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On Semi-discrete Monge
Kantorovich and generalized

partitions
Gershon Wolansky

Abstract

Let X a probability measure space and ψ1....ψN measurable, real
valued functions on X . Consider all possible partitions of X into N
disjoint subdomains Xi on which

∫
Xi

ψi are prescribed. We address

the question of characterizing the set (m1, , ,mN ) ∈ R
N for which there

exists a partition X1, . . .XN of X satisfying
∫
Xi

ψi = mi and discuss
some optimization problems on this set of partitions. The relation of
this problem to semi-discrete version of optimal mass transportation
is discussed as well.

Contents

1 Introduction 2
1.1 Semi-discrete Monge problem . . . . . . . . . . . . . . . . . . 2

1.1.1 Individual prices . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Subpartition . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Optimal selections . . . . . . . . . . . . . . . . . . . . 4

1.2 Description of main results . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Notations and conventions . . . . . . . . . . . . . . . . . . . . 7

2 Weak (sub)partitions 7
2.1 Back to Kantorovich . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Properties of the partition set . . . . . . . . . . . . . . . . . . 9
2.3 Dual representation of weak (sub)partitions . . . . . . . . . . 10

3 Weak optimal (sub)partitions 14
3.1 Existence and characterization of weak (sub)partitions . . . . 14
3.2 Dual representation . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 From duality to optimal partition . . . . . . . . . . . . . . . . 15

http://arxiv.org/abs/1208.1137v1


4 Strong (sub)partitions 19
4.1 Structure of the strong partition sets . . . . . . . . . . . . . . 19
4.2 Uniqueness of optimal strong (sub)partitions . . . . . . . . . 23
4.3 Back to Monge . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1 Introduction

1.1 Semi-discrete Monge problem

Optimal Transportation, known also as Monge-Kantorovich theory, became
very popular in last decades. The first publication by Monge [8] goes back
to 1781. Excellent modern reviews are the books of C. Villani [10, 11].

The object of optimal transportation is to find an optimal map transport-
ing a given, prescribed probability measure into another. In general setting,
it deals with a pair of probability measure spaces (X,BX , µ), (Y,BY , ν) and
a µ⊕ ν measurable cost function c : X × Y → R. The Monge problem is to
maximize1 the functional

T →
∫

X
c(x, T (x))dµ ∈ R (1)

among all measurable maps T : (X,BX ) → (Y,BY ) which transport the
measure µ to ν, i.e. T#µ = ν, that is

µ(T−1(B)) = ν(B) (2)

for any B ∈ BY .
In the special case where Y is a finite space, i.e Y := {y1, . . . yN} and

BY = 2Y , ν is characterized by a vector

~m := (m1, . . . ,mN ) ∈ SI :=

{
~m ∈ R

N ,
∑

i∈I

mi = 1 , mi ≥ 0

}
(3)

via ν({yi}) := mi. Here and thereafter, I := {1 . . . N}.
In this case, any mapping T#µ = ν induces a partition of X into a

finite number of components Xi := T−1({yi}) ∈ BX where µ(Xi) = mi.

1Traditionally, the MK problem deals with minimization of the cost. In the current
setting it is more natural to talk about maximization. The two options are, of course,
equivalent under a sign change of the cost c .
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The optimal transport plan T is then reduced to an optimal partition2 of X
within the class

P~m := {−→X := (X1, . . . XN ) ; Xi ∈ BX
∪N1 Xi = X , µ(Xi ∩Xj) = 0 if i 6= j, µ(Xi) = mi} . (4)

In the above case we can replace c : X × Y → R by N measurable
functions φi : X → R via φi(x) := c(x, yi). The semi-discrete (or optimal
partition) Monge problem of maximizing (1, 2) takes the form

Ξ∗
φ(~m) := sup

−→
X

{
N∑

1

∫

Xi

φi(x)dµ ;
−→
X ∈ P~m

}
, (5)

where, again, ~m ∈ SI .
This paper generalizes the concept of optimal partition in three directions

to be described below.

1.1.1 Individual prices

Let ~ψ := (ψ1 . . . ψN ) where ψi : X → R are measurable functions on (X,BX ).
Let

P ~ψ
~m := {−→X := (X1, . . . XN ) ; Xi ∈ BX

∪N1 Xi = X , µ(Xi ∩Xj) = 0 if i 6= j,

∫

Xi

ψidµ = mi} (6)

and set
SψI :=

{
~m ∈ R

N ; P ~ψ
~m 6= ∅

}
. (7)

The generalized optimal partition problem (5) takes the form of

Ξ∗
φ(~m) := sup

−→
X

{
N∑

1

∫

Xi

φi(x)dµ ;
−→
X ∈ P ~ψ

~m

}
(8)

where ~m ∈ SψI .

2 See [9].
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1.1.2 Subpartition

The definition of P ~ψ
~m requires the partition to exhaust the space X = ∪N1 Xi.

We extend the set of partitions P ~ψ
~m to sub partitions where ∪N1 Xi ⊆ X:

P ~ψ
~m := {−→X := (X1, . . . XN ) ; Xi ∈ BX

∪N1 Xi ⊆ X , µ(Xi ∩Xj) = 0 if i 6= j,

∫

Xi

ψidµ = mi} (9)

and, respectively,

SψI :=
{
~m ∈ R

N ; P ~ψ
~m 6= ∅

}
, (10)

Ξ+
φ
∗
(~m) := sup

−→
X

{
N∑

1

∫

Xi

φi(x)dµ ;
−→
X ∈ P ~ψ

~m

}
, ~m ∈ SψI (11)

1.1.3 Optimal selections

To motivate the above we consider the following cooperative game:
Let {X,B, µ} be a probability measure space (the ”cake”).
For each agent i ∈ {1 . . . N} and x ∈ X we associate the price ψi(x) ∈ R

of purchase of x by the the agent i.

Let Ci ≥ 0 be the capital of agent i, we set
−→
C = {C1 . . . CN} ∈ R

N . An
affordable share for i is a part of the cake Xi ∈ B such that

∫
Xi
ψidµ ≤ Ci.

An admissible partition of X is defined as a partition of X into N essentially

disjoint affordable shares of the agents
−→
X := (X1, . . . XN ), that is

µ(Xi ∩Xi) = 0 if i 6= j ;

∫

Xi

ψidµ ≤ Ci , ∪N1 Xi ⊆ X .

More generally, let K ⊂ R
N be a closed set. The set of subpartitions Pψ

K is
defined by

Pψ
K := ∪~m∈KP

~ψ
~m . (12)

For each agent i and x ∈ X we associate the profit φi(x) of x for this
agent. Again φi : X → R are measurable functions. The profit of agent i
under a given partition is

Fi(Xi) :=

∫

Xi

φi(x)dµ .
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The total profit of all agents is

FN (
−→
X ) :=

N∑

1

Fi(Xi) .

The object of the game is to maximize the total profit, that is,

max
−→
X

FN (
−→
X ) (13)

over all admissible partitions subjected in Pψ
K .

The paradigm for the selection problem is as follows:

1. Maximize the function
~m 7→ Ξ+

φ
∗
(~m) (14)

where Ξ+
φ
∗
given by (11), on SψI ∩K.

