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On Semi-discrete Monge
Kantorovich and generalized
partitions

Gershon Wolansky

Abstract

Let X a probability measure space and ;....¢05y measurable, real
valued functions on X. Consider all possible partitions of X into N
disjoint subdomains X; on which [ . ¥ are prescribed. We address

the question of characterizing the set (my,,,my) € RY for which there
exists a partition Xi,... Xy of X satisfying in 1¥; = m; and discuss
some optimization problems on this set of partitions. The relation of
this problem to semi-discrete version of optimal mass transportation
is discussed as well.
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1 Introduction

1.1 Semi-discrete Monge problem

Optimal Transportation, known also as Monge-Kantorovich theory, became
very popular in last decades. The first publication by Monge [8] goes back
to 1781. Excellent modern reviews are the books of C. Villani [I0] [IT].

The object of optimal transportation is to find an optimal map transport-
ing a given, prescribed probability measure into another. In general setting,
it deals with a pair of probability measure spaces (X, Bx, u), (Y, By,v) and
a 1 @ v measurable cost function ¢ : X x Y — R. The Monge problem is to
maximiz the functional

T — /Xc(:E,T(x))d,u eR (1)

among all measurable maps T : (X,Bx) — (Y,By) which transport the
measure p to v, i.e. Tyup = v, that is

WT~H(B)) =v(B) (2)

for any B € By.
In the special case where Y is a finite space, i.e Y := {y1,...yn} and
By =2Y, v is characterized by a vector

n‘i::(ml,...,mN)ESI::{ﬁiGRN, Zmizl y mzZO} (3)

iel

via v({y;}) := m;. Here and thereafter, I := {1... N}.
In this case, any mapping Txp = v induces a partition of X into a
finite number of components X; := T~ *({y;}) € Bx where u(X;) = m;.

!Traditionally, the MK problem deals with minimization of the cost. In the current
setting it is more natural to talk about maximization. The two options are, of course,
equivalent under a sign change of the cost ¢ .



The optimal transport plan T is then reduced to an optimal partitio of X
within the class

IPmZ:{YZZ(Xl,...XN); X, € By
In the above case we can replace ¢ : X x Y — R by N measurable

functions ¢; : X — R via ¢;(x) := c(x,y;). The semi-discrete (or optimal
partition) Monge problem of maximizing (Il [2)) takes the form

3 3
E(m) == s%p {le /X ¢i(x)du ; € Pm}, (5)

where, again, m € S7T.
This paper generalizes the concept of optimal partition in three directions
to be described below.

1.1.1 Individual prices

Let 15 = (¢1...¢nN) where 1p; : X — R are measurable functions on (X, Bx).
Let

IPQE = {? = (Xl,...XN); X, € By

UV X=X p(XnX)=0ifi# g [ ddu=m) ©)

and set

Sp={merY ; PLA0} . (7)

The generalized optimal partition problem () takes the form of

N Y J
Ep(m) = S%p {21: /X gi(z)dp € Pm} (8)

where m € S}b.

2 See [



1.1.2 Subpartition

The definition of Pﬁn requires the partition to exhaust the space X = U{V X;.
We extend the set of partitions Pﬁn to sub partitions where U{V X, C X:

Bﬁ; = {Y = (X1,...XN); X, €Bx

WX CX, u(nX) =0iti£), [ ddu=m} (9)
X;
and, respectively,

sy ={mer" ; Pz}, (10)

N -
E;}—*(m) = s%p {Z/X ¢i(z)dp X c Bd/ﬁ} , me §? (11)
1 i

1.1.3 Optimal selections

To motivate the above we consider the following cooperative game:

Let {X,B, 1} be a probability measure space (the ”cake”).

For each agent i € {1... N} and x € X we associate the price ¢;(z) € R
of purchase of x by the the agent 3.

Let C; > 0 be the capital of agent i, we set 8 ={C;...Cy} RN, An
affordable share for i is a part of the cake X; € B such that in vidp < C;.
An admissible partition of X is defined as a partition of X into IV essentially
disjoint affordable shares of the agents X = (X1,...XnN), that is

WXNX) =0 if i 4] ; /widusci L UVX C X
X

More generally, let K C RY be a closed set. The set of subpartitions 2}@ is
defined by

2% = UrﬁeKme . (12)

For each agent i and x € X we associate the profit ¢;(x) of = for this
agent. Again ¢; : X — R are measurable functions. The profit of agent ¢
under a given partition is

F(X) = [ ouain



The total profit of all agents is

N

Fu(X) = Fi(X,) .

1

The object of the game is to maximize the total profit, that is,

m?ax}"N(Y) (13)

over all admissible partitions subjected in E%.
The paradigm for the selection problem is as follows:

1. Maximize the function
i — 57 (1) (14)

where E;;* given by (1), on 5? NnK.

2. For a maximizer m of (I4]), evaluate the optimal subpartitions 7 re-
alizing the maximum (I3)) within PY,.

1.2 Description of main results

Obviously, if all prices v; are identical (say ¢; = 1) then the set S}ﬁ is just
the simplex S; [@)). In that case (8]) is reduced into the semi discrete Monge

problem ().
Since the semi-discrete Monge problem is a special case of the Monge

problem, a lot is known on its solvability and uniqueness. The essential
condition for solvability and uniqueness of the classical Monge problem is
the twist condition which, in the present case (and for a smooth ¢; on a
smooth manifold X) takes the form

¢i — ¢; has no critical point Vi # j . (15)
see [ [ BOA ...].

