
J Optim Theory Appl
DOI 10.1007/s10957-015-0796-7

Second-Order Minimization Method for Nonsmooth
Functions Allowing Convex Quadratic Approximations
of the Augment

M. E. Abbasov1

Received: 25 October 2014 / Accepted: 10 August 2015
© Springer Science+Business Media New York 2015

Abstract Second-order methods play an important role in the theory of optimiza-
tion. Due to the usage of more information about considered function, they give an
opportunity to find the stationary point faster than first-order methods. Well-known
and sufficiently studied Newton’s method is widely used to optimize smooth func-
tions. The aim of this work is to obtain a second-order method for unconstrained
minimization of nonsmooth functions allowing convex quadratic approximation of
the augment. This method is based on the notion of coexhausters—new objects in
nonsmooth analysis, introduced by V. F. Demyanov. First, we describe and prove the
second-order necessary condition for a minimum. Then, we build an algorithm based
on that condition and prove its convergence. At the end of the paper, a numerical
example illustrating implementation of the algorithm is given.
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1 Introduction

To study the local behavior of the function, the main part of the augment of a simple
nature is always allocated. Thus, in a smooth case it is a linear or quadratic function,
which is defined by means of the gradient and Hessian. Researchers use this approach
for constructing optimization algorithms. Newton method can be mentioned as a rep-

B M. E. Abbasov
abbasov.majid@gmail.com; m.abbasov@spbu.ru

1 Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU,
7/9 Universitetskaya nab., St. Petersburg 199034, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-015-0796-7&domain=pdf
http://orcid.org/0000-0003-1484-4733


J Optim Theory Appl

resentative of second-order methods. There have been several attempts to generalize
the algorithm [1–3].

Various specific tools are employed in nonsmooth analysis to consider differ-
ent classes of functions. For example, one can use exhausters to study an arbitrary
directionally differentiable function. The concept of exhausters arose from works of
Pshenichny [4], Rubinov [5,6] and Demyanov [7,8]. Exhausters are families of con-
vex compact sets by means of which the main part of the augment can be represented
in the form of min–max or max–min of linear functions. Optimality conditions were
described in terms of exhausters [9,10]. This promoted the construction of optimiza-
tion algorithms. Unfortunately, the fact that exhauster mapping is not continuous in
Hausdorff metric produced computational problems [11]. This is why a new tool, free
from this shortcoming, was introduced. Coexhausters are families of convex compact
sets by means of which the main part of the augment can be represented in the form
of min–max or max–min of affine functions. This notion was first introduced in [8].
It is possible to specify the class of functions which allows the expansion by means
of continuous coexhausters in Hausdorff metric [5]. These objects were studied in
[12–15], and the optimality conditions in terms of coexhausters were obtained. This
gave an opportunity to describe new effective optimization methods. Further develop-
ment of this fruitful idea led to the appearance of second-order coexhausters [5]. So
the problem of constructing optimization algorithms, that are based on this new tool,
arose.

2 Preliminary Information

Let a continuous function f : Rn → R be given. The function f is said to have an
upper second-order coexhauster at a point x ∈ R

n iff the representation

f (x + Δ) = f (x) + min
C∈̂E∗(x)

max[a,v,A]∈C

(

a + 〈v,Δ〉 + 1

2
〈AΔ,Δ〉

)

+ ox (Δ), (1)

is valid, where

lim
α↓0

ox (αΔ)

α2 = 0 ∀Δ ∈ R
n, (2)

and ̂E∗(x)—is a family of compacts inR×R
n ×R

n×n , called the upper second-order
coexhauster.

The function f is said to have a lower second-order coexhauster at a point x ∈ R
n

iff the representation

f (x + Δ) = f (x) + max
C∈̂E∗(x)

min[a,v,A]∈C

(

a + 〈v,Δ〉 + 1

2
〈AΔ,Δ〉

)

+ ox (Δ), (3)

is valid, where ox (Δ) satisfies (2) and ̂E∗(x)—is a family of compacts in R × R
n ×

R
n×n , called the lower second-order coexhauster.
There is a wide class of functions admitting representations (1) and (3).
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In this paper, we will consider the problem of minimizing functions whose upper
second-order coexhausters consist of a single set

f (x + Δ) = f (x) + max[a,v,A]∈C(x)

(

a + 〈v,Δ〉 + 1

2
〈AΔ,Δ〉

)

+ ox (Δ), (4)

where all the matrices A ∈ C(x) are assumed to be positive definite for all x in the
domain of f . Furthermore, we will study the case of finite set C(x), which is the most
common in practice.

