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Abstract We consider the dynamic optimization of large-population system with partial information.

The associated mean-field game is formulated and its consistency condition is equivalent to the wellposed-

ness of some Riccati equation system. The limiting state average is represented by a mean-field stochastic

differential equation driven by the common Brownian motion. The decentralized strategies with partial

information are obtained and the approximate Nash equilibrium is verified.
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1 Introduction

The starting point of our work is the large-population (LP) systems which are strongly grounded in

various fields. One efficient methodology to study LP system, is the mean-field game which enables us

to obtain the decentralized optimal control. The interested readers may refer the pioneering work [1] for

the motivation and methodology of mean-field games. Based on [1], considerable research attention has

been drawn along this research line. Some recent literature include [2–4] for linear-quadratic-Gaussian

(LQG) mean-field games of large-population system, [5] for large population systems with major and
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minor players. In addition, the stochastic control problems with a mean-field term in dynamics and (or)

cost functional can be found in [6–8] etc.

This paper focuses on the dynamic optimization of large-population system in its linear-quadratic (LQ)

case by taking into account the partial information structure. One systematic introduction of stochastic

LQ control can be found in [9] and the references therein. An extensive review of LQ control with partial

information is provided in [10] and other related works include [11,12] etc. The backward or recursive LQ

control with partial information can be found in [13]. Herein, we turn to study the partial information

structures of linear large-population systems. Here, the individual agents can only access the filtration

generated by one observable component of underlying Brownian motion. The unobservable Brownian

motion component may be interpreted as the effect of a passive version of major player of [5], or be

framed into a partial observation problem (see [10]). We remark that a class of mean-field LQG games

with noisy observations is also addressed in [14] but defined on an infinite-time horizon so the algebra

Riccati equations are involved there. Moreover, the limiting state-average in [14] is deterministic as there

is no common noise. The random limiting state-average in our problem makes our analysis different to

that in [14].

The rest of this paper is organized as follows. Section 2 introduces the mean-field LQG games with par-

tial filtration structure. Section 2 also discusses the related filtering equation and consistency conditions.

Section 3 is devoted to the asymptotic analysis of the related ϵ-Nash equilibrium. Section 4 concludes our

work.

2 Mean-Field Games with Partial Filtration

Let (Ω,F , P ) be a complete probability space on which a standard (1+N)-dimensional Brownian motion

{W (t),Wi(t), 1 ≤ i ≤ N}0≤t≤T is defined. The information structure of large-population system is as

follows. We denote by {Fwi
t }0≤t≤T the filtration generated by the componentWi; {Fw

t }0≤t≤T the filtration

generated by the componentW . Here, {Fwi
t }0≤t≤T stands for the individual information owning by the ith

agent; {Fw
t }0≤t≤T the common information taking effects on all agents. F i

t := σ(Fwi
t ∪Fw

t ) represents the

full information of ith agent, Ft := σ(∪N
i=1F i

t ) denotes the complete information of system. For simplicity,

we set F = FT . In decentralized setup, it is infeasible for the ith agent to access the information of other

agents, i.e., {Fwj

t }0≤t≤T for j ̸= i. This is reasonable due to the asymmetric information (for example,

the individual firm’s own operation information will not be released to the public or its peer firms).

{Fw
t }0≤t≤T can represent the information of some macro process imposing on all agents (firms) due to

the common external economic factors.
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We consider a large-population system with N individual agents {Ai}1≤i≤N . The state xi for Ai

satisfies the following controlled linear stochastic system:
dxi(t) =[A(t)xi(t) +B(t)ui(t) + αx(N)(t) +m(t)]dt+ σ(t)dWi(t) + σ̃(t)dW (t),

xi(0) =x
(1)

where x(N)(t) = 1
N

∑N
i=1 xi(t) is the state-average, α ∈ R denotes the coupling constant which maybe

positive or negative. In (1), Wi denotes the individual random noise whileW denotes the common random

noise. Other work discussing the large-population system with common noise W includes [15]. Thus, the

admissible control ui ∈ Ui where the admissible control set Ui is defined by

Ui := {ui(·)|ui(·) ∈ L2
Fwi

t
(0, T ;R)}, 1 ≤ i ≤ N.

