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Lagrange Duality in Set Optimization
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Abstract

Based on the complete-lattice approach, a new Lagrangian duality theory for

set-valued optimization problems is presented. In contrast to previous approaches,

set-valued versions for the known scalar formulas involving infimum and supremum

are obtained. In particular, a strong duality theorem, which includes the existence

of the dual solution, is given under very weak assumptions: The ordering cone

may have an empty interior or may not be pointed. ”Saddle sets” replace the usual

notion of saddle points for the Lagrangian, and this concept is proven to be sufficient

to show the equivalence between the existence of primal/dual solutions and strong

duality on the one hand and the existence of a saddle set for the Lagrangian on the

other hand.
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1 Introduction

This paper is concerned with a Lagrange duality theory for convex set-valued optimization

with a set-valued constraint. In particular, a strong duality theorem is given, new concepts

for saddle points in the set-valued framework are introduced and the relationship between

primal/dual solutions and saddle points is established. The Lagrangian involves a set-

valued analog of continuous linear functions generated by a pair of continuous linear

functionals. This is a new construction and different from almost all known approaches

since it is most common to use continuous linear operators as dual variables. Another

important new feature is that our results involve (attained) infima/suprema with respect

to set relations rather than only minimal/maximal elements. The theory given in [25] is

extended in several directions. Most notably, we do not assume that the ordering cone

in the original image space has a non-empty interior. The main results also establish a

one-to-one relationship between the set-valued problem and a corresponding problem for

a family of scalarizations - despite the fact that we do not rely on so-called weak solutions.

Optimization problems with constraints given by set-valued functions (”correspon-

dences”, ”relations”, ”multi-valued mappings”) have been considered, for example, al-

ready in the late 70ies and early 80ies in a rather general framework. Compare the papers

[1], [3], [2] and [28], [29]. The objective function was assumed to be extended real-valued

or vector-valued (in [2]) or even set-valued (in [3]).

Duality theory for vector problems attracted attention to set-valued optimization prob-

lems, see [34], [6], [27]. The paper [34] is particularly interesting since the authors defined

a set-valued Lagrangian for a vector-valued problem: The Lagrangian is defined as a (neg-

ative) conjugate of a perturbation function with respect to the perturbation variable, and

the supremum involved in the definition of the conjugate is replaced by a set of maximal

points. A similar approach for a problem with a set-valued objective can be found in [30].

In [33], a generalization of the supremum in IR to a set-valued framework is used which

later turned out to be a supremum in the sense of a complete lattice, compare [26].

The introduction of so-called set relations (extensions of vector preorders to the power

set of a preordered vector space) led to new solution concepts for set-valued optimization

problems, see [22], [20, 21], [15], [19]. It has been pointed out by the authors of the

present paper that set relations become even more valuable if they are used to construct

appropriate image spaces for set-valued functions which carry the structure of complete

lattices, see [10], [23], [11], [25]. We obtain meaningful analogs to scalar formulas involving

an infimum or a supremum. This feature is lacking in any vector optimization (duality)

theory known to the authors and also in the set relation approach used in [9] , [14], [16]
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where the aim is to find minimal elements in a set of sets with respect to a set relation.

See also [5] for a discussion of Lagrange duality results in vector optimization with a

set-valued objective.

The paper is organized as follows. In the next section, image spaces for set-valued

functions are introduced, the basic problem is formulated and its Lagrangian defined.

In the following sections, our solution concept for set-valued optimization problems is

introduced, Fenchel conjugates are recalled and a scalarization concept is presented. The

main results are contained in section 6. Saddle point results can be found in section 7,

and the appendix contains a definition of the concept ”conlinear space”.

2 Problem formulation, notation

Let Z be a topological linear space and C ⊆ Z a convex cone with 0 ∈ C. We write

z1 ≤C z2 for z2 − z1 ∈ C with z1, z2 ∈ Z which defines a reflexive and transitive relation

(a preorder). The relation ≤C on Z can be extended to the powerset P(Z) of Z, the

set of all subsets of Z including the empty set ∅, in two canonical ways (see [11] and the

references therein). This gives rise to consider the following subsets of P (Z):

F (Z,C) = {A ∈ P (Z) | A = cl (A+ C)}

G (Z,C) = {A ∈ P (Z) | A = cl co (A+ C)} .

We shall abbreviate F (Z,C) and G (Z,C) to F (C) and G (C), respectively.

The Minkowski (elementwise) addition for non-empty subsets of Z is extended to

P (Z) by

∅+ A = A+ ∅ = ∅

for A ∈ P (Z). Using this, we define an associative and commutative binary operation

⊕ : F (C)× F (C) → F (C) by

A⊕ B = cl (A+B) (2.1)

for A,B ∈ F (C). The element-wise multiplication of a set A ⊆ Z with a (non-negative)

real number is extended by

0 · A = clC, t · ∅ = ∅

for all A ∈ F (C) and t > 0. In particular, 0 · ∅ = clC by definition, and we will drop the

· in most cases. The triple (F (C) ,⊕, ·) is a conlinear space with neutral element clC,

and, obviously, (G (C) ,⊕, ·) is a conlinear subspace of it (see appendix for definitions).
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On F (C) and G (C), ⊇ is a partial order which is compatible with the algebraic oper-

ations just introduced. Thus, (F (C) ,⊕, ·,⊇) and (G (C) ,⊕, ·,⊇) are partially ordered,

conlinear spaces in the sense of [10], [11]. This property does not depend on properties

of the cone C, in particular, ≤C does not need to be a partial order. The use of ⊇ can

be motivated by considering equivalence classes of an extension of the reflexive transitive

relation on Z generated by C to the power set of Z. Compare [10], [11] for more details.

Moreover, the pairs (F (C) ,⊇), (G (C) ,⊇) are complete lattices. If ∅ 6= A ⊆ F (C),

∅ 6= B ⊆ G (C), the following formulas hold true:

inf
(F(C),⊇)

A = cl
⋃

A∈A

A, sup
(F(C),⊇)

A =
⋂

A∈A

A

and

inf
(G(C),⊇)

B = cl co
⋃

B∈B

B, sup
(G(C),⊇)

B =
⋂

B∈B

B.

If A = ∅ we set inf(F(C),⊇)A = ∅ and sup(F(C),⊇)A = Z. This is in accordance with the

following monotonicity property: If A1 ⊆ A2 then inf A1 ⊆ infA2 and supA1 ⊇ supA2

in F (C). Likewise in G (C).

Let X, Y be two locally convex spaces with topological duals X∗, Y ∗, and D ⊆ Y a

convex cone. The sets F (D) = F (Y,D) and G (D) = G (Y,D) are defined in the same

way as F (C) and G (C).

Finally, let f : X → F (C) and g : X → F(D) be two functions. We are interested in

the problem

minimize f subject to 0 ∈ g (x) . (P)

The minimization is understood as looking for

p = inf
(F(C),⊇)

{f (x) | x ∈ X, 0 ∈ g (x)} = cl
⋃

{x∈X | 0∈g(x)}

f (x) ,

and a subset of minimizers in which this infimum is attained. A definition for the at-

tainment of the infimum and a corresponding solution concept is given below. Likewise

for functions mapping into G (C). This approach is different from most other approaches

using a set relation such as [20, 14] which only focus on minimality notions.

