, satisfying the recursion

Ψn+1(dz) =

∫

X
Ψn(dx)ϕ(x,Un, Vn, z, Yn+1)λ(dz)

∫

X

∫

X
Ψn(dx)ϕ(x,Un, Vn, z, Yn+1)λ(dz)

, n ≥ 0 (2.4)

and

c̃(ψ, u, v) =

∫

X

c(x, u, v)ψ(dx) .

Equation (2.4) is known as the filtering equation. Note that since Y0 is deterministic, Ψ0 =

the law of X0. This allows us to consider an equivalent stochastic game with P(X)-valued

state process {Ψn} with its evolution given by (2.4), under the same set of admissible

strategies and with the payoff criterion given by (2.3). This is a completely observable

stochastic game (COSG) because Ψn is known to both the players via the information

upto time n. Thus we can solve the original POSG by solving this equivalent COSG. Now

in order to show that the POSG model under the average payoff criterion has a saddle

point equilibrium and a value we impose the following Lyapunov type assumptions on our

model.

(A1) There exists inf-compact functions h and V ∈ C(X) satisfying h ≥ 1, such that under

any pair of admissible strategies and for any initial distribution

E(V(Xn+1)|Fn)− V(Xn) ≤ −h(Xn) + cIK(Xn) (2.5)

where K is some compact set with λ(K) > 0 and Fn = σ(Xk, Yk, Uk, Vk, k ≤ n). We have

dropped the super- and subscripts on E for notational convenience. Let

τK = min{n ≥ 0 : Xn ∈ K} .
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Then it is well known that ([7])

E[τK |X0 = x] = O(V(x)) .

Define

P0(X) = {µ ∈ P(X) :

∫

Vdµ <∞} .

Now using (2.5) we obtain

E[V(Xn+1)] = E[

∫

X

V(x)dΨn+1(dx)]

≤ E[V(Xn)] + constant

= E[

∫

X

V(x)dΨn(dx)] + constant .

Hence it follows that if Ψ0 ∈ P0(X) then Ψn ∈ P0(X), ∀n ≥ 1. We assume that Ψ0 ∈ P0(X)

and hence {Ψn} can be viewed as a P0(X)-valued process. We further assume that

(A2) Under all admissible strategies and for any initial distribution

lim
n→∞

E[V(Xn)]

n
= 0 .

3. Saddle Point Strategies and Value

We follow the vanishing discount approach to solve the average cost problem. Let α ∈

(0, 1). Then consider the following discounted payoff POSG:

V π1,π2

α (ψ) = E
π1,π2

ψ [

∞
∑

k=0

αkc(Xk, Uk, Vk)]

Player 1 tries to maximise the above quantity over all his admissible strategies and player

2 tries to minimise the same quantity over his admissible strategies. The definitions for the

value of the game and for the optimal strategies can be given analogous to that of average

payoff criterion. The following theorem can be proved using the equivalence with theCOSG

as discussed above and standard arguments as in [5]:

Theorem 3.1. The discounted payoff POSG has a value and the value function Vα(.) is

the unique bounded solution of the following pair of Shapley equations:

Vα(ψ) = min
ν∈P(V )

max
µ∈P(U)

[

¯̃c(ψ, µ, ν) + α

∫

P0(X)
Vα(ψ

′)φ(dψ′|ψ, µ, ν)

]

= max
µ∈P(U)

min
ν∈P(V )

[

¯̃c(ψ, µ, ν) + α

∫

P0(X)
Vα(ψ

′)φ(dψ′|π, µ, ν)

]

(3.1)

where

φ(dψ′|ψ, µ, ν) =

∫

U

∫

V

φ̃(dψ′|ψ, u, v)µ(du)ν(dv)

with φ̃(dψ′|ψ, u, v) being the controlled transition kernel of the Markov chain {Ψn}, and

¯̃c(ψ, µ, ν) =

∫

U

∫

V

c̃(ψ, u, v)µ(du)ν(dv) .
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Moreover let u∗ : P0(X) → P(U) be a measurable function such that u∗(.) is an outer

maximiser of (3.1) then the strategy {π∗n
1} given by

π∗n
1(·|in) = u∗(ψn)(·) .

is optimal for player 1. Further let v∗ : P0(X) → P(V ) be a measurable function such that

v∗(.) is an outer minimiser of (3.1) then {π∗n
2} given by

π∗n
2(·|in) = v∗(ψn)(·) .

is an optimal strategy for player 2.

