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Abstract. We investigate the convergence of a forward-backward-forward proximal-type
algorithm with inertial and memory effects when minimizing the sum of a nonsmooth
function with a smooth one in the absence of convexity. The convergence is obtained
provided an appropriate regularization of the objective satisfies the Kurdyka- Lojasiewicz
inequality, which is for instance fulfilled for semi-algebraic functions.
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1 Introduction

In this work we deal with optimization problems of the form

(P ) inf
x∈Rm

[f(x) + h(x)],

where f : Rm → (−∞,+∞] is a proper and lower semicontinuous function and h : Rm → R

is a Fréchet differentiable function with Lipschitz continuous gradient.
In the full convex setting, namely when f and h are convex functions, a plenty of

proximal-type splitting numerical schemes for solving (P ) is available. We mention here the
forward-backward algorithm (see for example [8]), the forward-backward-forward algorithm
[30, 31] and also the very popular FISTA [9], which is an accelerated version of forward-
backward algorithm under the use of step sizes considered in the sense of Nesterov.

Splitting algorithms share in this contex the property that the functions f and h are
evaluated in the iterative scheme separately. More precisely, a forward step means an
evaluation of the smooth part through the gradient, while a backward step is nothing
else than evaluating the nonsmooth counterpart via its proximal operator. The above
mentioned algorithms have been applied when solving different real-life problems arising,
for instance, in areas like image processing, multifacility location, average consensus in
network coloring, support vector machines classification, clustering, etc. To the majority
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of these splitting methods inertial and memory effects have been induced, giving rise to
so-called inertial proximal point algorithms. These iterative schemes have their origins in
the time discretization of some differential inclusions of second order type (see [1, 3]) and
share the feature that the new iterate is defined by using the previous two iterates. The
increasing interest in this class of algorithms is emphasized by a considerable number of
papers written in the last fifteen years on this topic, see [1–3,7, 13,15,17,22,23,25,28].

The generalization of the convergence of proximal-type algorithms to the nonconvex
setting is a challenging ongoing research topic. By assuming that the functions in the
objective share some analytic features and by making consequently use of a generalization
to the nonsmooth setting of the Kurdyka- Lojasiewicz property known for smooth functions,
the proximal-point algorithm for minimizing a proper and lower semicontinuous function
and the forward-backward scheme for solving problems of the form (P ) have proved to
possess good convergence properties also in the nonconvex case, see [4–6, 12, 18, 19]. This
particular class of functions, called KL functions, include semi-algebraic functions, real sub-
analytic functions, semi-convex functions, uniformly convex functions, etc. (see also [11,20,
21]). The interest of having convergence properties in the nonconvex setting is motivated
among others by applications in connection to sparse nonnegative matrix factorization,
hard constrained feasibility, compressive sensing, etc. In what regards the latter, they give
rise to the solving of optimization problems of the form

min
x∈Rm

{

λ‖x‖0 +
1

2
‖Ax− b‖2

}

,

where λ > 0, ‖ · ‖0 is the counting norm, A is an n×m real matrix and b ∈ R
n. Due to the

fact that the counting norm is a semi-algebraic function, algorithms for solving nonsmooth
optimization problems involving KL functions represent a serious option in this sense.
Let us mention that an inertial version of the forward-backward algorithm for solving the
optimization problem (P ) has been proposed in [27], by assuming that a regularization of
the objective function is a KL function and that the nonsmooth function f is convex.

In this paper we investigate the convergence properties of the forward-backward-forward
algorithm for solving (P ) in the full nonconvex setting. For the backward step we use a
generalization of the proximal operator, not only by considering it to be, as it is natural in
the nonconvex setting, a set-valued mapping, but also by replacing in its standard formu-
lation the squared-norm by the Bregman distance of a strongly convex and differentiable
function with Lipschitz-continuous gradient. In the iterative scheme we also make use of
an inertial term which assumes employing in the definition of a new iterate the previous
two iterates. The techniques for proving the convergence of the numerical scheme use the
same three main ingredients, as other algorithms for nonconvex optimization problems
involving KL functions. More precisely, we show a sufficient decrease property for the
iterates, the existence of a subgradient lower bound for the iterates gap and, finally, we use
some analytic features of the objective function in order to obtain convergence, see [6,12].
The limiting (Mordukhovich) subdifferential and its properties play an important role in
the analysis. The main result of this paper shows that, along some mild assumptions,
provided an appropriate regularization of the objective satisfies the Kurdyka- Lojasiewicz
property, the convergence of the forward-backward-forward algorithm is guaranteed. As
a particular instance, we also treat the case when the objective function is semi-algebraic
and present the convergence properties of the algorithm. This makes it suitable fo solv-
ing nonsmooth optimization problems involving semi-algebraic functions which occurr in
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real-life applications, as mentioned above.