To simplify our notation, we will drop the space and the order relations in expressions

like inf(F(C),⊇) {f (x) | x ∈ X, 0 ∈ g (x)} in most cases below. By convention, an infimum

is defined through the image space of the function: If f maps into F (C), then the infimum

is taken in (F (C) ,⊇) and so on.
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Remark 2.1 Since g (x) ∈ F (D) for each x ∈ X we have

0 ∈ g (x) ⇔ g (x) ∩ −D 6= ∅.

Already in [1] it is shown that most of the common forms of constraints in the form of

inequalities and equations (and many more) can be expressed in the above form. One may

also compare chapter 5 of [27].

The positive dual (polar) cone of C is C+ = {z∗ ∈ Z∗ : ∀z ∈ C | 0 ≤ z∗ (z)}, and the

negative dual is C− = −C+. We set S (z∗) = {z ∈ Z | 0 ≤ z∗ (z)} for z∗ ∈ Z∗.

Using the set-valued functions

y 7→ S(y∗,z∗) (y) = {z ∈ Z | y∗ (y) ≤ z∗ (z)}

we define the Lagrangian l : X × Y ∗ × C+\ {0} → F (C) of the problem (P) by

l (x, y∗, z∗) = f (x)⊕
⋃

y∈g(x)

S(y∗,z∗) (y) = f (x)⊕ inf
(G(C),⊇)

{

S(y∗,z∗) (y) : y ∈ g (x)
}

. (2.2)

If g (x) = ∅, then the infimum over y ∈ g (x) = ∅ is the empty set. The rules for the

addition in (G (C) ,⊕) (A ⊕ ∅ = ∅ for each A ∈ G (C)) produce l (x, y∗, z∗) = ∅ in this

case.

Note that the functions S(y∗,z∗) : Y → P (Z) are positively homogeneous, additive with

S(y∗,z∗) (0) = S (z∗), and they map into G (C) if and only if z∗ ∈ C+. If z∗ = 0, then

S(y∗,z∗) (y) ∈ {Z, ∅}, and otherwise S(y∗,z∗) (y) is a closed half space. In [11], it is shown

that these functions provide a suitable substitute for continuous linear functions within

the set-valued framework, and they have been applied in [25] to obtain set-valued duality

results for vector optimization problems (chapter 3, ”duality of type II”).

Under a mild condition, the primal problem can be reconstructed from the Lagrangian.

Proposition 2.2 (reconstruction of the primal) If f (x) ∈ G (C), g (x) ∈ G (D) and

f (x) 6= Z for each x ∈ X, then

sup
(y∗,z∗)∈Y ∗×C+\{0}

l (x, y∗, z∗) =
⋂

(y∗,z∗)∈Y ∗×C+\{0}

l (x, y∗, z∗) =

{

f (x) : 0 ∈ g (x)

∅ : 0 6∈ g (x)

Proof. First, assume 0 ∈ g (x). Then

sup
(y∗,z∗)∈Y ∗×C+\{0}

l (x, y∗, z∗) ⊇ sup
(y∗,z∗)∈Y ∗×C+\{0}

f (x)⊕ S (z∗)

=
⋂

z∗∈C+\{0}

f (x)⊕ S (z∗) = f (x)
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since f maps into G (C) and therefore f (x) is the intersection of all closed half spaces

containing it. On the other hand,

sup
(y∗,z∗)∈Y ∗×C+\{0}

l (x, y∗, z∗) ⊆
⋂

z∗∈C+\{0}

l (x, 0, z∗)

=
⋂

z∗∈C+\{0}

f (x)⊕ S (z∗) = f (x)

since S(0,z∗) (y) = S (z∗) and f maps into G (C).

Next, assume 0 6∈ g (x). Since g (x) is closed and convex, a separation argument

produces y∗ ∈ Y ∗\ {0} such that

inf
y∈g(x)

y∗ (y) > 0.

This implies lim
n→∞

infy∈g(x) (ny
∗) (y) = +∞, hence for each z∗ ∈ C+\ {0}

⋂

n∈IN



f (x)⊕ cl
⋃

y∈g(x)

S(ny∗,z∗) (y)



 = ∅

since
⋃

y∈g(x)

S(ny∗,z∗) (y) ⊆

{

z ∈ Z : inf
y∈g(x)

(ny∗) (y) ≤ z∗ (z)

}

.

This completes the proof. �

Remark 2.3 The condition f (x) ∈ G (C), g (x) ∈ G (D) for all x ∈ X could be under-

stood as a well-posedness condition for the problem. If it is violated, then the transition

from the original problem to its Lagrangian form results in a loss of information – or one

agrees to replace the original problem by

minimize cl co f (x) subject to 0 ∈ cl co g (x) .

3 Solutions for set-valued optimization problems and

canonical extensions

In this section, we introduce a solution concept for complete lattice-valued problems as

well as saddle points for corresponding bi-variable functions. Let f : X → L be a function

with values in a complete lattice (L,≤). Consider the two optimization problems

minimize f : X → L w.r.t. ≤ over X, (Lmin)

maximize f : X → L w.r.t. ≤ over X. (Lmax)
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The sets of minimal and maximal elements of a subset A ⊆ L are defined as usual by

MinA = {z ∈ A | (y ∈ A ∧ y ≤ z) =⇒ y = z} ,

MaxA = {z ∈ A | (y ∈ A ∧ y ≥ z) =⇒ y = z} .

Moreover, for a set M ⊆ X we denote the collection of all values of f over M by

f [M ] = {f (x) | x ∈ M} ⊆ L.

A solution of (Lmin), for example, is expected to satisfy some minimality condition. On

the other hand, one also expects the infimum of f to be attained at a solution. In contrast

to the set of extended real numbers, these two requirements do not coincide in a general

complete lattice. The next definition deals with minimal and maximal function values.

Definition 3.1 An element x̄ ∈ X is called a minimizer of f if f (x̄) ∈ Min f [X ], and it

is called a maximizer of f if f (x̄) ∈ Max f [X ].

Next, we deal with the attainment of the infimum/supremum.

Definition 3.2 A set X̄ ⊆ X is called an infimizer of f if

inf
x∈X̄

f (x) = inf
x∈X

f (x) , (3.1)

and in this case, we say that the infimum of f is attained in X̄. Likewise, a set X̄ ⊆ X

is called a supremizer of f if

sup
x∈X̄

f (x) = sup
x∈X

f (x) , (3.2)

and in this case, we say that the supremum of f is attained in X̄.

One cannot expect that an infimizer or supremizer is a singleton. Indeed, if, for

example, we consider a function f into the complete lattice (F (C) ,⊇), the infimum is

given by the closure of the union of the function values which is not a function value itself

in general. Therefore, we agree that a solution of (Lmin) should be a subset of X rather

than a single element. This is the point of the following definition which is essentially due

to [17].