The twist condition for non-smooth ¢; an abstract topological measure
space X takes the form

p(re X ;¢i(x) —gj(x) =r)=0 (16)

for any i # j € I and for any r € R (Section [1.3] Theorem [1.3)).
The generalization for this in the case of individual price takes the form

p(r € X 59i(z) — ¢j(z) = arhi(x) — Byj(x)) =0 (17)



for any i # j € I and any «, 8 € R (Theorem [A.T], Section [4.2]). Indeed, (I7)
is reduced to (I6]) where 1 is a constant.

In the case of subpartitions we need an additional assumption to guar-
antee the unique solvability, namely

p(r € X ;¢i(z) = arhi(z)) =0 (18)

for any oo € R and any i € I. (Theorem [A.T}(ii), Section d.2)). In particular,
we need the condition

p(z e X ;¢i(r)=r)=0 (19)

for any r € R and any ¢ € I, in addition to (IG) to obtain the unique
solvability of the subpartition version of the Monge problem. (Corollary
4.2 Section [4.3]).

In contrast, (I7,[I8]) are not enough, in general, for the unique solvability
in the general case. The additional condition

p(r e X ;onp(z) — fpj(xz) =0) =0 (20)
for any o, 8 € R, a® + 32 > 0 and i # j € I, together with (7 [O¥)), are
enough to guarantee the unique solvability of the problems introduced above

(sec. [LTIHLT3).

1.3 Structure of the paper

In Section 2l we relax the notion of (sub)partition to that of a weak (sub)partition.
In Theorem 2] section 22 we prove that the weak (sub)partition and
strong (sub)partition sets are the same. In section 2.3] we characterize these
sets using a dual formalism.

Section [3] deals with optimal weak (sub)partitions. In section Bl we
set up the condition for the existence of optimal weak (sub)partitions and
prove the existence of such subpartition for the selection problem (Theorem
[B.1). In sections and [3.3 we use the dual formulation to characterize the
optimal weak sub(partition) (Theorem [3.2]).

In Section Ml we discuss strong (sub)partitions. Section [£.1] sets up the
assumption (20)) for the existence of unique strong partition for any 7 in the
boundary of the (sub)partition set Y, (Sf), in Proposition .1l In section
[4.2] we prove the main result for uniqueness of optimal strong (sub)partition-
Theorem A1l and for the optimal selection (I4]) where K is a convex set -
Theorem Finally, in section .3 we discuss the Monge selection prob-
lem in light of the above results and prove the uniqueness of an optimal
subpartition for the Monge problem under conditions (I6] [I9]), in Corollary
4.2l



1.4 Notations and conventions

i) Unless otherwise stated explicitly, any assumption cited below is valid
form its citation point to the rest of the text.

ii) I:={1...N}. R := RV,
iii) For J C I, R’ = {p— (p1,...pn) €ERN pizoifigJ}.

iv) The partial order relation 7 > ¢ (7 > ¢) on R’ means p; > ¢; (p; > ;)
for any i € J.

v) RL = {e R/ ;5> 0}.

vi) (X, B, ) is a compact Polish space B is the Borel—o algebra and p is
a Borel non-atomic measure.

—

vii) ¢ i= (1...9Nn) € O(X;RY).

viii) i := (g1, ... un) where p; are non-negative Borel measures on B(X).
ix) PR = {ﬁ; Jo idpi =mi 3 i = u}-
_ N
Z{M; Jo Yidp =m; >3 méu}
VXTI .
) S { PR A0}

xii) Sww' }

b4
v 4
2 Weak (sub)partitions

2.1 Back to Kantorovich

The Monge problem (I, 2)) is relaxed into the Kantorovich problem as follows:
maximize of the linear functional

/ c(z,y)dr(z,y) : W(p,v) = R
XxXY

where II(u,n) is the convex set of measures on X x Y whose marginals are
W, v, that is
T(AxY)=pn(4) ; 7n(X xB)=v(B)

for all measurable sets A € Bx(B € By).



Again, in the special case where Y is a discrete space Y = {y1,...yn}
and v({y;}) := m; > 0, the set II(u,v) is reduced into the set of decompo-
sitions of the measure p into n non-negative measures

N
%‘ér:{ﬁ::(ul,muzv); /Xd,uz':mi : Zmzu},
1

Indeed, 7w € T(p, v) iff 7 = 32N pidgy,y where i € Pp.
Note that the set of partitions Ppg can be embedded in P¥ by identifying
a set X; € B with the measure p restricted to X;, that is, u; := | X;, whence

le- dp = [y dpi.
In the same way we consider the set of relazed (weak) partitions corre-

sponding to 1/7 Here ([]) is generalized into

B N
A {ﬁrz (1, BN ) /Qllfidﬂz’:mi , Z”i:”} - @D
1

where, again, 1m € R!. Let also S}b (@) generalized into

spv={mer ; PavLo} . (22)
Naturally, (®]) is generalized into
N -
Epw(m) = sup {Z /X ¢i(x)dp; 5 € P%’w} (23)
# 1

and 2} (17) = —oo iff 7 & S}
In analogy to (QHIO) we also define the weak subpartition

N
P = {ﬁrz (41, pon) 5 /Qllfidﬂz’:mi ) Z”iﬁﬂ} (24)
1

and . )
Sp = {m €R'; PRV # 0} : (25)
N —_
i 1 X
=5, (1) = —oc iff i & S,



Since, as remarked above, any (sub)partition } € 77:% (7 € Efin) induces
a weak (sub)partition [ € Pﬁ’w (e E;%’w) via p; := p| X; it follows

SYCsit . svcst (26)

2.2 Properties of the partition set

Lemma 2.1. The sets S}p , §}l}’w C R! are compact and convez.

