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Abstract

We consider the probability of failure for components made of brittle

materials under one time application of a load, as introduced by Weibull

and Batdorf-Crosse. These models have been applied to the design of ce-

ramic heat shields of space shuttles and to ceramic components of the com-

bustion chamber in gas turbines, for example. In this paper, we introduce

the probability of failure as an objective functional in shape optimization.

We study the convexity and the lower semi-continuity properties of such

objective functionals and prove the existence of optimal shapes in the

class of shapes with a uniform cone property. We also shortly comment

on shape derivatives and optimality conditions.

Key words: probabilistic failure of ceramic structures shape optimization op-
timal reliability

MSC (2010): 49Q10, 60G55

1 Introduction

Ceramics frequently is chosen to construct mechanical components. Ceramics
is temperature resistant and does not react with oxygen, sulphur or hydrogen
even at high temperatures. On the negative side, the brittleness exposes ce-
ramic structures to the risk of spontaneous failure due to stress concentration
at prefabricated voids or inclusions. As the formation of such microcracks is
unavoidable in the sintering process and is stochastic by nature, the failure un-
der or the resistance to a given mechanical load is a random event that occurs
with a given failure probability. This was the insight by E. W. Weibull in his
classical paper [30].

In this article, we consider the probability of failure of a mechanical compo-
nent under a given load as objective functional in shape optimization [2,9,10,18,
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28]. In the design of ceramic components, models for the probability of failure
have been worked out for quite some time [4,19,23,25,26,30–32] and have found
their way into standard textbooks; see e.g. [22]. The area of application ranges
from the design of heat shields in gas turbine combustion chambers [6, 19, 20]
to those of the space shuttle [23]. Here, we follow the approach of [4] that is
also supported experimentally [5] in the case of small flaw sizes. All these mod-
els have in common that the back reaction of the cracks on the stress state is
neglected.

While more detailed models are well studied in the materials science com-
munity, see e.g. [14], the models used here are easy to implement on the basis
of standard finite element software by a simple post processing step involving
some numerical quadrature, only [25, 26]. Furthermore, they are comparatively
conservative in the number of parameters introduced by the models and cali-
bration procedures for these parameters are well studied and standardized [22].
All these are important requirements from industrial design processes.

We will prove that such probabilistic objective functionals, after appropriate
transformation to an equivalent problem, fulfil the convexity requirements of
Fujii [13] and thus are lower semicontinuous in the weak topology of the Sobolev
space on a bounded constructed domain where the admissible shapes share parts
of their boundaries with this domain, cf. Figure 1, and fulfill the uniform cone
property.

In the next step we apply lower semicontinuity to the problem of shape
optimization. Here the state equation is linear elasticity, for simplicity [8]. We
conclude that there exists a shape that has the lowest probability of failure
among all admissible shapes. This is the main result of our paper.

Although the existence result in this article is less general in terms of the
objective functionals than [16], it requires much less restrictive boundary reg-
ularity assumptions and technically follows a rather independent route. For
other work on optimal design with the linear elasticity PDE as state equation,
see e.g. [2, 3, 10, 18] and references therein. These works however use objective
functionals which considerably differ in their design intention and mathematical
properties from what we consider here. This in particular applies to the com-
pliance functional, which is not directly related to the failure of the component.

The paper is organised as follows. Section 2 essentially fixes notation for the
state equation and recalls well known facts from linear elasticity. In Section 3 we
give some background material from linear fracture mechanics and introduce the
Poisson point process in order to derive failure probabilities. We derive objective
functionals that are minimal, if and only if the probability of failure is minimal
and which fit nicely into the standard framework of shape optimization. Section
4 proves convexity of the resulting objective functionals. In Section 5 we apply
the strategy of [13] to conclude that optimally reliable designs exist. Section
6 gives a short conclusion and an outlook to shape derivatives and optimality
conditions.
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2 Linear Elasticity in the Weak Formulation

Let us start with our assumptions on the form of the ceramic component. We
assume that the compact body Ω ⊆ R

3 is filled with the ceramic material. It
is assumed that the boundary ∂Ω of Ω can be decomposed into three portions
with not vanishing surface volume,

∂Ω = cl(∂ΩD) ∪ cl(∂ΩNfixed
) ∪ cl(∂ΩNfree

). (1)

The part is assumed to be fixed on ∂ΩD, the Dirichlet-Portion of the bound-
ary. Furthermore, only on ∂ΩNfixed

surface forces may act. The free portion
∂ΩNfree

can be modified in order to optimally comply with the design objective
‘reliability’, as we will explain below. For technical reasons that will become
clear in Section 5, the free boundary is assumed to be force-free. Furthermore,
we assume that there is some bounded set Ω̂ ⊆ R

3 such that Ω ⊆ Ω̂ for all
admissible choices of the free portion of the boundary; see Figure 1 for a two
dimensional sketch.

Here we consider the linear elasticity partial differential equation as the
state equation. Let f : Ω̂ → R

3 be the the volume forces, e.g. gravitational or
centrifugal forces, and g : Ω̂ → R

3 the forces acting on the component’s surface
∂Ω, e.g. pressure or traction forces. With u(Ω) : Ω → R

3 a twice differentiable
function representing the displacement of Ω under the given loads, we consider
the partial differential equation in the strong form

−divσ(u(Ω)) = f on Ω
u(Ω) = 0 on ∂ΩD

σ(u(Ω))n̂ = g on ∂ΩNfixed

σ(u(Ω))n̂ = 0 on ∂ΩNfree

(2)

with ε(Du) = 1
2 (Du + Du∗) the elastic strain field, σ(Du) = λ tr(ε(Du))I +

2µ ε(Du) the elastic stress field and µ, λ > 0 Lamé’s constants. Du stands for
the Jacobi matrix of u and n̂ represents the outward directed unit normal vector
field on ∂Ω provided that ∂Ω is piecewise differentiable. The index N at the
portions of the boundary here refers to natural boundary conditions1, which can
be considered to be the proper generalization of Neumann boundary conditions
to the case of systems of elliptic partial differential equations.