Definition 3.3 An infimizer X̄ ⊆ X of f is called a solution to (Lmin) if f
[

X̄
]

⊆

Min f [X ], and it is called a full solution if f
[

X̄
]

= Min f [X ]. Similarly, a supremizer

X̄ ⊆ X of f is called a solution to (Lmax) if f
[

X̄
]

⊆ Max f [X ], and it is called a full

solution if f
[

X̄
]

= Max f [X ].
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Clearly, a solution to (Lmin) is an infimizer which consists of only minimizers. Note

that the earliest approach to set-valued optimization problems consisted in looking for

minimal points of the union of all function values, see [6], [27], for example. Thus, one

could understand this as looking for a minimal element of the infimum. On the other hand,

the set relation approach as presented for instance in [20, 15] aims at finding minimizers

with respect to a set relation without caring for the infimum.

Remark 3.4 Note that a solution in the sense of Definition 3.3 above is called ”mild so-

lution” in [17] and [25] and a full solution is just called ”solution” in these references. We

decided to change the notation since, in particular, in linear vector optimization problems

one wants to have that a solution consists of finitely many elements.

Example 3.5 Let the objective function f : IR → G
(

IR2, IR2
+

)

be defined by

f (x) =
{

z ∈ IR2
+| z1 ≥ 3 + 2x+ r, z2 ≥ 3 + 2x− r, r ∈

[

−x2, x2
]}

for x ∈ IR+ and f (x) = ∅ for x 6∈ IR+. The set X̄ = {0} ∪ (2, 3] is a full solution

to (Lmin), and the set X̄ = {0, 3} is a solution to (Lmin). This example shows that a

full solution may entail a far larger set X̄ than being required for the attainment of the

infimum.

The above solution concept can also be expressed in terms of the canonical extension

of the function f . We introduce this concept below since we will make use of it when

discussing saddle points.

Definition 3.6 Let f : X → L be a function with values in the complete lattice (L,≤).

The function F̂ : P (X) → L defined by

F̂ (M) = inf
x∈M

f (x)

is called the (canonical) inf-extension of f , whereas the function F̌ : P (X) → L defined

by

F̌ (M) = sup
x∈M

f (x)

is called the (canonical) sup-extension of f .

Clearly, a set X̄ ⊆ X is an infimizer of f if and only if the inf-extension F̂ of f attains

its infimum in X̄ , that is

F̂
(

X̄
)

= inf
M∈P(X)

F̂ (M) ,
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and likewise for the supremum of F̌ . Therefore, the inf-extension will play a role for

the minimization problem (Lmin) and the sup-extension for the maximization problem

(Lmax).

We turn to the definition of saddle points for a function l : X×V → L. The following

definition extends the concept of canonical extensions to such functions. Note that there

are two such extensions which seems natural since one can consider ”inf sup” as well as

”sup inf”.

Definition 3.7 Let l : X × V → L be a function. The lower canonical extension of l is

the function L̂ : P (X)× P (V ) → L defined by

L̂ (U,W ) = sup
v∈W

inf
x∈U

l (x, v) .

The upper canonical extension of l is the function Ľ : P (X)×P (V ) → L defined by

Ľ (U,W ) = inf
x∈U

sup
v∈W

l (x, v) .

The very definitions of L̂, Ľ immediately produce

∀U ∈ P (X) , ∀W ∈ P (V ) : L̂ (U,W ) ≤ Ľ (U,W ) . (3.3)

4 Fenchel conjugates for set-valued functions

Given x∗ ∈ X∗ and z∗ ∈ C+, the (conlinear) function S(x∗,z∗) : X → G(C) is defined as its

corresponding version on Y : S(x∗,z∗) (x) = {z ∈ Z | x∗ (x) ≤ z∗ (z)} for x ∈ X .

The (negative) Fenchel conjugate of a function f : X → P (Z) is the function−f ∗ : X∗×

(C+\ {0}) → G(C) defined by

− f ∗ (x∗, z∗) = cl
⋃

x∈X

[

f (x) + S(x∗,z∗) (−x)
]

. (4.1)

See [11] for more details about and a motivation for this definition. We immediately

conclude the Young–Fenchel inequality for set-valued functions

∀z∗ ∈ C+\ {0} , ∀x ∈ X, ∀x∗ ∈ X∗ : − f ∗ (x∗, z∗) ⊇ f (x) + S(x∗,z∗) (−x) . (4.2)

Note that the values of −f ∗ are closed half spaces or ∅ or Z. The main result about

Fenchel conjugates is the Fenchel–Moreau theorem which establishes conditions under
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which the biconjugate of a function f coincides with f . The biconjugate f ∗∗ : X → G(C)

of f : X → G(C) is given by

f ∗∗ (x) =
⋂

x∗∈X∗, z∗∈(C+\{0})

[

−f ∗ (x∗, z∗) + S(x∗,z∗) (x)
]

.

The graph of a function f : X → P (Z) is the set

graph f = {(x, z) ∈ X × Z | z ∈ f (x)} ⊆ X × Z.

A function f : X → P (Z,C) is called convex if its graph is a convex set. This is equivalent

to

∀x1, x2 ∈ X, ∀t ∈ (0, 1) : f (tx1 + (1− t) x2) ⊇ tf (x1) + (1− t) f (x2) .

We define the closure cl f of f by

z ∈ (cl f) (x) ⇔ (x, z) ∈ cl (graph f) .

With this definition, we can state the Fenchel–Moreau theorem in the following form.

Theorem 4.1 Let f : X → G(C) be a convex function such that there is x0 ∈ X with

f (x0) 6= ∅ and (cl f) (x) 6= Z for all x ∈ X. Then cl f = f ∗∗.

Proof. See [11], Theorem 3. �

5 Linear scalarization and the scalarized problems

Again, under some well-posedness assumptions, a function f : X → P (Z) and the set-

valued problem (P) can equivalently be described by families of extended real-valued

functions and scalar problems, respectively. The scalarization approach has been used

as the main tool for obtaining set-valued duality results of Fenchel type along with a

complete calculus for set-valued convex functions in [31], see also [13] and [32]. The set-

valued approach to vector optimization summarized in [25] also relies on a scalarization

procedure. Here, we additionally show the equipollence of the set-valued results with

corresponding results for families of scalarizations.

5.1 Scalarization of G(C)-valued functions

Let a function f : X → P (Z) and z∗ ∈ C+ be given. Define an extended real-valued

function ϕf,z∗ : X → IR = IR ∪ {±∞} by

ϕf,z∗ (x) = inf
z∈f(x)

z∗ (z) . (5.1)
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The set-valued function f : X → P(C) is convex if and only if ϕf,z∗ : X → IR is convex

for each z∗ ∈ C+. Of course, ϕf,z∗ (x) is nothing else than the value of negative support

function of the set f (x) at −z∗, but we shall emphasize the dependence on x rather

than on z∗. The support function interpretation of ϕf,z∗ immediately gives the following

formula. If f : X → F (C) is convex, then f (x) ∈ G(C) for all x ∈ X and

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}

{z ∈ Z | ϕf,z∗ (x) ≤ z∗ (z)} . (5.2)

This is a consequence of the separation theorem since the closed convex set f (x) is the

intersection of all closed half spaces containing it, and only half spaces with normals

z∗ ∈ C+\ {0} need to be considered since f (x) ∈ G(C).