Now for the vanishing discount approach we need to compare Vα(.) for two different

values of its argument. For that we construct on a common probability space two X-valued

controlled Markov chains as above, controlled by the same pair of strategies but with dif-

ferent initial distributions ψ̂ and ψ̃. This is done by a modification of the construction in

the previous section. Let {π1n} be an admissible strategy for player 1 and let {π2n} be an

admissible strategy for player 2. Define

Ω̄ = (X ×X × Y × Y × U × V )∞

with F̄ being the corresponding product Borel σ-algebra. Define P̄
π1,π2

ψ̂,ψ̃
, a probability mea-

sure on (Ω̄, F̄) by

P̄
π1,π2

ψ̂,ψ̃
(dx̂0, dx̃0, dŷ0, dỹ0, du0, dv0, dx̂1, dx̃1, dŷ1, dỹ1, du1, dv1, · · · , dun−1, dvn−1, dx̂n, dx̃n, dŷn, dỹn)

= ψ̂(dx̂0)ψ̃(dx̃0)δy∗(dŷ0)δy∗(dỹ0)π
1

0
(du0|ψ̂, ŷ0)π

2

0
(dv0|ψ̃, ỹ0)p(dx̂1, dŷ1|x̂0, u0, v0)p(dx̃1, dỹ1|x̃0, u0, v0)

π1

1
(du1|ψ̂, ŷ0, u0, v0, ŷ1)π

2

1
(dv1|ψ̃, ỹ0, u0, v0, ỹ1) · · ·π

1

n−1
(dun−1|ψ̂, ŷ0, u0, v0, ŷ1, · · · , un−2, vn−2, ŷn−1)

π2

n−1(dvn−1|ψ̃, ỹ0, u0, v0, ỹ1, · · · , un−2, vn−2, ỹn−1)p(dx̂n, dŷn|x̂n−1, un−1, vn−1)p(dx̃n, dỹn|x̃n−1, un−1, vn−1) .

On (Ω̄, F̄ , P̄), define the processes {X̂n}, {X̃n}, {Ŷn}, {Ỹn}, {Un}, {Vn} canonically. Then

the Markov chains {X̂n}, {X̃n} on (Ω̄, F̄ , P̄) form the desired pair. For notational simplicity

we omit the superscripts and subscripts on P̄. We denote by X̄n = (X̂n, X̃n) and the

associated observation pair by Ȳn = (Ŷn, Ỹn). Then {X̄n} is an X2 valued Markov chain.

Let the controlled transition kernel be denoted by

p̄(dz̄, dȳ|x̄, u, v) ∈ P(X2 × Y 2)

for x̄ = (x1, x2) ∈ X2. Define G = K2 and define Θ ∈ P(X2) by

Θ(A) =
λ× λ(A ∩G)

λ(K)2

for any Borel set A of X2. Then if follows from our assumptions that

p̄(A× Y 2|x̄, u, v) ≥ δIG(x̄)Θ(A)

where δ = 1
2(infx∈K,u∈U,v∈V,z∈K

∫

Y
ϕ(x, u, v, z, y)η(dy)λ(K))2 . This is the minorization con-

dition of [7] in the present context which enables us to carry out the Athreya-Ney-Nummelin

construction of pseudo-atom [7].



ZERO-SUM GAMES 7

Let H = X2 and H∗ = X2 × {0, 1}. Endow H∗ with its Borel σ−field. For any measure

µ on H, define a measure µ∗ on H∗ as follows: For Borel A ⊂ H, let A0 = A × {0} and

A1 = A× {1}. Then

µ∗(A0) = (1− δ)µ(A ∩K2) + µ(A ∩ (K2)c)

µ∗(A1) = δµ(A ∩K2) .