The theory of strong solutions of (2) is quite involved [8]. Both for analytical
and numerical reasons, the weak formulation of (2) is generally preferred. We
start stating the necessary regularity requirements on ∂Ω first. We use the
notation

C(ζ, θ, l) := {x ∈ R
3 : |x| < l, x · ζ > |x| cos(θ)} (3)

for the cone with height l, direction ζ, and opening angle θ. We need the
following definition:

1We note that in [28] a different set of conditions are referred to as Neumann boundary
conditions, hence the term natural boundary conditions in order to avoid confusion.
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Definition 2.1 ([7, 13]) Let Ω̂ be a bounded open set in R
3. For θ ∈]0, π/2[,

l > 0, r > 0, 2r ≤ l. By Π(θ, l, r) we denote the set of all subsets Ω of Ω̂
satisfying the cone property, i.e., for any x ∈ ∂Ω there exists a cone Cx =
Cx(ζx, θ, l), where ζx denotes a unit vector in R

3, s.t.

y + Cx ⊂ Ω, y ∈ B(x, r) ∩Ω,

where B(x, r) is the open ball in R
n with radius r centred at x.

Based on the notion of the cone property and with Figure 1 in mind, we can
now define the admissible shapes or for our problem:

Definition 2.2 Let Ω̂ ⊆ R
3 be an fixed open set fulfilling the cone property with

respect to some θ, l, r as in Definition 2.1. Let ∂ΩD, ∂ΩNfixed
⊆ ∂Ω̂. Then, we

define the admissible shapes

Oad := {Ω ∈ Π(θ, l, r) : Ω ⊂ Ω̂, ∂ΩD ⊆ ∂Ω, ∂ΩNfixed
⊆ ∂Ω}.

Furthermore, for V > 0, we define the admissible shapes with volume constraint
V

Oad
V := {Ω ∈ Oad : |Ω| = V }.

Here |Ω| :=
∫
Ω dx is the Lebesque volume of Ω.

Let Ω ∈ Π(θ, l, r) and let H1(Ω,R3) be the Sobolev space of L2(Ω,R3) func-
tions with square integrable first weak derivative, cf. [12]. Then the restriction
of u ∈ H1(Ω,R3) to ∂Ω exists [1] and we can define

H1
∂ΩD

(Ω,R3) = {u ∈ H1(Ω,R3) : u ↾∂ΩD
= 0}.

If we take the scalar product of both sides of (2) with a test function v ∈
H1

∂ΩD
(Ω,R3) and integrate over Ω, we obtain the weak form of the elasticity

PDE on Ω with given loads g ∈ L2(∂ΩNfixed
,R3), f ∈ L2(Ω̂,R3) after application

of the divergence theorem for Sobolev spaces [1, 8]

BΩ(u(Ω), v) =

∫

Ω

f · v dx+

∫

∂ΩNfixed

g · v ds, ∀v ∈ H1
∂ΩD

(Ω,R3). (4)

The left-hand side of (4) is given by

BΩ(u, v) :=

∫

Ω

ε(Du) : σ(Dv) dx (5)

with ε(Du) = 1
2 (Du + Du∗) the elastic strain field, σ(Du) = λ tr(ε(Du))I +

2µ ε(Du) the elastic stress field and µ, λ > 0 Lamé’s constants. Du stands for
the Jacobi matrix of u, and tr denotes the trace.

Furthermore, the elastic stress energy density ε(Du) : σ(Du) fulfils the fol-
lowing ellipticity condition

ε(Du) : σ(Du) ≥ 2µ ε(Du) : ε(Du). (6)
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∂ΩNfixed

∂ΩNfree

ΩΩ̂

∂ΩNfree

∂ΩD

Figure 1: Domains Ω and Ω̂ represented in 2D, for simplicity.

From Korn’s inequality for the displacement-traction problem [8, Theorem 6.3-
4], we can now deduce the coercivity of BΩ(., .) on H1

∂ΩD
(Ω,R3) and obtain

the existence and uniqueness of the weak solution by the Lax-Milgram theorem
[8, Theorem 6.3-2].

Theorem 2.3 (Solution of the state equation, [8]) Let f ∈ L2(Ω̂,R3),
g ∈ L2(∂ΩNfixed

,R3) and Ω ∈ Oad. Then, there exists a unique solution u(Ω) ∈
H1

∂ΩD
(Ω,R3) to the linear elasticity PDE in its weak form (4).

3 Survival Probabilities from Linear Fracture Me-

chanics

This section is devoted to the derivation of objective functions based on solutions
to the state equation, linear fracture mechanics and Weibull’s analysis of the
stochastic nature of the ultimate strength of brittle material [30].