Denote u−i = (u1, · · · , ui−1, ui+1, · · ·uN ) the strategies of all agents except Ai. The cost functional

of Ai is

Ji(ui(·), u−i(·)) = E

[∫ T

0

(
Q(t)(xi(t)− x(N)(t))2 +R(t)u2

i (t)
)
dt+Gx2

i (T )

]
. (2)

Moreover, we have the following assumption:

(H)
A(·), B(·),m(·), σ(·), σ̃(·), Q(·), R(·) ∈ L∞(0, T ;R),

α ∈ R, Q(·) ≥ 0, R(·) > 0, G ≥ 0.

Here, L∞(0, T ;R) denotes the space of uniformly bounded functions. Now, we formulate the large popu-

lation LQG games with partial filtration (PF).

Problem (PF). Find a control strategies set ū = (ū1, ū2, · · · , ūN ) which satisfies

Ji(ūi(·), ū−i(·)) = inf
ui(·)∈Ui

Ji(ui(·), ū−i(·))

where ū−i represents (ū1, · · · , ūi−1, ūi+1, · · · , ūN ).

To study (PF), one efficient protocol is the mean-field LQG games which bridges the “centralized”

LQG problems via the limiting state-average, as the number of agents tends to infinity. Due to partial

filtration structure, it is natural to set the following feedback control on filters

ui(t) = −a(t)E(xi(t)|Fwi
t ) +

N∑
j=1,j ̸=i

ã(t)E(xj(t)|Fwi
t ) + b(t) (3)
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where the coefficients a(·), ã(·) and b(·) are deterministic functions and ã(·) = O( 1
N ). Inserting (3) into

state equation (1), we get the following realized state dynamics

dxi(t) =[A(t)xi(t)−B(t)a(t)E(xi(t)|Fwi
t ) +B(t)ã(t)

N∑
j=1,j ̸=i

E(xj(t)|Fwi
t ) +B(t)b(t)

+ αx(N)(t) +m(t)]dt+ σ(t)dWi(t) + σ̃(t)dW (t), 1 ≤ i ≤ N.

(4)

Take summation of the above N equations and divide by N ,

d
( 1

N

N∑
i=1

xi(t)
)
=
[
A(t)

1

N

N∑
i=1

xi(t)−B(t)a(t)
1

N

N∑
i=1

E(xi(t)|Fwi
t ) +B(t)b(t) + αx(N)(t) +m(t)

+B(t)ã(t)
1

N

N∑
i=1

N∑
j=1,j ̸=i

E(xj(t)|Fwi
t )

]
dt+ σ(t)

1

N

N∑
i=1

dWi(t) + σ̃(t)dW (t).

Letting N → ∞, we obtain the following limiting process which is a mean-field stochastic differential

equation (SDE): 
dx0(t) = [(A(t) + α)x0(t)− α̃(t)Ex0(t) + b̃(t)]dt+ σ̃(t)dW (t),

x0(0) = x
(5)

where the functions α̃(·), b̃(·) are to be determined. Now, we introduce an auxiliary state:
dxi(t) = [A(t)xi(t) +B(t)ui(t) + αx0(t) +m(t)]dt+ σ(t)dWi(t) + σ̃(t)dW (t),

xi(0) = x
(6)

with the auxiliary cost functional

Ji(ui(·)) = E

[∫ T

0

(
Q(t)(xi(t)− x0(t))

2 +R(t)u2
i (t)

)
dt+Gx2

i (T )

]
(7)

where x0(·) is given by (5). Note that (6) and (7) are obtained from (1) and (2) with x(N)(·) replaced by

x0(·). Thus, we formulate the following limiting partial filtration (LPF) LQG game.