For a measure µ on H × Y 2, we define the measure µ∗ on H∗ × Y 2 by

µ∗(A0 ×D) = (1− δ)µ((A ∩K2)×D) + µ((A ∩ (K2)c)×D)

µ∗(A1 ×D) = δµ((A ∩K2)×D) ,

for D ⊂ Y 2 Borel. On a suitable probability space (Ω∗,F∗,P∗), define an H∗-valued con-

trolled Markov chain {X∗
n, i

∗
n} (where X∗

n = (X̂∗
n, X̃

∗
n)) with U - valued control process {U∗

n}

and V - valued control process {V ∗
n } and Y 2-valued observation process {Y ∗

n }, such that:

(i) The controlled transition kernel of {X∗
n, i

∗
n, Y

∗
n } is given by: for x = (x0, i0) ∈ H

∗,

q(dx̄, dȳ|x, u, v) = p̄∗(dx̄, dȳ|x0, u, v), x ∈ H0 −K2 × {0}

=
1

1− δ
(p̄∗(dx̄, dȳ|x0, u, v)− δΘ∗(dx̄)η2(dȳ)), x ∈ K2 × {0}

= Θ∗(dx̄)η2(dȳ), x ∈ H1 ,

(ii)

P
∗((X∗

0 , i
∗
0) ∈ A0, Y

∗
0 ∈ A′, U∗

0 ∈ ∆, V ∗
0 ∈ Γ) =(1− δ)P̄(X̄0 ∈ A ∩K2, Ȳ0 ∈ A′, U0 ∈ ∆, V0 ∈ Γ)

+ P̄(X̄0 ∈ A ∩ (K2)c, Ȳ0 ∈ A′, U0 ∈ ∆, V0 ∈ Γ)

P
∗((X∗

0 , i
∗
0) ∈ A1, Y

∗
0 ∈ A′, U∗

0 ∈ ∆, V ∗
0 ∈ Γ) = δP̄(X̄0 ∈ A ∩K2, Ȳ0 ∈ A

′, U0 ∈ ∆, V0 ∈ Γ)

for A ⊂ H,A′ ⊂ Y 2,∆ ⊂ U,Γ ⊂ V Borel,

(iii) and

P
∗(U∗

n ∈ ∆, V ∗
n ∈ Γ|(X∗

m, i
∗
m, Y

∗
m) = (xm, im, ym),m ≤ n,U∗

k = uk, V
∗
k = vk, k < n)

= P̄(Un ∈ ∆, Vn ∈ Γ|(X̄m, Ȳm) = (xm, ym),m ≤ n,Uk = uk, Vk = vk, k < n) for n ≥ 1 .

From the above construction the following lemmas can be proved.

Lemma 3.2. The set K2 × {1} is an accessible atom of {(X∗
n, i

∗
n)} in the sense of Meyn

and Tweedie ([7]).

Lemma 3.3. For any Borel Ai ⊂ H,Bi ⊂ Y 2,∆i ⊂ U,Γi ⊂ V, 0 ≤ i ≤ n, n ≥ 0

P
∗

(

((X∗
0 , i

∗
0, Y

∗
0 , U

∗
0 , V

∗
0 ), · · · , (X

∗
n, i

∗
n, Y

∗
n , U

∗
n, V

∗
n )) ∈

n
∏

i=0

(Ai0 ∪A
i
1)×Bi ×∆i × Γi

)

= P̄

(

((X̄0, Ȳ0, U0, V0), · · · , (X̄n, Ȳn, Un, Vn)) ∈
n
∏

i=0

Ai ×Bi ×∆i × Γi
)
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Let

τ = min{n ≥ 0 : (X∗
n, i

∗
n) ∈ K2 × {1}} . (3.2)

Then the following lemma can be proved using (A1) and standard arguments as in [7]

Lemma 3.4. Under (A1) we have,

E
∗[τ | (X∗

0 , i
∗
0) = (x, i)] = O(V(x1) + V(x2)) (3.3)

for any (x, i) = ((x1, x2), i) ∈ X
2 × {0, 1}, where τ is as in (3.2).

The following lemma gives a bound on the difference of Vα(.) for two different values of

its argument.

Lemma 3.5. For ψ̂, ψ̃ ∈ P0(X), there exists a suitable constant K̄ such that

|Vα(ψ̂)− Vα(ψ̃)| ≤ K̄[

∫

Vdψ̂ +

∫

Vdψ̃] .