2 Preliminaries

Let us recall some notions and results which are needed in the following, see for example
[29]. Let N = {0, 1, 2, ...} be the set of nonnegative integers. For m ≥ 1, the Euclidean
scalar product and the induced norm on R

m are denoted by 〈·, ·〉 and ‖ · ‖, respectively.
Notice that all the finite-dimensional spaces considered in the manuscript are endowed
with the topology induced by the Euclidean norm.

The domain of the function f : Rm → (−∞,+∞] is defined by dom f = {x ∈ R
m :

f(x) < +∞}. We say that f is proper if dom f 6= ∅. Further we recall some generalized
subdifferential notions and the basic properties which are needed in the paper, see [24,29].
Let f : Rm → (−∞,+∞] be a proper and lower semicontinuous function. If x ∈ dom f ,
we consider the Fréchet (viscosity) subdifferential of f at x as the set

∂̂f(x) =

{

v ∈ R
m : lim inf

y→x

f(y) − f(x) − 〈v, y − x〉
‖y − x‖ ≥ 0

}

.

For x /∈ dom f we set ∂̂f(x) := ∅. The limiting (Mordukhovich) subdifferential is defined
at x ∈ dom f by

∂f(x) = {v ∈ R
m : ∃xn → x, f(xn) → f(x) and ∃vn ∈ ∂̂f(xn), vn → v as n → +∞},

while for x /∈ dom f , one takes ∂f(x) := ∅.
Notice that in case f is convex, these notions coincide with the convex subdifferential,

which means that ∂̂f(x) = ∂f(x) = {v ∈ R
m : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ R

m} for all
x ∈ dom f .

Notice the inclusion ∂̂f(x) ⊆ ∂f(x) for each x ∈ R
m. We will use the following

closedness criteria concerning the graph of the limiting subdifferential: if (xn)n∈N and
(vn)n∈N are sequences in R

m such that vn ∈ ∂f(xn) for all n ∈ N, (xn, vn) → (x, v) and
f(xn) → f(x) as n → +∞, then v ∈ ∂f(x).

The Fermat rule reads in this nonsmooth setting as: if x ∈ R
m is a local minimizer of

f , then 0 ∈ ∂f(x). Notice that in case f is continuously differentiable at x ∈ R
m we have

∂f(x) = {∇f(x)}. Let us denote by

crit(f) = {x ∈ R
m : 0 ∈ ∂f(x)}

the set of (limiting)-critical points of f . Let us mention also the following subdifferential
rule: if f : Rm → (−∞,+∞] is proper and lower semicontinuous and h : Rm → R is a
continuously differentiable function, then ∂(f + h)(x) = ∂f(x) + ∇h(x) for all x ∈ R

m.
We turn now our attention to functions satisfying the Kurdyka- Lojasiewicz property.

This class of functions will play a crucial role in the convergence results of the proposed
algorithm. For η ∈ (0,+∞], we denote by Θη the class of concave and continuous func-
tions ϕ : [0, η) → [0,+∞) such that ϕ(0) = 0, ϕ is continuously differentiable on (0, η),
continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η). In the following definition (see [5, 12]) we
use also the distance function to a set, defined for A ⊆ R

m as dist(x,A) = infy∈A ‖x − y‖
for all x ∈ R

m.
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Definition 1 (Kurdyka- Lojasiewicz property) Let f : Rm → (−∞,+∞] be a proper and
lower semicontinuous function. We say that f satisfies the Kurdyka- Lojasiewicz (KL)
property at x ∈ dom ∂f = {x ∈ R

m : ∂f(x) 6= ∅} if there exists η ∈ (0,+∞], a neighborhood
U of x and a function ϕ ∈ Θη such that for all x in the intersection

U ∩ {x ∈ R
m : f(x) < f(x) < f(x) + η}

the following inequality holds

ϕ′(f(x) − f(x)) dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point in dom∂f , then f is called a KL function.

The origins of this notion go back to the pioneering work of  Lojasiewicz [21], where it
is proved that for a real-analytic function f : Rm → R and a critical point x ∈ R

m (that is
∇f(x) = 0), there exists θ ∈ [1/2, 1) such that the function |f − f(x)|‖∇f‖−1 is bounded
around x. This corresponds to the situation when ϕ(s) = s1−θ. The result of  Lojasiewicz
allows the interpretation of the KL property as a reparameterization of the function values
in order to avoid flatness around the critical points. Kurdyka [20] extended this property
to differentiable functions definable in an o-minimal structure. Further extensions to the
nonsmooth setting can be found in [5, 10,11].