Problem (LPF). For the ith agent, i = 1, 2, · · · , N, find ūi(·) ∈ Ui satisfying

Ji(ūi(·)) = inf
ui(·)∈Ui

Ji(ui(·)).

Then ūi(·) is called an optimal control for Problem (LPF).
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Remark 2.1 The state of (LPF) in (6) differs from the state of (PF) in (1). Specifically, the latter is

affected by the state-average x(N). Here, we still write them in the same notation to ease the presentation.

Applying the variational method, we have the following result to the optimal control of (LPF).

Theorem 2.1 Let (H) hold. Suppose there exists an optimal control ūi(·) of Problem (LPF) and x̄i(·)

is the corresponding optimal state, then there exists an adjoint process pi(·) ∈ L2
Fi

t
(0, T ;R) satisfying the

following backward stochastic differential equation (BSDE) for some β(·) and β̃(·):
dpi(t) =[−A(t)pi(t)−Q(t)(x̄i(t)− x0(t))]dt+ β(t)dWi(t) + β̃(t)dW (t),

pi(T ) =Gx̄i(T ), i = 1, 2, · · · , N
(8)

such that

ūi(t) = −R−1(t)B(t)E(pi(t)|Fwi
t )

where the conditional expectation is defined in its optional projection version.

Consequently, we get the following Hamiltonian system for Ai:

dx0(t) =[(A(t) + α)x0(t)− α̃(t)Ex0(t) + b̃(t)]dt+ σ̃(t)dW (t),

dx̄i(t) =[A(t)x̄i(t)−B2(t)R−1(t)E(pi(t)|Fwi
t ) + αx0(t) +m(t)]dt

+ σ(t)dWi(t) + σ̃(t)dW (t),

dpi(t) =[−A(t)pi(t)−Q(t)(x̄i(t)− x0(t))]dt+ β(t)dWi(t) + β̃(t)dW (t),

x0(0) =x̄i(0) = x, pi(T ) = Gx̄i(T ), i = 1, 2, · · · , N.

(9)

After obtaining α̃(·), b̃(·) in Theorem 2.2 (see below), by the monotonic conditions of forward-backward

stochastic differential equation (FBSDE) (see [16]), it is easy to see that (9) admits a unique solution

(x0(·), x̄i(·), pi(·)) ∈ L2
Fw

t
(0, T ;R) × L2

Fi
t
(0, T ;R) × L2

Fi
t
(0, T ;R). Note that in system (9), the forward

optimal state x̄i(·) depends on the backward adjoint process pi(·) through its filtering state E(pi(t)|Fwi
t ).

In this sense, (9) becomes a filtered FBSDE system and its decoupling should be proceeded through some

FBSDE that involves the filtering state only. To this end, we introduce the following filter notations

ˆ̄xi(t) = E[x̄i(t)|Fwi
t ], p̂i(t) = E[pi(t)|Fwi

t ]
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where the conditional expectations to the partial filtration Fwi
t should be understood in the version of

optional projection. Then we reach a FBSDE system involving the state filters only:

dˆ̄xi(t) =[A(t)ˆ̄xi(t)−B2(t)R−1(t)p̂i(t) + αEx0(t) +m(t)]dt+ σ(t)dWi(t),

ˆ̄xi(0) =x,

dp̂i(t) =[−A(t)p̂i(t)−Q(t)(ˆ̄xi(t)− Ex0(t))]dt+ β(t)dWi(t),

p̂i(T ) =Gˆ̄xi(T ), i = 1, 2, · · · , N.

(10)

Note that system (10) is driven by Wi only so it becomes observable to agent Ai. It can be viewed a

filtering system of (9) that is unobservable as driven by Wi and W both. Taking expectation on (5),
dEx0(t) =[(A(t) + α− α̃(t))Ex0(t) + b̃(t)]dt,

Ex0(0) =x
(11)

where α̃(·), b̃(·) are functions to be determined. One key step in mean-field game is to analyze the related

consistency condition (which is also called Nash certainty equivalence (NCE) principle, see [14], [3], etc).