2. For a maximizer ~m of (14), evaluate the optimal subpartitions
−→
X re-

alizing the maximum (13) within Pψ
m.

1.2 Description of main results

Obviously, if all prices ψi are identical (say ψi ≡ 1) then the set SψI is just
the simplex SI (3). In that case (8) is reduced into the semi discrete Monge
problem (5).

Since the semi-discrete Monge problem is a special case of the Monge
problem, a lot is known on its solvability and uniqueness. The essential
condition for solvability and uniqueness of the classical Monge problem is
the twist condition which, in the present case (and for a smooth φi on a
smooth manifold X) takes the form

φi − φj has no critical point ∀i 6= j . (15)

see [4, 7, 6, 9 ....].
The twist condition for non-smooth φi an abstract topological measure

space X takes the form

µ (x ∈ X ;φi(x)− φj(x) = r) = 0 (16)

for any i 6= j ∈ I and for any r ∈ R (Section 4.3, Theorem 4.3).
The generalization for this in the case of individual price takes the form

µ (x ∈ X ;φi(x)− φj(x) = αψi(x)− βψj(x)) = 0 (17)
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for any i 6= j ∈ I and any α, β ∈ R (Theorem 4.1, Section 4.2). Indeed, (17)
is reduced to (16) where ~ψ is a constant.

In the case of subpartitions we need an additional assumption to guar-
antee the unique solvability, namely

µ (x ∈ X ;φi(x) = αψi(x)) = 0 (18)

for any α ∈ R and any i ∈ I. (Theorem 4.1-(ii), Section 4.2). In particular,
we need the condition

µ (x ∈ X ;φi(x) = r) = 0 (19)

for any r ∈ R and any i ∈ I, in addition to (16) to obtain the unique
solvability of the subpartition version of the Monge problem. (Corollary
4.2, Section 4.3).

In contrast, (17, 18) are not enough, in general, for the unique solvability
in the general case. The additional condition

µ (x ∈ X ;αψi(x)− βψj(x) = 0) = 0 (20)

for any α, β ∈ R, α2 + β2 > 0 and i 6= j ∈ I, together with (17, 18), are
enough to guarantee the unique solvability of the problems introduced above
(sec. 1.1.1- 1.1.3).

1.3 Structure of the paper

In Section 2 we relax the notion of (sub)partition to that of a weak (sub)partition.
In Theorem 2.1, section 2.2, we prove that the weak (sub)partition and
strong (sub)partition sets are the same. In section 2.3 we characterize these
sets using a dual formalism.

Section 3 deals with optimal weak (sub)partitions. In section 3.1 we
set up the condition for the existence of optimal weak (sub)partitions and
prove the existence of such subpartition for the selection problem (Theorem
3.1). In sections 3.2 and 3.3 we use the dual formulation to characterize the
optimal weak sub(partition) (Theorem 3.2).

In Section 4 we discuss strong (sub)partitions. Section 4.1 sets up the
assumption (20) for the existence of unique strong partition for any ~m in the

boundary of the (sub)partition set SψI , (S
ψ
I ), in Proposition 4.1. In section

4.2 we prove the main result for uniqueness of optimal strong (sub)partition-
Theorem 4.1, and for the optimal selection (14) where K is a convex set -
Theorem 4.2. Finally, in section 4.3 we discuss the Monge selection prob-
lem in light of the above results and prove the uniqueness of an optimal
subpartition for the Monge problem under conditions (16, 19), in Corollary
4.2.
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1.4 Notations and conventions

i) Unless otherwise stated explicitly, any assumption cited below is valid
form its citation point to the rest of the text.

ii) I := {1 . . . N}. RI := R
N .

iii) For J ⊆ I, RJ =
{
~p = (p1, . . . pN ) ∈ R

N ; pi = 0 if i 6∈ J
}
.

iv) The partial order relation ~p > ~q (~p ≥ ~q) on R
J means pi > qi (pi ≥ qi)

for any i ∈ J .

v) RJ+ := {~p ∈ R
J ; ~p ≥ ~0}.

vi) (X,B, µ) is a compact Polish space B is the Borel−σ algebra and µ is
a Borel non-atomic measure.

vii) ~ψ := (ψ1 . . . ψN ) ∈ C(X;RN ).

viii) ~µ := (µ1, . . . µN ) where µi are non-negative Borel measures on B(X).

ix) P ~ψ,w
~m :=

{
~µ ;

∫
Ω ψidµi = mi ,

∑N
1 µi = µ

}
.

x) P ~ψ,w
~m :=

{
~µ ;

∫
Ω ψidµi = mi ,

∑N
1 µi ≤ µ

}

xi) S
~ψ,w
I :=

{
~m ∈ R

I ; Pw,~ψ
~m 6= ∅

}
.

xii) S
~ψ,w
I :=

{
~m ∈ R

I ; Pw,~ψ
~m 6= ∅

}
.

2 Weak (sub)partitions

2.1 Back to Kantorovich

The Monge problem (1, 2) is relaxed into the Kantorovich problem as follows:
maximize of the linear functional

∫

X×Y
c(x, y)dπ(x, y) : Π(µ, ν) → R

where Π(µ, η) is the convex set of measures on X × Y whose marginals are
µ, ν, that is

π(A× Y ) = µ(A) ; π(X ×B) = ν(B)

for all measurable sets A ∈ BX(B ∈ BY ).
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Again, in the special case where Y is a discrete space Y = {y1, . . . yN}
and ν({yi}) := mi ≥ 0, the set Π(µ, ν) is reduced into the set of decompo-
sitions of the measure µ into n non-negative measures

Pw
~m :=

{
~µ := (µ1, . . . µN ) ;

∫

X
dµi = mi ,

N∑

1

µi = µ

}
,

Indeed, π ∈ Π(µ, ν) iff π =
∑N

1 µiδ{yi} where ~µ ∈ Pw
~m.

Note that the set of partitions P~m can be embedded in Pw
~m by identifying

a set Xi ∈ B with the measure µ restricted toXi, that is, µi := µ⌊Xi, whence∫
Xi
dµ =

∫
X dµi.

In the same way we consider the set of relaxed (weak) partitions corre-
sponding to ~ψ. Here (6) is generalized into

P ~ψ,w
~m :=

{
~µ := (µ1, . . . µN ) ;

∫

Ω
ψidµi = mi ,

N∑

1

µi = µ

}
. (21)

where, again, ~m ∈ R
I . Let also SψI (7) generalized into

S
~ψ,w
I :=

{
~m ∈ R

I ; Pw,~ψ
~m 6= ∅

}
. (22)

Naturally, (8) is generalized into

Ξ∗
φ,w(~m) := sup

~µ

{
N∑

1

∫

X
φi(x)dµi ; ~µ ∈ Pw,~ψ

~m

}
(23)

and Ξ∗
φ,w

(~m) = −∞ iff ~m 6∈ S
~ψ,w
I .

