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Abstract 

In this work we show that given a nonlinear programming problem, it is possible 
to construct a family of dynamical systems defined on the feasible set of the 
given problem, so that: (a) the equilibrium points are the unknown critical points 
of the problem, (b) each dynamical system admits the objective function of the 
problem as a Lyapunov function, and (c) explicit formulae are available without 
involving the unknown critical points of the problem. The construction of the 
family of dynamical systems is based on the Control Lyapunov Function 
methodology, which is used in mathematical control theory for the construction 
of stabilizing feedback. The knowledge of a dynamical system with the 
previously mentioned properties allows the construction of algorithms which 
guarantee global convergence to the set of the critical points.  
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1. Introduction 
 
    Differential equations have been used in the past for the solution of Nonlinear Programming (NLP) problems. The 
reader may consult [1,6,7,11,21,25,26,27,28] for various results on the topic. Some methods are interior-point 
methods (in the sense that are defined only on the feasible set) while other methods are exterior-point methods (in the 
sense that are defined at least in a neighborhood of the feasible set). As remarked in [5], each system of differential 
equations that solves a NLP problem when combined with a numerical scheme for solving Ordinary Differential 
Equations (ODEs) provides a numerical scheme for solving the NLP problem.  
 
In this work, we are interested in the application of feedback stabilization methods for solving NLP problems. The 
feedback stabilization methods can be applied in two ways: 

 first, for the construction of the dynamical system, which solves the NLP problem and 
 for the selection of the step size of the Runge-Kutta scheme that is used for the solution of the resulting 

system of ODEs (see [12,16]).  
 
More specifically, consider the Nonlinear Programming problem: 
 

{ }Sxx ∈:)(min θ                                                               (1.1) 
 
where nx ℜ∈  and the closed set nS ℜ⊆  is defined by 
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where nm <  and all functions ℜ→ℜn:θ , ℜ→ℜn

ih :  ( mi ,...,1= ), ℜ→ℜn
jg :  ( kj ,...,1= ) are twice 

continuously differentiable. Inspired by the methods employed in the book [15], we would like to construct a well-
defined dynamical system )(xFx =  on the closed set nS ℜ⊆ , where nSF ℜ→:  is a continuous vector field with 
the following properties: 
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Property 1: For every Sx∈ , )(xF  belongs to the contingent cone to S  at x . This property is required because local 
existence of solutions of the dynamical system )(xFx =  can be guaranteed by Nagumo’s theorem (given on page 27 
of the book [3]). 
 
Property 2: nSF ℜ→:  is a locally Lipschitz vector field. This property is required for uniqueness of the solutions of 
the dynamical system )(xFx = . Moreover, this property is required because we would like to be able to apply 1st 
order Runge-Kutta schemes for the simulation of the solutions of the dynamical system )(xFx = . Higher regularity 
is also desirable because high order Runge-Kutta schemes can be used for the simulation of the solutions of the 
dynamical system )(xFx = . 
 
Property 3: The equilibrium points of the dynamical system )(xFx =  are exactly the points Sx∈  for which there 
exist ℜ∈iλ  ( mi ,...,1= ) and 0≥jμ  ( kj ,...,1= ) such that the necessary Karush-Kuhn-Tucker conditions hold: 
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Property 4: The function )()()( *xxxV θθ −=  is a Lyapunov function for the dynamical system )(xFx = , where 

Sx ∈*  is one of the global solutions of the NLP described by (1.1), (1.2), i.e., { }Sxxx ∈=∗ :)(min)( θθ . In other 
words, we would like the inequality 0)()( <∇ xFxθ  to hold for all Sx∈  for which there are no ℜ∈iλ  ( mi ,...,1= ) 
and 0≥jμ  ( kj ,...,1= ) such that conditions hold (1.3). This property is important because it guarantees useful 

stability properties. Furthermore, the fact that the Lyapunov function of the dynamical system )(xFx =  has the 

special form  )()()( *xxxV θθ −=  is important for numerical purposes (see [12,16]): the time derivative of the 
Lyapunov function along the solutions of the system and the difference of the values of the Lyapunov function 
between two points can be computed without knowledge of the solution Sx ∈*  of the NLP problem.  
 
Property 5: The vector field nSF ℜ→:  must be explicitly known. Formulae for the vector field nSF ℜ→:  must 
be provided: the formulae must not involve the solution Sx ∈*  of the NLP described by (1.1), (1.2).  
 
Property 6: The vector field nSF ℜ→:  must have free parameters which can be selected in an appropriate way so 
that the convergence properties of the corresponding numerical schemes to the global attractor of the dynamical 
system are optimal. In other words, we want to construct a family of vector fields nSF ℜ→:  with all the above 
properties.  
 
     It must be noted that the properties 1-6 are rarely satisfied by other differential equation methods for solving 

NLPs. For example, in [1] and [6], the constructed Lyapunov function is 
2

2
1)( ∗−= xxxV  and this does not meet our 

requirements. Moreover, for [6] the point ∗= xx  is not an equilibrium point for the constructed time-varying system 
),( xtFx = . Antipin in [1] constructs an autonomous system )(xFx =  for which ∗= xx  is an equilibrium point and 

);(0 nnCF ℜℜ∈  (being locally Lipschitz) does not depend on the location of the unknown point nx ℜ∈∗ . However, 
the computation of )(xF  is involved (it requires the solution of a (NLP) since it involves a projection on the feasible 
set). The (NLP) without equality constraints under additional convexity hypotheses has been studied in [26]. 

However, again the constructed Lyapunov function is of the form 
2

2
1)()( ∗−+= xxxPxV  and this does not meet 

our requirements. On the other hand, the papers [25,27] propose systems of differential equations that satisfy 
properties 1-6 for systems without inequality constraints. Local results are provided in the paper [28] and differential 
equations based on barrier methods were considered in [7]. 
 
    It is clear that the knowledge of the Lyapunov function )()()( *xxxV θθ −=  can allow us to construct the vector 
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field nSF ℜ→:  by the Control Lyapunov Function methodology of feedback design (see [2,9,17,23]) for the 
control system nux ℜ∈= . However, there are certain obstructions for the direct application of the classical Control 
Lyapunov Function methodology: (i) the system is not defined on nℜ  but on the closed set nS ℜ⊆ , (ii)  for every 

Sx∈ , )(xF  must belong to the contingent cone to S  at x , and (iii) the position of the equilibrium points, i.e., the 
set of points Sx∈  for which there exist ℜ∈iλ  ( mi ,...,1= ) and 0≥jμ  ( kj ,...,1= ) such that conditions (1.3) hold 
is unknown (this is what we are looking for). 
 
   The contribution of the paper is twofold: 
 

• The main result of the present work (Theorem 2.1) shows that all the previously mentioned obstructions can 
be overcome under appropriate assumptions.  

 
• Based on the ideas described in [12,16], in Section 3 of the present work, we present an algorithm for the 

solution of the NLP described by (1.1) and (1.2) which is based on the application of the explicit Euler 
scheme for the numerical solution of the resulting system of ODEs with appropriate step selection (Theorem 
3.1). The algorithm will converge for every initial condition (global convergence). A modified and simpler 
version of the algorithm can work under slightly more demanding assumptions (Remark 3.5).  

 
   It should be noticed that the convergence rates of the proposed algorithms depend on the selection of certain 
matrices which are the free parameters described in Property 5 above. However, since the proposed algorithms are 
global, it can be used in combination with any other local algorithm that guarantees fast convergence based on the 
following intuitive idea: “apply the newly proposed algorithms when you are away from a solution and apply a fast 
local algorithm when you are close to a solution”.     
 
    It should be emphasized that no claim is made about the effectiveness of the proposed algorithms. The topic of the 
numerical solution of NLPs is a mature topic and it is clear that other algorithms have much better characteristics than 
the algorithms proposed in this paper. However, the theory used for the construction of the algorithm is different from 
other existing algorithms. The algorithms contained in this work are derived by using concepts of dynamical systems 
theory and mathematical control theory. 
 
    The structure of the paper is as follows: Section 2 contains the statement and proof of Theorem 2.3, which provides 
the solution to the problem of the construction of a vector field with properties 1-6. Section 3 provides numerical 
algorithms for the exploitation of the constructed vector field. Section 4 of the paper provides some examples, which 
show the performance of the algorithms. Finally, Section 5 of the paper contains the concluding remarks. The 
appendix provides the proofs of certain auxiliary results.  
   
