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Abstract In this paper, we first study nonsmooth steepest descent method for
nonsmooth functions defined on Hilbert space and establish the corresponding
algorithm by proximal subgradients. Then, we use this algorithm to find stationary
points for those functions satisfying prox-regularity and Lipschitzian continuity. As
one application, the established algorithm is used to search the minimizer of lower
semicontinuous and convex functions on finite-dimensional space. The convergent
theorem, as one extension and improvement of the existing converging result for
twice continuously differentiable convex functions, is also presented therein.

Keywords Nonsmooth steepest descent method · Stationary point · Proximal
subdifferential · Prox-regularity

Mathematics Subject Classification (2010) 49J52 · 65K05 · 49M99 · 46C99

1. Introduction

Given a smooth function on an Euclidean space, one kind of optimization problem
is to find the global/local minimizers of the given function. This kind of problems
has been receiving a great deal of attention and it is of significance to solve it
by using the iteration of line search methods. For solving this problem, it is used
generally to find the steepest descent unit direction, and then the given function
can be reduced along this direction and finally attain the global minimizer hope-
fully. This so-called steepest descent method nowadays has been applied to various
application areas such as numerical optimization, computing mathematics, prob-
abilistic analysis, algorithm, differential equations, vector optimization and so on
(cf. [1,2,3,4,5,6,7,8] and references therein). This method could be traced back

Zhou Wei(�)
Department of Mathematics, Yunnan University, Kunming 650091, P. R. China
E-mail: wzhou@ynu.edu.cn

Qing Hai He
Department of Mathematics, Yunnan University, Kunming 650091, P. R. China
E-mail: heqh@ynu.edu.cn

http://arxiv.org/abs/1310.2714v1


2 Zhou Wei, Qing Hai He

to Cauchy and subsequently studied and improved by many authors. One of most
useful improvement is the conjugate gradient method. It is known that Hestenes
and Stiefel [9] studied the linear conjugate gradient method for solving linear sys-
tems with positive definite coefficient matrices in 1950s, and afterwards in 1960s,
the first nonlinear conjugate gradient method, as one of the earliest known tech-
niques for solving large-scale nonlinear optimization problems, was introduced by
Fletcher and Reeves in [10]. The classic algorithm for smooth functions by steepest
descent method is presented in Section 2.

Note that the main idea of the steepest descent method is, by using the steep-
est descent unit direction, to produce a gradient sequence that converges to zero
with mild assumptions such as Zoutendijk, Wolfe or Goldstein conditions. It can-
not be guaranteed that this method converges to a minimizer, but only that it
is attracted by stationary points. Naturally, it is interesting and important to
establish the corresponding algorithm for nonsmooth functions on Hilbert space
along the line by this method. Motivated by it, in this paper, we mainly study
the nonsmooth version of steepest descent method by proximal subdifferential of
nonsmooth functions defined on Hilbert space, and aim to construct one appropri-
ate algorithm being used to find the stationary point by the nonsmooth steepest
descent method.

The paper is organized as follows. In Section 2, we will give some definitions
and preliminary through this paper. Our notation is basically standard and con-
ventional in the area of variational analysis. Section 3 is devoted to establishing
the algorithm for nonsmooth functions on Hilbert space by nonsmooth steepest
descent method. This algorithm is used to find stationary points of those functions
with prox-regularity and Lipschitzian continuity assumptions in Hilbert space. The
newly-established algorithm is also applied to the search of the minimizer for lower
semicontinuous Gâteaux differentiable convex functions on the finite-dimensional
space (see Theorem 3.4). The conclusion of this paper is presented in Section 4.