Remark 2.2 To intuitively explain the consistency condition, we give some remarks.

(1) Unlike most literature on mean-field games, there is no fixed-point argument involved here (e.g.,

some contraction mapping based on the datum of our problem) to characterize the consistency condition.

Instead, our consistency condition is transformed into the wellposedness of Riccati equation system (12)

(see below). Actually, (P̂ (·), Φ(·)) depend on (α̃(·), b̃(·)), thus (17) (see below) can be rewritten by
α̃ = T1(α̃) := B2R−1(P + P̂ (α̃)),

b̃ = T2(b̃) := −B2R−1Φ(α̃, b̃) +m.

In this sense, (12) can be understood as the consistency condition of (LPF).

(2) The advantages of handling the consistency condition of (α̃(·), b̃(·)) are as follows. The consistency

condition imposed on (α̃(·), b̃(·)) is equivalent to the wellposedness of Riccati equation (12) (see below)

which can be ensured in an arbitrary time interval. On the other hand, as addressed in [17], the fixed-point

analysis on x will preferably lead to the consistency condition only on a small time interval.

Now we first state the following result.
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Theorem 2.2 Suppose (H) hold true and the following Riccati equation system


Π̇(t) + (2A(t) + α)Π(t)−B2(t)R−1(t)Π2(t) = 0,

Φ̇(t) + [A(t)−B2(t)R−1(t)Π(t)]Φ(t) +m(t)Π(t) = 0,

Π(T ) = G, Φ(T ) = 0

(12)

admits unique solution (Π(·), Φ(·)), then (α̃(·), b̃(·)) can be uniquely determined by
α̃(t) = B2(t)R−1(t)Π(t),

b̃(t) = −B2(t)R−1(t)Φ(t) +m(t).
(13)

Proof By the terminal condition of (9) or (10), we suppose

p̂i(t) = P (t)ˆ̄xi(t) + P̂ (t)Ex0(t) + Φ(t) (14)

for some P (·), P̂ (·) ∈ L∞(0, T ;R) and Φ(t) ∈ L∞(0, T ;R) with terminal conditions

P (T ) = G, P̂ (T ) = Φ(T ) = 0.

Applying Itô’s formula to (14) and noting (9), we have

dp̂i(t) =
(
Ṗ (t) + P (t)A(t)−B2(t)R−1(t)P 2(t)

)
ˆ̄xi(t)dt

+
(
˙̂
P (t) + P̂ (t)(A(t) + α− α̃(t))− P (t)B2(t)R−1(t)P̂ (t) + αP (t)

)
Ex0(t)dt

+
(
Φ̇(t)− P (t)B2(t)R−1(t)Φ(t) + P (t)m(t) + P̂ (t)b̃(t)

)
dt+ P (t)σ(t)dWi(t)

=
[
(−Q(t)−A(t)P (t)) ˆ̄xi(t) + (Q(t)−A(t)P̂ (t))Ex0(t)−A(t)Φ(t)

]
dt+ β(t)dWi(t).

Comparing coefficients, we obtain

Ṗ (t) + P (t)A(t)−B2(t)R−1(t)P 2(t) = −Q(t)−A(t)P (t),

˙̂
P (t) + P̂ (t)(A(t) + α− α̃(t))− P (t)B2(t)R−1(t)P̂ (t) + αP (t) = Q(t)−A(t)P̂ (t),

Φ̇(t)− P (t)B2(t)R−1(t)Φ(t) + P (t)m(t) + P̂ (t)b̃(t) = −A(t)Φ(t),

β(t) = P (t)σ(t).