 
Notations Throughout this paper we adopt the following notations:  
∗  Let nA ℜ⊆  be a set. By  );(0 ΩAC , we denote the class of continuous functions on A , which take values in Ω . 

By );( ΩAC k , where 1≥k  is an integer, we denote the class of differentiable functions on A  with continuous 

derivatives up to order k , which take values in Ω . By );( Ω∞ AC , we denote the class of differentiable functions 
on A  having continuous derivatives of all orders (smooth functions), which take values in Ω , i.e., 

);();(
1

Ω∩=Ω
≥

∞ ACAC k

k
. 

∗  For a vector nx ℜ∈  we denote by x  its usual Euclidean norm and by x′  its transpose. For a real matrix 
mnA ×ℜ∈  we denote by A  its induced norm, i.e., { }1,:max: =ℜ∈= xxAxA m  and by nmA ×ℜ∈′  its 

transpose. nn
nI ×ℜ∈  denotes the identity matrix. For every n

nxxx ℜ∈′= ),...,( 1  we define 

( ) n
nxxx ℜ∈′=+ ),0max(),...,,0max( 1 . Notice that the following property holds for every positive definite and 

diagonal matrix nnR ×ℜ∈ : 00 =⇔=′ ++ xRxx .  
∗  ( ) { }0...,,0:),...,(: 11 ≥≥ℜ∈′=ℜ=ℜ ++ n

n
n

nn xxxx . Let nyx ℜ∈, . We say that yx ≤   if and only if 
nxy +∈ℜ− )( .  

∗  For every scalar continuously differentiable function ℜ→ℜnV : , )(xV∇  denotes the gradient of V  at nx ℜ∈ , 

i.e., ⎟⎟
⎠

⎞
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⎝
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 and )(2 xV∇  denotes the Hessian matrix of V  at nx ℜ∈ .  
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2. Transforming an NLP problem into a feedback stabilization problem  
 
Consider the NLP problem described by (1.1) and (1.2) under the following assumptions:  
 
(H1) The feasible set nS ℜ⊆  defined by (1.2) is non-empty and the level sets of ℜ→ℜn:θ  are compact sets, i.e., 
for every Sx ∈0  the level set  
 

{ })()(: 0xxSx θθ ≤∈  
 
is compact.  
 
(H2) For every Sx∈  the row vectors )(xhi∇  ( mi ,...,1= ) and )(xg j∇  for all kj ,...,1=  for which 0)( =xg j  
(active constraints) are linearly independent.  
 
    Assumption (H1) is a standard assumption which guarantees that the NLP problem described by (1.1) and (1.2) is 
well-posed and admits at least one global solution (see [4]). Assumption (H2) is an extension of the main assumption 
in [20]. Assumption (H2) in conjunction with the main result in [20] guarantees that for every solution Sx ∈*  of the 
NLP problem described by (1.1) and (1.2), there exist ℜ∈∗iλ  ( mi ,...,1= ) and 0≥∗

jμ  ( kj ,...,1= ) such that 
conditions (1.3) hold. 
 
We define:  
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, for all nx ℜ∈ (2.1) 

 
 Assumption (H2) allows us to define the symmetric matrix: 
 

( ) )()()()()( 1 xAxAxAxAIxH n
−′′−= , for all nx ℜ∈  in a neighborhood of S                     (2.2) 

 
The following facts are direct consequences of definition (2.2): 
 
Fact 1: )()(2 xHxH = , 0)()( =xHxA  and 0)()( =′ xAxH . 

Fact 2:  2)()( ξξξ xHxH =′ , for all nℜ∈ξ  

Fact 3: For every nℜ∈ξ  there exists mℜ∈λ  such that λξξ )()( xAxH ′+= . 
 
Next, we define the set of critical points for the NLP problem defined by (1.1) and (1.2).  
 
Definition 2.1: Let S⊆Φ  be the set of all points Sx∈  for which there exist mℜ∈λ  and k

+ℜ∈μ  such that 
conditions (1.3) hold.  In other words, S⊆Φ  is the set of critical points or Karush-Kuhn-Tucker points for the 
problem defined by (1.1) and (1.2).  
 
Clearly, assumptions (H1) and (H2) guarantee that the set S⊆Φ  is non-empty.  
 
The following lemma provides a useful consequence of assumption (H2). Its proof is provided at the Appendix. 
 
Lemma 2.2: If assumption (H2) holds then the matrix  
 

))(()()()(:)( xgdiagxBxHxBxQ −′=                                                       (2.3) 
 
is positive definite for all Sx∈ .  
 
      
   We are now ready to state the main result of this section.  
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Theorem 2.3: Suppose that assumptions (H1) and (H2) hold for the NLP problem described by (1.1) and (1.2). Let 
kkxQ ×ℜ∈)(  be the symmetric positive definite matrix defined by (2.3). Let nnxR ×ℜ∈)(1  be an arbitrary  1C , 

symmetric and positive definite matrix, kkxR ×ℜ∈)(2  be an arbitrary  1C , symmetric and positive semidefinite 

matrix, )(xai , )(xbi , )(xci  ( ki ,...,1= ) be arbitrary 1C non-negative functions with 0)()( >+ xcxb ii  for all 

ki ,...,1= , Sx∈  and at least one of the matrices kkxR ×ℜ∈)(2 , kkxadiag ×ℜ∈))((  being positive definite, where 
k

k xaxaxa ℜ∈′= ))(),...,((:)( 1 . 
 
Define the following locally Lipschitz vector field: 
 

[ ] [ ]( )
( )

( )+′−

−′−

′∇′−′−−=

)()()(

)())(())(()())(()(
)()()()()()()()()()()(

3

2

1

xvxRxP

xvxadiagxgdiagxRxgdiagxP
xxPxQxPxHxRxPxQxPxHxF θ

                  (2.4) 

where 

( )
( ) ( )( )kp

kkk
p

k

nk

xvxcxbxvxcxbdiagxR

xxPxv

xHxBxQxP

22
1113

1

))(,0max()()(,...,))(,0max()()(:)(

)()(:)(

)()()(:)(

1 ++=

ℜ∈′∇=

ℜ∈= ×−

θ              (2.5) 

 
and 1≥ip   ( ki ,...,1= ) are integers. 
 
Then the following properties hold: 
a) 0)()( =xFxA  for all Sx∈ , 
b) 0)()( <∇ xFxθ , for all Φ∈ \Sx , 
c) Φ∈⇔= xxF 0)(  

d) ( )+− −= )()()()())(()()( 3
1 xvxRxwxQxgdiagxFxB , for all Sx∈ , where 

 

[ ]( )
[ ]( ) ( )+−−+−

′∇′−=

)()()())(())(()())(()(

)()()()()()()()(:)(

32

1

xvxRxvxadiagxgdiagxRxgdiagxQ

xxPxQxPxHxRxHxBxw θ
. 

 
Consider the dynamical system  

)(xFx =                                                                                 (2.6) 
 
on the closed set nS ℜ⊆ . Then the following properties hold: 
 

1) For every Sx ∈0  there exists a unique solution )(tx  of the initial value problem (2.6) with 0)0( xx =  which 
is defined for all 0≥t  and satisfies Stx ∈)(  for all 0≥t .  

2) Every point Φ∈x is an equilibrium point for (2.6). Every strict local solution Sx ∈*  of the NLP problem 
described by (1.1) and (1.2) is locally asymptotically stable for system (2.6).   

 
If we further denote by )( 0xω  the set of accumulation points of the set { }0:)( ≥ttx , where Sx ∈0 , then it holds that 

)( 0xω is a compact, positively invariant set for which there exists )( 0xl θ≤  such that { }lxSxx =∈∩Φ⊆ )(:)( 0 θω . 
 
Remark 2.4: Clearly, the matrices nnxR ×ℜ∈)(1 , kkxR ×ℜ∈)(2  and the functions )(xai , )(xbi , )(xci  ( ki ,...,1= ), 
can be selected in an appropriate way so that the convergence properties of the corresponding numerical schemes to 
the global attractor of the dynamical system are optimal. The stability properties of system (2.6) are analogous to the 
stability properties of gradient systems (see [24]).    
 