In analogy to (9-10) we also define the weak subpartition

P ~ψ,w
~m :=

{
~µ := (µ1, . . . µN ) ;

∫

Ω
ψidµi = mi ,

N∑

1

µi ≤ µ

}
(24)

and
S

~ψ,w
I :=

{
~m ∈ R

I ; P ~ψ,w
~m 6= ∅

}
, (25)

Ξ+
φ,w(~m) := sup

~µ

{
N∑

1

∫

X
φi(x)dµi ; ~µ ∈ Pw,~ψ

~m

}

Ξ+
φ,w(~m) = −∞ iff ~m 6∈ S

~ψ,w
N .
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Since, as remarked above, any (sub)partition
−→
X ∈ P ~ψ

~m (
−→
X ∈ P ~ψ

~m) induces

a weak (sub)partition ~µ ∈ P ~ψ,w
~m (~µ ∈ P ~ψ,w

~m ) via µi := µ⌊Xi it follows

SψI ⊆ S
~ψ,w
I , SψI ⊆ S

~ψ,w
I . (26)

2.2 Properties of the partition set

Lemma 2.1. The sets SψI , S
~ψ,w
I ⊂ R

I are compact and convex.

Proof. Since |mi| = |
∫
X ψidµi| ≤ ‖ψi‖∞

∫
X dµ = ‖ψi‖∞, so S

~ψ,w
I is bounded.

Compactness follows from the weak-C∗compactness of the set of probability
measures on a compact set. Convexity follows directly from the defini-
tion.

Recalling the definition of the strong (sub)partition sets (7, 10) we now
prove

Theorem 2.1.
SψI = S

~ψ,w
I and SψI = S

~ψ,w
I

Proof. We have to prove the opposite inclusion of (26) . If ~m ∈ S
~ψ,w
I ,

consider the set of weak partitions P ~ψ,w
~m . By Radom-Nikodym Theorem,

any ~µ = (µ1, . . . µN ) ∈ P ~ψ,w
~m is characterized by ~h = (h1, . . . hN ) where hi

are µ-measurable functions, µi = hiµ, satisfying 0 ≤ hi ≤ 1 on X. Moreover

we have
∑N

1 hi = 1 µ-a.e on X. Now P ~ψ,w
~m is convex and compact in the

weak topology. By Krein-Milman Theorem there exists an exposed point of

P ~ψ,w
~m . We show that for an exposed point, hi ∈ {0, 1} µ-a.e on X, for all

i ∈ I.
Assume a set D ⊂ X on which both h1 > ǫ and hi > ǫ for some i 6= 1.

Since h1 + hi ∈ [0, 1] it follows also that h1, hi are smaller than 1 − ǫ
on D as well. Using Lyapunov partition theorem [5] we can find a subset
C ⊂ D such that

∫
C ψ1dµ1 =

∫
D ψ1dµ1/2 and

∫
C ψidµi =

∫
D ψidµi/2. Set

w := 1D−21C where 1A stands for the indicator function of a measurable set
A ⊂ X. It follows that w is supported on D , ‖w‖∞,D = 1 and

∫
X wψ1dµ1 =∫

X wψidµi = 0. By assumption, h1(x)± ǫw(x) ∈ [0, 1] and hi(x)± ǫw(x) ∈
[0, 1] for any x ∈ D. Set
~µ1 := (µ1 + ǫwµ, µ2, . . . , µi − ǫwµ, . . . µN ) and

~µ2 := (µ1 − ǫwµ, µ2, . . . , µi + ǫwµ, . . . µN ). Then both ~µ1, ~µ2 are in P ~ψ,w
~m

and ~µ = 1
2~µ1 +

1
2~µ2. This is in contradiction to the assumption that µ is

9



an exposed point. It follows that either hi = 0 or h1 = 0 µ-a.e. Since i
is arbitrary and

∑
I hj = 1 µ-a.e. it follows that h1 ∈ {0, 1} µ-a.e, hence

hj ∈ {0, 1} for any j ∈ I µ-a.e. The proof S
~ψ
I = S

~ψ,w
I follows identically.

2.3 Dual representation of weak (sub)partitions

Let now, for ~p = (p1, . . . pN ) ∈ R
I

ξ0(x, ~p) := max
i∈I

piψi(x) : X ×R
I → R (27)

ξ+0 (x, ~p) := max(ξ0(x, ~p), 0) (28)

Ξ0(~p) :=

∫

X
ξ0(x, ~p)dµ : RI → R . (29)

Ξ+
0 (~p) :=

∫

X
ξ+0 (x, ~p)dµ(x) . (30)

Theorem 2.2. ~m ∈ SψI (res. ~m ∈ SψI ) if and only if

a) Ξ0(~p)− ~m · ~p ≥ 0 ; b) res. Ξ+
0 (~p)− ~m · ~p ≥ 0 (31)

for any ~p ∈ R
I . Here ~m · ~p :=∑N

1 pimi

Corollary 2.1. ~m is an inner point of SψI (res. SψI ) iff ~p = 0 is a strict
minimizer of (31-a) (res (31-b)).

Proof of Corollary 2.1: Since Ξ0(~p)− ~m · ~p is an homogeneous function and

Ξ0(~0) = 0, it follows that ~0 is a minimizer of (31) for any ~m ∈ SψI . If it
is a strict minimizer then Ξ0(~p) − ~m · ~p > 0 for any ~p 6= 0 hence there
exists a neighborhood of ~m for which Ξ0(~p) − ~m

′ · ~p > 0 for any ~m
′

in this

neighborhood, so ~m
′ ∈ SψI by Theorem 2.2. Otherwise, there exists ~p0 6= 0

for which Ξ0(~p0) − ~m · ~p0 = 0. Then Ξ0(~p0) − ~m
′ · ~p0 < 0 for any ~m

′

for

which (~m − ~m
′

) · ~p0 < 0. By Theorem 2.2 it follows that ~m
′ 6∈ SψI so ~m is

not an inner point of SψI . The second case is proved similarly. 2

The set SψI may contain inner points. As an example, consider the case
where N = 2, ψ1 and ψ2 are continuous, positive functions and there exists
pair of point x, y ∈ X such that ψ2(x) − ψ1(x) = ψ1(y) − ψ2(y) > 0. If

x is in the support of µ1 and y in the support of µ2 then SψI contains an
interior point. Indeed, we can move a neighborhood of x from 1 to 2, and
a neighborhood of y from 2 to 1. This way we increased both m1 and
m2 to obtain (m

′

1,m
′

2) ∈ SψI satisfying m
′

1 > m1 and m
′

2 > m2. On the

10



other hand we can evidently increase one of them (say m1) while decreasing

m2 by transferring a mass from 2 to 1. Then we obtain (m
′′

1 ,m
′′

2) ∈ SψI
satisfying m

′′

1 > m1 and m
′′

2 < m2. By convexity, SψI contains the triangle
whose vertices are (m1,m2), (m

′

1,m
′

2), (m
′′

1 ,m
′′

2), and in particular an interior
point.

To prove Theorem 2.2 we need some auxiliary lemmas:

Lemma 2.2. Ξ0 and Ξ+
0 are convex functions on R

I .

Proof. By definition, ξ0 and ξ+0 are convex function in ~p for any x ∈ X.
Hence Ξ0, Ξ

+
0 are convex as well from definition (29, 30).