(15)
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Note that the above Riccati equations are parameterized by the undetermined functions (α̃(t), b̃(t)) which

are to be specified below. To this end, note that the optimal state x̄i(t) can be represented by

dx̄i(t) =[A(t)x̄i(t)−B2(t)R−1(t)(P (t)ˆ̄xi(t) + P̂ (t)Ex0(t) + Φ(t)) + αx0(t) +m(t)]dt

+ σ(t)dWi(t) + σ̃(t)dW (t).

Therefore the state-average satisfies:

dx̄(N)(t) =
[
A(t)x̄(N)(t)−B2(t)R−1(t)(P (t)

1

N

N∑
i=1

E(x̄i(t)|Fwi
t ) + P̂ (t)

· Ex0(t) + Φ(t)) + αx0(t) +m(t)
]
dt+ σ(t)

1

N

N∑
i=1

dWi(t) + σ̃(t)dW (t).

Let N → +∞, the limiting process x0 is given by

dx0(t) =
[
(A(t) + α)x0(t)−B2(t)R−1(t)(P (t) + P̂ (t))Ex0(t)

−B2(t)R−1(t)Φ(t) +m(t)
]
dt+ σ̃(t)dW (t).

(16)

Comparing the coefficients with (9), we have
α̃(t) = B2(t)R−1(t)(P (t) + P̂ (t)),

b̃(t) = −B2(t)R−1(t)Φ(t) +m(t).
(17)

Thus we rewrite (15) as

Ṗ (t) + 2A(t)P (t)−B2(t)R−1(t)P 2(t) +Q(t) = 0,

˙̂
P (t) + P̂ (t)[2A(t) + α−B2(t)R−1(t)(P (t) + P̂ (t))−B2(t)R−1(t)P (t)] + αP (t)−Q(t) = 0,

Φ̇(t) + [A(t)− (P (t) + P̂ (t))B2(t)R−1(t)]Φ(t) + (P (t) + P̂ (t))m(t) = 0,

P (T ) = G, P̂ (T ) = Φ(T ) = 0.

Letting Π(t) = P (t) + P̂ (t), we get
Π̇(t) + (2A(t) + α)Π(t)−B2(t)R−1(t)Π2(t) = 0,

Π(T ) = G.
(18)

This completes the proof. �
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Moreover, the filtering system (10) can be decoupled as

dˆ̄xi(t) =
[(

A(t)−B2(t)R−1(t)P (t)
)
ˆ̄xi(t) +

(
α−B2(t)R−1(t)(Π(t)− P (t))

)
Ex0(t)

−B2(t)R−1(t)Φ(t) +m(t)
]
dt+ σ(t)dWi(t),

p̂i(t) = P (t)ˆ̄xi(t) + (Π(t)− P (t))Ex0(t) + Φ(t),

ˆ̄xi(0) = xi(0), p̂i(T ) = Gˆ̄xi(T ).

(19)

Taking average of all and sending N → +∞, we regenerate
dEx0(t) =

[(
A(t) + α−B2(t)R−1(t)Π(t)

)
Ex0(t)−B2(t)R−1(t)Φ(t) +m(t)

]
dt,

Ex0(0) = x.

(20)

Remark 2.3 To conclude this section, we give some remarks concerning Theorem 2.2.

(1) By [8], [9], it follows P (·) is determined uniquely as a nonnegative constant. One sufficient condition

for the existence and uniqueness of Π(·) can be found in [18] hence the solvability of P̂ (·) follows directly

by noting Π(t) = P (t) + P̂ (t). In addition, the solvability of Φ(·) follows from that of Π(·).

(2) As referred in Remark 2.2, in [17] the fixed-point analysis on x preferably leads to the consistency

condition defined only on a small time interval. This finding also corresponds to the standard result in

forward-backward SDE theory: as discussed in [19], the usual contraction mapping on forward-backward

system will always lead to its existence and uniqueness in a very small time interval.

3 ϵ-Nash Equilibrium for Problem (PF)

Now we show that (ū1, ū2, · · · , ūN ) satisfies the ϵ-Nash equilibrium for (PF).