Let us first recall some elements of the classical engineering analysis of spon-
taneous failure of mechanical components from brittle material under given me-
chanical loads. In linear fracture mechanics, the three dimensional stress field
close to a crack in a two dimensional plane close to the tip of the crack is of the
form

σ =
1√
2πr

{KI σ̃
I(ϕ) +KII σ̃

II(ϕ) +KIII σ̃
III(ϕ)} + regular terms, (7)

where the detailed form of the shape functions σ̃#(ϕ) is determined by complex
analysis, [17, chapter 4]. Here r is the distance to the crack front and ϕ the
angle of the shortest connection point considered to the crack front with the
crack plane. The K-factors – also called stress intensity factors – depend on
the amount and the mode of the loading, cf. Figure 2, and the geometry of
the crack. While no simple stochastic models for the crack shapes exist, it is
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Figure 2: Different modes of the loading (top). r-ϕ coordinate system at the
tip of the crack (bottom).

customary to use the concept of equivalent circular disk shaped reflectors to
register crack sizes with non destructive ultra sonic measurements. Here we
follow this approach and restrict ourselves to circular ‘penny shaped’ cracks.
Considering e.g. the tensile loading σn in a normal direction of the stress plane
and the crack geometry circular with radius a, one obtains

KI :=
2

π
σn

√
πa. (8)

Failure occurs in the ceramic component if σn is positive and is large enough
such that the stress intensity KI exceeds a critical value KIc. Typical KIc val-
ues for ceramics that are measured in mechanical tests are (3 to 16) [MPa

√
m].

Apparently, in the case of compressive loads, i.e., σn < 0, no failure will occur
no matter what the size a of the crack is. We note that it would be straight
forward to incorporate more complex flaw geometries in the framework of this
article, e.g. for elliptic shapes KI is modified with a factor 1 −

√
1− c2, where

0 < c ≤ 1 the quotient between the length of the principal axes. The considera-
tion of surface cracks (eg. due to manufacturing) will require the more involved
analysis of [16].

Next step is the passage to stress fields with arbitrary orientation w.r.t. the
crack plane, see (7). A large number of solutions has been proposed to the
extension of the concept of critical K factors to the multi axial case [4, 12, 17,
30, 32]. Experimental evidence [5] indicates that for microscopic or mesoscopic
initial flaws the shear stress influence to the strength of a ceramic component
is negligible. We therefore follow [19,32] and set

σn := (n · σ(Du)n)+ = max{n · σ(Du)n, 0}, (9)
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retaining the failure criterion KI(a, σn(x)) > KIc at the location x ∈ Ω of a
crack with radius a.

The probabilistic model of flaw distributions is a marked Poisson point pro-
cess (PPP) with the mark space given by S2 ×R+. Here S2 stands for the flaw
orientation described by the normal n and R+ parametrizes the flaw radius a.
Assumptions that lead to the PPP model are:

• Flaws are uniformly distributed over the volume Ω of the component with
an average number z > 0 of flaws per unit volume;

• Two flaws can always be distinguished either by their orientation, size or
by their location;

• Orientations are uniformly distributed over S2 and are independent of the
flaw location;

• The distribution of the flaw radius is independent of location and orien-
tation of the crack;

• The number of flaws in given, non intersecting volumes A1, . . . , An ⊆ Ω
are statistically independent of each other.

If these assumptions are a good approximation to reality, the following math-
ematical model is adequate and essentially fixed by these assumptions, confer
[21, Corollary 4.7]:

Definition 3.1 Let M = Ω×S2×R+ be the crack configuration space endowed
with the sigma algebra A (M ) defined as the Borel sigma algebra on M . Let
furthermore ν be the Radon measure on A (M ) which is given by

ν = dx ↾Ω ⊗dn

4π
⊗ ρ. (10)

Here dx is the Lebesgue measure on R
3, dn the surface measure on S2 and ρ

a positive Radon measure on (R+,B(R+)) such that ρ([c, d]) fixes the density
(number per volume) of cracks with radius a, c ≤ a ≤ b. A natural assumption
is that only finitely many cracks with a radius a above some finite limit can be
contained in a given volume, i.e. ρ([c,∞[) < ∞ ∀c > 0.

The Poisson point process on the crack configuration space M with intensity
measure ν is a mapping N : E × A (M ) → N0, where E is the set of some
probability space (E ,A , P ) such that the following conditions hold:

(i) ∀A ∈ A (M ), N(A) = N(., A) : (E ,A , P ) → (N0,P(N0)) is a (counting)
random variable;

(ii) ∀ω ∈ E , N(ω, .) : A (M ) → N0 ⊆ R̄+ is a sigma finite measure;
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(iii) ∀n ∈ N, A1, . . . , An ∈ A (M ) mutually disjoint, the random variables
N(A1),
. . . , N(An) are independent;

(iv) ∀A ∈ A (M ) such that ν(A) < ∞, N(A) is Poisson distributed with mean
ν(A), N(A) ∼ Po(ν(A)), i.e.,

P (N(A) = n) = e−ν(A) ν(A)
n

n!
. (11)

Items i) and ii) are the definition of a general point process, iii) is needed
for a general PPP on M and iv) fixes its distribution [21].

Lemma 3.2 Let u ∈ H1(Ω,R3) be given, then

Ac = Ac(Ω, Du) =
{
(x, n, a) ∈ M : KI

(
a, (n · σ(Du(x))n)+

)
> KIc

}
∈ A (M ).

(12)

Proof. Du ∈ L2(Ω,R3×3) is Borel measurable and so is σn = (n · σ(Du)n)+.
Thus the set of critical crack configurations given σ(Du) is measurable as the
pre-image of the interval [KIc,∞) under the Borel measurable function

M ∋ (x, n, a) → KI

(
a, (n · σ(Du(x))n)+

)
∈ R+.