Proof. Since [m;| = | [y ¢idp| < [Willoo [y dp = [¥iloe, s0 S}** is bounded.
Compactness follows from the weak-C*compactness of the set of probability
measures on a compact set. Convexity follows directly from the defini-
tion. ]

Recalling the definition of the strong (sub)partition sets (7, [[0) we now
prove

Theorem 2.1. . .
S}z} = S}b’w and Sf = Sf’w

Proof. We have to prove the opposite inclusion of ([26) . If m € S}p’w,
consider the set of weak partitions P;%’w. By Radom-Nikodym Theorem,

any f = (p1,...un) € 77;%’“} is characterized by h = (h1,...hn) where h;
are pi-measurable functions, p1; = h;p, satisfying 0 < h; <1 on X. Moreover
we have Ziv h; =1 p-a.e on X. Now Pﬁ’w is convex and compact in the
Weka topology. By Krein-Milman Theorem there exists an exposed point of

Pﬁ’w . We show that for an exposed point, h; € {0,1} p-a.e on X, for all
1€l

Assume a set D C X on which both h; > € and h; > € for some ¢ # 1.
Since h; + h; € [0,1] it follows also that hj, h; are smaller than 1 — ¢
on D as well. Using Lyapunov partition theorem [5] we can find a subset
C C D such that [, ¢1dpr = [ 1dpr/2 and [ psdp; = [ idpi /2. Set
w = 1p—21¢c where 1 4 stands for the indicator function of a measurable set
A C X. Tt follows that w is supported on D , ||w||se,p = 1 and [y wip1dpy =
Jx widp; = 0. By assumption, hy(z) &+ ew(z) € [0,1] and h;(z) + ew(z) €
[0,1] for any x € D. Set
i = (1 + ewpt, o, . ..y py — €W, . .. u) and .
fo = (11 — ewp, o, ..., f; + ewp, ... py). Then both [y, fis are in 77;%’1”
and I = %[[1 + %[ig. This is in contradiction to the assumption that p is



an exposed point. It follows that either h; = 0 or hy = 0 p-a.e. Since ¢
is arbitrary and ) ; h; = 1 p-a.e. it follows that hy € {0,1} p-a.e, hence

h; € {0,1} for any j € I p-a.e. The proof Sf = §f’w follows identically. [

2.3 Dual representation of weak (sub)partitions

Let now, for 7 = (p1,...py) € RY

oz, p) == r?éalxpﬂ/)i(x) X xRS R (27)
g{)i_(x7ﬁ) = max(go(a;,ﬁ),O) (28)
Eo(p) := /Xﬁo(aj,ﬁ)d,u ‘RIS R . (29)

=50 = [ 6 . Pduta) (30)
Theorem 2.2. m € S}p (res. m € §}p) if and only if
a) Zo(@)—m-p>0 ; b) res. Z5(p)—m-p>0 (31)
for any p € R, Here m - p:= Zi\fpzmZ

Corollary 2.1. m is an inner point of S}l} (res. Sf} iff =0 is a strict

minimizer of (31+a) (res (31+b)).

Proof of Corollary 21t Since Zg(p) — m - p'is an homogeneous function and
Z0(0) = 0, it follows that 0 is a minimizer of (3I) for any m € S}b. If it
is a strict minimizer then Zg(p) — m - p > 0 for any 7 # 0 hence there
exists a neighborhood of 77 for which Zg(5) — m - > 0 for any 7’ in this
neighborhood, so ' € S}z} by Theorem Otherwise, there exists py # 0
for which Z¢(gy) — 7 - fo = 0. Then Zo(po) — m - o < 0 for any m’ for
which (7 — ) - po < 0. By Theorem it follows that m ¢ S}p so m is
not an inner point of S}b. The second case is proved similarly. O

The set S}p may contain inner points. As an example, consider the case
where N = 2, 91 and 15 are continuous, positive functions and there exists
pair of point z,y € X such that ¥o(z) — ¥1(z) = ¥1(y) — Pa2(y) > 0. If
x is in the support of u; and y in the support of po then S}z} contains an
interior point. Indeed, we can move a neighborhood of x from 1 to 2, and
a neighborhood of y from 2 to 1. This way we increased both my and
my to obtain (mll,m;) S S}p satisfying mll > my and ml2 > my. On the

10



other hand we can evidently increase one of them (say m;) while decreasing

my by transferrlng a mass from 2 to 1. Then we obtain (ml,mQ) € Sw

satisfying m1 > my and m2 < mgy. By convex1ty, Sw contains the triangle
whose vertices are (my,ms), (m}, msy), (M}, My ), and in particular an interior
point.