Lemma 2.3. If ~m ∈ SψI then

Ξ0(~p)− ~m · ~p ≥ 0

for any ~p ∈ R
I . Likewise, if ~m ∈ SψI then

Ξ+
0 (~p)− ~m · ~p ≥ 0

for any ~p ∈ R
I .

Proof. Assume ~m ∈ Sψ. Since SψI = S
~ψ,w
I by Theorem 2.1 then, by def-

inition, there exists ~µ ∈ Pψ,w
m such that

∫
X ψidµi = mi. Also, from (21)

(
∑N

1 µi = µ) and (29)

Ξ0(~p) =

∫

X
ξ0(x, ~p)dµ =

N∑

1

∫

X
ξ0(x, ~p)dµi

while from (28) ξ0(x, ~p) ≥ piψi(x) so

Ξ0(~p) ≥
N∑

1

pi

∫

X
ψidµi = ~p · ~m .

The case for Ξ+
0 is proved similarly.

In order to prove the second direction of Theorem 2.2 we need the fol-
lowing definition of regularized maximizer:

Definition 2.1. Let ~a ∈ R
I . Then, for ǫ > 0,

maxǫ(~a) := ǫ ln

(
∑

i∈I

eai/ǫ

)

11



Lemma 2.4. For any ǫ > 0 maxǫ(·) is a smooth convex function on R
I .

In addition maxǫ1(~a) ≥ maxǫ2(~a) ≥ maxi∈I(ai) for any ~a ∈ R
I , ǫ1 > ǫ2 > 0

and
lim
ǫց0

maxǫ(~a) = max
i∈I

ai . (32)

Proof. Follows from

maxǫ(~a) = max
~β

{
−ǫ

N∑

1

βi ln βi + ~β · ~a
}

(33)

where the maximum is taken on the simplex 0 ≤ ~β, ~β ·~1 = 1. Note that the
maximizer is

β0i =
eai/ǫ∑
j e

aj/ǫ
< 1

for i ∈ I. Since
∑N

1 βi ln βi ≤ 0, the term in brackets in (33) is monotone
non-decreasing in ǫ > 0. Finally, (32) follows from the Jensen’s inequality
via −∑N

1 βi ln βi ≤ lnN .

Definition 2.2.

ξǫ(x, ~p) := maxǫ (p1ψ1(x), . . . pNψN (x)) : X × R
I → R (34)

Ξǫ(~p) :=

∫

X
ξǫ(x, ~p)dµ : RI → R . (35)

Also, for each ~p ∈ R
I and i ∈ I set

µ
(~p)
i (dx) :=

epiψi(x)/ǫ

∑
j∈I e

pjψj(x)/ǫ
µ(dx) (36)

Likewise

ξ+ǫ (x, ~p) := maxǫ (p1ψ1(x), . . . pNψN (x), 0) : X × R
I → R (37)

Ξ+
ǫ (~p) :=

∫

X
ξ+ǫ (x, ~p)dµ : RI → R . (38)

and

µ
(~p,+)
i (dx) :=

epiψi(x)/ǫ

1 +
∑

j∈1 e
pjψj(x)/ǫ

µ(dx) (39)

Since maxǫ is smooth and convex due to lemma 2.4 it follows from the
above definition via an explicit differentiation.
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Lemma 2.5. For each ǫ > 0, Ξǫ (res. Ξ+
ǫ ) is a convex and C∞ on R

I . In
addition

∂Ξǫ(~p)

∂pi
=

∫

X
ψi(x)dµ

(~p)
i res.

∂Ξ+
ǫ (~p)

∂pi
=

∫

X
ψi(x)dµ

(~p,+)
i

The proof of Theorem 2.2 follows from the following Lemma

Lemma 2.6. For any ǫ, δ > 0 and ~m ∈ R
I

~p→ Ξǫ(~p) +
δ

2
|~p|2 − ~m · ~p (40)

is a strictly convex function on R
I . In addition

Ξǫ(~p) +
δ

2
|~p|2 − ~m · ~p ≥ Ξ0(~p)− ~m · ~p+ δ

2
|~p|2 (41)

so, if (31) is satisfied, then ~p→ Ξǫ(~p) +
δ
2 |~p|2 − ~m · ~p is a coercive function

as well. The same statement holds for Ξ+
ǫ as well.

Proof of Theorem 2.2
From Lemma 2.6 we obtain at once the existence of a minimizer ~pǫ,δ ∈ R

I

of (40) for any ǫ, δ > 0, provided (31) holds. Moreover, from Lemma 2.5 we
also get for that minimizer ~pǫ,δ satisfies

mi =
∂Ξǫ

∂pǫ,δi
+ δpǫ,δi =

∫

X
ψidµ

(pǫ,δ)
i + δpǫ,δi (42)

By convexity of Ξǫ:
∇Ξǫ(~p) · ~p ≥ Ξǫ(~p)− Ξǫ(~0)

Multiply (42) by ~pǫ,δ to obtain

~pǫ,δ ·∇Ξ(~pǫ,δ)+δ
∣∣∣~pǫ,δ

∣∣∣
2
−~m·~pǫ,δ = 0 ≥ Ξǫ(~p

ǫ,δ)−Ξǫ(~0)+δ
∣∣∣~pǫ,δ

∣∣∣
2
−~m·~pǫ,δ (43)

It follows from (31, 41,43) that

−Ξǫ(~0) + δ
∣∣∣~pǫ,δ

∣∣∣
2
≤ 0

hence

δ
∣∣∣~pǫ,δ

∣∣∣ ≤
√
δ

√
Ξǫ(~0) .

Hence (42) implies

lim
δ→0

∫

X
ψidµ

(pǫ,δ)
i = mi

13



By compactness of C∗(X) and since
∑N

1 µ
(pǫ,δ)
i = µ via (36 ) we can choose

a subsequence δ → 0 along which the limits

lim
δ→0

µ
(pǫ,δ)
i := µǫi

holds. It follows that

N∑

1

µ
(pǫ)
i = µ ;

∫

X
ψidµ

ǫ
i = mi .

Again, the proof for ~m ∈ SψI is analogous. 2

3 Weak optimal (sub)partitions

3.1 Existence and characterization of weak (sub)partitions

Let K ⊂ R
I be a closed set. Recall

Pψ
K := ∪~m∈KP

~ψ
~m . (44)

Assumption 3.1. The components of the function ~φ = (φ1, . . . φN ) : X →
R
I are upper sami continuous (usc) and bounded on X.

Theorem 3.1. There exists a weak subpartition ~µ which maximize the total
profit

∫
X
~φ · d~µ in Pψ

K .

The proof of Theorem 3.1 is almost immediate. Since ψi are continuous
by standing assumption, the set Pψ

K is weakly closed. Since φi are u.s.c by
Assumption 3.1, the limit of a maximizing sequence is a maximizer.