Remark 2.5: It should be noted that all properties 1-6 mentioned in the Introduction are satisfied for the dynamical 
system (2.6).  Indeed, 
-- Property 1 is a direct consequence of (a) and (d). More specifically, since 

( ) ( )( )kp
kkk

p xvxcxbxvxcxbdiagxR 22
1113 ))(,0max()()(,...,))(,0max()()(:)( 1 ++=  for certain non-negative functions 
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)(),( xcxb jj  ( kj ,...,1= ) and since ( )+− −=== )()()()())(()()()()( 3
1 xvxRxwxQxgdiagxFxBxxBxg

dt
d   it follows 

that the following implication holds: “if 0)( =xg j  for some },...,1{ kj∈  then 

( )( ) 0))(,0max())(,0max()()()( 2 ≤+−= xvxvxcxbxg
dt
d

j
p

jjjj
j ”. The previous implication and property (a) guarantee 

that for every Sx∈ , )(xF  belongs to the contingent cone to S  at x . 

-- Property 2 is a direct consequence of definitions (2.2), (2.3), (2.4), (2.5) and the fact that all functions ℜ→ℜn:θ , 
ℜ→ℜn

ih :  ( mi ,...,1= ), ℜ→ℜn
jg :  ( kj ,...,1= ) are twice continuously differentiable. It should be noticed that 

if at least one of the functions )(xbi , ( ki ,...,1= )  takes positive values then the vector field )(xF  defined by (2.4) is 

simply locally Lipschitz and not 1C . When 0)( ≡xbi , for ki ,...,1=  then the vector field )(xF  defined by (2.4) is 
1C . Higher regularity is possible by assuming higher regularity for all functions and matrices involved in (2.2), (2.3), 

(2.4), (2.5), sufficiently large values for the integers 1≥ip   ( ki ,...,1= )  and 0)( ≡xbi , for ki ,...,1= .  
--Property 3 is a direct consequence of (c). Property 4 is a direct consequence of (b). Indeed, notice that the function 

)()()( *xxxV θθ −= , where Sx ∈*  is one of the global solutions of the NLP described by (1.1), (1.2) satisfies 
)()()()( xFxxFxV θ∇=∇ .  

--Finally, properties 5 and 6 are evident. 
 
Remark 2.6: The inspiration for Theorem 2.3 is the transformation of the NLP problem into a feedback stabilization 
problem. First, we notice that the Control Lyapunov Function (see [2,9,17,23]) is selected to be )()()( *xxxV θθ −= , 

where Sx ∈*  is one of the global solutions of the NLP problem described by (1.1), (1.2). The only problem is that 
we must define in an appropriate way the control system so that S  is a positively invariant set for all possible inputs. 
In other words, we must have: 

0)()( == xxAxh
dt
d  and uvxgdiagxxBxg

dt
d

−== ))(()()(  

 

for all possible inputs nuv ℜ∈, . Notice that the property uvxgdiagxxBxg
dt
d

−== ))(()()(  for arbitrary 

nn uv +ℜ∈ℜ∈ ,  guarantees the implication: “if 0)( =xg j  for some },...,1{ kj∈  then 0)( ≤−= jj uxg
dt
d ”. The 

property 0)()( == xxAxh
dt
d  implies that wxHx )(= , for arbitrary nw ℜ∈ . Combining, we get 

uvxgdiagwxHxB −= ))(()()( . By redefining the input variables qpxBw +′= )(  and zpv += , we get 

( )qxHxBuzxgdiagxQp )()())(()(1 −−= − . Consequently, the required control system is 
 

( ) uxQxBxHzxgdiagxQxBxHqxHxBxQxBIxHx n )()()())(()()()()()()()()( 111 −−− ′−′+′−=  
 
with inputs nn uzq +ℜ∈ℜ∈ ,, . The computation of the feedback law for the above control system with Control 

Lyapunov Function )()()( *xxxV θθ −= , gives the dynamical system (2.6), where F  is defined by (2.4), (2.5). More 
specifically, we get: 

( )
uxQxBxHxzxgdiagxQxBxHx

qxHxBxQxBxHxHxxxV

)()()()())(()()()()(

)()()()()()()()(
11

1

−−

−

′∇−′∇+

′−∇=∇

θθ

θ
 

 
The Control Lyapunov Function approach requires that each input must be selected so that each term appearing in the 
above equation takes negative values. The feedback laws  
 

( )( )′∇′−−= − )()()()()()()()( 1
1 xxHxBxQxBxHxHxRq θ , 

( ) ( )′∇−−= − )()()()())(())(()( 1
2 xxHxBxQxadiagxgdiagxRz θ , 

( )
+

− ⎟
⎠
⎞⎜

⎝
⎛ ′∇= )()()()()( 1

3 xxHxBxQxRu θ  
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where nnxR ×ℜ∈)(1  is an arbitrary  1C , symmetric and positive definite matrix, kkxR ×ℜ∈)(2  is an arbitrary  1C , 

symmetric and positive semidefinite matrix, )(xai , )(xbi , )(xci  ( ki ,...,1= ) are arbitrary 1C  non-negative functions 

with 0)()( >+ xcxb ii  for all ki ,...,1= , Sx∈  and at least one of the matrices kkxR ×ℜ∈)(2 , kkxadiag ×ℜ∈))((  

being positive definite, where k
k xaxaxa ℜ∈′= ))(),...,((:)( 1  and kkxR ×ℜ∈)(3  is defined by (2.5), give us the vector 

field )(xF  defined by (2.4), (2.5).  
 
Remark 2.7: If there are no equality constraints (i.e., 0)( ≡xh ) then the proof of Theorem 2.3 shows that exactly the 
same results with that of Theorem 2.3 hold with nIxH ≡)( .   
 
Proof of Theorem 2.3: We first notice that statements (a) and (d) are direct consequences of definitions (2.3), (2.4), 
(2.5) and Fact 1. We next prove statements (b) and (c).  
 
We first notice that definitions (2.5) and the fact that 0)( ≤xg  imply that the following equality holds for all Sx∈ : 
 

( ) ( )

( ) ( )

[ ])()()()()()()()(

))(,0max()())(,0max()(

)()()(

)())(()()())(()()()()()(

1

1

22

1

2

1

2

21

xHxBxQxBxHxHxx

xvxcxvxb

xvxgxa

xvxgdiagxRxvxgdiagxxRxxFx

k

j

p
jj

k

j
jj

k

j
jjj

j

−

=

+

=

=

′−∇=

−−

−

′−′−=∇

∑∑

∑

θξ

ξξθ

                                   (2.7) 

 
where [ ])()()()()()()()( 1 xHxBxQxBxHxHxx −′−∇= θξ .  It is clear that equation (2.7) shows that 0)()( ≤∇ xFxθ  
for all Sx∈ .  We next investigate the nature of points Sx∈  for which 0)()( =∇ xFxθ . Equation (2.7) and the facts 

that nnxR ×ℜ∈)(1  is a positive definite matrix, kkxR ×ℜ∈)(2  is a positive semidefinite matrix, )(xai , )(xbi , )(xci  
( ki ,...,1= ) are non-negative functions with 0)()( >+ xcxb ii  for all ki ,...,1= , Sx∈  and at least one of the matrices 

kkxR ×ℜ∈)(2 , kkxadiag ×ℜ∈))((  is positive definite, where k
k xaxaxa ℜ∈′= ))(),...,((:)( 1  and kkxR ×ℜ∈)(3  is 

defined by (2.5), show that 0)()( =∇ xFxθ  is equivalent to the following equations: 
 

( ) 0)( =+xv                                                                                       (2.8) 
  

0)()( =xvxg jj , kj ,...,1=                                                                         (2.9) 
 

[ ] 0)()()()()()( 1 =′−∇ − xHxBxQxBIxHx nθ                                                      (2.10) 
 
We define: 
 

)(xv−=μ                                                                                        (2.11) 
 
Definition (2.11) in conjunction with (2.8) and (2.9) implies that  
 

0≥μ  and 0)( =′ xgμ                                                                                (2.12) 
 
Using (2.10) and the identity )()(2 xHxH = , we obtain: 
 

[ ]( ) 0)()()()()()( 1 =′∇′− − xxHxBxQxBIxH n θ                                             (2.13) 
 
Definitions (2.5), (2.11) in conjunction with (2.13) imply that: 
 

( ) 0)()()( =′′+∇ xBxxH μθ                                                                  (2.14) 
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Equation (2.14) in conjunction with Fact 3 and (2.12) implies that the conditions (1.3) hold. Therefore, Φ∈x .  
 