Adopting the point of view that the component fails if there is any crack
with configuration in the critical set Ac(Ω, Du), hence N(Ac(Ω, Du)) > 0, we
obtain the following definition for the survival probability:

Definition 3.3 The survival probability of the component Ω, given the dis-
placement field u ∈ H1(Ω,R3), is

ps(Ω|Du) = P (N(Ac(Ω, Du)) = 0) = exp{−ν(Ac(Ω, Du))}. (13)

A more explicit representation of ν(Ac(Ω, Du)) can be found with the help
of the cumulative crack size function Φ(s) := ρ(]s,∞[) of the crack radius; see
also [19, 32]:

Lemma 3.4 Let u ∈ H1(Ω,R3); then ν(Ac(Ω, Du)) =
∫
Ω
h(Du) dx with

h(q) :=
1

4π

∫

S2

Φ

(
π

4

(
KIc

(n · q n)+
)2
)

dn q ∈ R
3×3. (14)
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Proof. By Fubini’s theorem for positive functions with χ(B) the characteristic
function of the set B,

ν(Ac(Ω, Du)) =
1

4π

∫

Ω

∫

S2

∫

R+

χ({KI(a, (n ·Du(x)n)+) > KIc}) dρ(a) dn dx

=
1

4π

∫

Ω

∫

S2

ρ

(
a >

π

4

(
KIc

(n ·Dun)+

)2
)
dn dx

=
1

4π

∫

Ω

∫

S2

Φ

(
π

4

(
KIc

(n ·Dun)+

)2
)
dn dx.

For later use, we prove the following:

Lemma 3.5 The function h(q) introduced in (14) depends continuously of q.

Proof. We first note that for ql → q with (n · qn)+ > 0,

Φ

(
π

4

(
KIc

(n · qln)+
)2
)

→ Φ

(
π

4

(
KIc

(n · qn)+
)2
)

dn almost everywhere, since by upper continuity of the radon measure ρ on sets
of finite measure Φ(κ) has at most countably many non continuity points. Let
us now assume that (n · qn)+ = 0. In this case π

4 (
KIc

(n·qln)+ )
2 → ∞, and thus

Φ

(
π

4

(
KIc

(n · qln)+
)2
)

→ 0 = Φ

(
π

4

(
KIc

(n · qn)+
)2
)

again by upper continuity and additivity of ρ. Furthermore, the integrand in
the S2 integral defining h(q) by additivity of ρ is uniformly bounded by

Φ

(
π

4

(
KIc

supn∈S2,l∈N(n · qln)+
)2
)

< ∞.

The assertion of the lemma thus follows from Lebesgue’s theorem of dominated
convergence.

Apparently, in mechanical design we want to maximise the survival proba-
bility ps(Ω|Du(Ω)) in the shape control variable Ω ∈ Oad under the PDE con-
straint (4). Obviously, by Definition 3.3, this is equivalent to the minimization
of ν(Ac(Ω, Du)). Using Lemma 3.4 we can reformulate this into the following
standard PDE constraint minimization problem:

Definition 3.6 The problem of optimal reliability for a ceramic component Ω ∈
Oad under given volume load f ∈ L2(Ω̂,R3) and surface load g ∈ L2(∂ΩNfixed

,R3)

9



is defined as the following shape optimization problem:

Find Ω∗ ∈ Oad. s.t. J(Ω∗, u(Ω∗)) ≤ J(Ω, u(Ω)) ∀Ω ∈ Oad

u = u(Ω) solves the state equation (4)
J(Ω, u(Ω)) :=

∫
Ω
h(Du(Ω)) dx with h defined in Lemma 3.4.

(15)

Here Oad can be replaced with Oad
V for the volume constrained optimal reliability

problem as long as 0 < V < |Ω̂| such that Oad
V 6= ∅.

From a shape optimization perspective, the objective functional J(Ω, u(Ω))
has attractive properties as:

• It has a clear material science derivation and a proven record of industrial
application [6, 20, 32];

• It permits to show the existence of optimal shapes by its convexity prop-
erties [13];

• One can prove the existence of the shape derivatives dJ (Ω, V ) under
infinitesimal transformations generated by a vector field V in the sense of
[28], confer the forthcoming work [15].

4 Convexity of the Objective Functional

Fujii showed [13] that any objective functional J(Ω, u) =
∫
Ω
h(Du) dx with

convex, positive function h : R
3 → R+ is lower semcontinuous in the weak

H1(Ω,R) topology for scalar u ∈ H1(Ω,R). As lower semicontinuity is an
essential ingredient to existence proofs for optimal shapes, we now look for
conditions on the crack radius distribution that will ensure the convexity of the
function h(q).

Definition 4.1 A crack size measure ρ has the non decreasing stress hazard
property, iff the function H : R+ → R defined as

H(κ) := Φ

(
1

κ2

)
= ρ

(]
1

κ2
,∞
[)

(16)

is convex in κ.

To understand the physical content of Definition 4.1, let us take the sim-
plifying assumption that the stress state σ is homogeneous and tensile. We
only consider such cracks with crack plane normal n in a small neighbourhood
U(n̄) ⊆ S2 of n̄ ∈ S2. Approximately, we can replace all crack orientations in
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U(n̄) by n̄ itself. Let σn̄ = n̄σ · n̄, then the probability for the absence of failure
due to a crack with orientation in U(n̄) at the stress level σn̄ approximately is

P (S(n̄) > σn̄)) = P (N(Ac(σn̄, n̄)) = 0) ≈ exp

{
−|Ω||U(n̄)|H

(
2√
π

σn̄

KIc

)}
.