3.2 Dual representation

Our next object is to characterize the set of optimal (sub)partitions. For
this we turn back to the dual formulation.
Define the function ξφ : X × R

I → R as

ξφ(x, ~p) := max {φ1(x) + p1ψ1(x), . . . , φN (x) + pNψN (x)} . (45)

Likewise

ξ+φ (x, ~p) := max {φ1(x) + p1ψ1(x), . . . , φN (x) + pNψN (x), 0} (46)

14



Set

Ξφ(~p) :=

∫

X
ξφ(x, ~p)dµ(x) : R

I → R (47)

Ξ+
φ (~p) :=

∫

X
ξ+φ (x, ~p)dµ(x) : R

I → R (48)

and Ξ∗
φ, (Ξ

+
φ
∗
) : RI → R ∪ {−∞} as

Ξ∗
φ(~m) = inf

~p∈RI
[Ξφ(~p)− ~m · ~p] ; Ξ+

φ
∗
(~m) = inf

~p∈RI

[
Ξ+
φ (~p)− ~m · ~p

]
(49)

for ~m ∈ R
I .

Recall that the essential domain of the concave function F : R
I →

R ∪ {−∞} is the set {~m; F (~m) > −∞}.
Lemma 3.1. Ξ∗

φ (res. Ξ+
φ
∗
) is a concave function on R

I . The essential

domain of Ξ∗
φ (res. Ξ+

φ
∗
) is SψI (res. SψI ).

Proof. Comparing the definitions of Ξφ to that of Ξ0 we obtain

Ξφ(x, ~p) − ‖~φ‖∞ ≤ Ξ0(x, ~p) ≤ Ξφ(x, ~p) + ‖~φ‖∞ for any x ∈ X and any

~p ∈ R
I . It follows Ξ0(~p)− ‖~φ‖∞ ≤ Ξφ(~p) ≤ Ξ0(~p) + ‖~φ‖∞ for any ~p ∈ R

I as
well. It follows that Ξφ(~p)− ~p · ~m is bounded from below iff Ξ0(~p)− ~p · ~m is
bounded from below. Note that Ξ0(~p)− ~p · ~m is bounded from below on R

I

iff Ξ0(~p)− ~p · ~m ≥ 0 on R
I . Theorem 2.2 then implies that ~m ∈ SψI iff ~m is

in the essential domain of Ξ∗
φ. Same proof for Ξ+

φ
∗
.

3.3 From duality to optimal partition

We now investigate the sub-gradient of Ξφ and Ξ+
φ . Recall that ~m ∈ ∂~pF iff

F (~q)− F (~p) ≥ ~m · (~q − ~p)

for any ~q ∈ R
I .

Let us consider the positive simplex of measures

P :=

{
~µ = (µ1, . . . µN ), µi ≥ 0,

N∑

1

µi ≤ µ

}

P :=

{
~µ = (µ1, . . . µN ), µi ≥ 0,

N∑

1

µi = µ

}

For each ~µ ∈ P we consider the vector

~m(~µ) :=

(∫
ψ1dµ1, . . .

∫
ψNdµN

)
∈ R

I . (50)
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Lemma 3.2. For any ~p ∈ R
I there exists P~p ⊂ P, P~p 6= ∅, (res. P~p ⊂ P,

P~p 6= ∅,) such that

i) ~m ∈ ∂~pΞφ (res. ~m ∈ ∂~pΞ
+
φ ) iff ~m = ~m(~µ) for some ~µ ∈ P~p (res. ~µ ∈ P~p).

ii) For any ~µ ∈ P~p (res. ~µ ∈ P~p), Ξφ(~p) = ~m(~µ) · ~p +
∫
X
~φ · d~µ (res.

Ξ+
φ (~p) = ~m(~µ) · ~p+

∫
X
~φ · d~µ).

Proof. We present the proof for Ξφ. The proof for Ξ+
φ is analogous.

i) Let

ξφ
ǫ(x, ~p) := maxǫ (p1ψ1(x) + φ1(x), . . . pNψN (x) + φN (x)) : X×R

I → R

(51)

Ξǫφ(~p) :=

∫

X
ξφ
ǫ(x, ~p)dµ : RI → R . (52)

and

µ
~φ,~p
ǫ,i (dx) :=

exp
(
piψi(x)+φi(x)

ǫ

)

∑N
j=1 exp

(
pjψj(x)+φj(x))

ǫ

)µ(dx) , i ∈ {1 . . . N} . (53)

As in Lemma 2.5 we obtain that Ξǫφ is a smooth, convex function
and the sequence Ξǫφ satisfies limǫ→0 Ξ

ǫ
φ = Ξφ pointwise. In addition,

Lemma 2.4 also implies that this sequence is monotone decreasing.
This implies, in particular, that Ξǫφ → Ξφ in the Mosco- sense (c.f.
[1]). In addition

∂Ξǫφ(~p)

∂pi
=

∫

X
ψi(x)dµ

~φ,~p
ǫ,i . (54)

By Theorem 3.66 in [1] it follows that ∂Ξǫφ → ∂Ξφ in the sense of
G−convergence, that is:

∀(~p, ~ζ) ∈ ∂Ξφ, ∃(~pǫ, ζǫ) ∈ ∂Ξǫφ , ~pǫ → ~p and ~ζǫ → ~ζ for ǫց 0.

Since ∂~pΞ
ǫ
φ = {∇~pΞ

ǫ
φ} we obtain that ~ζ ∈ ∂~pΞφ iff there exists a

sequence ~pǫ → ~p and ∇~pǫΞ
ǫ
φ → ~ζ as ǫ→ 0. By (54)

∇~pǫΞ
ǫ
φ = ~m

(−−→
µ
~φ,~pǫ
ǫ

)
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where
−−→
µ
~φ,~pǫ
ǫ =

(
µ
~φ,~pǫ
ǫ,1 , . . . µ

~φ,~pǫ
ǫ,N

)
. Let P~p be the sets of limits (in C∗(X))

of all sequences −−→
µ
~φ,~pǫ
ǫ , ǫ→ 0 .

Since X is compact, P~p is non-empty for any ~p ∈ R
I . In addition we

obtain ~m ∈ ∂~pΞφ iff there exists ~µ ∈ P~p for which ~m = ~m(~µ).

ii) By Lemma 2.4 with ai := pǫ,i ~ψi + φi we obtain, after integration of
maxǫ(~a) over X with respect to µ:

Ξǫφ(~pǫ) = −ǫ
∑

i∈I

∫

X
ln


dµ

~φ,~pǫ
ǫ,i

dµ


 dµ(x)+

∑

i∈I

∫

X
(pǫ,iψi + φi) dµ

~φ,~pǫ
ǫ,i (x) .

Note that
dµ

~φ,~pǫ
ǫ,i

dµ ≤ 1 from (53). Taking the limit ǫ→ 0, ~pǫ → ~p we get

Ξǫφ(~pǫ) → Ξφ(~p) =
∑

i∈I

pi

∫
ψidµi +

∫

X

~φ · d~µ (55)

where

~µ ∈ {lim
ǫ→0

−−→
µ
~φ,~pǫ
ǫ } ∈ P~p

and limǫ→0 ~m

(−−→
µ
~φ,~pǫ

)
= ~m(~µ) ∈ ∂~pΞφ. The limit (55) then takes the

form

Ξφ(~p) = ~m(~µ) · ~p+
∫

X

~φ · d~µ .

Again, the alternative case holds similarly.