Thus, we have proved the implication: Φ∈⇒=∇ xxFx 0)()(θ .  
 
Consequently, we have proved statement (b) and one of the implications of statement (c) (namely, the implication 

Φ∈⇒= xxF 0)( ).  
 
We will prove now the implication 0)( =⇒Φ∈ xFx . Suppose that Φ∈x . Then there exist ℜ∈iλ  ( mi ,...,1= ) 
and 0≥jμ  ( kj ,...,1= ) such that conditions (1.3) hold, or in vector form: 
 

( )
0)(

0)()()(
=′

=′+′+′∇
xg

xBxAx
μ

μλθ                                                                   (2.15). 

 
It follows from (2.15), Fact 1 and definitions (2.5) that  
 

( )
( )

μ

μλ

θ

)()()()(

)()()()()(

)()()()()(

1

1

1

xBxHxBxQ

xBxAxHxBxQ

xxHxBxQxv

′−=

′+′−=

′∇=

−

−

−

 

 
Using definition (2.3) and the above equality we obtain μμ ))(()()( 1 xgdiagxQxv −−−= . However, the facts that 

0)( ≤xg , 0≥μ  and 0)( =′ xgμ  imply that 0))(( =μxgdiag . Consequently, it follows that μ−=)(xv  and that (2.8) 

holds. Using (2.15), definition (2.4) and the facts that μ−=)(xv , 0))(( =μxgdiag , ( ) 0)( =+xv , we obtain: 
 

[ ] [ ]( )′∇′−′−−= )()()()()()()()()()()( 1 xxPxQxPxHxRxPxQxPxHxF θ  
 
Using definitions (2.3), (2.5), Fact 1, (2.15), the above equality and the fact that 0))(( =μxgdiag , we get:  
 

[ ] [ ] ( )
[ ] [ ]
[ ] [ ]
[ ] ( )[ ]
[ ] 0))(()()()()()()()()()(

))(()()()()()()()()()()(

)()()()()()()()()()()()(

)()()()()()()()()()()()(

)()()()()()()()()()()()()()(

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

=′′−−=

+−′′−=

′−′′−=

′′−′−=

′+′′−′−=

−−

−−

−−

−−

−−

μ

μ

μ

μ

μλ

xgdiagxQxBxHxRxHxBxQxBIxH

xgdiagxQxQIxBxHxRxHxBxQxBIxH

xBxHxBxQIxBxHxRxHxBxQxBIxH

xBxHxBxQxBIxHxRxHxBxQxBIxH

xBxAxHxBxQxBIxHxRxHxBxQxBIxHxF

n

kn

kn

nn

nn

 

 
 We next turn to the proof of properties (1) and (2).  
 
    Local existence of the solution of the initial value problem (2.6) with 0)0( xx =  is a direct consequence of 
properties (a), (d) and the Nagumo theorem (page 27 in [3]). Global existence of the solution of the initial value 
problem (2.6) with 0)0( xx =  follows from Theorem 1.2.3 (page 27) in [3], assumption (H1) and the fact that ))(( txθ  
is non-increasing (a direct consequence of property (b)). In fact, assumption (H1) in conjunction with the fact that 

))(( txθ  is non-increasing shows that { }0:)( ≥ttx  is bounded.  
 
    As in the case of dynamical systems on nℜ , it follows that )( 0xω  is a compact, positively invariant set for system 
(2.6) (see [24]). The fact that ))(( txθ  is non-increasing implies that { }0:))((inf))((lim ≥==

+∞→
ttxltx

t
θθ , which 

shows that { }lxSxx =∈⊆ )(:)( 0 θω . We next show that Φ⊆)( 0xω . The inequality  
 

lxdssx
t

−≤∫ )())(( 0
0

θγ , for all 0≥t                                                   (2.16) 
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where )()(:)( xFxx θγ ∇=  is a direct consequence of (2.7) and the definition { }0:))((inf: ≥= ttxl θ . Notice that the 
mapping  ))(( sxs γ→∋ℜ+  is uniformly continuous since { }0:))(()( ≥= ttxFtx  is bounded (a consequence of the 

fact that { }0:)( ≥ttx   is bounded) and since the mapping  )(xxn γ→∋ℜ  is locally Lipschitz. Using (2.16) and 
applying Barbalat’s lemma (see [18]), we conclude that 0))((lim =

+∞→
sx

s
γ . The validity of the implication 

Φ∈⇒==∇ xxxFx 0)()()( γθ  implies that Φ⊆)( 0xω .  
 
    Finally, the fact that every strict local solution Sx ∈*  of the NLP problem described by (1.1) and (1.2) follows 
from property (b) and the consideration of the Lyapunov function )()()( *xxxV θθ −= . The proof is complete.      

 
 
3. Numerical solutions of NLP problems  
 
    As remarked in the Introduction and in [5], each system of differential equations that solves a NLP problem when 
combined with a numerical scheme for solving Ordinary Differential Equations (ODEs) provides a numerical scheme 
for solving the NLP problem. However, when we try to apply a numerical scheme for the solution of (2.6) then we 
face the problem that the dynamical system (2.6) is not defined on nℜ  but on the closed set nS ℜ⊆ .  
 
    In the literature, projection schemes have been proposed (see [13,14]). The projection schemes preserve the order 
of the applied numerical scheme (see [13,14]) even if the projection on the closed set nS ℜ⊆  is not exact. However, 
the application of a Runge-Kutta numerical scheme for (2.6) and its (approximate) projection on the closed set 

nS ℜ⊆  means that the solution of a NLP problem is required at each time step. The corresponding NLP problem 
may be as difficult as the initial one, which means that this approach is not easily applicable (with the exception of 
cases where the projection is easy, see [12]).  
 
    The key idea presented in this work is that the selection of the applied time step can be used for solving the above 
problems. First we focus on the case without equality constraints.  
 
The following theorem is the main result of this section, which guarantees global convergence of the above algorithm. 
 
Theorem 3.1: Suppose that assumptions (H1), (H2) hold for the NLP problem described by (1.1) and (1.2) with 

0)( ≡xh . Let nnxR ×ℜ∈)(1  be an arbitrary  1C , symmetric and positive definite matrix, kkxR ×ℜ∈)(2  be an 

arbitrary  1C , symmetric and positive semidefinite matrix, )(xai , )(xbi , )(xci  ( ki ,...,1= ) be arbitrary 1C non-

negative functions with 0)()( >+ xcxb ii  for all ki ,...,1= , Sx∈  and at least one of the matrices kkxR ×ℜ∈)(2 , 
kkxadiag ×ℜ∈))((  being positive definite, where k

k xaxaxa ℜ∈′= ))(),...,((:)( 1 . Let nxF ℜ∈)(  be the vector field 
defined by (2.4), (2.5) with nIxH ≡)( . Furthermore, we assume that: 
 
Consider the following algorithm:  
 
Algorithm: Given constants 0>r , ),0( r∈ε , )1,0(∈λ  and an initial point Sx ∈0 , we follow the steps for ,...1,0=i  
 

 Step i: Calculate  )( ixF  using (2.4), (2.5). If 0)( =ixF  then ii xx =+1 . If 0)( >ixF  then set rs =)0(  and 
0=p . Moreover, let },...,1{)( kxI i ⊆  be the set of all indices },...,1{ kj∈  with ( )( ) ε

ε
−>+

≤≤
)(max

0
iij

s
xFsxg .  

  Step p: Calculate )()()(
i

p
i

p
i xFsxx += .  

  Solve ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤−

∈
0)(max:min

)(

2)( ygxy j
xIj

p
i

i

, for the case ∅≠)( ixI  or set )( p
ixy = , for the case 

∅=)( ixI . 

   If Sy∈  and )()()()( )(
ii

p
i xFxsxy θλθθ ∇+≤  then set yxi =+1 , 1+= ii  and go to Step i. 