2. Preliminaries

Let H be a Hilbert space equipped with the inner product 〈·, ·〉 and the corresponding
norm ‖ · ‖. Given a Hilbert space H and a multifunction F : H ⇒ H, the symbol

Limsup
y→x

F (x) :=
{

ζ ∈ H : ∃ sequences xn → x and ζn
w
−→ ζ with

ζn ∈ F (xn) for all n ∈ N

}

signifies the sequential Painlevé-Kuratowski outer/upper limit of F (x) as y → x.
For x ∈ H and δ > 0, let B(x, δ) denote the open ball with center x and radius

δ. Given a set A ⊂ H, denote A and int(A) the norm closure and the interior of A,

respectively. If a sequence {vn} converges weakly to v, it is denoted by vn
w
−→ v.

For any point z ∈ H, the distance between z and S is given by

d(z, S) := inf{‖z − s‖ : s ∈ S}.

The set of closest points to z in S is denoted by

PS(z) := {s ∈ S : ‖z − s‖ = d(z, S)}.
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Let x ∈ S. Recall that the proximal normal cone of S at x, denoted by Np(S, x), is
defined as:

N
p(S, x) :=

{

ζ ∈ H : ζ = t(z − x) for some (z, t) ∈ H × (0,+∞) with x ∈ PS(z)
}

.

It is known from [11] that ζ ∈ Np(S, x) if and only if there exist two constants
σ, δ ∈]0,+∞[ such that

〈ζ, s− x〉 ≤ σ‖s− x‖2, ∀s ∈ B(x, δ) ∩ S.

The limiting(Mordukhovich) normal cone of S at x, denoted by N(S, x), is defined
as

N(S, x) := Limsup
y

S
−→x

N
p(S, y),

where y
S

−→ x means y → x and y ∈ S. Thus, ζ ∈ N(S, x) if and only if there exists

a sequence {(xn, ζn)} in S ×H such that xn → x, ζn
w
−→ ζ and ζn ∈ Np(S, xn) for

each n ∈ N.
Let f : H → R ∪ {+∞} be a lower semicontinuous function. We denote

dom(f) := {y ∈ H : f(y) < +∞} and epif := {(x, α) ∈ X × R : f(x) ≤ α}

the domain and the epigraph of f , respectively. Let x ∈ dom(f). Recall that f is
said to be Gâteaux differentiable at x, provided there exists ξ ∈ H such that

lim
t↓0

f(x+ th)− f(x)

t
= 〈ξ, h〉, ∀ h ∈ H.

Recall from [11] that a vector ζ ∈ H is said to be a proximal subgradient of f at x

provided that
(ζ,−1) ∈ N

p(epif, (x, f(x))).

The set of all such ζ, denoted ∂pf(x), is said to be the proximal subdifferential

of f at x. It is known from [11] that one useful and important characterization
for proximal subgradient is as follows: ζ ∈ ∂pf(x) if and only if there exist two
constants r, δ ∈]0,+∞[ such that

f(y) ≥ f(x) + 〈ζ, y − x〉 −
r

2
‖y − x‖2, ∀ y ∈ B(x, δ).

The limiting(Mordukhovich) subdifferential of f at x is defined as:

∂f(x) := {ζ ∈ H : (ζ,−1) ∈ N(epif, (x, f(x)))}.

It is proved in [12,13] that

∂f(x) = Limsup

y
f
→x

∂pf(y),

where y
f
→ x means y → x and f(y) → f(x); that is, ζ ∈ ∂f(x) if and only if there

exist xn
f
→ x and ζn

w
−→ ζ such that ζn ∈ ∂pf(xn) for all n ∈ N. When f is convex,

the proximal subdifferential and the limiting subdifferential of f at x coincide and
both reduce the subdifferential in the sense of convex analysis, that is

∂pf(x) = ∂f(x) = {ζ ∈ H : 〈ζ, y − x〉 ≤ f(y)− f(x), ∀y ∈ H}.
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Readers are invited to consult books [11,12,14] for more details on these various
normal cones and subdifferentials.

In the analysis, we need the notion of upper semicontinuity. Let X,Y be Haus-
dorff topological spaces and let F : X ⇒ Y be a set-valued mapping from X into
Y . Recall from [15] that F is upper semicontinuous at x ∈ X iff, for each open set V
in Y containing F (x), there is an open neighborhood U of x such that F (x′) ⊂ V

for all x′ ∈ U .