Definition 3.1 A set of controls uk(·) ∈ Uk, 1 ≤ k ≤ N, for N agents is called an ϵ-Nash equilibrium

with respect to the costs Jk, 1 ≤ k ≤ N, iff there exists ϵ ≥ 0 such that for any fixed 1 ≤ i ≤ N , we have

Ji(ui, u−i) ≤ Ji(u
′
i, u−i) + ϵ (21)

when any alternative control u′
i(·) ∈ Ui is applied by Ai.

Theorem 3.1 Let (H) hold and (12) admit a solution (Π,Φ), then (ū1, ū2, · · · , ūN ) satisfies the ϵ-Nash

equilibrium of Problem (PF). Here, for 1 ≤ i ≤ N, ūi is given by

ūi(t) = −R−1(t)B(t)
[
P (t)ˆ̄xi(t) + (Π(t)− P (t))Ex0(t) + Φ(t)

]
(22)
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where ˆ̄xi and Ex0 satisfy (19) and (20) respectively.

As preliminaries of proving the theorem, several lemmas are presented to produce some estimates on the

state and cost difference between Problem (PF) and (LPF) and the proofs are available upon request.

Recall that

dx̄i(t) =
[
A(t)x̄i(t)−B2(t)R−1(t)

(
P (t)ˆ̄xi(t) + P̂ (t)Ex0(t) + Φ(t)

)
+ αx0(t) +m(t)

]
dt

+ σ(t)dWi(t) + σ̃(t)dW (t),

dˆ̄xi(t) =
[(

A(t)−B2(t)R−1(t)P (t)
)
ˆ̄xi(t) +

(
α−B2(t)R−1(t)P̂ (t)

)
Ex0(t)

−B2(t)R−1(t)Φ(t) +m(t)
]
dt+ σ(t)dWi(t),

x̄i(0) =ˆ̄xi(t) = xi(0),

(23)

and denote

x̄(N)(t) =
1

N

N∑
i=1

x̄i(t), ˆ̄x(N)(t) =
1

N

N∑
i=1

ˆ̄xi(t).

Here, x̄(N)(t) denotes the average of state (in (LPF)) while ˆ̄x(N) denotes the average of filtered states.

Note that ˆ̄xi(t) is driven by Wi only thus it is observable to the individual agent Ai. It enters the state

dynamics (23) as an input process when applying the optimal strategy. Some estimates are as follows.

Lemma 3.1

sup
0≤t≤T

E
∣∣∣ˆ̄x(N)(t)− Ex0(t)

∣∣∣2 = O
( 1

N

)
,

sup
0≤t≤T

E
∣∣∣x̄(N)(t)− x0(t)

∣∣∣2 = O
( 1

N

)
.

Denote yi, 1 ≤ i ≤ N, the state of Ai to the control ūi, 1 ≤ i ≤ N in Problem (PF), namely,
dyi(t) =

[
A(t)yi(t)−B2(t)R−1(t)

(
P (t)ˆ̄xi(t) + P̂ (t)Ex0(t) + Φ(t)

)
+ αy(N)(t) +m(t)

]
dt+ σ(t)dWi(t) + σ̃(t)dW (t),

yi(0) =xi(0)

where y(N)(t) = 1
N

∑N
j=1 yj(t). By the difference of states related to ūi in (PF) and (LPF), we have the

following estimates:
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Lemma 3.2

sup
0≤t≤T

E
∣∣∣y(N)(t)− x0(t)

∣∣∣2 = O
( 1

N

)
,

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣yi(t)− x̄i(t)

∣∣∣2] = O
( 1

N

)
,

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣|yi(t)|2 − |x̄i(t)|2

∣∣∣] = O
( 1√

N

)
.

This lemma can be proved by applying the same method in Lemma 3.1 and Cauchy-Schwarz inequality.

As to the difference of cost functionals, it holds

Lemma 3.3 For ∀ 1 ≤ i ≤ N,

∣∣∣Ji(ūi, ū−i)− Ji(ūi)
∣∣∣ = O

( 1√
N

)
.