   If Sy∉  or )()()()( )(
ii

p
i xFxsxy θλθθ ∇+>  then set )()1(

2
1 pp ss =+ , 1+= pp  and go to Step p. 

 
Then every accumulation point ∗x  of the sequence ix  produced by the above algorithm satisfies Φ∈∗x .  
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Remark 3.2: It is clear that the algorithm presented in Theorem 3.1 exploits the time step used for the estimate 
provided by the explicit Euler scheme )()()(

i
p

i
p

i xFsxx += . The constant 0>r  is the maximum allowable time 
step. In most iterations, the algorithm will not require the solution of an NLP problem, provided that 0>ε  is 
sufficiently small. The fact that in most cases the Euler scheme is sufficient is explained by statement (d) of Theorem 
2.3: for all kj ,...,1=  it holds that  
 

( )( ) ))(,0max())(,0max()()()()()()( 2 xvxvxcxbxxgxFxg j
p

jjjjjj
j+−=∇ ω                            (3.1) 

 
where ))(),...,((:)( 1 ′= xxx kωωω  is given by  
 

[ ]( )
[ ]( ) ( )+−−

−

−−+−

′∇′−=

)()()()())(())(()())(()(

)()()()()()()()()(:)(

3
1

2
1

1
1

xvxRxQxvxadiagxgdiagxRxgdiagxQI

xxPxQxPxHxRxHxBxQx

k

θω
                    (3.2) 

 
Using the estimate 

( ) ( ) ( ) ( )xKsxFxgsxgxsFxg jjjj
2

2
1)()( +∇+≤+                                            (3.3) 

 
where ],0[ rs∈ , ( ){ }],0[:)()()(max:)( 2 rxFxFxgxFxK jj ∈+∇′= μμ , it follows that ( ) ε−≤+ )(xsFxg j  provided 
that 

( ) ( ) ( )( )( ) ( ) ( ) 0
2
1)(,0max)(,0max)()()( 22 ≤++−++ xKsxvxvxcxbsxxsgxg jj

p
jjjjjj

jωε  

 
The above inequality is satisfied for all ],0[ ε∈s  in many cases provided that 0>ε  is sufficiently small. This 

explains the additional fact that that the NLP problem ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤−

∈
0)(max:min

)(

2)( ygxy j
xIj

p
i

i

 is much simpler than the 

initial NLP problem: the index set },...,1{)( kxI i ⊆  is expected to be a set with small cardinal number.  
 

    Finally, as remarked in [12], the solution of the NLP problem ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤−

∈
0)(max:min

)(

2)( ygxy j
xIj

p
i

i

 need not be 

exact: it suffices to assume that to find any point  ny ℜ∈  with ( ) 0)(max
)(

≤
∈

yg j
xIj i

 and )()( p
i

p
i xyCxy −≤− ∗ , where 

1≥C  is a constant and ny ℜ∈∗  is any of the global solutions of the NLP problem 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤−

∈
0)(max:min

)(

2)( ygxy j
xIj

p
i

i

.  

 
 
Proof: Define the sets: 
 

{ })()(,:~
0xzz θθ ≤Φ∈=Φ , { })()(,:~

0xzSzS θθ ≤∈=                                     (3.4) 
 
Notice that the set Φ~  is non-empty and compact (by virtue of property (b) of Theorem 2.3 it follows that the set Φ~  
coincides with the set { })()(,0)()(: 0xxxFxSx θθθ ≤=∇∈  for which assumption (H1) implies that it is bounded; 

notice that the set Φ~  contains the global solution of the NLP problem described by (1.1) and (1.2)). Moreover, 
assumption (H1) guarantees that S~  is non-empty and compact.  
 
Let )(xd  be the distance of any point nx ℜ∈  from the set { })()(::~

0xyy θθ ≤Φ∈=Φ , i.e., 
 

 { }Φ∈−=
~:inf:)( yyxxd                                                                       (3.5) 

 
Since the set Φ~  is non-empty and compact, it follows that the function )(xd  is well-defined, is globally Lipschitz 

(with unit Lipschitz constant) and satisfies 0)( >xd  for all Φ∉
~x . 
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Claim: For every 0>η  there exists a constant 0>ηδ  such that the following implication holds: 
 

“If Sx ~
∈ , η≥)(xd  and ηδ≤s  then Sy∈  and )()()()( xFxsxy θλθθ ∇+≤ , 

where )(xsFxy +=  for the case ∅=)(xI  and 

ny ℜ∈  is any global solution of ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤−−

∈
0)(max:)(min

)(

2 ygxsFxy j
xIj

 for the case ∅≠)(xI ”            (3.6) 

 
The proof of the claim can be found at the Appendix.  
 
We notice that, by virtue of implication (3.6) and the fact that )( ixθ  is non-increasing, the algorithm is well-defined 

(i.e., for each iteration i  the variable p  assumes finite values). Let ],0( rsi ∈  ( ,...1,0=i ) be the applied )( ps  for 

which Sy∈  and )()()()( )(
ii

p
i xFxsxy θλθθ ∇+≤  for the case Φ∉ix  and 0=is  for the case  Φ∈ix . For every 

,...1,0=i  it holds that: 
)()()()( 1 iiiii xFxsxx θλθθ ∇+≤+                                                     (3.7) 

 
Notice that assumption (H1) in conjunction with (3.5) guarantees that the sequence ix  is bounded with )()( 0xxi θθ ≤  
for all ,...1,0=i . Moreover, implication (3.6) implies the following inequality for every ,...1,0=i  with Φ∉ix : 
 

2/ηδ≥is , for all ( )( ]ixd,0∈η                                                                 (3.8) 
 
where 0>ηδ  is the constant involved in implication (3.6). If ∗x  is one global solution of the NLP problem described 
by (1.1) and (1.2) then by applying (3.7) inductively, we conclude that the following inequality holds for ,...2,1=i  

)()()()( 0

1

0

∗
−

=

−≤∇∑ xxxFxs
i

l
lll θθθλ                                                         (3.9) 

 
The above inequality implies that ( ) 0)()(lim =∇

+∞→
iiii

xFxs θ .  

 
      In order to prove that every accumulation point ∗x  of the sequence ix  produced by the above algorithm satisfies 

Φ∈∗x , we will use a contradiction argument. Let a subsequence of the sequence ix  which converges. We will use 

the same notation ix  for the subsequence and let ∗x  be the unique accumulation point of the subsequence ix . We 

assume that Φ∉∗x . By continuity and using property (b) of Theorem 2.3, we have 
( ) 0)()()()(lim * >∇=∇ ∗

+∞→
xFxxFx iii

θθ . Since ( ) 0)()(lim =∇
+∞→

iiii
xFxs θ , we are in a position to conclude that  

 
( ) 0lim =

+∞→
ii

s                                                                                  (3.10) 

 
   Since Φ∉∗

~x , it follows that ( ) 0)()(lim * >=
+∞→

xdxd ii
. Therefore, there exists 0>η  such that η≥)( ixd  for 

sufficiently large i . Thus, inequality (3.8) gives 2/ηδ≥is , where 0>ηδ  is the constant involved in implication 
(3.6). This contradicts (3.10).  
 
The proof is complete.        
 
 
Remark 3.3: When equality constraints are present, then it should be noticed that Theorem 3.1 is still useful under 
the following assumption: 
 
(H3) There exist positive integers 21, nn  with nnn =+ 21  and a smooth function 21: nn ℜ→ℜφ  such that for every 

1nℜ∈ξ  it holds that 0)( =xh , where ))(,( ξφξ=x .  
 
Indeed, under assumption (H3), we may define for all 1nℜ∈ξ : 
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)()(~ xθξθ =  with ))(,( ξφξ=x                                                             (3.11) 

 
)(:)(~ xgg jj =ξ  with ))(,( ξφξ=x  for kj ,...,1=                                          (3.12) 

 
We can also define )(~ ξF  to be the vector field that is made up from the first 1n  components of the vector field )(xF  

defined by (2.4), (2.5) evaluated at ))(,( ξφξ=x . Then we can apply Theorem 3.1 with Fkjg j
~),,...,1(~,~

=θ  in place 

of Fkjg j ),,...,1(, =θ .  
 