To prove Theorem we need some auxiliary lemmas:
Lemma 2.2. =y and E(J{ are convex functions on RY.

Proof. By definition, & and £ are convex function in § for any = € X.
Hence =, EF are convex as well from definition (29, B0). O

Lemma 2.3. Ifm € S}ﬁ then

Eo(p) —m-p=>0
for any p € RL. Likewise, if m € Sf then

25 (@) — - p 20
for any p € RL.

Proof. Assume m € S¥. Since S}z} = S}pTw by Theorem [2.1] then, by def-
inition, there exists f € Py such that [ « Yidp; = m;. Also, from (2I))
(1 i = p) and (@3)

N
=) = [ G = [ &l
1

while from 28)) &o(x, p) > pivi(z) so

N
Eo(p) > sz‘/xﬂlid,ui =p-m.
1

The case for Ear is proved similarly. O

In order to prove the second direction of Theorem we need the fol-
lowing definition of reqularized maximizer:

Definition 2.1. Let @ € R!. Then, for e > 0,

maze(d) := eln <Z e“’/g)

el

11



Lemma 2.4. For any € > 0 maxc(-) is a smooth convex function on RY.
In addition max., (@) > max,, (@) > max;cs(a;) for any @ € RY, 1 > 3 > 0
and

li (@) = i 2
E1\11‘% maze(ad) maxa (32)
Proof. Follows from
N
maz. (@) = mgx{—EZ@' In §; +5'5} (33)
B 1

where the maximum is taken on the simplex 0 < E , 5 -1 = 1. Note that the

maximizer is
e%i /€

0
- _— <1
BZ ZJ eaj /6
for ¢ € I. Since Ziv BilnB; < 0, the term in brackets in (33 is monotone

non-decreasing in € > 0. Finally, (82)) follows from the Jensen’s inequality
Via—zjlvﬂilnﬂiglnN. O

Definition 2.2.

£z, p) := maze (1 (), ...pnYN(x)) : X x RT - R (34)
Ec(p) == /Xie(:v,ﬁ)du ‘RIS R . (35)
Also, for each p e R! and i € I set
i (x) /€
P (g e
py (dz) = Ser equpj(x)/e/‘(dx) (36)

Likewise

(2, p) == maze (prf1(x), ... pnYn(2),0) : X x R =R (37)

25 (p) ;:/ & (x,p)dp : RT 5 R . (38)
X

and
epiti(z)/e

1+ Zj@ epPiti

pi () = o) (39)

Since max, is smooth and convex due to lemma 2.4l it follows from the
above definition via an explicit differentiation.

12



Lemma 2.5. For each € > 0, Z. (res. ZF) is a convex and C™ on RL. In
addition

OZ(p) / @ 0=L () (7.4
—— = [ Yi(x)dy; res.ﬁi:/ i(z)dp;
p: . (x)dp op; Xl/}( )dp
The proof of Theorem follows from the following Lemma

Lemma 2.6. For any €,6 > 0 and m € R’
Lo 0 0 o
§ = 2+ I - (40)
is a strictly convex function on RY. In addition
= 0 49 o oo o S o 0
Ee(p) + 5Ip1" = - 5= Zo(P) — - P+ ] (41)

so, if (31) is satisfied, then p— Z.(p) + %|ﬁ12 —m - P is a coercive function
as well. The same statement holds for =% as well.

€
Proof of Theorem [2.2
From Lemma we obtain at once the existence of a minimizer p, s € R!
of (0) for any €,0 > 0, provided (3I]) holds. Moreover, from Lemma [Z5] we
also get for that minimizer p* satisfies
0=
8p§’6

m;

€,0
4 opld — / Didp™) 4 5pe? (42)
X

By convexity of =:
VEE(ﬁ) '172 Es(ﬁ) - EE(O)
Multiply ([@2) by p*° to obtain
. 2
FOVEGEO)+ [0 —i = 0 > 2 (570) ~E (0)+8 0| g0 (43)

It follows from (B1] AT/43) that

‘ 2

hence

Hence (42) implies



€,0
By compactness of C*(X) and since Ziv ,ul(.p ) = w via (36 ) we can choose

a subsequence § — 0 along which the limits

€,0
l. (.p 7 ) = ¢
=g

holds. It follows that

N

S =u /widuizmi.
X

1

Again, the proof for m € Sf is analogous. O

3 Weak optimal (sub)partitions

3.1 Existence and characterization of weak (sub)partitions

Let K C R! be a closed set. Recall
B}l}( = UﬁlEszjﬁl . (44)

Assumption 3.1. The components of the function ¢ = (¢1,...¢on): X —
R are upper sami continuous (usc) and bounded on X .

Theorem 3.1. There exists a weak subpartition [i which mazimize the total
profit [y ¢ - dji in 2%.

The proof of Theorem BTl is almost immediate. Since v; are continuous
by standing assumption, the set Bﬁ is weakly closed. Since ¢; are u.s.c by
Assumption B the limit of a maximizing sequence is a maximizer.