Let f : Rm → R be a smooth function. We consider the following unconstraint
optimization problem:

min
x∈Rm

f(x). (1)

Note that it is of significance to solve it by using the iteration of line search
methods. Each iteration of a line search method computes a search direction un−1

and then decides how far to move along this direction. The iteration is given by

xn := xn−1 + εn−1un−1,

where the positive scalar εn−1 is called the step length. When it comes to problem
(1), it is used generally to find the steepest descent unit direction, and then f can
be reduced along this direction and finally attain the global minimizer hopefully.
The classical algorithm for smooth functions by the steepest descent method is as
follows:

Algorithm SDM Let f : Rm → R be smooth and let x0 be given.

Step 1: Let n := 1. Go to Step 2.
Step 2: Check vector ▽f(xn−1). If ▽f(xn−1) = 0, then terminate; otherwise, set

un−1 := −
▽f(xn−1)

‖▽f(xn−1)‖
and xn := xn−1 + εn−1un−1,

where the step length εn−1 is chosen by

f(xn−1 + εn−1un−1) = min
t≥0

f(xn−1 + tun−1).

Go to Step 3.

Step 3: Set n := n+ 1 and return to Step 2.

For the smooth function case, the sequence un, produced by Algorithm SDM,
can converge to a local minimizer only by making additional requirements on the
search direction un. However, the following known convergent result shows that, for
twice differentiable convex functions, the sequence generated by Algorithm SDM
would converge to the global minimizer with no assumption on search direction
(cf. [7, Theorem 2.3.8]):

Theorem 2.1. Let f : Rm → R be a strictly convex, twice continuously differentiable

function and x0 ∈ R
m. Denote Ω := {x ∈ R

m : f(x) ≤ f(x0)} the level set. Suppose

that there exist constants m,M ∈]0,+∞[ such that

m‖y‖2 ≤ 〈y,▽2
f(z)y〉 ≤ M‖y‖2 ∀z ∈ Ω and ∀y ∈ R

m
. (2)
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Let {xn} be generated by Algorithm SDM. Then there exists a subsequence {xnk} of

{xn} converging to a point x̄ that minimizes f(z) over z ∈ R
m, where ▽

2f(z) denotes

the Hessian matrix of f at z.

Note that qualification condition (2) could guarantee the boundedness of the
level set Ω (by [7, Theorem B2.8]) and the bounds m,M may be the smallest
and largest eigenvalue of the Hessian matrix ▽

2f(z). Our main work in this paper
is to establish the corresponding algorithm for nonsmooth functions defined on
Hilbert space and use it to find stationary points of those functions satisfying
prox-regularity and Lipschitzian continuity (see Theorem 3.1). Then, we apply the
newly-established algorithm to the search of minimizer for lower semicontinuous
Gâteaux differentiable convex functions defined on the finite-dimensional space so
as to extend and improve Theorem 2.1 above.

3. Nonsmooth Steepest Descent Method

In this section, we study nonsmooth steepest descent method for nonsmooth func-
tions on the Hilbert space and establish the corresponding algorithm by proximal
subgradients so as to extend the original smooth algorithm by steepest descent
method and steepest descent gradient. Then, we use the newly-established algo-
rithm to find stationary points for those nonsmooth functions satisfying prox-
regularity and Lipschitzian continuity. We begin with recalling the definition of
prox-regularity taken from [14,16].

Definition 3.1. Let f : H → R ∪ {+∞}, and let ȳ ∈ dom(f). We say that f is
prox-regular at ȳ for w̄ ∈ ∂pf(ȳ) iff there exist δ > 0 and L ≥ 0 such that

f(y′) ≥ f(y) + 〈w, y
′ − y〉 −

L

2
‖y′ − y‖2 ∀y′ ∈ B(ȳ, δ), (3)

whenever y ∈ B(ȳ, δ) with |f(y)− f(ȳ)| < δ and w ∈ ∂pf(y)∩B(w̄, δ). We say that
f is prox-regular at ȳ iff this holds for every w̄ ∈ ∂pf(ȳ).