Remark 3.4: The algorithm may be modified in a straightforward way for other higher order explicit Runge-Kutta 
numerical schemes. This is meaningful only when the vector field )(xF  has sufficient regularity. More specifically, 

the term )()()(
i

p
i

p
i xFsxx +=  may be replaced ),( )()(

i
pp

i xsNx = , for an appropriate mapping ),( )(
i

p xsN  which is 
characteristic of the Runge-Kutta scheme and the definition of the set },...,1{)( kxI i ⊆  is modified to be the set of all 
indices },...,1{ kj∈  with ( )( ) ε

ε
−>

≤≤
),(max

0
ij

s
xsNg . However, it should be noticed that for higher order explicit 

Runge-Kutta schemes, the vector field )(xF  must be computed for various points. Since )(xF  is defined only for a 

neighborhood of the set S , it may be needed to restrict the time step )( ps  so that all points which are needed for the 
evaluation of ),( )(

i
p xsN  are in a neighborhood of the set S . 

 
Remark 3.5: Using (3.1), (3.2) and (3.3) and assuming that for all kj ,...,1= , there exist positive, continuous 
functions ),0(: +∞→Sq j , ),0(: +∞→SQ j  ( kj ,...,1= ), such that the following inequalities hold for all kj ,...,1=  
and Sx∈ : 

( )( ) ))(,0max())(,0max()()()()()()( 2 xvxvxcxbxQxqxgxK j
p

jjjjjjj
j++−≤                         (3.13) 

 
where ( ){ }],0[:)()()(max:)( 2 rxFxFxgxFxK jj ∈+∇′= μμ   ( kj ,...,1= ), we can conclude that 
 

0))(( ≤+ xsFxg j , for all kj ,...,1=  and Sx∈                                                 (3.14) 
provided that 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ++
≤

= )(
2,

)(

)(2)()(
,min

2

,...,1 xQxq

xqxx
rs

jj

jjj

kj

ωω
                                                      (3.15) 

Define:  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤+∈=
=

≤≤
0))((max:],0[sup:)(

,...,1
0

xlFxgrsxs j

kj
sl

g , for all Sx∈                                      (3.16) 

 

and notice that (3.15) implies 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ++
≥

= )(
2,

)(

)(2)()(
,min)(

2

,...,1 xQxq

xqxx
rxs

jj

jjj

kjg

ωω
 for all Sx∈ . Using the 

analogue of inequality (3.3) for )(xθ , i.e., the inequality  
 

( ) ( ) ( ) ( ) 2/)()( 2 xKsxFxsxxsFx θθθθ +∇+≤+                                                    (3.17) 
 
where ],0[ rs∈ , ( ){ }],0[:)()()(max:)( 2 rxFxFxxFxK ∈+∇′= μμθθ , we can conclude that the best possible choice 
for the time step ],0[ rs∈  is given by:  
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∇
=

)(
)()(

,)(min
xK

xFx
xss g

θ

θ
, for the case 0)( >xKθ  and )(xss g= , for the case 0)( ≤xKθ             (3.18) 
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We notice that inequalities (3.13) hold automatically for arbitrary positive, continuous functions ),0(: +∞→Sq j , 

),0(: +∞→SQ j  ( kj ,...,1= ), for the case where all functions )(xg j  ( kj ,...,1= ) are linear.  
 
    Therefore, if inequality (3.13) holds then we can simply compute the sequence )(1 ii xMx =+ , where 

)()( xsFxxM +=  and ],0[ rs∈  is given by (3.18). We notice that the implementation of an approximation of the 
numerical scheme )(1 ii xMx =+  does not necessarily requires knowledge of the functions )(xK j , ),0(: +∞→Sq j , 

),0(: +∞→SQ j  ( kj ,...,1= ) and )(xKθ : evaluating ))(( xsFxg +  and ))(( xsFx +θ  for certain ],0[ rs∈  can give 

us estimates of )(xK j  and )(xKθ  satisfying (3.3) and (3.17). Using these estimates we can estimate )(xsg . 
Consequently, the algorithm is implemented as follows:  
 
Algorithm: Given constants 0>r , 0>ε , ]2/1,0(∈λ  and an initial point Sx ∈0 , we follow the steps for ,...1,0=i  
 

 Step i: Calculate  )( ixF  using (2.4), (2.5). If 0)( =ixF  then ii xx =+1 . If 0)( >ixF  then 

( ) ( ) ( )( )( ))()(2,max 2)0(
iijijiijj xFxgrxgxrFxgrK ∇−−+= −ε  for kj ,...,1= , 

( ) ( ) ( )( )( ))()(2,max 2)0( xFxrxxrFxrK θθθεθ ∇−−+= −  and set 0=p .  

  Step p: Compute 
( ) ( ) ( )

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−∇+∇−

= )(

)(2

)(
2)()(

,min p
j

ij
p

jiijiijp
j K

xgKxFxgxFxg
rs  for kj ,...,1=  and 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∇
=

= )(
)(

,...,1

)( )()(
,min p

iip
jkj

p

K

xFx
ss

θ

θ
. Calculate )()()(

i
p

i
p

i xFsxx += .  

  If Sx p
i ∈)(  and )()()()( )()(

ii
p

i
p

i xFxsxx θλθθ ∇+≤  then set )(
1

p
ii xx =+ , 1+= ii  and go to 

Step i. 
  If Sx p

i ∉)(  or )()()()( )()(
ii

p
i

p
i xFxsxx θλθθ ∇+>  then set ε+=+ )()1( p

j
p

j KK  

( kj ,...,1= ), εθθ +=+ )()1( pp KK , 1+= pp  and go to Step p. 
 
Using exactly the same procedure with that of the proof of Theorem 3.1, we can conclude that every accumulation 
point ∗x  of the sequence ix  produced by the above algorithm satisfies Φ∈∗x , provided that assumptions (H1), (H2) 
and (3.13) hold. However, numerical experiments show that the algorithm can converge even when assumption (3.13) 
does not hold.  
 
 
 
4. Examples 
 
    In order to demonstrate the performance of the proposed algorithms we have used two examples from [28]. The 
first example is dealing with the solution of the problem: 
 

0

32

)(

02)(
..

12262)(min

3

2

1

21

321

32121
2
2

2
1

≤

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−+−

=

=−++=

−−−++=

x
x
x
xx

xg

xxxxh
ts

xxxxxxxxθ

                                                  (4.1) 

 
 
    It can be shown that assumptions (H1), (H2) hold for this problem. Moreover, assumption (H3) holds with 

2
21 ),( ℜ∈′= xxξ  and 212)( xx −−=ξφ . Since, the inequality constraints are linear, we are in a position to use the 

algorithm of Remark 3.5. We have used the algorithm of Remark 3.5 with 31 )( IxR σ= , where 0>σ , 
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44
2 0)( ×ℜ∈=xR , 1)( ≡xai , 1)( ≡xbi , 0)( ≡xci  ( 4,...,1=i ), 1=r , 1.0=λ  and 610−=ε .   

 
    It was found that for all initial points in the feasible set and for every ]200,01.0[∈σ  the algorithm converges at the 
point )2,0,0(),,( 321 =xxx  in no more than 3 iterations. In this case, the convergence of the algorithm of Remark 3.5 
is very fast.  
 
Figure 1 shows the projection of the phase diagram on the 21 xx −  plane for the dynamical system (2.6), where F  is 

defined by (2.4), (2.5), for problem (4.1) with 31 )( IxR σ= , 2=σ , 44
2 0)( ×ℜ∈=xR , 1)( ≡xai , 1)( ≡xbi , 

0)( ≡xci  ( 4,...,1=i ). Figure 1 was created by solving numerically system (2.6) with the explicit Euler method and 
time step 0.01.  
 

 
Figure 1: The projection of the phase diagram on the 21 xx −  plane for the dynamical system (2.6), 

where F  is defined by (2.4), (2.5), for problem (4.1) with 31 )( IxR σ= , 2=σ , 44
2 0)( ×ℜ∈=xR , 

1)( ≡xai , 1)( ≡xbi , 0)( ≡xci  ( 4,...,1=i ). 
 