3.2 Dual representation

Our next object is to characterize the set of optimal (sub)partitions. For
this we turn back to the dual formulation.
Define the function g : X X R! - R as

§p(,P) = max{d1(z) + p1yu(),..., v (@) +pNYN(2)} . (49)

Likewise

&) (2,0) = max {¢1(z) + p1v1(2),..., ¢n (@) + pnihn(2), 0} (46)

14



Set

2ol = [ Sofe.Piuta) : B! B (47)
25 (p) = /Xf(;r(a;,ﬁ)du(a;) ‘R - R (48)
and 3, (E;f*) ‘R - RU{~c0} as
=50m) = i = - ) =) — - O
=507) = inf, [Bo(7) -7l 5 55°0R) = inf [Z5() 5] (49)
for m € RY.

Recall that the essential domain of the concave function F : RI —
R U {—o0} is the set {m; F(m) > —oo}.

Lemma 3.1. E} (res. =1") is a concave function on RY. The essential
domain of = (res. E;f* ) s S}z} (res. Sf}
Proof. Comparing the definitions of =4 to that of Zy we obtain

Es(x,D) — |¢]lo < Eo(:n,ﬁ)qg Zg(x, D) + |0l forqany z € X and any
p e RL Tt follows Zo(p) — [|6]lcc < Zp(D) < Zo(P) + |||l for any p'€ R as

well. It follows that Z4(p) — p'- t is bounded from below iff Zy(p) — p’- m is
bounded from below. Note that Zo(p) — - m is bounded from below on RY
iff Z9(p) — p-m > 0 on RY. Theorem 2.2 then implies that 1 € S}p iff m is
in the essential domain of Eg- Same proof for E;'* O

3.3 From duality to optimal partition
We now investigate the sub-gradient of Z4 and E;; Recall that m € OzF iff
F(q) = F(p) = m - (7— D)

for any ¢ € R”.
Let us consider the positive simplex of measures

N

1

N
P = {ﬁ:(ﬂly---NN)a pi 2 0, ZWZN}

1
For each (i € P we consider the vector

@) = ([t [y ) €% (50)

15



Lemma 3.2. For any j € R! there exists Py CP,Py#0, (res. Pz C P,
Py #0,) such that

i) m € 052y (res. M € 8175;') iff m = ni(fi) for some ji € Py (res. ji € Py).

i) For any ji € Py (res. ji € Pg), Z¢(p) = m(ji) - P+ qu; dii (res.
=HE) = () - 7+ [y 6 ).

Proof. We present the proof for Z4. The proof for E;{ is analogous.

i) Let
£ (2, D) == maxe (P11 (z) + d1(x), ... pnYUN(x) + on(2)) : XxRI - R
(51)
Eo(P) ::/ £ (2, p)dp :RT - R . (52)
X
and
P, ' exp (pﬂlfi(w)e-l-d)i(w)) ‘
pey (dz) == S (pjwj(xquj(x))) p(de) , 1€{l...N}. (53)
1= €

As in Lemma we obtain that Ep is a smooth, convex function
and the sequence = satisfies lime o 2% = B¢ pointwise. In addition,
Lemma 2.4 also implies that this sequence is monotone decreasing.
This implies, in particular, that = — Z, in the Mosco- sense (c.f.
). In addition

85;(]5)

= i(z)d (5,13’ 54
2 = [ @it (54)

By Theorem 3.66 in [I] it follows that 0=f — 0=, in the sense of
G'—convergence, that is:

—

V(@5,{) € 024, I(PeC) €025 , P~ Fand ¢ — ¢ for e \, 0.

Since 0525 = {Vz=5} we obtain that (e 0524 iff there exists a
sequence p. — p and V5.Ep = Case— 0. By (B4

ﬁ_‘
V5 ES = i <vape>

€

16



—
where u¢’p€ = (,uf’fe, -l ’pé) Let Py be the sets of limits (in C* (X))

of all sequences
T>

,u‘f’pf, e—0 .

Since X is compact, Py is non-empty for any p € R!. In addition we
obtain m € 5=, iff there exists /i € Py for which m = mi(ji).

ii) By Lemma 24 with a; := pmﬁi + ¢; we obtain, after integration of
max,(@) over X with respect to pu:

7175

p6 :—EZ/ In N”

'+:£:y/q pef¢24‘¢z dﬂefk( )-

i€l iel
d ¢ Pe

Note that ME * < 1 from (53)). Taking the limit e — 0, p. — p we get

=50 > Zo0) = Sopi [ vids+ [ G-di (55)

el X
where _
fi € {11_13(1]#?”’6} € Py

—
and lime_,om <,u¢’p€> = m(fi) € 052¢. The limit (B5]) then takes the
form

Zole) = i) -7+ [ G-di
Again, the alternative case holds similarly.
O
Let P (res. P) be the weak (C*) closure of the union of all Py (res. Pj)
for 7 € RY:

*

3 —=C" a —C
P = UﬁGRIPﬁ , Tes. E = U;E'ERIB;J . (56)

Lemma 3.3. For any m € S (res. m € Sw) there exists [i € P (res
e 77) for which m = mi(fK). In particular, this i is a mazimizer of [y ¢-dji
in P (res. PLY) and satisfies