Let us construct a bijection between the set C(x) and some set of indexes I . That
is C(x) = {[ai (x), vi (x), Ai (x)] : i ∈ I

}

. For the sake of convenience, instead of (4)
we will use an equivalent notation

f (x + Δ) = f (x) + max
i∈I

(

ai (x) + 〈vi (x),Δ〉 + 1

2
〈Ai (x)Δ,Δ〉

)

+ ox (Δ).

3 Necessary Second-Order Extremum Condition

In this section, we describe the optimality condition for the studied function and then
construct the optimization algorithm based on this condition.

Theorem 3.1 Let a continuous function f (x) : Rn → R allowing the expansion

f (x + Δ) = f (x) + max
i∈I

(

ai (x) + 〈vi (x),Δ〉 + 1

2
〈Ai (x)Δ,Δ〉

)

+ ox (Δ),

where I is a finite set of indexes, all the matrices Ai (x) ∈ I are positive definite for
all x ∈ R

n, and ox (Δ) satisfy

lim
α↓0

ox (αΔ)

α2 = 0, ∀Δ ∈ R
n .

If x∗ = argmin
x∈Rn

f (x), then

0n = argmin
Δ∈Rn

max
i∈I

(

ai (x∗) + 〈vi (x∗),Δ〉 + 1

2
〈Ai (x∗)Δ,Δ〉

)

. (5)

Proof First note that the main part of the augment of f

φx∗(Δ) = max
i∈I

(

ai (x∗) + 〈vi (x∗),Δ〉 + 1

2
〈Ai (x∗)Δ,Δ〉

)

is the convex function. Moreover, since f is continuous φx∗(0n) = 0 holds.
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Prove the theorem by contradiction. Assume that conditions of the theorem are
valid, but (5) is not satisfied at x∗, that is

0n 	= g̃ = argmin
Δ∈Rn

max
i∈I

(

ai (x∗) + 〈vi (x∗),Δ〉 + 1

2
〈Ai (x∗)Δ,Δ〉

)

.

If so, then function φ has a direction of descent ˜Δ = g̃

‖g̃‖ at Δ = 0n .

The behavior of the main part of the augment f , while moving from the point x∗
along the direction ˜Δ with some positive step α, is defined by a function

φx∗(α ˜Δ) = max
i∈I φi,x∗(α ˜Δ),

where

φi,x∗(α ˜Δ) = ai (x∗) + α〈vi (x∗), ˜Δ〉 + α2

2
〈Ai (x∗) ˜Δ, ˜Δ〉.

Let Rx∗(0n) = {

i ∈ I : ai (x∗) = φx∗(0n) = 0} be a set of indexes of functions
active at zero. Then, due to the fact that φx∗ is decreasing at zero along the direction
˜Δ, its directional derivative along ˜Δ should be strictly negative:

∃μ > 0 : φ′
x∗(0n,

˜Δ) = max
i∈Rx∗ (0n)

(vi , ˜Δ) = −μ < 0.

Finally, taking into account the continuity of f , conditions imposing on ox by the
theorem, boundedness of coexhauster and finiteness of the set I , it can be stated that
there is α̃ small enough that for every positive α < α̃ the chain

f (x∗ + α ˜Δ) − f (x∗)

= max
i∈I

(

ai (x∗) + α〈vi (x∗), ˜Δ〉 + α2

2
〈Ai (x∗) ˜Δ, ˜Δ〉

)

+ ox∗(α ˜Δ)

= max
i∈Rx∗ (0n)

(

ai (x∗) + α〈vi (x∗), ˜Δ〉 + α2

2
〈Ai (x∗) ˜Δ, ˜Δ〉

)

+ ox∗(α ˜Δ)

≤ −αμ + α2

2
max
i∈I ‖Ai (x∗)‖ + α2

2
max
i∈I ‖Ai (x∗)‖ < 0.

is valid. This contradicts the fact that x∗ is the local minimum of f . ��

Now we can proceed to the method itself.
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4 Minimization Method

Let x0 be an initial point. Suppose that we have obtained a point xk . Define

yk = argmin
y∈Rn

max
i∈I

(

ai (xk) + α〈vi (xk), y〉 + α2

2
〈Ai (xk)y, y〉

)

,

Δk = yk
‖yk‖ ,

αk = argmin
α

f (xk + αΔk) ,

xk+1 = xk + αkΔk .