The second example is dealing with the Rosen–Suzuki problem: 
 

0
1022

8)(

0522)(

..
721552)(min

41
2
4

2
3

2
2

2
1

4321
2
4

2
3

2
2

2
1

421
2
3

2
2

2
1

4321
2
4

2
3

2
2

2
1

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−+++
−−+−++++

=

=−−−+++=

+−−−+++=

xxxxxx
xxxxxxxxxg

xxxxxxxh

ts
xxxxxxxxxθ

                                         (4.2) 

 
    It can be shown that assumptions (H1), (H2) hold for this problem. Moreover, assumption (H3) holds with 

3
321 ),,( ℜ∈′= xxxξ  and 522)( 21

2
3

2
2

2
1 −−+++= xxxxxξφ . The vector field )(xF  defined by (2.4), (2.5) is 

constructed with 41 )( IxR σ= , where 0>σ , 22
2 0)( ×ℜ∈=xR , 1)( ≡xai , 1)( ≡xbi , 0)( ≡xci  ( 2,1=i ).  
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     This is a problem with nonlinear inequality constraints. Therefore, we cannot assume the validity of (3.13). Indeed, 
there are points in the feasible set with 0)(1 =xg , 0))(,0max( 1 =xv  and for which ( ) 0)(~~

1 >+ ξξ Fsg  for 0>s , 

where 1
~g  is defined by (3.12) and )(~ ξF  is the vector field that is made up from the first 3 components of the vector 

field )(xF  evaluated at ))(,( ξφξ=x . Such a point is 4)1,2,1,1( ℜ∈′−−=x  and it is clear that we cannot apply the 
algorithm of Remark 3.5 at any one of these points. However, the algorithm of Remark 3.5 may be applied with other 
initial points: for example, if the algorithm of Remark 3.5 is applied with 2.0=σ , 1=r , 1.0=λ  and 610−=ε  to the 
initial point 4

0 )82.0,2,1,9.0( ℜ∈′−−=x  (which is close to the “problematic point” 4)1,2,1,1( ℜ∈′−−=x ) then the 

produced sequence reaches the neighborhood { }510−∗ ≤−= xxN  , with 4)1,2,1,0( ℜ∈′−=∗x  in 33 iterations. It was 

also found that different values of  0>σ  and 0>r  affect the convergence properties of the algorithm. For example, 
lower values than 1 for 0>r  and higher values than 0.5 for 0>σ  require more iterations for convergence. The 
algorithm of Remark 3.5 performs well from almost all points of the feasible set: for example, if the algorithm of 
Remark 3.5 is applied with 2.0=σ , 1=r , 1.0=λ  and 610−=ε  to the initial point 4

0 )1,2,1,1( ℜ∈′−−−=x   then the 

produced sequence reaches the neighborhood { }510−∗ ≤−= xxN  , with 4)1,2,1,0( ℜ∈′−=∗x  in 47 iterations. 

 
    For the initial point 4

0 )1,2,1,1( ℜ∈′−−=x  we can apply the algorithm of Theorem 3.1. If the algorithm of Theorem 

3.1 is applied with 2.0=σ , 5.0=r , 1.0=λ  and 610−=ε  to the initial point 4
0 )1,2,1,1( ℜ∈′−−=x  then the 

produced sequence reaches the neighborhood { }510−∗ ≤−= xxN  , with 4)1,2,1,0( ℜ∈′−=∗x  in 39 iterations. 

 
    In general, the convergence of the proposed algorithms is linear. For superlinear convergence, we can either use 
different selections for 44

1 )( ×ℜ∈xR , 22
2 )( ×ℜ∈xR , )(xai , )(xbi , )(xci  ( 2,1=i ) or use a different algorithm once 

we are close to the set Φ . The quantity )(xF  can be used in order to signal the approach of a neighborhood of Φ .   
 
 
5. Conclusions 
 
    In this work we have showed that given a nonlinear programming problem, it is possible, under mild assumptions, 
to construct a family of dynamical systems defined on the feasible set of the given problem, so that: (a) the 
equilibrium points are the unknown critical points of the problem, (b) each dynamical system admits the objective 
function of the problem as a Lyapunov function, and (c) explicit formulae are available without involving the 
unknown critical points of the problem. The construction of the family of dynamical systems is based on the Control 
Lyapunov Function methodology, which is used in mathematical control theory for the construction of stabilizing 
feedback.  
 
     The knowledge of a dynamical system with the previously mentioned properties allows the construction of 
algorithms which guarantee global convergence to the set of the critical points. However, we make no claim about the 
effectiveness of the proposed algorithms. The topic of the numerical solution of NLPs is a mature topic and it is clear 
that other algorithms have much better characteristics than the algorithms proposed in this paper. However, the theory 
used for the construction of the algorithm is different from other existing algorithms. The algorithms contained in this 
work are derived by using concepts of dynamical systems theory and mathematical control theory.   
 
    The obtained results have nothing to do with extremum seeking (see [10,19]), but may open the way of using 
different extremum seeking control schemes in the future for constrained problems. Finally, it may be beneficial to 
compare the algorithm with other global algorithms (see [22] and references therein): this is a future research topic.  
 
 
Acknowledgements: The author would like to thank Prof. Lars Grüne for his valuable comments and 
suggestions. The contribution of Prof. Lars Grüne to this work is major.  
 
 
References 
[1] Antipin A. S., “Minimization of convex functions on convex sets by means of differential equations”, Differential 

Equations, 30(9), 1994, 1365-1375. 
[2] Artstein, Z., “Stabilization with relaxed controls”, Nonlinear Analysis: Theory, Methods and Applications, 7, 

1983, 1163-1173. 



 16

[3] Aubin, J.P., Viability Theory, Birkhauser, Boston, 1991.  
[4] Avriel, M., Nonlinear Programming: Analysis and Methods, Dover Publications, 2003.  
[5] Brown, A. A. and M. C. Bartholomew-Biggs, “ODE versus SQP methods for constrained optimization”, Journal 

of Optimization Theory and Applications, 62(3), 1989, 371-386. 
[6] Cabot, A., “The Steepest Descent Dynamical System with Control. Applications to constrained minimization”, 

ESAIM: Control, Optimisation and Calculus of Variations, 10, 2004, 243–258. 
[7] Evtushenko, Y. G. and V. G. Zhadan, “Barrier-projective methods for nonlinear programming”, Computational 

Mathematics and Mathematical Physics, 34(5), 1994, 579–590. 
[8] Fiacco, A. V., G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, 

John Wiley, New York, 1968. 
[9] Freeman, R. A. and P. V. Kokotovic, Robust Nonlinear Control Design- State Space and Lyapunov Techniques, 

Birkhauser, Boston, 1996. 
[10] Ghaffari, A., M. Krstic, and D. Nesic, “Multivariable Newton-based extremum seeking”, Automatica, 48, 1759-

1767, 2012. 
[11] Goh, B.S., “Algorithms for Unconstrained Optimization Problems via Control Theory”, Journal of Optimization 

Theory and Applications, 92(3), 1997, 581-604. 
[12] Grüne, L. and I. Karafyllis, “Lyapunov function based step size control for numerical ODE solvers with 

application to optimization algorithms”, Proceedings of Mathematical Theory of Networks and Systems (MTNS) 
2012, Melbourne, Australia, 2012. 

[13] Hairer, E., S. P. Norsett and G. Wanner, Solving Ordinary Differential Equations I Nonstiff Problems, 2nd Ed., 
Springer-Verlag, Berlin-Heidelberg, 1993. 

[14] Hairer, E. and G. Wanner, Solving Ordinary Differential Equations II Stiff and Differential-Algebraic Problems, 
2nd Edition, Springer-Verlag, Berlin-Heidelberg, 2002. 