/5 Qi =Z5(7)  res. /g-dg:a;;*(m).
X X

17



Proof. Following the argument of Lemma 2.6], set
Lo g S
p—>:¢(ﬁ)+§’ﬂ2—m'p (57)
for some § > 0. By Lemma B1], m € S}l} iff
— d 2 > = —k 0 2
=0 (9) + Gl i 52 Z50) + 51

so P — E¢(p)+ %|]512 —m P is a convex coercive function. Hence there exists
ps € R! which minimize (57,

- . o, Lo .= o Lo
=g (Ps) + 5 |Po|* = 7t - p5 = min | Z(P) + S[p)* — - p (58)
peR! 2
and
m € 05 Z¢ + 0D5 (59)

By Lemma B.2H(i) it follows that there exists fis € Ps for which m =
m(jis) + 0ps. We now proceed as in the proof of Theorem By the
definition of 0,5:
O5Z4(P) - P> Eg(P) — Z4(0)

Multiply (59) by 75 to obtain

05 B+ Py + 01B3|* — 17t iy = 0> By () — E4(0) + 8 |psl” — 7 - s (60)
It follows from (G860) that § | 0 |2 is bounded uniformly in § > 0, so § |ps| <
CV§ for some C' > 0 independent of §. Hence (BJ) implies 05, Z4 — 1 as
6 — 0. Hence mi(iis) — mi. By compactness of C*(X) we can choose a

subsequence § — 0 along which s converges to some fi € P for which
m = m(f). O

Theorem 3.2. There exists a mazximizer of fX ¢-dji in Py and any such
mazimizer is in P. Likewise, there exists a mazimizer of | x ¢ dii in B%
and any such mazximizer is in P.

Proof. First, any p € PLY satisfies
[ Gedi<zio -5
X
for any p’ € R!. Indeed, since
¢i(z) < &(z,p) —pibi(w) i €1

18



we get

. N N
] d-di< 21:/)(5<x,mdui—§ljpi/)(widui
< [ €@m(SS du) — 5 < o) — i < i) - (61

Let now m € S}p By Lemma B3 there exists i € P such that i(f) = .
By definition (B6]) there exists a sequence p, € R! such that i = lim,_e @™
where ji" € Py, .

In particular, m, = m(@") — m. By lemma [B2}(ii) we obtain that
Eg(0n) = m(A") - pn + [x ¢ - di™. From Lemma [2+(i)

=1 (1tn) = Sg(fin) — 17im - fin = / ddi"
X

Taking the limit n — oo and the lower-semi-continuity of E; we get
=s0m) < [ Ga
X

This, with (6II), implies that [ is the maximizer. O

4 Strong (sub)partitions

4.1 Structure of the strong partition sets

Assumption 4.1. For any i € I and x € X v¢; > 0 and is positive. In
addition, for anyi # j €1

ple € X;ahi(x) + Byj(x) =0 =0
for any o, B € R, a® + B2 > 0,

Lemma 4.1. Under Assumption [{.1], Zo is differentiable at any point p':=
(p1,-..pN) for which H{Vpi # 0. In particular

0=
p) = pid 62
s (P) . 0 (62)

is continuous, where X;(p) := {z € X ; pivyi(z) = &o(x,p)} is a strong
partition.
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If, in addition, p > 0 then Eg is differentiable at P’ as well and

== [ aw (63)
Op; X (7) o

Proof. (63)) follows from (62]) by definition (compare 27) to (28]), using
the assumption ; > 0). Assumption E.1] yields the existence of a strong

partition }(ﬁ) = (X1(p),... Xn(p)) in 77:7% associated with each p
Xi(p) ={x e X ; pii(x) = &(z,p)} . (64)

where {y as defined in (27). In particular p(X;(p) N X;(p)) = 0 for i # j.
Note that &y(x, p) is differentiable a.e and

0 (x,p) { vi(z) if x € X;(p) a.e
8pi - 0 if Q Xl(ﬁ) a.e

A direct integration of the above over X yields (62)). Under Assumption
411 the sets X;(p) are continuous with 7 in the Hausdorff metric at 5 # 0,
hence it yields that the right side of (62]) is, indeed, continuous, hence =y is
differentiable at any p satisfying the assumption of the Lemma. The same
proof holds for Eg where this time

X,(p) = {x € X ; pityi(x) = & (=,9)}
is a partition. O
Proposition 4.1. Assume m > 0. Under assumption [}, if m € 85? then

i) m is an exposed point in S}Z}. That is, m is not an interior point of any
segment contained in S}p.

ii) There exists a unique partition in Py, Moreover, this partition is a
strong one.

Lemma 4.2. Under assumption [{.1], if m € Gﬁw, m > 0, then m € 85}”.
Moreover, B%’w = 77;,%.

Corollary 4.1. If 7 is supported on J C I so iy > 0 (see section[T4(iii)

and either m € 85? orm € 8§1§ then the conclusion of Proposition [{1]
hold.
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Proof. of Proposition [{.1; Using Corollary [2.1] we obtain that if m € OS}Z}
there exists p° # 0 for which Eo(p?)—m-p° = 0 < Eo(p) —m-p for any p € RY.
We claim that if 7 > 0 then p° can be chosen to satisfy the assumption of
Lemma [l In particular, we prove that either p° > 0 or p° < 0.