Let P̂ (res. P̂) be the weak (C∗) closure of the union of all P~p (res. P~p)

for ~p ∈ R
I :

P̂ := ∪~p∈RIP~pC
∗

, res. P̂ := ∪~p∈RIP~p
C∗

. (56)

Lemma 3.3. For any ~m ∈ SψI (res. ~m ∈ SψI ) there exists ~µ ∈ P̂ (res.

~µ ∈ P̂) for which ~m = ~m(~µ). In particular, this ~µ is a maximizer of
∫
X
~φ·d~µ

in Pψ,w
m (res. Pψ,w

m ) and satisfies
∫

X

~φ · d~µ = Ξ∗
φ(~m) res.

∫

X

~φ · d~µ = Ξ+
φ
∗
(~m) .
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Proof. Following the argument of Lemma 2.6, set

~p→ Ξφ(~p) +
δ

2
|~p|2 − ~m · ~p (57)

for some δ > 0. By Lemma 3.1, ~m ∈ SψI iff

Ξφ(~p) +
δ

2
|~p|2 − ~m · ~p ≥ Ξ∗

φ(~p) +
δ

2
|~p|2

so ~p→ Ξφ(~p)+
δ
2 |~p|2− ~m ·~p is a convex coercive function. Hence there exists

~pδ ∈ R
I which minimize (57),

Ξφ(~pδ) +
δ

2
|~pδ|2 − ~m · ~pδ = min

~p∈RI

[
Ξφ(~p) +

δ

2
|~p|2 − ~m · ~p

]
(58)

and
~m ∈ ∂~pδΞφ + δ~pδ . (59)

By Lemma 3.2-(i) it follows that there exists ~µδ ∈ P~pδ for which ~m =
~m(~µδ) + δ~pδ. We now proceed as in the proof of Theorem 2.2. By the
definition of ∂pΞφ:

∂~pΞφ(~p) · ~p ≥ Ξφ(~p)− Ξφ(~0)

Multiply (59) by ~pδ to obtain

∂~pδΞφ · ~pδ + δ |~pδ|2 − ~m · ~pδ = 0 ≥ Ξφ(~pδ)− Ξφ(~0) + δ |~pδ|2 − ~m · ~pδ (60)

It follows from (58,60) that δ
∣∣~pǫ,δ

∣∣2 is bounded uniformly in δ > 0, so δ |~pδ| ≤
C
√
δ for some C > 0 independent of δ. Hence (59) implies ∂~pδΞφ → ~m as

δ → 0. Hence ~m(~µδ) → ~m. By compactness of C∗(X) we can choose a
subsequence δ → 0 along which ~µδ converges to some ~µ ∈ P̂ for which
~m = ~m(~µ).

Theorem 3.2. There exists a maximizer of
∫
X
~φ · d~µ in Pψ,w

m and any such

maximizer is in P̂. Likewise, there exists a maximizer of
∫
X
~φ · d~µ in Pψ

m

and any such maximizer is in P̂.

Proof. First, any µ ∈ Pψ,w
m satisfies
∫

X

~φ · d~µ ≤ Ξφ(~p)− ~p · ~m

for any ~p ∈ R
I . Indeed, since

φi(x) ≤ ξ(x, p)− piψi(x) i ∈ I
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we get

∫

X

~φ · d~µ ≤
N∑

1

∫

X
ξ(x, ~p)dµi −

N∑

1

pi

∫

X
ψidµi

≤
∫

X
ξ(x, ~p)(

N∑

1

dµi)− ~p · ~m ≤ Ξφ(~p)− ~p · ~m ≤ Ξ∗
φ(~m) . (61)

Let now ~m ∈ SψI By Lemma 3.3 there exists ~µ ∈ P̂ such that ~m(~µ) = ~m.
By definition (56) there exists a sequence ~pn ∈ R

I such that ~µ = limn→∞ ~µn

where ~µn ∈ P~pn .
In particular, ~mn := ~m(~µn) → ~m. By lemma 3.2-(ii) we obtain that

Ξφ(~pn) = ~m(~µn) · ~pn +
∫
X
~φ · d~µn. From Lemma 3.2-(i)

Ξ∗
φ(~mn) = Ξφ(~pn)− ~mn · ~pn =

∫

X

~φd~µn

Taking the limit n→ ∞ and the lower-semi-continuity of Ξ∗
φ we get

Ξ∗
φ(~m) ≤

∫

X

~φd~µ .

This, with (61), implies that ~µ is the maximizer.

4 Strong (sub)partitions

4.1 Structure of the strong partition sets

Assumption 4.1. For any i ∈ I and x ∈ X ψi > 0 and is positive. In
addition, for any i 6= j ∈ I

µ [x ∈ X;αψi(x) + βψj(x) = 0] = 0

for any α, β ∈ R, α2 + β2 > 0,

Lemma 4.1. Under Assumption 4.1, Ξ0 is differentiable at any point ~p :=
(p1, . . . pN ) for which ΠN1 pi 6= 0. In particular

∂Ξ0

∂pi
(~p) =

∫

Xi(~p)
ψidµ (62)

is continuous, where Xi(~p) := {x ∈ X ; piψi(x) = ξ0(x, ~p)} is a strong
partition.
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If, in addition, ~p > ~0 then Ξ+
0 is differentiable at ~p as well and

∂Ξ+
0

∂pi
(~p) =

∫

Xi(~p)
ψidµ . (63)

Proof. (63) follows from (62) by definition (compare (27) to (28), using
the assumption ψi > 0). Assumption 4.1 yields the existence of a strong

partition
−→
X (~p) := (X1(~p), . . . XN (~p)) in P ~ψ

~m associated with each ~p:

Xi(~p) := {x ∈ X ; piψi(x) = ξ0(x, ~p)} . (64)

where ξ0 as defined in (27). In particular µ(Xi(~p) ∩ Xj(~p)) = 0 for i 6= j.
Note that ξ0(x, ~p) is differentiable a.e and

∂ξ0(x, ~p)

∂pi
=

{
ψi(x) if x ∈ Xi(~p) a.e
0 if x 6∈ Xi(~p) a.e

A direct integration of the above over X yields (62). Under Assumption
4.1, the sets Xi(~p) are continuous with ~p in the Hausdorff metric at ~p 6= 0,
hence it yields that the right side of (62) is, indeed, continuous, hence Ξ0 is
differentiable at any ~p satisfying the assumption of the Lemma. The same
proof holds for Ξ+

0 where this time

Xi(~p) := {x ∈ X ; piψi(x) = ξ+0 (x, ~p)}

is a partition.

Proposition 4.1. Assume ~m > ~0. Under assumption 4.1, if ~m ∈ ∂SψI then

i) ~m is an exposed point in SψI . That is, ~m is not an interior point of any

segment contained in SψI .

ii) There exists a unique partition in Pψ,w
m . Moreover, this partition is a

strong one.

Lemma 4.2. Under assumption 4.1, if ~m ∈ ∂SψI , ~m > ~0, then ~m ∈ ∂SψI .

Moreover, Pψ,w
m = Pψ

m.