[15] Helmke, U. and J. B. Moore, Optimization and Dynamical Systems, 2nd Edition, Springer-Verlag, 1996. 
[16] Karafyllis, I. and L. Grüne, “Feedback Stabilization Methods for the Numerical Solution of Systems of Ordinary 

Differential Equations”, Discrete and Continuous Dynamical Systems: Series B, 16(1), 2011, 283-317. 
[17] Karafyllis, I. and Zhong-Ping Jiang, Stability and Stabilization of Nonlinear Systems, Springer-Verlag London 

(Series: Communications and Control Engineering), 2011. 
[18] Khalil, H. K., Nonlinear Systems, 2nd Edition, Prentice-Hall, 1996. 
[19] Liu, S.-J. and M. Krstic, Stochastic Averaging and Stochastic Extremum Seeking, Springer, 2012. 
[20] Mangasarian, O. L. and S. Fromovitz, “The Fritz John Necessary Optimality Conditions in the Presence of 

Equality and Inequality Constraints”, Journal of Mathematical Analysis and Applications, 17, 1967, 37-47. 
[21] Pan, P.Q., “New ODE methods for equality constrained optimization (1): equations”, Journal of Computational 

Mathematics, 10(1), 1992, 77–92. 
[22] Solodov, M. V., “Global convergence of an SQP method without boundedness assumptions on any of the 

iterative sequences”, Mathematical Programming Series A, 118, 2009, 1–12. 
[23] Sontag, E.D., “A "Universal" Construction of Artstein's Theorem on Nonlinear Stabilization”, Systems and 

Control Letters, 13, 1989, 117-123. 
[24] Stuart, A.M. and A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, 

1998. 
[25] Tanabe, K., “An algorithm for constrained maximization in nonlinear programming”, Journal of the Operations 

Research Society of Japan, 17, 1974, 184-201.  
[26] Xia, Y. and J. Wang, “A Recurrent Neural Network for Nonlinear Convex Optimization Subject to Nonlinear 

Inequality Constraints”, IEEE Transactions on Circuits and Systems, 51(7), 2004, 1385-1394. 
[27] Yamashita, H., “A Differential Equation Approach to Nonlinear Programming”, Mathematical Programming, 

18, 1980, 155-168. 
[28] Zhou, L., Y. Wu, L. Zhang and G. Zhang, “Convergence Analysis of a Differential Equation Approach for 

Solving Nonlinear Programming Problems”, Applied Mathematics and Computation, 184, 2007, 789-797. 
 
 
Appendix 
 
Proof of Lemma 2.2: First notice that by virtue of Fact 2, the following equality holds for all k

k ℜ∈′= ),...,( 1 ξξξ : 
 

∑
=

+′=′
k

j
jj xgxBxHxQ

1

22 )()()()( ξξξξ                                                        (A.1) 

 
Equality (A.1) implies that kkxQ ×ℜ∈)(  is positive semidefinite. Suppose that kkxQ ×ℜ∈)(  is not positive definite. 
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Then there exists a non-zero k
k ℜ∈′= ),...,( 1 ξξξ  with 0)( =′ ξξ xQ . Consequently, equality (A.1) shows that we 

must have 0)()( =′ ξxBxH  and 0=jξ  for all kj ,...,1=  with 0)( <xg j . Fact 3 implies that there exists mℜ∈λ  

such that λξ )()( xAxB ′=′ . The previous equality implies that  
 

0)()(
11

=∇−∇ ∑∑
==

m

i
ii

k

j
jj xhxg λξ                                                  (A.2) 

 
Since 0=jξ  for all kj ,...,1=  with 0)( <xg j  and since k

k ℜ∈′= ),...,( 1 ξξξ  is non-zero, we conclude from (A.2) 
that assumption (H2) is violated.  
 
The proof is complete.        
 
 
Proof of the Claim: Let 0>η  be arbitrary. We distinguish two cases. 
 
Case 1: The set { }η≥∈ )(:~ xdSx  is empty, where SS ⊆

~  is defined by (3.4) and )(xd  is defined by (3.5). In this 
case, implication (3.6) holds trivially with arbitrary 0>ηδ . 
 
Case 2: The set { }η≥∈ )(:~ xdSx  is non-empty.  
 
Continuity of the distance function )(xd  and compactness of SS ⊆

~  implies that the set { }η≥∈ )(:~ xdSx  is 
compact. Statements (b) and (c) of Theorem 2.3 guarantee that the quantity  
 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥∈
+∇

∇
= η

θ
θ

ρ )(,~:
)()()(

)()(
min: xdSx

xFxxF
xFx

                                             (A.3) 

 
is well-defined and is positive.  
 
    Let Sx ~

∈  with η≥)(xd  be an arbitrary point. We denote by )(tz  the unique solution of the initial value problem 
)(zFz =  with xz =)0( . We also notice that the vector field F  as defined by (2.4), (2.5) is locally Lipschitz on a 

neighborhood of S . By virtue of compactness of SS ⊆
~ , we are in a position to assume the existence of a constant 

0≥L  that satisfies: 
 

xyLxFyF −≤− )()( , for all Syx ~, ∈                                          (A.4) 
 
Inequality (A.4), the fact that )(sz  belongs to the compact set of all Sz∈  with )()( xz θθ ≤  and standard arguments 
show that the following inequality holds for all 0≥s : 
 

)(
2

)()(
2

xFsLexsFxsz Ls≤−−                                                      (A.5) 

 

     Next we notice that the problem ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤−−

∈
0)(max:)(min

)(

2 ygxsFxy j
xIj

 with ∅≠)(xI  admits at least one 

solution (since the mapping 2)(xsFxyy −−→  is radially unbounded). Any solution ny ℜ∈  of the problem 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤−−

∈
0)(max:)(min

)(

2 ygxsFxy j
xIj

 with ∅≠)(xI  satisfies for all 0≥s : 

 

)()(

)()()(

xFsxsFxy

xsFxszxsFxy

≤−−

−−≤−−
                                                   (A.6) 
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Notice that the above inequalities hold trivially for the case ∅=)(xI  and )(xsFxy += . Define:  
 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤ℜ∈∇= ∑
=

βzzzgq n
k

j
j ,:max:

1

, where { }ηβ ≥∈+= )(,~:)(2max: xdSxxFrx              (A.7) 

 

{ }βθ ≤ℜ∈∇+= zzzLeQ n
Lr

,:)(max2
2

: 2                                                         (A.8) 

 
We will show next that implication (3.6) holds with 0>ηδ  defined by: 
 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

QeqL Lr 1
)1(,

1
2,min:

2/1
ρλ

γ
εεδη , where { }ηγ ≥∈= )(,~:)(max: xdSxxF           (A.9) 

 
First, we show the implication: 
 

“If Sx ~
∈ , η≥)(xd  and ηδ≤s  then Sy∈ ”                                                  (A.10) 

 
It suffices to show that 0)( ≤yg j  for all )(xIj∉ . Notice that by virtue of the definition of the set },...,1{)( kxI ⊆  it 

follows that ( ) ε−≤+ )(xFsxg j , for all ],0[ ε∈s  and )(xIj∉ . Using (A.6) we obtain for all ],0[ rs∈ :  
 

( ) ( ) ( ){ })(2:max)()( xFrxzzgxFsxyxFsxgyg jjj ≤−∇−−++≤                              (3.11) 

 
Since ( ) ε−≤+ )(xFsxg j , for all ],0[ ε∈s  and )(xIj∉ , we obtain from (A.5), (A.6), (A.11) and (A.7) for all 

],0[ ε∈s  and )(xIj∉ : 
 

( )
2

)(
2sexFqLyg Lr

j +−≤ ε                                               (A.12) 

 
Inequality (A.12) in conjunction with definition (A.9) shows that 0)( ≤yg j  for all )(xIj∉ , provided that ηδ≤s .  
 
By virtue of implication (A.10), we are left with the task of proving the inequality )()()()( xFxsxy θλθθ ∇+≤  for 

all ηδ≤s  and Sx ~
∈  with η≥)(xd . Using (A.6), we obtain for all ],0[ rs∈ : 

 
( ) 2)()()()()()( xyKxsFxyxxFxsxy −+−−∇+∇+≤ θθθθ                                (A.13) 

 

where { }βθ ≤∇= zzK :)(max
2
1 2 . The derivation of (A.13) follows from majorizing the second derivative of the 

mapping ))(()( xywxwpw −+=→ θ  and using the inequality )(2 xFsxy ≤−  (which is a direct consequence of 
(A.16)). It follows from (A.6), (A.5), (A.13) and (A.8) that the following inequality holds for all ],0[ rs∈ : 
 

( )22 )()()()()()()( xFxFxQsxFxsxy +∇+∇+≤ θθθθ                     (A.14) 
 
Definitions (A.3), (A.9) and inequality (A.14) allow us to conclude that )()()()( xFxsxy θλθθ ∇+≤  for all ηδ≤s . 
 
The proof is complete.        
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