As a result, we construct the sequence {xk} such that

f (xk+1) < f (xk). (6)

Theorem 4.1 Let a set

P = {x ∈ R
n : f (x) ≤ f (x0)}

be bounded, mapping C(x) = {[ai (x), vi (x), Ai (x)] : i ∈ I
}

is continuous in Haus-
dorff metric, x∗ is the limit point of the sequence {xk}, and function ox (Δ) satisfies
the condition ox (αΔ)

α2 −−→
α↓0 0 uniformly with respect to x in some neighborhood of x∗

and with respect to Δ in S = {Δ ∈ R
n : ‖Δ‖ = 1}. Then, the point x∗ is a stationary

point of f on Rn; that is, condition (5) satisfies at x∗.

Proof The existence of the limit point of the sequence {xk} follows from the bound-
edness of the set P and inequality (6). Thus, there is a subsequence {xkm } converging
to x∗.

Prove the theorem by contradiction. Assume that the conditions of the theorem are
valid, but (5) is not satisfied at x∗; that is, g̃ 	= 0n , where

g̃ = argmin
Δ∈Rn

max
i∈I

(

ai (x∗) + 〈vi (x∗),Δ〉 + 1

2
〈Ai (x∗)Δ,Δ〉

)

= argmin
Δ∈Rn

φx∗(Δ).

This means that the convex function φx∗(Δ) is strictly decreasing in point 0n along
the direction ˜Δ = g̃/‖g̃‖; that is, there exists μ > 0 such that

φ′
x∗(0n,

˜Δ) = −μ < 0.

Denote Λ = max
i∈I ‖Ai (x∗)‖. Due to the continuity of the coexhauster mapping,

there exists ε1-neighborhood of the point x∗, such that for all x in this neighborhood
inequality

max
i∈I ‖Ai (x)‖ ≤ 3

2
Λ,
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is valid.
Consider the function φx∗(Δ). As I is the finite set, one can find a δ-neighborhood

centered at zero in which not active functions are the same as in zero. That is for any
Δ in such a neighborhood will hold an equality

max
i∈I

(

ai (x∗) + 〈vi (x∗),Δ〉 + 1

2
〈Ai (x∗)Δ,Δ〉

)

= max
i∈Rx∗ (0n)

(

ai (x∗) + 〈vi (x∗),Δ〉 + 1

2
〈Ai (x∗)Δ,Δ〉

)

,

where Rx∗(0n) = {i ∈ I : ai (x∗) = φx∗(0n) = 0} is the set of indexes of functions
active at zero. Since the coexhauster mapping is continuous, there is ε2-neighborhood
of the point x∗ such that for any x in this neighborhood and Δ in δ

2 -neighborhood
centered at zero

max
i∈I

(

ai (x) + 〈vi (x),Δ〉 + 1

2
〈Ai (x)Δ,Δ〉

)

= max
i∈Rx∗ (0n)

(

ai (x) + 〈vi (x),Δ〉 + 1

2
〈Ai (x)Δ,Δ〉

)

,

is valid.
Since max

i∈Rx∗ (0n)
〈vi (x∗), ˜Δ〉 = φ′

x∗(0n,
˜Δ) < −μ < 0, one can conclude that

〈vi (x∗), ˜Δ〉 < −μ is valid for any i ∈ Rx∗(0n). Due to the fact that the coexhauster
mapping is continuous, Δkm → ˜Δ holds, and thus, there is ε3-neighborhood of the
point x∗, such that for any x in this neighborhood

〈vi (xkm ),Δkm 〉 < −μ

2
< 0, ∀i ∈ Rx∗(0n)

is true.
In virtue of the theorem condition, there is B(x∗, ε4)—ε4-neighborhood of the point

x∗ such that

∃α̃ > 0 : ∀x ∈ B(x∗, ε4), ∀Δ ∈ S, ∀α ∈ [0, α̃] |ox (αΔ)| <
α2

2
.