Likewise, the extended real-valued functions ϕg,y∗ : X → IR with y∗ ∈ D+\ {0} are

defined for the set-valued function g : X → P(D).

The next result shows that scalarization and conjugation commute.

Lemma 5.1 Let f : X → P (Z) be a function and x∗ ∈ X∗, z∗ ∈ C+\ {0}. Then

−ϕ∗
f,z∗ (x

∗) = inf
z∈−f∗(x∗,z∗)

z∗ (z) ,

(−f ∗) (x∗, z∗) =
{

z ∈ Z | −ϕ∗
f,z∗ (x

∗) ≤ z∗ (z)
}

where ϕ∗
f,z∗ = (ϕf,z∗)

∗ : X → IR is the classical (scalar) Fenchel conjugate of ϕf,z∗.

Proof. The proof of the first equation is straightforward from the definitions of

−ϕf,z∗ and (scalar) Fenchel conjugates. The second is obviously true if f ≡ ∅ ⇔ −f ∗ ≡

∅. If this is not the case, take z ∈ f (x) + S(x∗,z∗) (−x). Then there are z1 ∈ f (x)

and z2 ∈ S(x∗,z∗) (−x) such that z = z1 + z2. Using the definition of S(x∗,z∗) we obtain

−x∗ (x) ≤ z∗ (z2). From the definition of ϕf,z∗ we get ϕf,z∗ (x) ≤ z∗ (z1). Hence

ϕf,z∗ (x)− x∗ (x) ≤ z∗ (z1 + z2) = z∗ (z)

and therefore

−ϕ∗
f,z∗ (x

∗) = inf
x∈X

[ϕf,z∗ (x)− x∗ (x)] ≤ z∗ (z) .

This shows
⋃

x∈X

[

f (x) + S(x∗,z∗) (−x)
]

⊆
{

z ∈ Z | −ϕ∗
f,z∗ (x

∗) ≤ z∗ (z)
}

. Since z∗ is a

continuous function, this implies −f ∗ (x∗, z∗) ⊆
{

z ∈ Z | −ϕ∗
f,z∗ (x

∗) ≤ z∗ (z)
}

.

Conversely, take z0 ∈ Z satisfying −ϕ∗
f,z∗ (x

∗) ≤ z∗ (z0). If z0 6∈ −f ∗ (x∗, z∗) there

would be a z∗0 ∈ Z∗\ {0} such that

z∗0 (z0) < inf
z∈−f∗(x∗,z∗)

z∗0 (z) .

Since z∗0 6= 0 and −f ∗ (x∗, z∗) is a closed half space with normal z∗ we can assume, without

loss of generality, z∗0 = z∗ and obtain the contradiction z∗ (z0) < −ϕ∗
f,z∗ (x

∗) ≤ z∗ (z0). �
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5.2 Scalarization of the optimization problem

Together with (P) we consider the family of scalar problems

minimize ϕf,z∗ subject to 0 ∈ g (x) (PS)

for z∗ ∈ C+\ {0}, that is we want to find the numbers

pz∗ = inf {ϕf,z∗ (x) | 0 ∈ g (x)} , z∗ ∈ C+\ {0} .

Together with the Lagrange function for (P) as introduced in (2.2) we consider the La-

grange function of the scalarized problem

λz∗ (x, y
∗) = ϕf,z∗ (x) + inf

y∈g(x)
y∗ (y) = ϕf,z∗ (x) + ϕg,y∗ (x) .

The set of functions

{

λz∗ (·, ·) | X × Y ∗ → IR: z∗ ∈ C+\ {0}
}

is called the (scalarized) Lagrangian family of problem (P). One main message of this

paper is that every Lagrange duality result about (P) can equivalently be expressed in

terms of its Lagrangian family.

Proposition 5.2 (Lagrange functions of the scalarized problems) We have

λz∗ (x, y
∗) = ϕl,z∗ (x, y

∗)

for all x ∈ X, y∗ ∈ Y ∗, z∗ ∈ C+.

Proof. We have

ϕl,z∗ (x, y
∗) = inf

z∈l(x,y∗,z∗)
z∗ (z)

= inf
z∈f(x)

z∗ (z) + inf
z∈cl

⋃
y∈g(x) S(y∗,z∗)(y)

z∗ (z)

= ϕf,z∗ (x) + inf







z∗ (z) | z ∈
⋃

y∈g(x)

S(y∗,z∗) (y)







by calculus rules for support functions and continuity of z∗. Since

ϕS(y∗,z∗),z
∗ (y) = y∗ (y)

12



by definition of S(y∗,z∗) we may conclude

ϕl,z∗ (x, y
∗) = ϕf,z∗ (x) + inf {y∗ (y) | y ∈ g (x)} ,

and the right hand side is just λz∗ (x, y
∗). �

The previous proposition tells us that the two operations ”scalarization” and ”transi-

tion to the Lagrangian” commute.

Proposition 5.3 (scalarized problems) Let f : X → P(C) and g : X → P(D). The

following statements are equivalent for z∗ ∈ C+:

(a) cl co
⋃

{f (x)⊕ S (z∗) | 0 ∈ g (x)} 6= Z

(b) −∞ < inf {ϕf,z∗ (x) | 0 ∈ g (x)}

Proof. Strainghtforward. �

6 Duality

6.1 Construction of the dual problem and weak duality

As in scalar optimization, the objective of the dual problem is the infimum of the La-

grangian with respect to the primal variable, that is the function h : Y ∗×C+\ {0} → G (C)

defined by

h (y∗, z∗) = inf
x∈X

l (x, y∗, z∗) = cl
⋃

x∈X

l (x, y∗, z∗) .

Since the values of l are closed half spaces, the convex hull can be dropped in the infimum.

The dual problem,

maximize h subject to y∗ ∈ Y ∗, z∗ ∈ C+\ {0} , (D)

thus consists in finding

d = sup
y∗∈Y ∗, z∗∈C+\{0}

h (y∗, z∗) =
⋂

y∗∈Y ∗, z∗∈C+\{0}

h (y∗, z∗)

and corresponding (full) solutions.

The objectives of the scalarized dual problems (see Section 5.2) are

inf
x∈X

λz∗ (x, y
∗) = inf

x∈X
[ϕf,z∗ (x) + ϕg,y∗ (x)] .

13



The scalarized dual problems become

maximize inf
x∈X

λz∗ (x, ·) subject to y∗ ∈ Y ∗, (DS)

that is find

dz∗ = sup

{

inf
x∈X

λz∗ (x, y
∗) | y∗ ∈ Y ∗

}

, z∗ ∈ C+\ {0}

and corresponding solutions.