One of the remarkable properties of the KL functions is their ubiquitous in applications,
according to [12]. To the class of KL functions belong semi-algebraic, real sub-analytic,
semiconvex, uniformly convex and convex functions satisfying a growth condition. We
refer the reader to [4–6,10–12] and the references theirin for more details regarding all the
classes mentioned above and illustrating examples.

An important role in our convergence analysis will be played by the following uni-
formized KL property given in [12, Lemma 6].

Lemma 1 Let Ω ⊆ R
m be a compact set and let f : Rm → (−∞,+∞] be a proper and

lower semicontinuous function. Assume that f is constant on Ω and f satisfies the KL
property at each point of Ω. Then there exist ε, η > 0 and ϕ ∈ Θη such that for all x ∈ Ω
and for all x in the intersection

{x ∈ R
m : dist(x,Ω) < ε} ∩ {x ∈ R

m : f(x) < f(x) < f(x) + η} (1)

the following inequality holds

ϕ′(f(x) − f(x)) dist(0, ∂f(x)) ≥ 1. (2)

We close this section by presenting two convergence results which will play a determined
role in the proof of the results we provide in the next section. The first one was often used
in the literature in context of Fejér monotonicity techniques for proving convergence results
of classical algorithms for convex optimization problems or more generally for monotone
inclusion problems (see [8]). The second one is probably also known, however we include
some details of its proof for the sake of completeness.

Lemma 2 Let (an)n∈N and (bn)n∈N be real sequences such that bn ≥ 0 for all n ∈ N,
(an)n∈N is bounded below and an+1 + bn ≤ an for all n ∈ N. Then (an)n∈N is a monotically
decreasing and convergent sequence and

∑

n∈N bn < +∞.
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Lemma 3 Let (ξn)n∈N and (εn)n∈N be sequences in [0,+∞) such that
∑

n∈N εn < +∞
and ξn+1 ≤ aξn + bξn−1 + εn for all n ≥ 1, where a ∈ R, b ≥ 0 and a + b < 1. Then
∑

n∈N ξn < +∞.

Proof. Fix k ≥ 1 a positive integer. Summing up the inequality from the hypotheses for
n = 1, ..., k, we obtain

∑k
n=0

ξn+ξk+1−ξ0−ξ1 ≤ a
∑k

n=0
ξn+b

∑k
n=0

ξn−aξ0−bξk+
∑k

n=1
εn.

Since ξn ≥ 0 for all n ∈ N and b ≥ 0, we get (1−a− b)
∑k

n=0
ξn ≤ (1−a)ξ0 + ξ1 +

∑k
n=1

εn
and the conclusion follows. �

3 An inertial forward-backward-forward algorithm

We investigate in this section the convergence properties of the inertial Tseng’s type al-
gorithm for solving nonsmooth and nonconvex optimization problems. We consider the
following setting.

Problem 1. Let m ≥ 1 by a positive integer, f : Rm → (−∞,+∞] be a proper, lower
semicontinuous function which is bounded from below and h : Rm → R a Fréchet differen-
tiable function such that ∇h is L∇h-Lipschitz continuous with L∇h ≥ 0. We aim to solve
the optimization problem

(P ) inf
x∈Rm

[f(x) + h(x)] (3)

by approximating the set of critical points of the objective function through a sequence
generated via a forward-backward-forward algorithm of inertial-type.

More precisely, we propose the following iterative scheme.

Algorithm 1. Chose x0, x1 ∈ R
m, λ, λ > 0, α ≥ 0 and the sequences (λn)n≥1, (αn)n≥1

fulfilling
0 ≤ αn ≤ α ∀n ≥ 1

and
0 < λ ≤ λn ≤ λ ∀n ≥ 1.

Consider the iterative scheme

(∀n ≥ 1)

{

pn ∈ argminx∈Rm

[

f(x) + 1

λn
Du(x, xn) + 〈x,∇h(xn)〉 + αn

λn
〈x, xn−1 − xn〉

]

xn+1 = pn + λn[∇h(xn) −∇h(pn)].
(4)

Here,
Du : Rm × R

m → R, Du(x, y) = u(x) − u(y) − 〈∇u(y), x− y〉 ,
denotes the Bregman distance of a function u : Rm → R assumed to be σ-strongly convex
with parameter σ > 0 (that is u− σ

2
‖ · ‖2 is a convex function), differentiable and such that

∇u is L∇u-Lipschitz continuous with L∇u > 0.
Notice that the properties of the function u guarantees the following inequality (see for

example [8])

σ

2
‖x− y‖2 ≤ Du(x, y) ≤ L∇u

2
‖x− y‖2 ∀(x, y) ∈ R

m × R
m. (5)

Further, since f is proper, lower semicontinuous and bounded from below and Du is
coercive in its first argument (that is lim‖x‖→+∞Du(x, y) = +∞ for all y ∈ R

m), the
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iterative scheme is well-defined, meaning that the existence of pn is guaranteed for each
n ≥ 1, since the objective function in the minimization problem to be solved at each
iteration is coercive.