(17)
Here A(σn̄, n̄) = Ac(Ω, Du) ∩ R

3 × U(n̄) × [0,∞[ stands for the critical set
associated to a stress state σ with σn̄ = n̄σn̄. Therefore, up to a rescaling of the
stress and a positive pre-factor, H(κ) is the cumulative hazard function of the
random strength S(n̄) for the hazard of rupture due to a crack with orientation
in U(n̄) [11]. If we suppose that H(κ) is differentiable, convexity of H(κ) in κ
is equivalent to a non decreasing hazard rate h̃(κ) = H ′(κ) in σn̄:

2|Ω||U(n̄)|√
πKIc

h̃

(
2√
π

σn̄

KIc

)
≈ lim

∆ց0

P (S(n̄) < σn̄ +∆|S(n̄) > σn̄)

∆
, (18)

cf. [11]. Thus, the non decreasing stress hazard property implies that the risk
of failure because of a crack with orientation in U(n̄) due to augmentation of
the stress σn̄ by an amount ∆, provided the component sustained the stress
σn̄, does not decrease with the stress level σn̄. This kind of behaviour can be
expected from a wide range of materials.

Proposition 4.2 Suppose that the crack size measure ρ fulfils the non decreas-
ing stress hazard property. Then the function h defined in Lemma 3.4 is convex.

Proof. Let q1, q2 ∈ R
3×3 and t ∈]0, 1[. With κj :=

2(n·qj n)√
πKIc

6= 0, j = 1, 2, we

get from the convexity of H(κ) defined in Definition 4.1 that

Φ

(
π

4

(
KIc

(n · (tq1 + (1− t)q2)n)+

)2
)

= H((tκ1 + (1− t)κ2))

≤ tH(κ1) + (1− t)H(κ2)

= tΦ

(
π

4

(
KIc

(n · q1 n)+
)2
)

+ (1− t)Φ

(
π

4

(
KIc

(n · q2 n)+
)2
)
.

The case that involves one or two κj = 0 is trivial as the right and left-hand
side are equal in this case. Integration of this inequality in n over S2 then yields
convexity of h.

Proposition 4.3 Suppose that the crack size density measure ρ is absolutely
continuous w.r.t. the Lebsgue measure da, dρ(a) = ̺(a)da, ̺(a) > 0 for a ∈ R+.
We furthermore assume that α(a) := − log ̺(a) is differentiable on R

+ and

α′(a) ≥ 3

2

1

a
∀a > 0. (19)

Then ρ fulfils the non decreasing stress hazard property and the function h de-
fined in Lemma 3.4 is convex.
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Proof. Using the function H(κ) := Φ
(

1
(κ+)2

)
, the natural extension for κ ≤ 0

is H(κ) = 0. This corresponds to lima→∞ Φ(a) = ρ(]a,∞[) = 0 by upper
continuity of the Radon measure ρ for sequences of decreasing sets with finite
measure.

Note that H(κ) is continuous and second-order differentiable for κ ∈ R
∗ =

R \ {0}. Thus, to show convexity, it suffices that H ′′(κ) ≥ 0 ∀κ ∈ R \ {0}. This
is trivially true for κ < 0 as then H ′′(κ) = 0. Let us now investigate the case
κ > 0. We get

H ′′(κ) = −4̺′
(

1

κ2

)
1

κ6
− 6̺

(
1

κ2

)
1

κ4

!
> 0.

This is equivalent to

−̺′
(

1
κ2

)

̺
(

1
κ2

) = α′
(

1

κ2

)
!
>

3

2
κ2

which holds by the assumption (19) using the substitution a = 1
κ2 .

Now apply Proposition 4.2 to show convexity of h.

Condition (19) restricts the tail behaviour of the a-density ̺(a) to a decrease
at least as fast as const.×a−β for a → ∞ with β ≥ 3/2 as α ≥ const.+β log(a).

Assuming an algebraic scaling for ̺(a), we can make contact with the clas-
sical Weibull type objective functionals [19, 30, 32].

Proposition 4.4 Let u ∈ H1(Ω,R3) and β ≥ 3
2 be given such that

α(a) := α0 + β log(a), i.e. ̺(a) = e−α0a−β ∀a > 0. (20)

Then

J(Ω, u) =
1

4π

∫

Ω

∫

S2

(
n · σ(Du)n

σ0

)m

dn dx, (21)

with m = 2(β − 1) ≥ 1 and

σ0 = e−α0/2(β−1)(β − 1)1/2(β−1)

√
4

π
KIc. (22)

Proof. We have Φ(a) = eα0

(β−1)a
−(β−1). One obtains

Φ

(
π

4

(
KIc

(n · σ(Du)n)+

)2
)

=


 (n · σ(Du)n)+

e−α0/2(β−1)(β − 1)1/(2(β−1)
√

4
πKIc




2(β−1)

.
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Remark 4.5 The above objective functional was introduced by Weibull in [30]
based on statistical evidence. Our derivation from the distribution of crack
sizes is pretty standard in material science; see e.g. [22, Chapter 5]. For a
different derivation of the same functional from the large sample limit of extreme
value theory are applied along with some approximations that can be controlled
numerically to a reasonable extent confer [4, 19, 32].

Remark 4.6 Typical experimental values of m range from 5 to 25; see [30].
In particular the assumptions of Proposition 4.3 do not rule out the cases of
physical interest. Note that the large m limit is deterministic.

Remark 4.7 The dimensional mismatch between σ0 and the stress intensity
KIc in equation (22) is explained by the fact that Φ(a) is a functional of a
dimensional quantity a. Understanding Φ as a function of a numerical value, we
need to introduce a length scale a0 = [m] and consider Φ(a/a0), which divides
K1c by

√
a0.

Corollary 4.8 Let the Weibull local failure intensity function hW : R3×3
s → R+

be defined as

hW (q) :=
1

4π

∫

S2

(
(n · q n)+

σ0

)m

dn. (23)

Then hW is convex for m ≥ 1 and continuous.

Proof. Apply Propositions 4.2, 4.3 and 4.4.