Corollary 4.1. If ~m is supported on J ⊂ I so ~mJ > ~0 (see section 1.4-(iii)

and either ~m ∈ ∂SψJ or ~m ∈ ∂SψJ then the conclusion of Proposition 4.1
hold.
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Proof. of Proposition 4.1: Using Corollary 2.1 we obtain that if ~m ∈ ∂SψI
there exists ~p0 6= ~0 for which Ξ0(~p

0)−~m·~p0 = 0 ≤ Ξ0(~p)−~m·~p for any ~p ∈ R
I .

We claim that if ~m > ~0 then ~p0 can be chosen to satisfy the assumption of
Lemma 4.1. In particular, we prove that either ~p0 > ~0 or ~p0 < ~0.

Assume that, say, p01 > 0. Since ψ1 > c on X for some c > 0 by
assumption, then ξ0(~p

0, x) ≥ p01ψ1(x) > p1c on X. If p0j ≤ 0 for some

j 6= 1, let ǫ > 0 for which (p0j + ǫ)ψj < p01ψ1 on X. Then by definition

ξ0(~p
0, x) = ξ0(~p0 + ǫ~ej , x) on X. Here ~ej is the unit coordinate vector

pointing in the positive j direction. hence Ξ0(~p
0) = Ξ0(~p

0 + ǫ~ej) so

Ξ0(~p
0 + ǫ~ej)− ~m · (~p0 + ǫ~ej) = Ξ0(~p

0)− ~m · ~p0 − ǫmj = −ǫmj .

Sincemj > 0 by assumption it follows that we get a contradiction to ~p0 ∈ SψI
by Theorem 2.2.

Alternatively, if p01 < 0 and p0j ≥ 0 for some j 6= 1, then Ξ0(~p
0 + ǫ~e1) =

Ξ0(~p
0) for any 0 < ǫ < −p01 so

Ξ0(~p
0 + ǫ~e1)− ~m · (~p0 + ǫ~e1) = Ξ0(~p

0)− ~m · ~p0 − ǫm1 < 0

as well. Hence either ~p0 > ~0 or ~p0 < ~0 and, in particular, the condition of
Lemma 4.1 is satisfied.
Proof of (i):

Suppose now that ∂SψI contains an interval centered at ~m > ~0. In particular

there exists ~m1, ~m2 ∈ ∂SψI , ~m1 6= ~m2 such that ~m = (~m1 + ~m2)/2. Let ~p0

corresponding to ~m as above:

Ξ(~p0)− ~m1 + ~m2

2
· ~p0 = 0 . (65)

Since ~m1, ~m2 ∈ SψI we get by Theorem 2.2

Ξ(~p0)− ~m1 · ~p0 ≥ 0 ; Ξ(~p0)− ~m2 · ~p0 ≥ 0 . (66)

Averaging these two inequalities we get

Ξ(~p0)− ~m1 + ~m2

2
· ~p0 ≥ 0

and, from (65) we get that the two inequalities in (66) are, in fact, equalities:

Ξ(~p0)− ~m1 · ~p0 = 0 ; Ξ(~p0)− ~m2 · ~p0 = 0

which implies that ~m1, ~m2 ∈ ∂~p0Ξ0. In particular Ξ0 is not differentiable at
~p0, which is a contradiction to Lemma 4.1. Hence ~m1 = ~m2.
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Proof of (ii):
From Lemma 4.1 we also get that

X0
i (~p

0) := {x ∈ X ; p0iψi(x) = ξ0(x, ~p
0)}

is a strong partition. If ~m ∈ ∂Sψ and ~m > ~0 then, necessarily, ~p0 > ~0.
We now show that any weak partition in Pψ,w

m is the strong partition

given by
−→
X 0. Indeed, if ~µ ∈ Pψ,w

m , then

Ξ0(~p
0) =

∫

X
ξ0(x, ~p

0)dµ(x) =

N∑

1

∫

X
ξ0(x, ~p

0)dµi(x) ≥
N∑

1

p0i

∫

X
ψidµi = ~p0·~m .

Since Ξ0(~p
0) = ~p0 · ~m, it follows that

N∑

1

∫

X

(
ξ0(x, ~p

0)− p0iψi(x)
)
dµi(x) = 0 .

Note that ξ0(~p, x) ≥ piψi(x) for any i ∈ I and a.e x ∈ X with strong
inequality only for x ∈ X0

j (~p
0), j 6= i, by definition of ξ0. Hence µi = hiµ

where h = 0 on X −X0
i (~p

0) µ-a.e. Since
∑N

1 hi = 1 µ-a.e, it follows that,
necessarily, hi is the indicator function of X0

i (~p
0). In particular, ~µ is a strong

partition, and is a singleton in Pw,~ψ
~m .

Proof. of Lemma 4.2:
Following the proof of Proposition 4.1 we get the existence of ~p0 > 0 for
which Ξ+

0 (~p
0) − ~m · ~p0 = 0. If ~µ ∈ Pψ,w

m is a weak subpartition, then as in
the above proof we get

Ξ+
0 (~p

0) =

∫

X
ξ+0 (x, ~p

0)dµ(x) ≥
N∑

1

∫

X
ξ+0 (x, ~p

0)dµi(x) ≥
N∑

1

p0i

∫

X
ψidµi = ~p0·~m .

In particular

∫

X
ξ+0 (x, ~p

0)dµ(x) =

N∑

1

∫

X
ξ+0 (x, ~p

0)dµi(x) .

Since ξ+0 (x, ~p
0) is positive and continuous on X and

∑N
1 µi ≤ µ it follows

that ~µ is, in fact, a weak partition.
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4.2 Uniqueness of optimal strong (sub)partitions

Assumption 4.2. φi ∈ C(X) for all i ∈ I.

i) For any i, j ∈ I and any α, β ∈ R,
µ (x ∈ X ; αψi(x)− βψj(x) + φi(x)− φj(x) = 0) = 0 .

ii) For any i ∈ I and any α ∈ R,
µ (x ∈ X ; φi(x) = αψi(x)) = 0 .

Recall (45,46). For each ~p ∈ R
I let

Xi(~p) := {x ∈ X ; piψi(x) + φi(x) = ξφ(x, ~p)} , (67)

Xi(~p) := {x ∈ X ; piψi(x) + φi(x) = ξ+φ (x, ~p)} , (68)

By Assumption 4.2-(i) it follows that
−→
X (~p) is, indeed, a strong partition

for any ~p ∈ R
I . Likewise, Assumption 4.2-(i,ii) implies that

−→
X (~p) is a strong

subpartition. In particular, µ(Xi(~p) ∩ Xj(~p)) = µ(X i(~p) ∩ Xj(~p)) = 0 for
i 6= j. Moreover, (62, 63) are generalized into

∂Ξφ
∂pi

(~p) =

∫

Xi(~p)
ψidµ ,

∂Ξ+
φ

∂pi
(~p) =

∫

Xi(~p)
ψidµ (69)

where the right sides of (69) are continuous in ~p. It follows

Lemma 4.3. Under Assumption 4.2(i), Ξφ is differentiable on R
I . If, in

addition, Assumption 4.2(ii) is granted, then Ξ+
φ is differentiable as well.