Proposition 6.1 Scalarization and dualization commute, that is

ϕh,z∗ (y
∗) = inf

x∈X
λz∗ (x, y

∗)

for all y∗ ∈ Y ∗ and z∗ ∈ C+\ {0}.

Proof. Straightforward. �

The following weak duality result is immediate.

Proposition 6.2 (weak duality) The following equivalent statements are true:

(a) For all x ∈ X satisfying 0 ∈ g (x), for all (y∗, z∗) ∈ Y ∗ × C+\ {0},

h (y∗, z∗) ⊇ f (x)⊕ S (z∗) .

(b) For all x ∈ X satisfying 0 ∈ g (x), for all (y∗, z∗) ∈ Y ∗ × C+\ {0},

ϕh,z∗ (y
∗) = inf

z∈h(y∗,z∗)
z∗ (z) ≤ inf

z∈f(x)
z∗ (z) = ϕf,z∗ (x) .

Proof. (a) is true since for (y∗, z∗) ∈ Y ∗ × C+\ {0} and x ∈ X satisfying 0 ∈ g (x)

we have

h (y∗, z∗) ⊇ f (x)⊕ cl
⋃

y∈g(x)

S(y∗,z∗) (y)

⊇ f (x)⊕ S(y∗,z∗) (0) = f (x)⊕ S (z∗) .

The implication (a) ⇒ (b) is obvious. The converse is also true since h (y∗, z∗) and f (x)⊕

G (z∗) are half spaces with normal z∗ 6= 0 and infz∈f(x) z
∗ (z) = infz∈f(x) z

∗ (z)⊕S (z∗). �
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6.2 Strong duality

The value function of the basic optimization problem is the function v : Y → G (C) defined

by

v (y) = inf {f (x) | x ∈ X, y ∈ g (x)} .

Using again the convention that the infimum over an empty set is ∅, we obtain v (y) = ∅

whenever {x ∈ X | y ∈ g (x)} = ∅. Clearly,

p = v (0) = inf {f (x) | 0 ∈ g (x)}

is the optimal value of the original problem.

The optimal values of the scalarized problems are defined by

vz∗ (y) = inf {ϕf,z∗ (x) | y ∈ g (x)} , z∗ ∈ C+\ {0} .

Clearly,

pz∗ = vz∗ (0) = inf {ϕf,z∗ (x) | 0 ∈ g (x)} , z∗ ∈ C+\ {0} ,

are the optimal values of the scalarized problems.

Proposition 6.3 Scalarization and transition to value functions commute, that is

∀y ∈ Y : ϕv,z∗ (y) = inf {ϕf,z∗ (x) | y ∈ g (x)} = vz∗ (y)

with ϕv,z∗ : Y → IR being the scalarization of the value function.

Proof. Obvious by construction. �

Proposition 6.4 (a) The (negative) Fenchel conjugate of the value function is

−v∗ (y∗, z∗) = inf {l (x,−y∗, z∗) | x ∈ X} ,

and the negative Fenchel conjugate of the value function of the scalarized problem is

− (vz∗)
∗ (y∗) = inf {λz∗ (x,−y∗) | x ∈ X} .

(b) v∗∗ (0) = d, and (vz∗)
∗∗ (0) = dz∗ for all z∗ ∈ C+\ {0}.

15



Proof. (a) We have

−v∗ (y∗, z∗) = cl
⋃

y∈Y

[

v (y) + S(y∗,z∗) (−y)
]

= cl
⋃

x∈X, y∈g(x)

[

f (x) + S(y∗,z∗) (−y)
]

= cl
⋃

x∈X

l (x,−y∗, z∗)

= inf
x∈X

l(x,−y∗, z∗).

(b) Using the definition of h, part (a) and the properties of −v∗ we obtain

⋂

y∗, z∗

h (y∗, z∗) =
⋂

y∗, z∗

cl
⋃

x∈X

l (x, y∗, z∗)

=
⋂

y∗, z∗

[

−v∗ (−y∗, z∗) + S(−y∗,z∗) (0)
]

= v∗∗ (0) .

This completes the proof. �

Proposition 6.5 Let f and g be convex and v (0) 6= Z, v (0) 6= ∅. Then, there is z∗ ∈

C+\ {0} such that p ⊕ S (z∗) = v (0) ⊕ S (z∗) 6= Z, and the following statements are

equivalent:

(a) p = d,

(b) v is closed at 0 ∈ Y , that is (cl v) (0) = v (0),

(c) pz∗ = dz∗ for each z∗ ∈ C+\ {0} with p⊕ S (z∗) 6= Z,

(d) For each z∗ ∈ C+\ {0} with p ⊕ S (z∗) 6= Z the function y 7→ ϕv,z∗ (y) is closed at

0 ∈ Y , i.e. cl (ϕv,z∗) (0) = ϕv,z∗ (0).

Proof. Since f and g are convex, v is convex as well. Moreover, v (0) = p is

the optimal value of the original problem and a closed convex set. If v (0) 6∈ {Z, ∅}, a

separation argument produces z∗ ∈ C+\ {0} such that v (0)⊕ S (z∗) 6= Z.

The equivalence of (a) and (b) follows from (b) of Proposition 6.4 and the set-valued

Fenchel-Moreau theorem (Theorem 4.1).

The equivalence of (c) and (d) follows likewise, but it is also the known scalar result.

It remains to prove the equivalence of (a) and (c). The implication (a) ⇒ (c) follows

from the definition of p, d and the scalarization functions. The converse is a consequence

of the fact that both p and d are closed convex sets, and one can apply formula (5.2) with

f (x) replaced by p and d, respectively. �
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The remaining part of this section is devoted to sufficient conditions for strong duality,

or v (0) = v∗∗ (0). The following condition is called the Slater condition for problem

(P):

∃x̄ ∈ dom f : g (x̄) ∩ int (−D) 6= ∅.

The implicit assumption is intD 6= ∅.

Theorem 6.6 (strong duality) Let f and g be convex. If the Slater condition for

problem (P) is satisfied, then strong duality holds, that is the following two equivalent

conditions are satisfied:

p = inf {f (x) | 0 ∈ g (x)} = sup
y∗∈Y ∗, z∗∈C+\{0}

h (y∗, z∗) = d (6.1)

∀z∗ ∈ C+\ {0} : pz∗ = inf {ϕf,z∗ (x) | 0 ∈ g (x)} = sup
y∗∈Y ∗

ϕh,z∗ (y
∗) = dz∗ . (6.2)

If the infimum of the primal problem is not Z, then the following two equivalent conditions

are satisfied

p⊕ S (z∗) 6= Z ⇒ ∃y∗ ∈ Y ∗ : p⊕ S (z∗) = h (y∗, z∗) (6.3)

−∞ < pz∗ ⇒ ∃y∗ ∈ Y ∗ : pz∗ = ϕh,z∗ (y
∗) . (6.4)

Moreover, the set

∆ =
{

(y∗, z∗) ∈ Y ∗ × C+\ {0} | Z 6= p⊕ S (z∗) = h (y∗, z∗)
}

=
{

(y∗, z∗) ∈ Y ∗ × C+\ {0} | −∞ < pz∗ = ϕh,z∗ (y
∗)
}

is non-empty and a full solution of the dual problem.