Proof. Let Vα(ψ̂) ≥ Vα(ψ̃). The other case can be handled with a symmetric argument. Let

π1 = {π1n} be an optimal policy for player 1 for the discounted payoff POSG with initial

distribution ψ̂ and let π2 = {π2n} be an optimal policy for player 2 for the discounted payoff

POSG with initial distribution ψ̃. Then we have

|Vα(ψ̂)− Vα(ψ̃)| ≤ |

∞
∑

m=0

αmĒ
π1,π2

ψ̂,ψ̃
[c(X̂n, Un, Vn)]−

∞
∑

m=0

αmĒ
π1,π2

ψ̂,ψ̃
[c(X̃n, Un, Vn)]|

= |
∞
∑

m=0

αmĒ[c(X̂n, Un, Vn)− c(X̃n, Un, Vn)]|

≤ |E∗

τ
∑

m=0

αm[c(X̂∗
n, U

∗
n, V

∗
n )− c(X̃∗

n, U
∗
n, V

∗
n )]|

≤ 2||c||∞E
∗(τ)

where the third step follows from the fact that X̂∗
τ+m, X̃

∗
τ+m for m ≥ 1 has the same law

conditioned on all the information up to time τ . Thus from (3.3) we have

|Vα(ψ1)− Vα(ψ2)| ≤ K̄Ē[V(X̂0) + V(X̃0)] .

Hence the lemma follows. �

Now fix ψ∗ ∈ P0(X). Define V̄α(ψ) = Vα(ψ)− Vα(ψ
∗). Thus substituting in (3.1) we get

V̄α(ψ) + (1− α)Vα(ψ
∗) = min

ν∈P(V )
max
µ∈P(U)

[

¯̃c(ψ, µ, ν) + α

∫

P0(X)
V̄α(ψ

′)φ(dψ′|ψ, µ, ν)

]

= max
µ∈P(U)

min
ν∈P(V )

[

˜̄c(ψ, µ, ν) + α

∫

P0(X)
V̄α(ψ

′)φ(dψ′|ψ, µ, ν)

]

. (3.4)

Now (1− α)Vα(ψ
∗) is bounded. Thus we can find an α(n) → 1 such that

(1− α(n))Vα(n)(ψ
∗) → γ (3.5)

for some γ ∈ R. Let V̂ (ψ) = lim sup
n→∞

V̄α(n)(ψ) and V (ψ) = lim inf
n→∞

V̄α(n)(ψ).
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Lemma 3.6. The function V̂ satisfies

V̂ (ψ) + γ ≤ max
µ∈P(U)

min
ν∈P(V )

[

¯̃c(ψ, µ, ν) +

∫

P0(X)
V̂ (ψ′)φ(dψ′|π, µ, ν)

]

, (3.6)

where γ is as in (3.5).

Proof. We have

V̄α(n)(ψ) + (1− α(n))Vα(n)(ψ
∗) = max

µ∈P(U)
min

ν∈P(V )

[

¯̃c(ψ, µ, ν) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ, ν)

]

.

Now taking limit n→ ∞ in the above we get

V̂ (ψ) + γ = lim sup
n→∞

max
µ∈P(U)

min
ν∈P(V )

[

¯̃c(ψ, µ, ν) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ, ν)

]

= lim sup
n→∞

min
ν∈P(V )

[

¯̃c(ψ, µ∗n, ν) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ∗n, ν)

]

≤ min
ν∈P(V )

lim sup
n→∞

[

¯̃c(ψ, µ∗n, ν) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ∗n, ν)

]

.

In the second step µ∗n is the outer maximiser. Now fix π. By dropping to a subsequence if

necessary, we may suppose that V̄α(n)(ψ) → V̂ (ψ) and µ∗n → µ∗ in P(U). Now by previous

lemma |V̄α(ψ)| ≤ K1(1+
∫

Vdψ). Thus by Lemma 8.3.7 in [6], the last expression is bounded

above by

min
ν∈P(V )

[

¯̃c(ψ, µ∗, ν) +

∫

P0(X)
V̂ (ψ′)φ(dψ′|ψ, µ∗n, ν)

]

≤ max
µ∈P(U)

min
ν∈P(V )

[

¯̃c(ψ, µ, ν) +

∫

P0(X)
V̂ (ψ′)φ(dψ′|ψ, µ, ν)

]

.

The claim follows. �

Similarly we have the following result.

Lemma 3.7. The function V satisfies

V (ψ) + γ ≥ min
ν∈P(V )

max
µ∈P(U)

[

¯̃c(ψ, µ, ν) +

∫

P0(X)
V (ψ′)φ(dψ′|ψ, µ, ν)

]

. (3.7)

Proof. We have

V̄α(n)(ψ) + (1− α(n))Vα(n)(ψ
∗) = min

ν∈P(V )
max
µ∈P(U)

[

¯̃c(ψ, µ, ν) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ, ν)

]

.