Before we proceed with the convergence analysis, we discuss the relation of our scheme
to other algorithms from the literature. Let us take first u(x) = 1

2
‖x‖2 for all x ∈ R

m. In
this case Du(x, y) = 1

2
‖x − y‖2 for all (x, y) ∈ R

m × R
m and σ = L∇u = 1. The iterative

scheme becomes

(∀n ≥ 1)

{

pn ∈ argminx∈Rm

[

f(x) + 1

2λn
‖x− xn + λn∇h(xn) − αn(xn − xn−1)‖2

]

xn+1 = pn + λn[∇h(xn) −∇h(pn)].
(6)

The convergence of this inertial Tseng’s type algorithm has been analyzed in [13] in the
full convex setting, which means that f and h are convex functions, in which case pn is
uniquely determined and can be expressed via the proximal operator of f (let us notice that
in contrast to [13], we do not impose here (αn)n≥1 to be nondecreasing). Let us mention
that inertial-type algorithms in the nonconvex setting have been proposed in [27], where the
inertial forward-backward algorithm from [25] has been extended from the convex setting
to KL functions, hoewever, by imposing convexity for f .

If we take, in addition, on the one hand, α = 0, which enforces αn = 0 for all n ≥ 1,
then (6) becomes

(∀n ≥ 1)

{

pn ∈ argminx∈Rm

[

f(x) + 1

2λn
‖x− xn + λn∇h(xn)‖2

]

xn+1 = pn + λn[∇h(xn) −∇h(pn)],
(7)

which is an extension to the nonconvex setting of the classical Tseng’s type algorithm [31].
The convergence of (7) has been considered in [16, 31] in the full convex setting. Let us
also mention that a forward-backward algorithm with variable metric for KL functions has
been recently introduced and investigated in [19].

On the other hand, if we take h(x) = 0 for all x ∈ R
m, the iterative scheme in (6)

becomes

(∀n ≥ 1) xn+1 ∈ argmin
x∈Rm

[

f(x) +
1

2λn
‖x− xn − αn(xn − xn−1)‖2

]

, (8)

which is a proximal point algorithm with inertial and memory effects formulated in the
nonconvex setting designed for finding the critical points of f . The iterative scheme without
the inertial term, that is when α = 0 and, so, αn = 0 for all n ≥ 1, has been considered in
the context of KL functions in [4].

We proceed now with the convergence analysis of our algorithm. The following descent
lemma (see for example [26, Lemma 1.2.3]) will be useful in the sequel.

Lemma 4 Let h : Rm → R be a Fréchet differentiable function with L∇h-Lipschitz con-
tinuous gradient. Then we have

h(y) ≤ h(x) + 〈∇h(x), y − x〉 +
L∇h

2
‖y − x‖2 ∀(x, y) ∈ R

m × R
m.

Lemma 5 In the setting of Problem 1, consider the sequences generated by Algorithm 1.
Then for every ν, µ > 0 the following inequality holds

(f + h)(pn) + M1‖xn − pn‖2 ≤ (f + h)(pn−1) + M2‖xn−1 − pn−1‖2 ∀n ≥ 2, (9)
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where
M1 :=

σ

2λ
− L∇h − ν − α

λ
µ (10)

and

M2 := λ
2
L2
∇h

(

L2
∇h

2ν
+ ν + L∇h +

L∇u

2λ

)

+
α

λ

(

µλ
2
L2
∇h +

(1 + λL∇h)2

2µ

)

. (11)

Proof. Let us chose ν, µ > 0 arbitrary and fix n ≥ 2. The rule given in (4) yields the
inequality

f(pn) +
1

λn
Du(pn, xn) + 〈pn,∇h(xn)〉 +

αn

λn
〈pn, xn−1 − xn〉

≤ f(pn−1) +
1

λn
Du(pn−1, xn) + 〈pn−1,∇h(xn)〉 +

αn

λn
〈pn−1, xn−1 − xn〉 ,

which combined with (5) and

h(pn) ≤ h(pn−1) + 〈∇h(pn−1), pn − pn−1〉 +
L∇h

2
‖pn − pn−1‖2

gives

(f + h)(pn) +
σ

2λn
‖pn − xn‖2 ≤ (f + h)(pn−1) +

L∇u

2λn
‖xn − pn−1‖2 +

L∇h

2
‖pn − pn−1‖2

+ 〈∇h(pn−1) −∇h(xn), pn − pn−1〉
+

αn

λn
〈pn − pn−1, xn − xn−1〉 . (12)