The theorem can be summarized as ”strong duality holds and is equivalent to strong

duality for every meaningful scalarized problem”.

Proof. If p = Z, weak duality implies d = p. Thus let p 6= Z. In view of Proposition

6.5 we have to show that v (0) = (cl v) (0). By Slater’s condition there is a neighborhood

V of 0 ∈ Y such that y ∈ g (x̄) 6= ∅ for each y ∈ V . Hence

v (y) = cl
⋃

{f (x) | y ∈ g (x)} ⊇ f (x̄) 6= ∅

for all y ∈ V . Take z0 ∈ (cl v) (0), that is (0, z0) ∈ cl (graph v). Then, for each neighbor-

hood W of 0 ∈ Y and each neighborhood U of 0 ∈ Z we have

[(0, z0) + (W × U)] ∩ graph v 6= ∅.
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Fix a neighborhood U of 0 ∈ Z and 0 < t < 1. Then [(0, z0) + (tV × U)] ∩ graph v 6= ∅.

Take y0 ∈ V and z ∈ U such that (0, z0) + (ty0, z) ∈ graph v, and take z̄ ∈ f (x̄). Then

(0, z0) + (ty0, z) ∈ graph v ∧ (0, 0) + (−ty0, z̄) ∈ graph v.

The second inclusion is a consequence of f (x̄) ⊆ v (y) for all y ∈ V since we can assume

that V is balanced. Taking the convex combination of the two points in graph v with

s = 1
1+t

and 1− s = t
1+t

we obtain

1

1 + t
(z0 + z) +

t

1 + t
z̄ ∈ v (0)

for all t ∈ [0, 1]. Since v (0) is a closed set by definition, we let t → 0 and get z0+z ∈ v (0).

Hence, for each neighborhood U of 0 ∈ Z we have (z0 + U) ∩ v (0) 6= ∅ which implies

z0 ∈ v (0) since the latter set is closed. This proves that v (0) = (cl v) (0) and hence p = d.

Next, since p ∈ G (C)\Z there is z∗ ∈ C+\ {0} such that p⊕G (z∗) 6= Z, and we have

p⊕ S (z∗) = {z ∈ Z | vz∗ (0) ≤ z∗ (z)}. Proposition 6.3 implies vz∗ (0) = ϕv,z∗ (0), hence

z ∈ p⊕ S (z∗) ⇔ ϕv,z∗ (0) ≤ z∗ (z) .

Proposition 5.3 yields that the convex function y → vz∗ (y) = ϕv,z∗ (y) has a finite value

at 0 ∈ Y . The Slater condition ensures that this function is continuous at 0 ∈ Y , hence

there is y∗ ∈ Y ∗ such that

−y∗ ∈ ∂ϕv,z∗ (0)

which in turn is equivalent to

(ϕv,z∗)
∗ (−y∗) + ϕv,z∗ (0) = −y∗ (0) = 0

(Young-Fenchel equality for elements of the subdifferential). Finally, observe that

z ∈ −v∗ (y∗, z∗) ⇔ − (ϕv,z∗)
∗ (y∗) ≤ z∗ (z) .

Altogether, we obtain

z ∈ p⊕G (z∗) ⇔ ϕv,z∗ (0) ≤ z∗ (z)

⇔ − (ϕv,z∗)
∗ (−y∗) ≤ z∗ (z)

⇔ z ∈ −v∗ (−y∗, z∗)

⇔ z ∈ h (y∗, z∗)

where the last equivalence is a consequence of Proposition 6.4, (a). This proves that the

set ∆ is non-empty.
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Finally, in view of Definition 3.3 we have to establish the following facts:

(i) d =
⋂

{h (y∗, z∗) | (y∗, z∗) ∈ ∆} (attainment of the supremum).

(ii) Each h (ȳ∗, z̄∗) with (ȳ∗, z̄∗) ∈ ∆ is a maximal element of

H =
{

h (y∗, z∗) 6= Z | (y∗, z∗) ∈ Y ∗ × C+\ {0}
}

with respect to ⊇ (∆ is a solution since each of its elements is a maximizer).

(iii) If h (ȳ∗, z̄∗) is a maximal element of H , then (ȳ∗, z̄∗) ∈ ∆ (∆ is a full solution since

all maximizers of the dual problem are elements of ∆).

(i) is a direct consequence of strong duality.

(ii) h (ȳ∗, z̄∗) is maximal in H if and only if

(y∗, z∗) ∈ Y ∗ × C+\ {0} , h (ȳ∗, z̄∗) ⊇ h (y∗, z∗) ⇒ h (ȳ∗, z̄∗) = h (y∗, z∗) .

If (ȳ∗, z̄∗) ∈ ∆ and h (ȳ∗, z̄∗) ⊇ h (y∗, z∗), then by weak duality

h (ȳ∗, z̄∗) ⊇ h (y∗, z∗) ⊇ p⊕ S (z̄∗) = h (ȳ∗, z̄∗) ,

hence h (ȳ∗, z̄∗) is maximal in H .

(iii) Assume h (ȳ∗, z̄∗) is maximal in H . Then, there is ¯̄y∗ ∈ Y ∗ such that Z 6=

p⊕ S (z̄∗) = h (¯̄y∗, z̄∗) according to the strong duality theorem. Weak duality implies

h (ȳ∗, z̄∗) ⊇ p⊕ S (z̄∗) = h (¯̄y∗, z̄∗) ,

hence h (ȳ∗, z̄∗) = h (¯̄y∗, z̄∗) by maximality of h (ȳ∗, z̄∗). This proves (ȳ∗, z̄∗) ∈ ∆. �

6.3 Strong duality via compactness

In this subsection, we use a ”dual” condition to establish strong duality.

Theorem 6.7 Let f : X → G (C) and g : X → G (D) be closed. Assume that there are

z∗0 ∈ C+ and y∗0 ∈ D+ such that the function

x 7→ ϕf,z∗0
(x) + ϕg,y∗0

(x)

has compact sublevel sets. Then, the value function v (y) = inf {f (x) | y ∈ g (x)} is closed.

If, additionally, f and g are convex, then strong duality holds, i.e. v (0) = p = d.

Proof. Take a net (yα, zα) ∈ graph v which converges to (y, z) ∈ Y ×Z. Then, there

is a net xα and for each α there is a net zβ → 0 such that

zα + zβ ∈ f (xα) , yα ∈ g (xα) .
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Since f and g have closed convex values, this implies (see (5.2))

z∗0 (zα + zβ) ≥ ϕf,z∗0
(xα) , y∗0 (yα) ≥ ϕg,y∗0

(xα) .