5 Shapes with Optimal Survival Probability

Having the results of the previous section at hand, we can now show the existence
of shapes solving the shape optimization problem given in Definition 3.6 – hence
solutions with optimal survival property.

As we will deal with problems involving mixed boundary conditions, we need
an appropriate extension operator.

Theorem 5.1 (Theorem II.1 in [7]) Let θ, l, r ∈ R s.t. θ ∈]0, π/2[ and 2r ≤
l and let n ∈ N. There exists a constant K(θ, l, r) depending on Ω ∈ Π(θ, l, r)
through θ, h, r, only, and s.t. for all Ω ∈ Π(θ, l, r) there exists a linear and
continuous extension operator pΩ : Hn(Ω,R3) → Hn(R3,R3), s.t. pΩu(x) =
u(x) for all x ∈ Ω, with

‖pΩ‖ ≤ K(θ, l, r).

Proof. See proof of Theorem II.1 in [7].

Further, we need the following result.
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Lemma 5.2 ([13]) The class Oad of domains is relatively compact and is closed

with respect to the strong L2(Ω̂) topology, i.e. the metric topology from d(Ω,Ω′) =
‖χ(Ω)−χ(Ω′)‖L2(Ω̂). Here χ(Ω) stands for the characteristic function of the set
Ω.

The same applies to the volume constraint sets Oad
V , provided 0 < V < |Ω̂|.

Proof. Theorem III.1 in [7] states that Π(θ, l, r) is relative compact, Theo-
rem III.2 in [7] shows that it is closed. Oad obviously is closed in Π(θ, l, r).
The second statement follows from the fact that Oad

V ⊆ Oad is closed in the

L2(Ω̂)-topology.

The main tool for showing the existence of optimal shape is the following
theorem.

Theorem 5.3 Let h be continuous, non-negative, and convex. Assume that for
{Ωn} ⊂ Π(θ, l, r) we have

Ωn → Ω, a.e. in Ω̂,

i.e., the characteristic functions of Ωn converge to the characteristic function
of Ω in L2(Ω̂), and that for the extension ũn = pΩ(un) of un ∈ H1(Ωn,R

3) we
have

ũn ⇀ ũ, in H1(Ω̂,R3),

where ũ = pΩ(u). Then, the following inequality holds:

∫

Ω

h(Du(x))dx ≤ lim inf
n→∞

∫

Ωn

h(Dun(x))dx.

Proof. The proof of Theorem 2.1 in [13] extends without modifications from
scalar u to vector valued u.

In order to apply this theorem, we have have to show that an arbitrary
sequence {Ωn, un} of admissible domains and solutions has a subsequence that
converges.

Lemma 5.4 Let ∂ΩD and ∂ΩN be defined as above and let {Ωn, un}∞n=1 an
arbitrary sequence of admissible domains and their corresponding solutions, i.e.,
Ωn ∈ Oad and un = u(Ωn) solves (4) in the domain Ωn. Then one can find its
subsequence also denoted by the pair (Ωn, un) and elements Ω ∈ Π(θ, l, r) and
u ∈ (H1(R3),R3) such that

Ωn → Ω, and ũn ⇀ ũ,

where ũn and ũ are the extensions of un and u to R
n and u solves (4) in Ω.

The same holds true, if Oad is replaced with the volume constrained sets Oad
V .
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Proof. We define the set of admissible displacements as

V(Ω) := {v ∈ H1(Ω,R3)|v = 0 on ∂ΩD}.
For the bilinear form BΩ in (4) using the ellipticity condition (6) we get for all
v ∈ V(Ω):

BΩ(v, v) =

∫

Ω

ε(Dv) : σ(Dv)dx

≥ 2µ

∫

Ω

ε(Dv) : ε(Dv)dx = 2µ‖ε(Dv)‖20,Ω.

Using this, we obtain

2µ‖ε(Dun)‖20,Ωn
≤ BΩn

(un, un) =

∫

Ωn

f · undx+

∫

∂(Ωn)Nfixed

g · unds (24)

≤ (c1 + c2) · ‖un‖1,Ωn
, (25)

where the constant c1 accounts for the bound of the integral over f · un and
c2 originates from the application of the trace theorem over the fixed Neumann
boundary of the domain. Note that while c2 depends on the domain under
consideration obviously we can use the extension ūn of un to Ω̂. As we have

‖ūn‖1,Ω̂ ≤ K(θ, l, r)‖ūn‖1,Ωn
= K(θ, l, r)‖un‖1,Ωn

the estimate holds by including the factor K(θ, l, r) in c2. From Korn’s in-
equality we can follow that there exists a β > 0 such that for all v ∈ V(Ω) we
have

‖ε(v)‖20,Ω ≥ β‖v‖1,Ω;
furthermore, a result from [24] guarantees that this β can be uniformly bounded
for all domains under consideration and we obtain that there exists a constant
c for all Ωn such that

‖un‖1,Ωn
≤ c.

Due to Theorem 5.1 the extension ũn of un to R
3 is bounded and so is the exten-

sion to Ω̂. Using this and Lemma 5.2 we obtain that there exists a subsequence
of {Ωn, ũn}∞n=1 where Ωn → Ω due to Lemma 5.2 and where ũn converges weakly

to some function u ∈ (H1(Ω̃))3.

It remains to show that this u solves (4). For this purpose we proceed as in
the proof of Proposition IV.1 in [7]. We have that

BΩn
(un, v) =

∫

Ωn

f · v dx+

∫

∂(Ωn)N

g · v ds, ∀v ∈ H1
∂(Ωn)D

(Ωn).