Theorem 4.1. .

i) Let ~m be an interior point of SψI . Under Assumption 4.2(i) , there exists

a unique partition in Pψ,w
m which maximize

∫
X
~φ ·d~µ, and this partition

is a strong one.

ii) If ~m be an interior point of SψI and, in addition, Assumption 4.2(ii)
is granted, then for there exists a unique subpartition in Pψ,w

m which
maximize

∫
X
~φ · d~µ, and this subpartition is a strong one.

iii) If, in addition, Assumption 4.1 is granted that both (i, ii) hold for any

~m ∈ SψI (~m ∈ SψI ).
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Proof. We may assume that ~m > ~0 for otherwise, ifmi > 0 for i ∈ J ⊂ I and
mi = 0 for i 6∈ J , we can restrict our discussion from I to J (c.f Corollary
4.1).

Same argument holds if ~m ∈ ∂SψJ . Hence we assume that ~m is an interior

point of SψJ (res. SψJ ).

(i): Recall that, for any ~µ ∈ Pψ,w
m ,

∫

X

~φ · d~µ ≤ Ξ∗
φ(~m) := inf

~p∈RJ
[Ξφ(~p)− ~m · ~p]

and SψJ is the essential domain of Ξ∗
φ. By Lemma 3.3 any maximizer satisfies

the equality above Ξ∗
φ(~m) =

∫
X
~φ · d~µ.

If ~m is an interior point then (see [2]) there exists ~p ∈ R
J for which the

equality
Ξφ(~p)− ~m · ~p = Ξ∗

φ(~m)

holds. For any ~µ (in particular, for the maximizer) we get from the definition
of Ξφ

Ξφ(~p)− ~m · ~p =
N∑

1

∫

X
(ξφ(x, ~p)− piψi(x)) dµi (70)

so, by Lemma 3.3 any maximizer satisfies

N∑

1

∫

X
(ξφ(x, ~p)− piψi(x)− φi(x)) dµi(x) = 0 . (71)

By Assumption 4.2-(i) and (67), the i integrand above is positive on X −
Xi(~p) and a.e zero on Xi(~p), so µi is supported on Xi(~p). Since

∫

Xi(~p)
ψidµ =

∂Ξφ
∂pi

(~p) = mi =

∫

X
ψidµi (72)

it follows that µi = µ⌊Xi(~p), that is, ~µ is a strong partition.

(ii) In the case ~µ ∈ Pψ,w
m (70) turns into an inequality

Ξ+
φ (~p)− ~m · ~p ≥

N∑

1

∫

X

(
ξ+φ (x, ~p)− piψi(x)

)
dµi

but ξ+φ − piψi − φi ≥ 0 on X by definition (46) so

Ξ+
φ (~p)− ~m·~p ≥

N∑

1

∫

X

(
ξ+φ (x, ~p)− piψi(x)− φi(x)

)
dµi+

∫

X

~φ·d~µ ≥ Ξ+
φ
∗
(~m)
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By Lemma 3.3 again we have Ξ+
φ
+
(~m) = Ξ+

φ (~p)− ~m · ~p so we have equality
in (72) and the rest of the proof as above.

(iii): If ~m ∈ ∂SψJ (~m ∈ ∂SψI ) then by Proposition 4.1-(ii) the set Pψ,w
m

(Pψ,w
m ) is composed a unique strong (sub)partition, so the Theorem follows

trivially.

We turn now to the case of optimal selection.

Theorem 4.2. Given a closed convex set K ⊂ R
I . There exists a unique

subpartition which optimize (13), and this subpartition is a strong one.

Proof. By Theorem 4.1 we only have to prove the uniqueness of the maxi-
mizer of Ξ+

φ
∗
on SψI ∩K (14).

To show the uniqueness of this maximizer we use Corollary 18.12(ii) on
page 268 of [2]. It implies that a function Ξ+

φ
∗
is strictly convex in the

interior of its domain SψI if it is the convex dual of a differentiable convex
function. In our case −Ξ+

φ
∗
is the convex dual of Ξ+

φ which is differentiable

by Corollary 4.3. Hence, if the a maximizer ~m of Ξ+
φ
∗
in the convex set

K ∩ SψI is an interior point of SψI , then it is unique by its strong concavity.

If, on the other hand, ~m ∈ ∂SψI ∩ K is a maximizer and ~m > ~0 then

Proposition 4.1-(i) implies that ~m is an exposed point of SψI . This implies
that, again, this maximizer is unique. If the components of ~m are not all
positive then we reduce the problem to the subset J ⊂ I which support the
maximizer ~m and apply Corollary 4.1.

4.3 Back to Monge

It is interesting to compare Assumption 4.2-(i) with the twist condition (15).
Recall that the Monge problem corresponds to the case where all ψi are
equal, say ψi ≡ 1 for any i ∈ I. In that case Assumption 4.2-(i) takes the
form

µ (x ∈ X ; φi(x)− φj(x) = r) = 0 (73)

for any i 6= j and r ∈ R. This seems to be a weaker version of (15). Theorem
4.1-(i) yields the uniqueness of of optimal partition for any ~m in the interior

of the set SψI . Embarrassingly, SψI is the simplex SI (3), and does not
contain any interior point! Part (iii) of Theorem 4.1 is of no help either,
since Assumption 4.1 is never satisfied in that case.....

On the other hand, if we add Assumption 4.2-(ii) which, in the above
case, takes the form

µ (x ∈ X ; φi(x) = r) = 0 (74)
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for any i ∈ I and any r ∈ R, then Theorem 4.1-(ii) yields

Corollary 4.2. Under conditions (73, 74) there is a unique, strong subpar-
tition for the Monge partition problem for any ~m ∈ S0

I :=

{
~m ∈ R

I ; 0 ≤ mi ,
∑

i∈I

mi < 1

}
.

However, it turns out that condition (73) alone is also sufficient for the
uniqueness of strong partition in the Monge case:

Theorem 4.3. Suppose ψ1 = . . . = ψN ≡ 1 and the components of ~φ are
continuous on X. If (73) is satisfied then there is a unique optimal partition
for any ~m ∈ SI (3), and this unique partition is a strong one.

Proof. In the case under consideration, (45, 64) takes the form

ξ1(x, ~p) := max {φ1(x) + p1, . . . , φN (x) + pN} ,

Ξ1(~p) :=

∫

X
ξ1(x, ~p)dµ(x) : R

I → R ,

Note that Ξ1 is additively invariant under shift

Ξ1(~p+ α~1) = Ξ1(~p) + α ∀~p ∈ R
I , α ∈ R .

So, Ξ1(~p) − ~m · ~p is invariant under such shift for any ~m ∈ SI . Thus, we
may set to zero the first coordinate p1 of ~p and obtain for Ξ0

1(p2, . . . pN ) :=
Ξ1(0, p2, . . . pN )

Ξ0
1(p2, . . . pN )−

N∑

2

mipi = Ξ1(~p)− ~m · ~p .

Now, (73) implies that Ξ0
1 ∈ C1(RN−1) and the range of ∇Ξ0

1 is the whole
N − 1 simplex

∑N
2 mi ≤ 1. Thus for any point ~m ∈ SI for which m1 > 0,

we get (m2, . . . mN ) as an interior point in the range of ∇Ξ0
1. This yields

the proof of uniqueness as in Theorem 4.1-(i).
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