After addressing the above estimates of states and costs corresponding to control ūi, 1 ≤ i ≤ N , given

by (22), our goal is to prove that the control strategies set (ū1, · · · , ūN ) is an ϵ-Nash equilibrium for

Problem (PF). For any fixed i, 1 ≤ i ≤ N , consider an admissible control ui ∈ Ui for Ai and denote zi

the corresponding state process in Problem (PF), that is
dzi(t) =

[
A(t)zi(t) +B(t)ui(t) + αz(N)(t) +m(t)

]
dt+ σ(t)dWi(t) + σ̃(t)dW (t),

zi(0) =xi(0)

(24)

whereas other agents keep the control ūj , 1 ≤ j ≤ N, j ̸= i, i.e.,
dzj(t) =

[
A(t)zj(t)−B2(t)R−1(t)

(
P (t)ˆ̄xj(t) + P̂ (t)Ex0(t) + Φ(t)

)
+ αz(N)(t) +m(t)

]
dt+ σ(t)dWj(t) + σ̃(t)dW (t),

zj(0) =xj(0)

(25)

where z(N)(t) = 1
N

∑N
j=1 zj(t) and ˆ̄xj(t) is given by (23). If ūi, 1 ≤ i ≤ N is an ϵ-Nash equilibrium with

respect to cost Ji, it holds that

Ji(ūi, ū−i) ≥ inf
ui∈Ui

Ji(ui, ū−i) ≥ Ji(ūi, ū−i)− ϵ.

Then, when making the perturbation, we just need to consider ui ∈ Ui such that Ji(ui, ū−i) ≤ Ji(ūi, ū−i),

which implies

E
∫ T

0

R(t)u2
i (t)dt ≤ Ji(ui, ū−i) ≤ Ji(ūi, ū−i) = Ji(ūi) +O

( 1√
N

)
.
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In the limiting cost functional, by the optimality of (x̄i, ūi), we get that (x̄i, ūi) is L
2-bounded. Then we

obtain the boundedness of Ji(ūi), i.e.,

E
∫ T

0

R(t)u2
i (t)dt ≤ C0

where C0 is a positive constant, independent of N . Thus we have

Proposition 3.1 For any fixed i, 1 ≤ i ≤ N , sup
0≤t≤T

E|zi(t)|2 is bounded.

Correspondingly, the state process x̄0
i for agent Ai under control ui in Problem (LPF) satisfies


dx̄0

i (t) =
[
A(t)x̄0

i (t) +B(t)ui(t) + αx0(t) +m(t)
]
dt+ σ(t)dWi(t) + σ̃(t)dW (t),

x̄0
i (0) =xi(0)

and for agent Aj , j ̸= i,
dx̄j(t) =

[
A(t)x̄j(t)−B2(t)R−1(t)

(
P (t)ˆ̄xj(t) + P̂ (t)Ex0(t) + Φ(t)

)
+ αx0(t) +m(t)

]
dt+ σ(t)dWj(t) + σ̃(t)dW (t),

x̄j(0) =xj(0)

where ˆ̄xj and x0 are given in (19).

In order to give necessary estimates of perturbed states and costs in Problem (PF) and (LPF), we

introduce some intermediate states and present some of their properties. Denote

z(N−1)(t) =
1

N − 1

N∑
j=1,j ̸=i

zj(t), ˆ̄x(N−1)(t) =
1

N − 1

N∑
j=1,j ̸=i

ˆ̄xj(t).