This is equivalent to
∫

Ω̂

χ(Ωn)tr(ε(Du)σ(Dv)) dx =

∫

Ω̂

χ(Ωn)f · v dx+

∫

Ω̂

χ(∂(Ωn)N )g · v ds,
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∀v ∈ H1
∂ΩD

(Ω), where χ(∂(Ωn)N ) denotes the characteristic function of ∂(Ωn)N
as usual. We show the convergence of each of the integrals. For the first integral
of the right-hand side we obviously have that for each v ∈ L2(Ω̂) we have

|χ(Ωn)v| ≤ |v|
and as the characteristic function converges a.e., we obtain that χ(Ωn)v →
χ(Ω)v and so we get

∫

Ω̂

χ(Ωn)f · v dx →
∫

Ω̂

χ(Ω)f · v dx.

As this is true for v ∈ L2(Ω̂,R3) it holds for H1
∂ΩD

(Ω,R3), as well. For the
partial derivatives in the integral on the left-hand side the same argument holds
true. For the second integral on the right-hand side we can argue in the same
manner, as the convergence of χ(Ωn) implies the convergence of the character-
istic function of the boundary ∂(Ωn)N .

We are now in the position to prove the main result of this work:

Theorem 5.5 Let ∂ΩD and ∂ΩN be defined as above and let {Ωn, u(Ωn)}∞n=1

be a minimizing sequence of admissible domains in Oad and their corresponding
solutions, i.e. u(Ωn) solves (4) in the domain Ωn and

lim
n→∞

J(Ωn, u(Ωn)) = inf
Ω∈Oad

J(Ω, u(Ω)), (26)

where J is defined as in (21). Moreover, assume that the crack size measure
ρ fulfils the non decreasing stress hazard property. Let ũ∗ and Ω∗ ∈ Oad be
the limit points of a subsequence as defined in Lemma 5.4. Then the restriction
u∗ = u(Ω∗) of the weak limit ũ∗ and Ω∗ solve the shape optimization problem 3.6.
Thus there exist shapes Ω∗ ∈ Oad that maximize the probability of survival 3.3.
This in particular applies to the Weibull model for m > 0. The above statements
also remain true for the volume constraint shape optimization problem, where
Oad is replaced by Oad

V , the admissible shapes of volume V , provided this set is
not empty.

Proof. The function h given by (14) is obviously non-negative, as the inte-
grand is non-negative. Proposition 4.2 gives convexity of h and Lemma 3.5 its
continuity. Furthermore, the strong convergence of the domains and the weak
convergence of the corresponding solution is guaranteed by Lemma 5.4, so all re-
quirements of Theorem 5.3 are fulfiled and the assertion follows. By Proposition
4.4 and Corollary 4.8, the Weibull model is a special case.

6 Conclusions

In this paper we have proven the existence of shapes with minimal failure prob-
ability for the case of ceramic components with given loads with and without
volume constraint. A number of further questions naturally arise.
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First of all the uniqueness of the optimal solution has not been investigated.
As Oad does not have a linear structure, convexity properties of the functional
J(Ω, u(Ω)) are not easily defined. Here the understanding of Oad as a infinite
dimensional manifold [27] and the study of convexity on manifolds [29] might
be of interest.

One of the attractive features of the objective functionals that originate from
the probabilistic analysis is that they fit quite nicely into the framework of shape
calculus [28] and it is a natural requirement to consider algorithms for the actual
maximization of survival probabilities that are based on shape gradients. In fact
it is not difficult to follow the calculations of [28, Chapter 3] in order to show
that on the level of formal calculations

dJ(Ω, u(Ω))[V ] :=
d

dt
J(Ωt, u(Ωt)) ↾T=0=

∫

Ω

∇h(Du) : Du′[V ] dx (27)

is the shape derivative of dJ(Ω, u(Ω)) with respect to the vector field V : Ω̂ →
R

3. Ωt here stands for the image of Ω under the flow generated by V . u′[V ]
is the shape derivative of u with respect to V fulfils the PDE given in [28,
Theorem 3.11]. The first order optimallity conditions can then be written as
dJ(Ω, u(Ω))[V ] = 0 ∀V . The mathematical details however are more subtle
and go beyond the scope of this article. Notably [28, Theorem 3.11] obviously
requires more regularity of u(Ω) that it is provided by weak solutions that have
been used here.

A second interesting aspect is the question, if the uniform cone condition in
the definition of Oad could be relaxed. It seems to us that inward corners due
to the stress concentration that occurs at the tip, will be effectively penalized
by high failure probabilities. Outward corners do not carry stress and thus
are not helpful either, at least if a volume constraint is active. Rough, fractal
boundaries therefore do not seem to be preferred by the objective functional. So
the somewhat artificial geometric constraints that are hidden in the constants
θ, l, r of the cone property might well turn out to be redundant, if the analysis
is carried further.

Acknowledgements: We would like to thank Patricia Hülsmeier and Christoph
Ziegeler for making their Ph.D. Theses available to us. We are grateful to Rolf
Krause from ICS Lugano for interesting discussions. We also thank the referees
for reading the submitted article very carefully and providing many suggestions
for improvement.