The following concept introduced in [17] is also relevant here.

Definition 3.2. Let f : H → R∪{+∞}, and let E ⊂ H. We say that f is uniformly

prox-regular on E iff there exist δ > 0 and L > 0 such that, for any ȳ ∈ E and
w̄ ∈ ∂pf(ȳ), one has

f(y′) ≥ f(y) + 〈w, y
′ − y〉 −

L

2
‖y′ − y‖2 ∀y′ ∈ B(ȳ, δ), (4)

whenever y ∈ B(ȳ, δ) with |f(y)−f(ȳ)| < δ and w ∈ ∂pf(y)∩B(w̄, δ). We say that f
is locally uniformly prox-regular around y0 ∈ H iff E can be taken as a neighborhood
of y0, i.e., E = B(y0, r) for some r > 0.

The following proposition, obtained from [17, Proposition 3.3], is one charac-
terization for the local uniform prox-regularity.
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Proposition 3.1 Let f : H → R ∪ {+∞} and y0 ∈ H. Then f is locally uniformly

prox-regular around y0 if and only if there are δ > 0 and L > 0 such that, for any

y, y′ ∈ B(y0, δ) and w ∈ ∂pf(y), we have the estimate

f(y′) ≥ f(y) + 〈w, y
′ − y〉 −

L

2
‖y′ − y‖2. (5)

Now, we provide one algorithm of nonsmooth steepest descent method for non-
smooth functions by proximal subgradients and use it to find stationary points for
nonsmooth functions with prox-regularity and Lipschitzian continuity assumptions
in the Hilbert space.

Theorem 3.1 Let f : H → R ∪ {+∞} be lower semicontinuous and bounded below.

Let x0 ∈ dom(f) with ∂pf(x0) 6= ∅. We define the level set as

Ω := {x ∈ H : f(x) ≤ f(x0)}. (6)

Suppose that there exist δ, L > 0 such that f is uniformly prox-regular on the set

B(Ω, δ) := {x ∈ H : d(x,Ω) < δ} and

∂pf(y) ⊂ ∂pf(z) + L‖y − z‖BH ∀ y ∈ Ω with ‖y − z‖ < δ. (7)

We use the following Algorithm NSDM to construct a sequence {xn : n = 1,2, · · · }:
Algorithm NSDM Let x0 be given with ∂pf(x0) 6= ∅.

Step 1: Let n := 1. Go to Step 2.
Step 2: Choose vn−1 ∈ ∂pf(xn−1) and check vector vn−1. If vn−1 = 0, then

terminate; otherwise, set

un−1 := −
vn−1

‖vn−1‖
and xn := xn−1 + εn−1un−1,

where εn−1 is chosen as follows:

f(xn−1 + εn−1un−1) = min
t≥0

f(xn−1 + tun−1). (8)

Go to Step 3.
Step 3: Set n := n+ 1 and return to Step 2.
Then Algorithm NSDM is valid and every cluster point of {xn : n = 0, 1, · · · } is

the stationary point.

Proof First, we have to show that Ω ⊂ dom(∂pf) so that the validness of Algorithm
NSDM could be guaranteed. Let y ∈ Ω. By the Density Theorem (cf. [11, Theorem
3.1]), one has dom(∂pf) ∩ Ω is dense in Ω. Then, there exist yk ∈ dom(∂pf) ∩ Ω

such that yk → y. By virtue of (7), when k is sufficiently large, one has

∂pf(yk) ⊂ ∂pf(y) + L‖yk − y‖BH .

This implies that ∂pf(y) 6= ∅ as ∂pf(yk) 6= ∅ for all k sufficiently large. Hence
Ω ⊂ dom(∂pf).