Assume that, say, p! > 0. Since ¢; > c on X for some ¢ > 0 by
assumption, then & (p° z) > p¢i(z) > pic on X. If pg < 0 for some
j # 1, let € > 0 for which (pg + €)Y < p1 on X. Then by definition
(@, 2) = (P + e€;,2) on X. Here € is the unit coordinate vector

pointing in the positive j direction. hence Zo(p%) = Zo(p° + €€;) so

Eo(ﬁ0+6€j)—m'(ﬁ0+6€j):Eo(ﬁo)—m'ﬁo—emj:—emj.

Since m; > 0 by assumption it follows that we get a contradiction to p° € S}l}
by Theorem

Alternatively, if p! < 0 and pg > 0 for some j # 1, then Zq(p° + €€)) =
Zo(p?) for any 0 < e < —p! so

Eo(ﬁoﬁ-eé’l)—m-(ﬁo—i—e_’l) ZEo(ﬁO)—m-ﬁo—eml <0
as well. Hence either p° > 0 or p° < 0 and, in particular, the condition of
Lemma [4.1] is satisfied.
Proof of (i):
Suppose now that 8S}p contains an interval centered at 1 > 0. In particular
there exists mq, 1y € OS}Z), m1 # Mg such that m = (my + ms)/2. Let p°
corresponding to 1 as above:

- my + ma
=) - 5 P’ =0 (65)
Since m1, Moy € S}ﬁ we get by Theorem
E(@%) —in 9" 20 5 E(@%) —iie- 5’ 20 (66)
Averaging these two inequalities we get
- my + Mg
2(p") — — >0

and, from (63]) we get that the two inequalities in (66]) are, in fact, equalities:
2@ —my - p"=0 ; E@) —mg-p’ =0

which implies that m1,1m2 € JZ0. In particular Zp is not differentiable at
p°, which is a contradiction to Lemma EIl Hence i = 1.
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Proof of (ii):
From Lemma [£1] we also get that

XP(0°) = {z € X ;pi(x) = &o(a, 7))

is a strong partition. If 7 € S¥ and 1 > 0 then, necessarily, p° > 0.
We now show that any weak partition in P;;" is the strong partition
given by }0. Indeed, if ji € P;" , then

=) = [ ol Z | &l i) > / budas =

Since Z(p?) = p° - m, it follows that

N
Zl:/x (&o(2,2°) — pibi(x)) dps(x) =0 .

Note that & (p,x) > pivi(z) for any ¢ € I and a.e z € X with strong
inequality only for x € X]Q(ﬁo), j # i, by definition of . Hence p; = h;u
where h = 0 on X — X?(p°) p-a.e. Since ZJIV hi =1 p-a.e, it follows that,
necessarily, h; is the indicator function of X?(p°). In particular, /i is a strong

partition, and is a singleton in P%’w. O

Proof. of Lemma
Following the proof of Proposition B.Il we get the existence of p° > 0 for

which Ef(p°) —m-p® =0. If ji € P¥¥ is a weak subpartition, then as in
the above proof we get

Eg(ﬁ))Z/xié(% )dp(z >Z/£o z, p°)dpi(z) > /¢2dﬂz P

In particular

| & @) Z/ & (2,7 dpis(a) -

Since 5;{ (z,p?) is positive and continuous on X and zzlv i < p it follows
that [ is, in fact, a weak partition. O
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4.2 Uniqueness of optimal strong (sub)partitions
Assumption 4.2. ¢; € C(X) for alli € I.
i) For any i,j € I and any o, € R,
plre X5 ai(z) — Byj(x) + ¢i(x) — pj(z) =0) =0 .
ii) For any i € I and any o € R,
p(reX; ¢i(z) =agi(z))=0.

Recall [@5lEG). For each € RY let
Xi(p) = A{z € X5 pii(x) + di(x) = Es (2, D)} (67)
Xi(p) = {z € X ; pivpi(z) + ¢i(x) = £ (2, 9)} (68)

By Assumption [£.2}(i) it follows that ?(ﬁ) is, indeed, a strong partition
for any p’ € R!. Likewise, Assumption E2}+(i,ii) implies that X(ﬁ) is a strong
subpartition. In particular, u(X;(p) N X;(p)) = u(X,;(P) N X;(p)) = 0 for
i # j. Moreover, (62 [63]) are generalized into

—
(=)

o= [ wdn . Ze@= [ wdu (69)
Opi x@ 0 b X0

where the right sides of (69 are continuous in p. It follows

Lemma 4.3. Under Assumption [[-9(i), =, is differentiable on RL. If, in
addition, Assumption[{.2(i1) is granted, then E;f 1s differentiable as well.

Theorem 4.1.

i) Let m be an interior point of S}Z}. Under Assumption[{.2(i) , there exists
a unique partition in Py which mazimize f X gg -dii, and this partition
1S a strong one.

ii) If m be an interior point of Sf and, in addition, Assumption [{.3(ii)
1s granted, then for there exists a unique subpartition in B%“’ which
mazimize fX ¢ - dii, and this subpartition is a strong one.

iii) If, in addition, Assumption[{.1|is granted that both (i, ii) hold for any
me Sy (mesy)
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Proof. We may assume that 17 > 0 for otherwise, if m; > 0 fori € J C I and
m; = 0 for ¢ € J, we can restrict our discussion from I to J (c.f Corollary

[4.1)).