Then by (25), we have

dz(N−1)(t) =
[
(A(t) +

N − 1

N
α)z(N−1)(t)−B2(t)R−1(t)

(
P (t)ˆ̄x(N−1)(t) + P̂ (t)Ex0(t)

+ Φ(t)
)
+

α

N
zi(t) +m(t)

]
dt+

1

N − 1

N∑
j=1,j ̸=i

σ(t)dWj(t) + σ̃(t)dW (t),

z(N−1)(0) =x(N−1)(0)
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where x(N−1)(0) = 1
N−1

∑N
j=1,j ̸=i xj(0). Besides, we introduce


dži(t) =

[
A(t)ži(t) +B(t)ui(t) +

N − 1

N
αž(N−1)(t) +m(t)

]
dt

+ σ(t)dWi(t) + σ̃(t)dW (t),

ži(0) =xi(0)

and for j ̸= i, 
džj(t) =

[
A(t)žj(t)−B2(t)R−1(t)

(
P (t)ˆ̄xj(t) + P̂ (t)Ex0(t) + Φ(t)

)
+

N − 1

N
αž(N−1)(t) +m(t)

]
dt+ σ(t)dWj(t) + σ̃(t)dW (t),

žj(0) =xj(0)

where ž(N−1)(t) = 1
N−1

∑N
j=1,j ̸=i žj(t).

We have the following estimates on these states.

Proposition 3.2

sup
0≤t≤T

E
∣∣∣ˆ̄x(N−1)(t)− Ex0(t)

∣∣∣2 = O
( 1

N

)
,

sup
0≤t≤T

E
∣∣∣z(N)(t)− z(N−1)(t)

∣∣∣2 = O
( 1

N

)
,

sup
0≤t≤T

E
∣∣∣ž(N−1)(t)− z(N−1)(t)

∣∣∣2 = O
( 1

N2

)
,

sup
0≤t≤T

E
∣∣∣ž(N−1)(t)− x0(t)

∣∣∣2 = O
( 1

N

)
,

sup
0≤t≤T

E
∣∣∣zi(t)− ži(t)

∣∣∣2 = O
( 1

N2

)
,

sup
0≤t≤T

E
∣∣∣ži(t)− x̄0

i (t)
∣∣∣2 = O

( 1

N

)
.

Further, more direct estimates about states and costs of Problem (PF) and (LPF) under perturbed

controls can be obtained, which enable us to prove Theorem 3.1.
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Lemma 3.4

sup
0≤t≤T

E
∣∣∣zi(t)− x̄0

i (t)
∣∣∣2 = O

( 1

N

)
,

sup
0≤t≤T

E
∣∣∣z(N)(t)− x0(t)

∣∣∣2 = O
( 1

N

)
,

sup
0≤t≤T

E
∣∣∣|zi(t)|2 − |x̄0

i (t)|2
∣∣∣ = O

( 1√
N

)
,∣∣∣Ji(ui, ū−i)− Ji(ui)

∣∣∣ = O
( 1√

N

)
.

It is worth pointing out that we mainly apply Gronwall’s inequality, theory of SDE and the fact

E

∣∣∣∣∣
∫ t

0

1

N
σ(s)

N∑
i=1

dWi(s)

∣∣∣∣∣
2

= O
( 1

N

)
to obtain the proofs of Lemma 3.1, Proposition 3.1 and 3.2. As to the proofs of Lemma 3.3 and 3.4, the

similar technique as Lemma 3.2 and theory of SDE are used to derive them. However, due to the paper

length, the corresponding proofs of these lemmas and propositions are omitted. In the following, we are

going to state the proof of the main theorem in this paper.

Proof of Theorem 3.1: Consider the ϵ-Nash equilibrium for Ai. Combining Lemma 3.3 and 3.4, we have

Ji(ūi, ū−i) = Ji(ūi) +O
( 1√

N

)
≤ Ji(ui) +O

( 1√
N

)
= Ji(ui, ū−i) +O

( 1√
N

)
.

Thus, Theorem 3.1 follows by taking ϵ = O
(

1√
N

)
. �

4 Conclusions

Here, we focus on a class of linear-quadratic-Gaussian game of large-population system with partial

information. The decentralized strategies and ϵ-Nash equilibrium property are derived by investigating

the associated mean-field game. The future works include backward and forward-backward optimization

problems of large-population system with full or partial information.
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