According to (4) we have

‖xn − pn−1‖ = λn−1‖h(xn−1) − h(pn−1)‖ ≤ λn−1L∇h‖xn−1 − pn−1‖ (13)

and, from here,
‖xn − xn−1‖ ≤ (1 + λn−1L∇h)‖xn−1 − pn−1‖ (14)

and
‖pn − pn−1‖2 ≤ 2(‖xn − pn‖2 + λ2

n−1L
2
∇h‖xn−1 − pn−1‖2). (15)

Moreover, we have

〈∇h(pn−1) −∇h(xn), pn − pn−1〉 ≤
ν

2
‖pn − pn−1‖2 +

L2
∇h

2ν
‖xn − pn−1‖2 (16)

and

〈pn − pn−1, xn − xn−1〉 ≤
µ

2
‖pn − pn−1‖2 +

1

2µ
‖xn − xn−1‖2. (17)

From (12)-(17) we obtain after rearranging the terms that

(f + h)(pn) + M1,n‖xn − pn‖2 ≤ (f + h)(pn−1) + M2,n‖xn−1 − pn−1‖2, (18)

where
M1,n =

σ

2λn
− L∇h − ν − αn

λn
µ

7



and

M2,n = λ2
n−1L

2
∇h

(

L2
∇h

2ν
+ ν + L∇h +

L∇u

2λn

)

+
αn

λn

(

µλ2
n−1L

2
∇h +

(1 + λn−1L∇h)2

2µ

)

.

Finally, by using the bounds given for the sequences of real numbers involved, we easily
derive that M1,n ≥ M1 and M2,n ≤ M2 and the conclusion follows from (18). �

Lemma 6 In the setting of Problem 1, consider arbitrary ν, µ > 0 and chose λ > 0 and
α ≥ 0 such that

2λ(L∇h + ν) + λ2L2
∇h

(

λ
L2
∇h

ν
+ L∇u + 2λ(L∇h + ν)

)

+2α

(

µ + µλ2L2
∇h +

(1 + λL∇h)2

2µ

)

< σ. (19)

Then there exists λ > λ such that the constants introduced in Lemma 5 fulfill M1 > M2.

Proof. Relation (19) can be equivalently written as

2λ

[

L∇h + ν +
α

λ
µ + λ2L2

∇h

(

L2
∇h

2ν
+

L∇u

2λ
+ ν + L∇h

)

+
α

λ

(

µλ2L2
∇h +

(1 + λL∇h)2

2µ

)]

< σ.

Thus there exists ρ > 0 such that

2(λ + ρ)

[

L∇h + ν +
α

λ
µ + (λ + ρ)2L2

∇h

(

L2
∇h

2ν
+ ν + L∇h +

L∇u

2λ

)

+
α

λ

(

µ(λ + ρ)2L2
∇h +

(1 + (λ + ρ)L∇h)2

2µ

)]

< σ. (20)

We define λ := λ+ ρ and from the above inequality the relation M1 > M2 follows straight-
forwardly. �

We give now a decrease property which will be useful in the following.

Lemma 7 In the setting of Problem 1, suppose that f + h is bounded from below and
consider the sequences generated by Algorithm 1, where ν, µ, λ, λ and α are chosen as in
Lemma 6. Then the following statements are true:

(i)
∑

n≥1
‖xn − pn‖2 < +∞ and

∑

n∈N ‖xn+1 − xn‖2 < +∞;

(ii) the sequence
(

(f + h)(pn) +M2‖xn − pn‖2
)

n≥1
is monotically decreasing and conver-

gent;

(iii) the sequence ((f + h)(pn))n≥1 is convergent.

Proof. From Lemma 5 we deduce that for every n ≥ 2

(f+h)(pn)+M2‖xn−pn‖2+(M1−M2)‖xn−pn‖2 ≤ (f+h)(pn−1)+M2‖xn−1−pn−1‖2. (21)

The conclusion follows from Lemma 6, Lemma 2 and relation (14). �
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The following lemma provides an estimate for some elements in the limiting subdiffer-
ential.

Lemma 8 In the setting of Problem 1, consider the sequences generated by Algorithm 1.
Then we have for every n ≥ 2:

sn ∈ ∂(f + h)(pn), (22)

where

sn =
1

λn

(

∇u(xn) −∇u(pn)
)

+ ∇h(pn) −∇h(xn) +
αn

λn
(pn−1 − xn−1)

+
αnλn−1

λn

(

∇h(xn−1) −∇h(pn−1)
)

.