Same argument holds if m € 9S 1}’ Hence we assume that m is an interior
point of Sff (res. Sﬁ)
(i): Recall that, for any ji € Pi",

/5'dﬁ§
X

and S}f is the essential domain of Z§. By Lemma B3] any maximizer satisfies

[1]

t(m) = inf [Z —m-
o) = inf [24(p) = - p]

the equality above E;‘)(Tﬁ) = [y é- dji.
If 7 is an interior point then (see [Z]) there exists 7 € R’ for which the
equality
Eg(p) —m - p'= EG(m)
holds. For any /i (in particular, for the maximizer) we get from the definition
of E¢

N
=)~ 5= 3 [ (€l ) pati(e) d (70)
1 X
s0, by Lemma B.3] any maximizer satisfies
N
> [ (6w~ pitita) — éx(o) ) =0 (71)
1 X

By Assumption [£.2}+(i) and (67]), the i integrand above is positive on X —
X;(p) and a.e zero on X;(p), so u; is supported on X;(p). Since

0
/ idp = 22 () = my = / idps (72)
X;(P) X

Z¢
Opi
it follows that p; = p| X;(p), that is, ji is a strong partition.

(ii) In the case ji € P%Y (Z0) turns into an inequality
N
=i -5z Y [ (6 @) — pasnta) du,
1
but 5(;: — pityi — ¢; > 0 on X by definition ({G) so
N
SR RS /X (&3 @) — piti(e) — du() ) s+ /X b-dji > =4 ()
1
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By Lemma B.3] again we have E;er(m) = E;ﬁ (p) — m - p’'so we have equality
in ([2]) and the rest of the proof as above.

(iii): It m € 65? (m € ag?) then by Proposition EI}-(ii) the set Pj"
(P¥") is composed a unique strong (sub)partition, so the Theorem follows
trivially. O

We turn now to the case of optimal selection.

Theorem 4.2. Given a closed convex set K C R!. There exists a unique
subpartition which optimize (13), and this subpartition is a strong one.

Proof. By Theorem 1] we only have to prove the uniqueness of the maxi-
mizer of E;f* on Sf N K (I4).

To show the uniqueness of this maximizer we use Corollary 18.12(ii) on
page 268 of [2]. It implies that a function E;f* is strictly convex in the

interior of its domain Sf if it is the convex dual of a differentiable convex

function. In our case —E;f* is the convex dual of Ejb' which is differentiable

by Corollary 4.3l Hence, if the a maximizer m of E;* in the convex set
KN Sf is an interior point of Sf, then it is unique by its strong concavity.
If, on the other hand, m € ag}" N K is a maximizer and m > 0 then
Proposition T}(i) implies that 71 is an exposed point of Sf. This implies
that, again, this maximizer is unique. If the components of 1 are not all

positive then we reduce the problem to the subset J C I which support the
maximizer m and apply Corollary LTl O

4.3 Back to Monge

It is interesting to compare Assumption [4.2}+(i) with the twist condition (I5]).
Recall that the Monge problem corresponds to the case where all ¢; are
equal, say ¥; = 1 for any ¢ € I. In that case Assumption [£.2}(i) takes the
form
p(zeX; ¢i(x)—¢j(x)=r)=0 (73)

for any i # j and r € R. This seems to be a weaker version of (I5]). Theorem
[41}(i) yields the uniqueness of of optimal partition for any 7 in the interior
of the set S}b. Embarrassingly, S}p is the simplex S; (@), and does not
contain any interior point! Part (iii) of Theorem [41] is of no help either,
since Assumption 1] is never satisfied in that case.....

On the other hand, if we add Assumption 4.2}(ii) which, in the above
case, takes the form

plzeX; ¢i(x)=r)= (74)



for any ¢ € I and any r € R, then Theorem [.T}(ii) yields

Corollary 4.2. Under conditions (73, [74) there is a unique, strong subpar-
tition for the Monge partition problem for any m € SY :=

{T?LGRI; 0<m,;, Zmi<1} .
el

However, it turns out that condition (73]) alone is also sufficient for the
uniqueness of strong partition in the Monge case:

Theorem 4.3. Suppose 1 = ... = Yy = 1 and the components ofqg are
continuous on X. If (73) is satisfied then there is a unique optimal partition
for any m € St (3), and this unique partition is a strong one.

Proof. In the case under consideration, (48] [64)) takes the form

61(x7m = max{qbl(:n) + D1y 7¢N($) +pN} )

=1(p) = /X & (x, Pdu(z) ‘RI 5 R,

Note that =4 is additively invariant under shift

—

El(ﬁ—FOéf) ::1(]5')4—@ WS RI, aeR.

So, E1(p) — m - p'is invariant under such shift for any m € S;. Thus, we
may set to zero the first coordinate p; of 7 and obtain for Z{(ps,...py) =

51(07p2,---pN)
N
2 (p2, .- pN) — > mipi = Ea(p) — - .
2

Now, (73] implies that 2 € C'(RV~1!) and the range of VZ! is the whole
N — 1 simplex Zév m; < 1. Thus for any point m € S; for which my > 0,
we get (mg,...my) as an interior point in the range of VZ{. This yields
the proof of uniqueness as in Theorem [L.T}(i). O
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