Now taking limit n→ ∞ in the above we get

V (ψ) + γ = lim inf
n→∞

min
ν∈P(V )

max
µ∈P(U)

[

¯̃c(ψ, µ, ν) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ, ν)

]

= lim inf
n→∞

max
µ∈P(U)

[

¯̃c(ψ, µ, ν∗n) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ, ν∗n)

]

≥ max
µ∈P(U)

lim inf
n→∞

[

¯̃c(ψ, µ, ν∗n) + α(n)

∫

P0(X)
V̄α(n)(ψ

′)φ(dψ′|ψ, µ, ν∗n)

]

.
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In the second step ν∗n is the outer minimiser. Now by arguments analogous to the proof of

the above lemma we have that there exists a ν∗ ∈ P(V ) such that the last expression is

bounded below by

max
µ∈P(U)

[

¯̃c(ψ, µ, ν∗) +

∫

P0(X)
V (ψ′)φ(dψ′|ψ, µ, ν∗)

]

≥ min
ν∈P(V )

max
µ∈P(U)

[

¯̃c(ψ, µ, ν) +

∫

P0(X)
V (ψ′)φ(dψ′|ψ, µ, ν)

]

.

The claim follows. �

Finally we get the following theorem:

Theorem 3.8. Assume (A1-A2). Then γ (as in (3.5)) is the value of the COSG. More-

over let u∗ : P0(X) → P(U) be a measurable function such that u∗(.) is the outer maximiser

of the righthand side of (3.6) (exists by our assumptions and a standard measurable selection

theorem). Then the strategy {π∗n
1} given by

π∗n
1(·|in) = u∗(ψn)(·)

is an optimal strategy for player 1. Similarly let v∗ : P0(X) → P(V ) be a measurable

function such that v∗(.) is the outer minimiser of the righthand side of (3.7). Then {π∗n
2}

given by

π∗n
2(·|in) = v∗(ψn)(·)

is an optimal strategy for player 2.

Proof. Let {π2n} be an arbitrary admissible strategy of player 2. Then we have from (3.6)

E
π∗1,π2

ψ [V̂ (Ψn)] + γ ≤ E
π∗1,π2

ψ [c̃(Ψn, Un, Vn)] + E
π∗1,π2

ψ [V̂ (Ψn+1)], n ≥ 0

Therefore we have

γ ≤
1

n

n−1
∑

m=0

E
π∗1,π2

ψ [c̃(Ψm, Um, Vm)] +
E
π∗1,π2

ψ [V̂ (Ψn)]− V̂ (ψ)

n
.

Then by taking limit n→ ∞ we have using assumption (A2)

γ ≤ lim inf
n→∞

1

n

n−1
∑

m=0

E
π∗1,π2

ψ [c̃(Ψm, Um, Vm)] .

Similarly, if {π1n} is an arbitrary admissible strategy for player 1, then we have by (3.7)

E
π1,π∗2

ψ [V (Ψn)] + γ ≥ E
π1,π∗2

ψ [c̃(Ψn, Un, Vn)] + E
π1,π∗2

ψ [V (Ψn+1)], n ≥ 0 .

Therefore we have

γ ≥
1

n

n−1
∑

m=0

E
π1,π∗2

ψ [c̃(Ψm, Um, Vm)] +
E
π1,π∗2

ψ [V (Ψn)]− V (ψ)

n
.
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Then by taking limit n→ ∞ we have using assumption (A2)

γ ≥ lim inf
n→∞

1

n

n−1
∑

m=0

E
π1,π∗2

ψ [c̃(Ψm, Um, Vm)] .

Now the conclusions follow. �

Now the following theorem follows from Theorem 3.8 and the equivalence of COSG and

POSG.

Theorem 3.9. The POSG with average cost criterion has a value and is equal to γ (as

in (3.5)) for any initial distribution. Moreover, ({π∗n
1}, {π∗n

2}) given by Theorem 3.8 is a

saddle point equilibrium.

4. Conclusion

In this article we study a partially observed stochastic game under average payoff cri-

terion. We estimate the unobservable state variable and use the state estimate as our new

observable state variable . We then use the vanishing discount approach to solve the aver-

age cost problem. Our analysis involves a coupling argument which uses the machinery of

pseudo-atom construction. We show that the game has a value and also prove the existence

of a saddle point equilibrium for our partially observable model.
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