Moreover,

‖sn‖ ≤
(

L∇u

λn
+ L∇h

)

‖xn − pn‖ +
αn

λn
(1 + λn−1L∇h)‖xn−1 − pn−1‖ ∀n ≥ 2. (23)

Proof. Take n ≥ 2. By using the formula for the subdifferential of the sum, from (4) it
follows that

0 ∈ ∂f(pn) +
1

λn

(

∇u(pn) −∇u(xn)
)

+ ∇h(xn) +
αn

λn
(xn−1 − xn),

hence

0 ∈ ∂(f + h)(pn) +
1

λn

(

∇u(pn) −∇u(xn)
)

+ ∇h(xn) −∇h(pn) +
αn

λn
(xn−1 − xn).

Relation (22) follows from the above identity, by using also that

xn−1 − xn = xn−1 − pn−1 − (xn − pn−1) = xn−1 − pn−1 − λn−1

(

∇h(xn−1) −∇h(pn−1)
)

.

The inequality (23) follows from the definition of the sequence (sn)n≥2. �

In the following we use the notation ω((pn)n≥1) for the set of cluster points of the
sequence (pn)n≥1. Next we will give some properties of this set (see [12]).

Lemma 9 In the setting of Problem 1, suppose that the function f + h is coercive (that is
lim‖x‖→+∞(f + h)(x) = +∞) and consider the sequences generated in Algorithm 1, where

ν, µ, λ, λ and α are chosen as in Lemma 6. Then the following statements are true:

(i) ∅ 6= ω((pn)n≥1) ⊆ crit(f + h);

(ii) limn→+∞ dist(pn, ω((pn)n≥1)) = 0;

(iii) ω((pn)n≥1) is a nonempty, compact and connected set;

(iv) f + h is finite and constant on ω((pn)n≥1).
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Proof. Since f + h is a proper, lower semicontinuous and coercive function, it follows
that infx∈Rm [f(x) + h(x)] is finite and the infimum is attained (see [29]). Hence f + h is
bounded from below.

(i) According to Lemma 7(ii), we have

(f + h)(pn) ≤ (f + h)(pn) + M2‖xn − pn‖2 ≤ (f + h)(p1) + M2‖x1 − p1‖2 ∀n ≥ 1.

Since the function f + h is coercive, its lower level sets are bounded and we conclude that
(pn)n≥1 is bounded, hence ω((pn)n≥1) 6= ∅.

Take an arbitrary p∗ ∈ ω((pn)n≥1). There exists a subsequence (pnk
)k∈N such that

pnk
→ p∗ as k → +∞. We show in the following that limk→+∞ f(pnk

) = f(p∗). Notice that
the lower semicontinuity of the function f ensures lim infk→+∞ f(pnk

) ≥ f(p∗). Moreover,
from (4) we have that for every n ≥ 1

f(pn) +
1

λn
Du(pn, xn) + 〈pn,∇h(xn)〉 +

αn

λn
〈pn, xn−1 − xn〉

≤f(p∗) +
1

λn
Du(p∗, xn) + 〈p∗,∇h(xn)〉 +

αn

λn
〈p∗, xn−1 − xn〉 .

By using Lemma 7(i), (5) and by taking into consideration the bounds of the sequences
involved, it follows lim supk→+∞ f(pnk

) ≤ f(p∗), hence limk→+∞ f(pnk
) = f(p∗).

Further, using Lemma 8, we have snk
∈ ∂(f + h)(pnk

) for all k ≥ 2. Further, by using
(23) and Lemma 7(i), from pnk

→ p∗ it follows that snk
→ 0 as k → +∞. Since we

additionally have that limk→+∞(f + h)(pnk
) = (f + h)(p∗), the closedness of the graph of

the limiting subdifferential operator guarantees that 0 ∈ ∂(f +h)(p∗), thus p∗ ∈ crit(f +h).
The proof of (ii) and (iii) can be done in the lines of [12, Lemma 5], by also taking

into consideration [12, Remark 5], where it is noticed that the properties (ii) and (iii) are
generic for sequences satisfying pn+1 − pn → 0 as n → +∞.

(iv) By Lemma 7(iii), ((f +h)(pn))n≥1 is a convergent sequence. Let us denote by l ∈ R

its limit. Take an arbitrary p∗ ∈ ω((pn)n≥1). There exists a subsequence (pnk
)k∈N such

that pnk
→ p∗ as k → +∞. As shown at item (i), one has that limk→+∞(f + h)(pnk

) =
(f + h)(p∗). On the other hand, limk→+∞(f + h)(pnk

) = l, hence (f + h)(p∗) = l. Thus
the restriction of f + h to ω((pn)n≥1) equals l. �

The following result characterizes the set of cluster points of the sequence (pn, xn)n≥1.