Since yα, zα and zβ are convergent, there is α0 such that for all α exceeding α0 there is

β0 (α) such that

ϕf,z∗0
(xα) + ϕg,y∗0

(xα) ≤ z∗0 (zα + zβ) + y∗0 (yα) ≤ z∗0 (z) + y∗0 (y) + 1

for all β exceeding β0 (α). Because of the compact sublevel set assumption, xα has a

subnet converging to some x ∈ X . Since f and g are closed, we have z ∈ f (x) and

y ∈ g (x), hence z ∈ v (y). This proves that v is indeed closed. If v (0) = Z, then d = p by

weak duality. If the additional convexity assumption is satisfied and v (0) 6= Z, then v is

closed convex and (cl v) (0) = v (0) = v∗∗ (0). Proposition 6.4 (b) implies strong duality.

�

Note that the same proof works if one replaces the function ϕf,z∗0
+ϕg,y∗0

in the compact

sublevel set assumption by λ0ϕf,z∗0
+ λ1ϕg,y∗0

for real numbers λ0, λ1 ≥ 0. The remarkable

fact is that such an assumption for just one scalarization is enough the ensure strong

duality. This is in the spirit of [18, Theorem 4.4] and [12, Theorem 3.9]. On the other

hand, primal attainment of the solution is a much harder to achieve property which will

be discussed elsewhere.

6.4 An example

We shall consider the following specialization: Let p, q, N,M be positive integers and

X = IRpN , Y = IRM , Z = IRq and C = IRq
+, D = IRm

+ . Moreover, let the matrices

An ∈ IRM×p, n ∈ {1, 2, . . . , N}, and b ∈ IRM be given. The problem we are interested in

is

minimize

N
∑

n=1

fn (x
n) subject to 0 ∈

M
∑

m=1

Anx
n − b+ IRM

+ (PSep)

for functions fn : IR
p → G (IRq, IRq

+), n = 1, . . . , N . The motivation for this problem with

separated variables comes from utility maximization for vector-valued utility functions.

One may compare [7, Chapter 3] for a scalar version and also [4, Section 4.3, Example

4(d)].
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The Lagrangian for this problem is

l (x, v, w) =

N
∑

n=1

fn (x
n) + S(−v,w)

(

N
∑

n=1

Anx
n − b

)

=

N
∑

n=1

fn (x
n) +

N
∑

n=1

S(−AT
nv,w) (x

n) + S(−v,w) (−b) .

Here, by a slight abuse of notation, the dual variables are v ∈ IRM , w ∈ IRq
+\ {0}. The

dual objective becomes

h (v, w) = inf
x∈IRpN

l (x, v, w)

= S(v,w) (b) + inf
x1,...,xN∈IRp

N
∑

n=1

[

fn (x
n) + S(−AT

nv,w) (x
n)
]

= S(v,w) (b) +
N
∑

n=1

inf
xn∈IRp

[

fn (x
n) + S(AT

n v,w) (−xn)
]

= S(v,w) (b) +

N
∑

n=1

−f ∗
n

(

AT
nv, w

)

.

If one defines a function U : IRM → G (IRq, IRq
+) by

U (y) = inf
x∈IRpN

{

N
∑

n=1

fn (x
n) | 0 ∈

M
∑

m=1

Anx
n − y + IRM

+

}

and another one −V : IRM × IRq
+\ {0} by

−V (v, w) =
N
∑

n=1

−f ∗
n

(

AT
nv, w

)

,

then, in accordance with well-known formulas from scalar utility optimization (see [7,

Chapter 3]) strong duality is nothing else than

U (b) = [−V (·, ·)]∗ (−b) .

6.5 Set-valued duality in vector optimization

In [25, Theorem 3.31, 3.32], Lagrange duality theorems for infimal-set-valued functions

are given under the assumption that the interior of the ordering cone C is non-empty.

Here, we show that comparable results can be obtained under a much weaker assumption.
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Along the way, the relationship between the Fenchel conjugates introduced by [23, 24]

and those by [11] will be clarified.

Let us assume that there is an element z0 ∈ C\ {0} such that

∀z∗ ∈ C+\ {0} : z∗ (z) > 0.

In this case, the set B (z0) = {z∗ ∈ C+ : z∗ (z0) = 1} is a base of C+ with 0 6∈ clB (z0).

That is, for each z∗ ∈ C+\ {0} there is a unique representation z∗ = tz∗0 with t > 0 and

z∗0 ∈ B (z0). Compare [8], Definition 2.1.14, Theorem 2.1.15 and 2.2.12 applied to C+

instead of C. Clearly, a pointed closed convex cone with non-empty interior has a base,

and conversely, the cone L2
+ has an empty interior, but a base is generated by the constant

1 function.

The very definition of the functions S(x∗,z∗) gives

{

S(x∗,z∗) | x
∗ ∈ X∗, z∗ ∈ C+\ {0}

}

=
{

S(x∗,z∗) | x
∗ ∈ X∗, z∗ ∈ B (z0)

}

.

Therefore, it is sufficient to run an intersection like in the definition of d in Section 6.1

over y∗ ∈ Y ∗ and z∗ ∈ B (z0). Moreover, one easily checks (see also Proposition 6 (iv) in

[11]) for z∗ ∈ B (z0)

∀x ∈ X : S(x∗,z∗) (x) = {x∗ (x) z0}+ S (z∗) .

Thus, the conjugate of a function f : X → P (C) can be written as

−f ∗ (x∗, z∗) = cl
⋃

x∈X

[f (x)− x∗ (x) z0 + S (z∗)] = cl
⋃

x∈X

[f (x)− x∗ (x) z0]⊕ S (z∗) .

The part which does not depend on z∗ (remember z0 defines a base of C+ and is the same

for all z∗ ∈ C+\ {0}) has been used in [24], [26] for a definition of another set-valued

conjugate, namely

−f ∗
z0
(x∗) = cl

⋃

x∈X

[f (x)− x∗ (x) z0] .

If the cone C has non-empty interior and z0 ∈ intC, then the space F of upper closed

sets as defined in [25] coincides with F (C). In this case, one can derive an infimal set

version of the Lagrange duality theorem (Theorem 6.6) in the same way as Theorem

3.32 is derived from Theorem 3.26 in [25]. Note that under convexity assumptions the

functions map indeed into G (C) which is a subset of F (C). We omit the details since

they can be found in [25]. Finally, if Z = IR, C = IR+, then C+ = IR+, and {1} is a base

of C+. With this simple device one obtains a scalar version of Theorem 6.6, for example,

Theorem 4.3.7. in [4].
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7 Canonical extensions and saddle points of Lagrangians

7.1 Saddle points for functions with values in complete lattices

With a bi-variable function l : X×W → L, one can associate two optimization problems,

namely

minimize p (x) over x ∈ X and (Pl)

maximize d (w) over w ∈ W (Dl)

where

p (x) = L̂ ({x} ,W ) = sup
w∈W

l (x, w) ,

d (w) = Ľ (X, {w}) = inf
x∈X

l (x, w) .

The weak duality relation

∀x ∈ X, ∀w ∈ W : d (w) ≤ p (x)

follows immediately from (3.3). Indeed, for all x ∈ X and all w ∈ W ,

d (w) = L̂ (X, {w}) ≤ L̂ (X,W )
(3.3)

≤ Ľ (X,W ) ≤ Ľ ({x} ,W ) = p (x) .