Since f is uniformly prox-regular, by Proposition 3.1, without any loss of gen-
erality, we can assume that, for any ȳ ∈ B(Ω, δ) and w̄ ∈ ∂pf(ȳ), one has

f(y′) ≥ f(y) + 〈w, y
′ − y〉 −

L

2
‖y′ − y‖2 ∀y′ ∈ B(ȳ, δ) (9)
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whenever w ∈ ∂pf(y)∩B(w̄, δ) and y ∈ B(ȳ, δ) with |f(y)−f(ȳ)| < δ, perhaps after
reducing the value of δ > 0 and increasing the value of L > 0. If there exists n0

such that vn0
= 0, then the conclusion holds. Next, we suppose that vn 6= 0 for all

n ∈ N. Let ε ∈]0, δ[. Noting that vn−1 ∈ ∂pf(xn−1), it follows from (7) that there
exist wn−1 ∈ ∂pf(xn−1 + εun−1) and bn−1 ∈ BH such that

vn−1 = wn−1 + Lεbn−1 (10)

(thanks to ε ∈]0, δ[). By (9) and (10), one has

f(xn−1) ≥ f(xn−1 + εun−1) + 〈wn−1,−εun−1〉 −
L

2
ε
2

≥ f(xn−1 + εun−1)− ε〈vn−1, un−1〉 − Lε
2 −

L

2
ε
2
.

This and (8) imply that

‖vn−1‖ ≤
f(xn−1)− f(xn)

ε
+

3

2
Lε. (11)

Since {f(xn)} is monotonic decreasing by (8) and f is bounded below, it follows
that limn→∞ f(xn) exists. Hence, there exists N ∈ N such that when n > N , one
has

f(xn−1)− f(xn)

ε
< ε.

From this and (11), we have

‖vn−1‖ ≤ (1 +
3

2
L)ε, n > N,

and thus vn → 0. Let x̄ be any cluster point of {xn : n = 0, 1, · · · }. Then there
exists a subsequence {xnk} of {xn} such that xnk → x̄ ∈ H. It follows from the
lower semicontinuity of f that

f(x̄) ≤ lim inf
k→∞

f(xnk) ≤ f(x0),

and hence x̄ ∈ Ω. By applying (9) again, for k large enough, one has

f(x̄) ≥ f(xnk) + 〈vnk , x̄− xnk〉 −
L

2
‖x̄− xnk‖

2
,

and consequently f(x̄) ≥ lim supk→∞ f(xnk). This and lower semicontinuity of f
imply that f(xnk) → f(x̄) as k → ∞. Noting that vnk ∈ ∂pf(xnk) and vnk → 0, it
follows that 0 ∈ ∂f(x̄). The proof is complete. ✷

Remark 3.1. (i) Condition (7) in Theorem 3.1 refers to the Lipschitzian prop-
erty of subdifferential ∂pf . Recently Bacak, Borwein, Eberhard and Mordukhovich
[18] mainly studied the Lipschitzian property of subdifferentials for prox-regular
functions in Hilbert space, and obtained results on this Lipschitzian property of
subdifferentials (cf. [18, Lemma 5.2 and Theorem 5.3]). For the smooth functions,
subdifferential ∂pf reduces to Fréchet derivative operator ▽f , and condition (7)
means that ▽f is Lipschitzian continuous with modulus L > 0. This condition
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holds for C1,1 functions, para-convex and para-concave functions and twice differ-
entiable functions on finite-dimensional space with bounded Hessian matrices. In
particular, the convex function studied in Theorem 2.1 satisfies condition (7).

(ii) Algorithm NSDM provides a search direction un−1 by proximal subgradi-
ent for nonsmooth functions defined on the Hilbert space and generates a sequence
{xn} having some subsequence converging the stationary point with mild assump-
tions. When restricted to the smooth case, Algorithm NSDM reduces to Algorithm
SDM mentioned in Section 2.