Lemma 10 In the setting of Problem 1, suppose that the function f+h is coercive, consider
the sequences generated in Algorithm 1, where ν, µ, λ, λ and α are chosen as in Lemma 6,
and the constants M1 and M2 as in Lemma 5. We introduce the function H : Rm×R

m → R

defined by
H(x, y) = (f + h)(x) + M2‖x− y‖2 ∀(x, y) ∈ R

m × R
m. (24)

Then the following statements are true:

(i) ∅ 6= ω((pn, xn)n≥1) ⊆ crit(H) = {(x, x) ∈ R
m × R

m : x ∈ crit(f + h)};

(ii) limn→+∞ dist((pn, xn), ω((pn, xn)n≥1)) = 0;

(iii) ω((pn, xn)n≥1) is a nonempty, compact and connected set;

(iv) H is finite and constant on ω((pn, xn)n≥1).
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Proof. The proof is similar to the one of Lemma 9 by noticing that for every n ≥ 2 (see
(21))

H(pn, xn) + (M1 −M2)‖xn − pn‖2 ≤ H(pn−1, xn−1) (25)

and
(sn + 2M2(pn − xn), 2M2(xn − pn)) ∈ ∂H(pn, xn), (26)

where (sn)n≥2 is the sequence introduced in Lemma 8. Relation (26) follows from

∂H(x, y) =
(

∂(f + h)(x) + 2M2(x− y)
)

× {2M2(y − x)} ∀(x, y) ∈ R
m × R

m.

�

We are now in position to prove the convergence of the Tseng’s type algorithm provided
that H is a KL function.

Theorem 11 In the setting of Problem 1, suppose that the function f + h is coercive,
consider the sequences generated in Algorithm 1, where ν, µ, λ, λ and α are chosen as in
Lemma 6, and the constants M1 and M2 as in Lemma 5. We assume that

H : Rm × R
m → R, H(x, y) = (f + h)(x) + M2‖x− y‖2 ∀(x, y) ∈ R

m × R
m,

is a KL function. Then the following statements are true:

(i)
∑

n≥1
‖xn − pn‖ < +∞ and

∑

n∈N ‖xn+1 − xn‖ < +∞;

(ii) there exists x ∈ crit(f + h) such that limn→+∞ xn = limn→+∞ pn = x.

Proof. (i) According to Lemma 10 (i) we can consider an element p∗ ∈ crit(f + h) such
that (p∗, p∗) ∈ ω((pn, xn)n≥1). In analogy to the proof of Lemma 9 one can easily show
that limn→+∞H(pn, xn) = H(p∗, p∗). We consider two cases.

I. There exists n ∈ N such that H(pn, xn) = H(p∗, p∗). The decrease property in (25)
implies H(pn, xn) = H(p∗, p∗) for every n ≥ n. One can show inductively that the sequence
(pn, xn)n≥n is constant and the conclusion follows.

II. For all n ≥ 1 we have H(pn, xn) > H(p∗, p∗). Take Ω := ω((pn, xn)n≥1). Since H
is a KL function, from Lemma 10(iii)-(iv) and Lemma 1, there exist ε, η > 0 and ϕ ∈ Θη

such that for all (x, y) in the intersection

{(x, y) ∈ R
m × R

m : dist((x, y),Ω) < ε}
∩{(x, y) ∈ R

m × R
m : H(p∗, p∗) < H(x, y) < H(p∗, p∗) + η} (27)

the following inequality holds

ϕ′(H(x, y) −H(p∗, p∗)) dist((0, 0), ∂H(x, y)) ≥ 1. (28)

Let be n1 ≥ 1 such that H(pn, xn) < H(p∗, p∗) + η for every n ≥ n1. Moreover, from
Lemma 10(ii), there exists n2 ∈ N such that dist((pn, xn),Ω) < ε for every n ≥ n2. Thus
the sequence (pn, xn)n≥N belongs to the intersection in (27), where N = max{n1, n2}.
From (28), we have

ϕ′(H(pn, xn) −H(p∗, p∗)) dist((0, 0), ∂H(pn, xn)) ≥ 1 ∀n ≥ N. (29)

11



Further, since ϕ is a concave function, we get for every n ≥ 1 the following inequality:

ϕ
(

H(pn, xn) −H(p∗, p∗)
)

− ϕ
(

H(pn+1, xn+1) −H(p∗, p∗)
)

≥

ϕ′
(

H(pn, xn) −H(p∗, p∗)
)

·
(

H(pn, xn) −H(pn+1, xn+1)
)

. (30)

Moreover, from (29) and (26) we have

ϕ′
(

H(pn, xn) −H(p∗, p∗)
)