Choose ε = min{ε1, ε2, ε3, ε4}, α0 = min{̃α, δ
2 ,

μ
6 ,

μ
6Λ }. Starting with some suffi-

ciently large M > 0, all xkm will be included in ε-neighborhood of the x∗. Then, for
m ≥ M , we can write

f (xkm+1) − f (xkm )

= max
i∈I

(

ai (xkm ) + αkm 〈vi (xkm ),Δkm 〉 + α2
km

2
〈Ai (xkm )Δkm ,Δkm 〉

)

+ oxkm (αkmΔkm )
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≤ max
i∈I

(

ai (xkm ) + α0〈vi (xkm ),Δkm 〉 + α2
0

2
〈Ai (xkm )Δkm ,Δkm 〉

)

+ oxkm (α0Δkm )

= max
i∈Rx∗ (0n)

(

ai (xkm ) + α0〈vi (xkm ),Δkm 〉 + α2
0

2
〈Ai (xkm )Δkm ,Δkm 〉

)

+ oxkm (α0Δkm ) < −α0
μ

2
+ α2

0

2
Λ + α2

0

2
< −α0

μ

3
< 0.

Hence considering (6), we get f (xk) → −∞, which contradicts to the fact that the
continuous functions f on the bounded closed set P are bounded. ��
Remark 4.1 Let us note that these results remain true also for functions, allowing
positive semidefinite quadratic approximation of the augment.

Remark 4.2 Since the algorithmmust converge to the point where condition (5) holds,
the value of ‖yk‖ can be taken as a stopping criteria.

Example 4.1 Consider a function f : R2 → R, f (x) = max{ f1(x); f2(x)}, where

f1(x) = (x1 − 1)4 + (x2)4, f2(x) = (x1 + 1)4 + (x2)4.

Denote components of x as x1 and x2. Choose x0 = (1, 2)T. It is obvious that

f (x + Δ) = f (x) + max
i∈{1;2}

(

ai (x) + 〈vi (x),Δ〉 + 1

2
〈Ai (x)Δ,Δ〉

)

+ ox (Δ),

where

a1(x) = f1(x) − f (x), a2(x) = f2(x) − f (x),

v1(x) =
(

4(x1 − 1)3

4(x2)
3

)

, v2(x) =
(

4(x1 + 1)3

4(x2)
3

)

,

A1(x) =
(

12(x1 − 1)2 0

0 12(x2)
2

)

, A2(x) =
(

12(x1 + 1)2 0

0 12(x2)
2

)

,

lim
α↓0

ox (αΔ)

α2 = 0 ∀Δ ∈ R
n .

As

a1(x0) = −16, a2(x0) = 0,

v1(x0) =
(

0
32

)

, v2(x0) =
(

32
32

)

,

A1(x0) =
(

0 0
0 48

)

, A2(x0) =
(

48 0
0 48

)

,
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the quadratic approximation of the main part of the augment at x0 has the form

max{32y1 + 32y2 + 24(y1)2 + 24(y2)2;−16 + 32y2 + 24(y2)2}.

This function attains minimum at the point y0 = (−2/3,−2/3)T. Therefore,
doing a one-dimensional minimization along normalized direction Δ0, where Δ0 =
−

(√
2/2,

√
2/2

)T
, we get α0 = √

2, x1 = (0, 1)T.

Proceeding similarly, we obtain y1 = − (0, 1/3)T, Δ1 = − (0, 1)T , α1 = 3, x2 =
(0, 0)T. The quadratic approximation of the main part of the augment of f at x2 is

max{4y1 + 6(y1)2;−4y1 + 6(y1)2}

and hence y2 = (0, 0)T. This means that the necessary condition of minimum (5)
holds at the point x2.

5 Conclusions

Let us note that, for an implementation of the proposed method, we have to find a
minimum of the quadratic approximation at each iteration. This problem is not related
to the searching of directions of descent, and therefore, it can be solved by using
different smoothing techniques.

When the specified method is applied to a smooth convex function, we get a
well-known modified Newton’s method [16]. Thus, the proposed algorithm is a gen-
eralization of Newton’s method for a class of nonsmooth functions, allowing convex
quadratic approximation of the augment.
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