In the next definition, saddle points for the function l are introduced.

Definition 7.1 Let l : X × V → L be a function. A pair
(

X̄, V̄
)

∈ P (X) × P (V ) is

called a saddle point of l if the following conditions are satisfied:

(a) ∅ 6= p
[

X̄
]

⊆ Min p [X ] and ∅ 6= d
[

V̄
]

⊆ Max d [V ].

(b) For all U ∈ P (X) and all W ∈ P (V ),

Ľ
(

X̄,W
)

≤ Ľ
(

X̄, V̄
)

= L̂
(

X̄, V̄
)

≤ L̂
(

U, V̄
)

.

A saddle point is called full if the two inclusions in (a) are equations.

Condition (b) generalizes the saddle point condition known from scalar optimization.

Note that (b) also includes the statement that the lower and the upper canonical extension

of l coincide at the saddle point. In the scalar case, (a) and (b) are equivalent – which is

no longer true for functions with values in complete lattices.
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Lemma 7.2 For a pair
(

X̄, V̄
)

∈ P (X) × P (V ), statement (b) in Definition 7.1 is

equivalent to

sup
v∈V̄

d (v) = inf
x∈X̄

p (x) . (7.1)

Proof. Assume (b) of Definition 7.1. With W = V and U = X we obtain

inf
x∈X̄

p (x) = Ľ
(

X̄, V
)

≤ L̂
(

X, V̄
)

= sup
v∈V̄

d (v)

which produces ”≤” in (7.1) according to the definitions of Ľ, L̂, p and d. On the other

hand, from the weak duality relation (3.3) we obtain

sup
v∈V̄

d (v) = L̂
(

X, V̄
)

≤ L̂
(

X̄, V̄
)

≤ Ľ
(

X̄, V̄
)

≤ Ľ
(

X̄, V
)

= inf
x∈X̄

p (x) .

Conversely, assume (7.1). Then, for U ∈ P (X), W ∈ P (V ),

inf
x∈X̄

sup
v∈W

l (x, v) ≤ inf
x∈X̄

sup
v∈V

l (x, v) = sup
v∈V̄

inf
x∈X

l (x, v) ≤ sup
v∈V̄

inf
x∈U

l (x, v)

which produces

Ľ
(

X̄,W
)

≤ L̂
(

U, V̄
)

.

From this, we obtain

∀U ∈ P (X) : Ľ
(

Ū , V̄
)

≤ L̂
(

U, V̄
)

∀W ∈ P (V ) : Ľ
(

X̄,W
)

≤ L̂
(

X̄, V̄
)

as well as

Ľ
(

X̄, V̄
)

≤ L̂
(

X̄, V̄
)

.

The weak duality relation (3.3) gives

L̂
(

X̄, V̄
)

≤ Ľ
(

X̄, V̄
)

,

and the last four relations together imply (b) of Definition 7.1. �

Theorem 7.3 The following statements are equivalent:

(a) X̄ ∈ P (X) is a (full) solution of (Pl), V̄ ∈ P (W ) is a (full) solution of (Dl), and

strong duality holds.

(b)
(

X̄, V̄
)

is a (full) saddle point of l : X × V → L.
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Proof. (a) ⇒ (b): Since X̄ is a solution of of (Pl) and V̄ of (Dl), (a) of Definition

7.1 is immediate. Strong duality and the attainment of the infimum/supremum yield

sup
v∈V̄

d (v) = sup
v∈V

d (v) = inf
x∈X

p (x) = inf
x∈X̄

p (x) ,

hence Lemma 7.2 produces (b) of Definition 7.1.

(b) ⇒ (a): From (a) of Definition 7.1 we obtain that X̄ is a minimizer of (Pl) and V̄

a maximizer of (Dl). Lemma 7.2 and weak duality yield

inf
x∈X̄

p (x) = sup
v∈V̄

d (v) ≤ sup
v∈V

d (v) ≤ inf
x∈X

p (x) ≤ inf
x∈X̄

p (x) ,

hence X̄ is an infimizer of (Pl), V̄ a supremizer of (Dl) and strong duality holds. �

7.2 Saddle points of the Lagrangian and strong duality

In this subsection, we specify the setting of the previous one to the set-valued optimization

problems introduced in Section 2. In particular, with (L,≤) = (G,⊇) and W = Y ∗ ×

C+\ {0} we can define the Lagrangian of problem (P) as the function

(x, y∗, z∗) 7→ l (x, y∗, z∗) = f (x)⊕
⋃

y∈g(x)

S(y∗,z∗) (y)

which depends on the primal variable x ∈ X and the pair of dual variables (y∗, z∗) ∈

Y ∗ × C+\ {0}.

Remark 7.4 Of course, if l is the Lagrangian of problem (P), then, under the assump-

tion of Proposition 2.2, (Pl) coincides with (P), and (Dl) coincides with (D) since, by

definition, d = h in this case.

The following theorem gives the link between saddle points of the Lagrangian and

strong duality.

Theorem 7.5 Let the assumptions of Theorem 6.6 be satisfied, and let Ū ∈ P (X) be a

solution of (P). Then, there exists ∆̄ ∈ P (Y ∗ × C+\ {0}) such that
(

Ū , ∆̄
)

is a saddle

point of the Lagrangian l.

Proof. Follows from Theorem 7.3 and Theorem 6.6. �
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8 Appendix

The following definition is taken from [10] where references and more material about

structural properties of conlinear spaces can be found.

Definition 8.1 A nonempty set W together with two algebraic operations +: W ×W →

W and · : IR+ ×W → W is called a conlinear space provided that

(C1) (W,+) is a commutative monoid with neutral element θ,

(C2) (i) ∀w1, w2 ∈ W , ∀r ∈ IR+: r · (w1 + w2) = r ·w1 + r ·w2, (ii) ∀w ∈ W , ∀r, s ∈ IR+:

s · (r · w) = (rs) · w, (iii) ∀w ∈ W : 1 · w = w, (iv) 0 · θ = θ.

An element w ∈ W is called a convex element of the conlinear space W if

∀s, t ≥ 0: (s+ t) · w = s · w + t · w.

A conlinear space (W,+, ·) together with a partial order � on W (a reflexive, antisym-

metric, transitive relation) is called ordered conlinear space provided that (iv) w,w1, w2 ∈

W , w1 � w2 imply w1+w � w2+w, (v) w1, w2 ∈ W , w1 � w2, r ∈ IR+ imply r·w1 � r·w2.

A non-empty subset V ⊆ W of the conlinear space (W,+, ·) is called a conlinear

subspace of W if (vi) v1, v2 ∈ V implies v1 + v2 ∈ V and (vii) v ∈ V and t ≥ 0 imply

t · v ∈ V .

It can easily be checked that a conlinear subspace of a conlinear space again is a

conlinear space.
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[15] E. Hernández and L. Rodŕıguez-Maŕın. Existence theorems for set optimization

problems. Nonlinear Anal., 67(6):1726–1736, 2007.
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