The following example shows that Algorithm NSDM is practicable to find sta-
tionary points (or even minimizers) of functions satisfying prox-regularity and
Lipschitzian continuity assumptions in Hilbert space.

Example 3.1. Let H := l2 and y = (η(1), · · · , η(k), · · · ) ∈ H. Define a function f

on H by

f(x) :=
1

2

∞
∑

i=1

ξ(i)2 −

∞
∑

i=1

ξ(i)η(i) + 3, for all x = (ξ(1), · · · , ξ(k), · · · ) ∈ H.

Clearly f is convex, and thus satisfies the uniform prox-regularity on H. Since
∂pf(x) = x − y (by computing), then ∂pf is Lipschitzian continuous on H. Take
x0 := (0, · · · , 0, · · · ) ∈ H and let Ω be defined as (6). One can verify that (7) holds
with L := 1. Using Algorithm NSDM, the sequence {xn : n = 1,2, · · · } can be
generated and vn = xn − y. By virtue of the proof of Theorem 3.1, sequence {vn}
converges to vector 0 ∈ H, and thus y is a cluster point of {xn}. It follows from
Theorem 3.1 that y is a stationary point, and consequently y minimizes f(x) over
x ∈ H due to the convexity of f .

Let F : H ⇒ H be a set-valued mapping and x ∈ H with F (x) 6= ∅. Recall from
[15,12] that F is said to be locally Lipschitzian at x iff there exist δ, κ > 0 such that

F (x′) ⊂ F (x′′) + κ‖x′ − x
′′‖BH ∀ x′, x′′ ∈ B(x, δ).

Theorem 3.2 Let f : Rm → R ∪ {+∞} be lower semicontinuous and bounded below.

Let x0 ∈ dom(f) with ∂pf(x0) 6= ∅ and the level set Ω be defined as (6). Suppose that

Ω is bounded, ∂pf is locally Lipschitzian on Ω and that f is locally uniformly prox-

regular on Ω. Let the sequence {xn : n = 0, 1, · · · } be generated by Algorithm NSDM.

Then there exists a subsequence {xnk} of {xn} such that {xnk} converges to a point

x̄ ∈ Ω with 0 ∈ ∂f(x̄).

Proof First, we need to show that Ω ⊂ dom(∂pf) so that the Algorithm NSDM is
valid. Let y ∈ Ω. By the Density Theorem, one has dom(∂pf) ∩ Ω is dense in Ω.
Then, there exists yk ∈ dom(∂pf)∩Ω such that yk → y. Noting that ∂pf is locally
Lipschitzian at y, it follows that there exist r > 0 and κy > 0 such that

∂pf(z1) ⊂ ∂pf(z2) + κy‖z1 − z2‖BH ∀z1, z2 ∈ B(y, r).

This means that when k is sufficiently large, one has

∂pf(yk) ⊂ ∂pf(y) + κy‖yk − y‖BH ,
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and consequently ∂pf(y) 6= ∅ as ∂pf(yk) 6= ∅ for all k sufficiently large. Hence
Ω ⊂ dom(∂pf).

Let y ∈ Ω. Since ∂pf is locally Lipschitzian and locally uniformly prox-regular
around y, by Proposition 3.1, there exist δy > 0 and Ly > 0 such that, for any
y′, y′′ ∈ B(y, δy) and w ∈ ∂pf(y

′), one has

f(y′′) ≥ f(y′) + 〈w, y
′′ − y

′〉 −
Ly

2
‖y′′ − y

′‖2, (12)

and
∂pf(z1) ⊂ ∂pf(z2) + Ly‖z1 − z2‖BH ∀z1, z2 ∈ B(y, δy), (13)

perhaps after reducing the value of δy > 0 and increasing the value of Ly > 0 if
necessary. Then

Ω ⊂
⋃

y∈Ω

B(y,
δy

2
). (14)