≥ 1

‖(sn + 2M2(pn − xn), 2M2(xn − pn))‖ ∀n ≥ N. (31)

By using for every n ≥ 1 the notation

∆n,n+1 := ϕ
(

H(pn, xn) −H(p∗, p∗)
)

− ϕ
(

H(pn+1, xn+1) −H(p∗, p∗)
)

,

from (30), (31) and (25) we deduce

∆n,n+1 ≥ (M1 −M2) · ‖xn+1 − pn+1‖2
√

‖sn + 2M2(pn − xn)‖2 + 4M2
2
‖xn − pn‖2

∀n ≥ N. (32)

From here we obtain

‖xn+1 − pn+1‖ ≤ δ

2

√

‖sn + 2M2(pn − xn)‖2 + 4M2
2
‖xn − pn‖2 +

∆n,n+1

2δ(M1 −M2)
∀n ≥ N,

(33)
where δ > 0 is chosen such that the following inequality holds:

δ
√

2

2





√

(

L∇u

λ
+ L∇h + 2M2

)2

+ 4M2
2

+
α

λ

(

1 + λL∇h

)



 < 1. (34)

Moreover, we have for every n ≥ 1 (see (23))
√

‖sn + 2M2(pn − xn)‖2 + 4M2
2
‖xn − pn‖2

≤

√

√

√

√

[

2

(

L∇u

λn
+ L∇h + 2M2

)2

+ 4M2
2

]

‖xn − pn‖2 + 2
α2
n

λ2
n

(

1 + λn−1L∇h

)2

‖xn−1 − pn−1‖2

≤

√

√

√

√

[

2

(

L∇u

λn
+ L∇h + 2M2

)2

+ 4M2
2

]

‖xn − pn‖ +
√

2
αn

λn

(

1 + λn−1L∇h

)

‖xn−1 − pn−1‖

≤

√

√

√

√

[

2

(

L∇u

λ
+ L∇h + 2M2

)2

+ 4M2
2

]

‖xn − pn‖ +
√

2
α

λ

(

1 + λL∇h

)

‖xn−1 − pn−1‖.

We derive from (33) that

‖xn+1 − pn+1‖ ≤ a‖xn − pn‖ + b‖xn−1 − pn−1‖ +
∆n,n+1

2δ(M1 −M2)
∀n ≥ N, (35)

where

a :=
δ
√

2

2





√

(

L∇u

λ
+ L∇h + 2M2

)2

+ 4M2
2



 and b :=
δ
√

2

2

α

λ

(

1 + λL∇h

)

.
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Notice that due to (34) we have a + b < 1. Now, for a fixed k ≥ 1 we have (since ϕ takes
only non-negative values)

k
∑

n=1

∆n,n+1 = ϕ
(

H(p1, x1) −H(p∗, p∗)
)

− ϕ
(

H(pk+1, xk+1) −H(p∗, p∗)
)

≤ ϕ
(

H(p1, x1) −H(p∗, p∗)
)

,

hence
∑

n≥1

∆n,n+1

2δ(M1 −M2)
< +∞.

From (35) and Lemma 3 we conclude that
∑

n≥1
‖xn − pn‖ < +∞. Further, from (14) we

obtain
∑

n∈N ‖xn+1 − xn‖ < +∞.
(ii) It follows from (i) that (xn)n∈N is a Cauchy sequence, hence it is convergent. Since

xn − pn → 0 (as n → +∞), the conclusion follows from Lemma 10(i). �

Remark 12 A similar condition to the one imposed in the previous theorem on the func-
tion H has been used in [27], for an appropriate choice of the parameter M2, in order to
prove the convergence of an inertial forward-backward algorithm for solving the problem
(3) in case f is a convex function.

The following corollary is a direct consequence of Theorem 11.

Corollary 13 In the setting of Problem 1, suppose that the function f +h is coercive and
semi-algebraic, consider the sequences generated in Algorithm 1, where ν, µ, λ, λ and α are
chosen as in Lemma 6. Then the following statements are true:

(i)
∑

n≥1
‖xn − pn‖ < +∞ and

∑

n∈N ‖xn+1 − xn‖ < +∞;

(ii) there exists x ∈ crit(f + h) such that limn→+∞ xn = limn→+∞ pn = x.

Proof. The function (x, y) 7→ M2‖x− y‖2 is semi-algebraic, where M2 is considered as in
Lemma 5. Since the class of semi-algebraic functions is stable under finite sums (see [12]),
it follows that H : Rm ×R

m → R, H(x, y) = (f + h)(x) +M2‖x− y‖2 is semi-algebraic as
well. The conclusion follows from Theorem 11. �
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