References

[1] Adams, R. A., Fournier, J. J. F., Sobolev spaces (2nd ed.). Academic Press,
New York (2003)

[2] Allaire, G., Numerical analysis and optimization. Oxford University Press,
Oxford (2007)

17



[3] Allaire, G., Bonneter, E., Francfort, G., Jouve, F., Shape Optimization by
the Homogenization Method, Numer. Math., 76, 27–68 (1997)

[4] Batdorf, S. B., Crosse, J. G., A statistical theory for the fracture of brittle
structures subject to nonuniform polyaxial stress, J. Appl. Mech., 41, 459–
465 (1974)

[5] Brückner-Foit, A., Fett, T., Munz, D., Schirmer, K., Discrimination of
multiaxiality criteria with the Brasilian disk test, J Europ. Ceramic Soc.,
17, 689 – 696 (1997)

[6] Brückner-Voit, A., Hülsmeier, P., Diegele, E., Rettig, U., Hohmann, C.,
Simulating the failure behaviour of ceramic components under gas turbine
conditions, Proceedings of ASME TURBO EXPO 2002 June 3-6, 2002,
Amsterdam, The Netherlands (2002)

[7] Chenais, D.: On the existence of a solution in a domain identification
problem, J. Math. Anal. Appl., 52 (2), 189–219 (1975)

[8] Ciarlet, P., Mathematical elasticity - Volume I: Three-dimensional elastic-
ity, Studies in Mathematics and its Applications, Vol. 20. North-Holland,
Amsterdam (1988)

[9] Delfour, M. C., Zolesio, J.-P., Shapes and geometries (2nd ed.). Advances
in Design and Control, SIAM, Philadelphia (2011)

[10] Eppler, K., Efficient Shape Optimization Algorithms for Elliptic Bound-
ary Value Problems. Habilitation Thesis, Technische Universität Chemnitz
(2007)

[11] Escobar, L. A., Meeker, W. Q., Statistical methods for reliability data.
Wiley-Interscience Publication, New York (1998)

[12] Evans, A. G., A general approach for the statistical analysis of multiaxial
fracture, J. Amer. Ceramics Soc., 61 (7–8) 302–308 (1978)

[13] Fujii, N., Lower Semicontinuity in domain optimization problems, J. Op-
tim. Theory Appl., 59 (3), 407–422 (1988)

[14] Gambarotta, L., Lagomarsino, S., A microcrack damage model for brittle
materials, Int. J. Solids Struct., 30, 177–198 (1993)

[15] , Optimal reliability in design for fatigue life II: Shape derivatives and
adjoint states, in preparation

[16] Gottschalk, H., Schmitz, S.: Optimal reliability in design for fatigue life I:
Existence of optimal shapes, preprint, arXiv:1210.4954 (2012)

[17] Gross, D., Seelig, T., Bruchmechanik (4th ed.). Springer, Berlin, Heidel-
berg, New York (2007)

18

http://arxiv.org/abs/1210.4954


[18] Haslinger, J., Mäkinen, R. A. E., Introduction to shape optimization -
Theory, approximation and computation. SIAM, Philadelphia (2003)

[19] Heger, A., Bewertung der Zuverlässigkeit mehrachsig belasteter keramis-
cher Bauteile, Fortschritt-Berichte des VDI, Series 18, 132 (1993)

[20] Hülsmeier, P., Lebensdauervorhersage für keramische Bauteile. Disserta-
tion Thesis, Universität Karlsruhe (2004)

[21] Kallenberg, O., Random measures. Akademie Verlag, Berlin (1975)

[22] Munz, D., Fett, D., Mechanische Eigenschaften von Keramik. Springer,
Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong (1989)

[23] Nemeth, N. N., Manderscheid, J., Gyekenyeshi, J., Ceramic analysis and
reliability evaluation of structures (CARES). NASA report TP-2916 (1990)

[24] Nitsche, J. A., On Korn’s second inequality, RAIRO Anal. Numer., 15 (3),
237–248 (1981)

[25] Riesch-Oppermann, H., Brückner-Foit, A., Ziegler, C., STAU - a general
purpose tool for probabilistic reliability assesment of ceramic components
under multi axial loading, Proc. Int. Conf. ECF 13, San Sebastian (2000)

[26] Riesch-Oppermann, H., Scherrer-Rudiya, S., Erbacher, T., Kraft, O., Un-
certainty analysis of reliability predictions for brittle fracture, Eng. Fract.
Mech., 74 (18), 2933-2942 (2007)

[27] Schulz, V., A Riemannian view on shape optimization, preprint,
arXiv:1203.1493 (2012)

[28] Sokolowski, J., Zolesio, J.-P., Introduction to shape optimization - Shape
sensivity analysis, Springer, Berlin, Heidelberg (1992)

[29] Udriste, C., Convex functions and optimization methods on Riemannian
manifolds. Kluwer Academic Publishers, Dordrecht (1994)

[30] Weibull, E. W., A statistical theory of the strength of materials, Ingeniors
Vetenskaps Akad. Handl., 151, 1–45 (1939)

[31] Weil, N. A., Daniel, I. M., Analysis of fracture probabilities in nonuniformly
stressed brittle materials, J. Amer. Ceramic Soc., 47 (6), 268 – 274 (1964)

[32] Ziegeler, C., Bewertung der Zuverlässigkeit keramischer Komponenten
bei zeitlich veränderlichen Spannungen unter Hochtemperaturbelastung,
Fortschritt-Berichte des VDI, Series 18, 238 (1998)

19

http://arxiv.org/abs/1203.1493


Matthias Bolten and Hanno Gottschalk

Department of Mathematics and Science,
Bergische Universität Wuppertal,
bolten@math.uni-wuppertal.de,
hanno.gottschalk@uni-wuppertal.de

Sebastian Schmitz

Institute of Computational Science,
Università della Svizzera Italiana,
Lugano,
sebastian.schmitz@usi.ch

20


	1 Introduction
	2 Linear Elasticity in the Weak Formulation
	3 Survival Probabilities from Linear Fracture Mechanics
	4 Convexity of the Objective Functional
	5 Shapes with Optimal Survival Probability
	6 Conclusions