Note that Ω is closed by the semicontinuity of f and bounded, so Ω is compact.
It follows from (14) that there exist y1, · · · , yl ∈ Ω such that

Ω ⊂

l
⋃

i=1

B(yi,
δyi

2
). (15)

Let

δ := min
{

δy1

2
, · · · ,

δyl

2

}

and L := max{Ly1
, · · · , Lyl},

and let ε ∈]0, δ[. By the Algorithm NSDM, we have xn−1 ∈ Ω, and thus there

exists i ∈ {1, · · · , l} such that xn−1 ∈ B(yi,
δyi
2
). Noting that vn−1 ∈ ∂pf(xn−1)

and xn−1 + εun−1 ∈ B(yi, δyi), it follows from (13) that

vn−1 ∈ ∂pf(xn−1) ⊂ ∂pf(xn−1 + εun−1) + LεBRm .

(thanks to L ≥ Lyi). Then, there are wn−1 ∈ ∂pf(xn−1 + εun−1) and bn−1 ∈ BRm

such that
vn−1 = wn−1 + Lεbn−1 (16)

Since xn−1, xn−1+ εun−1 ∈ B(yi, δyi) and wn−1 ∈ ∂pf(xn−1+ εun−1), by (12) and
(16), one has

f(xn−1) ≥ f(xn−1 + εun−1) + 〈wn−1,−εun−1〉 −
Lyi

2
ε
2

≥ f(xn−1 + εun−1)− ε〈vn−1, un−1〉 − Lε
2 −

L

2
ε
2
.

This and (8) imply that

‖vn−1‖ ≤
f(xn−1)− f(xn)

ε
+

3

2
Lε.

Since {f(xn)} is monotonic decreasing and bounded below, one has limn→∞ f(xn)
exists, and consequently there exists N ∈ N such that, whenever n > N , one has

f(xn−1)− f(xn)

ε
< ε.



10 Zhou Wei, Qing Hai He

Hence

‖vn−1‖ < (1 +
3

2
L)ε, ∀n > N,

and consequently vn → 0. Noting that {xn} ⊂ Ω and Ω is compact, there exists a
subsequence {xnk} of {xn} converging to a point x̄ ∈ Ω. By using (12), when k is
sufficiently large, we have

f(x̄) ≥ f(xnk) + 〈vnk , x̄− xnk〉 −
L

2
‖x̄− xnk‖

2
.

Thus f(x̄) ≥ lim supk→∞ f(xnk), and consequently f(xnk) → f(x̄) as f is lower
semicontinuous at x̄. Hence 0 ∈ ∂f(x̄). The proof is complete. ✷

Next, we use the established Algorithm NSDM to find the minimizer of lower
semicontinuous and convex functions defined on finite-dimensional space. Since
convexity implies local uniform prox-regularity automatically, the following theo-
rem is immediate from Theorem 3.2.

Theorem 3.3 Let f : R
m → R ∪ {+∞} be a lower semicontinuous, convex and

bounded below function, x0 ∈ dom(f) with ∂f(x0) 6= ∅ and the level set Ω be de-

fined as (6). Suppose that Ω is bounded and ∂f is locally Lipschitzian on Ω. Let the

sequence {xn : n = 0,1, · · · } be generated by Algorithm NSDM. Then there exists a

subsequence {xnk} of {xn} such that {xnk} converges to a point x̄ ∈ Ω with 0 ∈ ∂f(x̄),
and consequently f(x̄) = minz∈Rm f(z).

Now, we provide one convergent theorem for lower semicontinuous, convex
and Gâteaux differentiable functions defined on the finite-dimensional space. This
theorem shows that the sequence generated by Algorithm NSDM converges to the
minimizer even without Lipschitzian assumption of subdifferential.

Theorem 3.4 Let f : Rm → R ∪ {+∞} be lower semicontinuous, convex, Gâteaux

differentiable and bounded below function, x0 ∈ dom(f) and the level set Ω be defined

as (6). Suppose that Ω is bounded and Ω ⊂ int(dom(f)). Let {xn} be generated by

the Algorithm NSDM. Then there exists a subsequence {xnk} of {xn} such that {xnk}
converges to a point x̄ ∈ Ω that minimizes f(z) over z ∈ R

m.

Proof First, the validness of the Algorithm NSDM follows from the Gâteaux dif-
ferentiability of f .

Using [19, Proposition 3.3], we have that f is continuous on int(dom(f)), and
consequently the subdifferential mapping ∂f is norm-to-norm upper semicontin-
uous on int(dom(f)) by [19, Proposition 2.5]. Let ε ∈]0,+∞[. Noting that R

m

is finite-dimensional and Ω ⊂ int(dom(f)), by the upper semicontinuity, for each
y ∈ Ω there exists δy > 0 such that

∂f(y′) ⊂ ∂f(y) +
ε

3
BRm ∀y′ ∈ B(y, δy). (17)

Note that Ω is bounded, and consequently Ω is compact. This implies that there
exist y1, · · · , yl ∈ Ω such that

Ω ⊂

l
⋃

i=1

B(yi,
δyi

2
). (18)
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Let δ := min
{

δy1

2
, · · · ,

δyl
2

}

and α ∈]0, δ[. By the Algorithm NSDM, we have

xn−1 ∈ Ω, and there exists i ∈ {1, · · · , l} such that xn−1 ∈ B(yi,
δyi
2
). Since f

is Gâteaux differentiable at yi, then the subdifferential ∂f(yi) is the singleton.
Noting that vn−1 ∈ ∂f(xn−1) and xn−1 + αun−1 ∈ B(yi, δyi), it follows from (18)
that there exist wn−1 ∈ ∂f(xn−1 + αun−1) and an−1, bn−1 ∈ BRm such that

vn−1 = wn−1 +
ε

3
(bn−1 + an−1).

This and convex inequality in convex analysis imply that

f(xn−1)− f(xn−1 + αun−1) ≥ 〈wn−1,−αun−1〉 ≥ 〈vn−1,−αun−1〉 −
2

3
αε

and, by (8), one has

‖vn−1‖ ≤
f(xn−1)− f(xn)

α
+

2

3
ε. (19)

Since {f(xn)} is monotonic decreasing and bounded below, then limn→∞ f(xn)
exists and there exists N ∈ N such that, whenever n > N , we have

f(xn−1)− f(xn)

α
<

ε

3
.

From this and (19), one has

‖vn−1‖ < ε, ∀n > N.

This implies that vn → 0. Since {xn} ⊂ Ω and Ω is compact, there exists a
subsequence {xnk} of {xn} such that xnk → x̄ ∈ Ω. Note that f(xnk) → f(x̄)
follows from the continuity of f at x̄, so 0 ∈ ∂f(x̄) and this is equivalent to that
f(x̄) = minz∈Rm f(z) (thanks to the convexity of f). The proof is complete. ✷

Remark 3.2. In Theorem 3.4, Algorithm NSDM established has been used to
construct a sequence having some subsequence converging to the minimizer of
lower semicontinuous convex and Gâteaux differentiable functions that are more
general than strictly convex and twice continuously differentiable functions. Hence
this convergent result improves Theorem 2.1 in the sense of relaxing the twice
continuously differentiable assumption.

4. Concluding Remarks

This paper is devoted to presenting an algorithm for finding stationary points of
nonsmooth functions based on nonsmooth steepest descent method and proximal
subgradients in Hilbert space. The algorithm established is used to produce one
sequence converging to zero vector so as to obtain the stationary point of lower
semicontinuous functions satisfying prox-regularity and Lipschitzian continuity on
Hilbert space. This algorithm is also applied to the search of minimizers for con-
vex functions on finite-dimension space. The obtained convergent theorem extends
the existing result on twice continuously differentiable convex functions on finite-
dimensional space.
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