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Abstract In this article, we investigate nonlinear metric subregularity properties of set-valued mappings
between general metric or Banach spaces. We demonstrate that these properties can be treated in the frame-
work of the theory of (linear) error bounds for extended real-valued functions of two variables developed
in A. Y. Kruger, Error bounds and metric subregularity, Optimization 64, 1 (2015) 49-79. Several primal and
dual space local quantitative and qualitative criteria of nonlinear metric subregularity are formulated. The
relationships between the criteria are established and illustrated.
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1 Introduction

The linear metric subregularity property of set-valued mappings (cf., e.g., [9, 33,41, 42]; see definition (1)
below) and closely related to it calmness property play an important role in both theory and applications.
The amount of publications devoted to (mostly sufficient) criteria of linear metric subregularity is huge. The
interested reader is referred to [1,8,9,17-19, 22,28, 30,40, 45-48|.

In many important situations, the standard linear metric (sub)regularity property is not satisfied, and
more subtle nonlinear, mostly Holder type estimates come into play (see definition (2) below). The Hoélder
version of the more robust metric reqularity property and even more general nonlinear regularity models have
been studied since 1980s; cf. [5,13-15,21,27,39,43]. The history of the Holder metric subregularity property
seems to be significantly shorter with most work done in the last few years; cf. [16,24,25,29,31,34,37]. Note
the only attempt so far to consider the case ¢ > 1 in [34]. To the best of our knowledge, general nonlinear
subregularity models have not been studied so far.

There exists strong similarity between the definitions and criteria of linear and nonlinear metric subregu-
larity of set-valued mappings and the well developed theory of error bounds (cf. [2,3,6,11,12,22,35,36,38]) of
extended real-valued functions. However, there is an obstacle which prevents direct application of this theory
to deducing criteria of metric subregularity, namely, the function involved in the definition of the metric sub-
regularity property, in general, fails to be lower semicontinuous. Nevertheless, many authors use error bound
type arguments when proving metric subregularity criteria. For that, they define auxiliary functions which
possess the lower semicontinuity property. The details are usually hidden in the proofs.
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Such an approach has been formalized and made explicit in [28] where the theory of local (linear) error
bounds has been extended to functions on the product of metric spaces and applied to deducing linear metric
subregularity criteria for set-valued mappings. This extended theory of linear error bounds is applicable also
to nonlinear subregularity models. This has been demonstrated in [27] where Holder metric subregularity has
been investigated. The current article targets several general settings of nonlinear metric subregularity, namely
f-subregularity, g-subregularity, and @-subregularity with each next regularity type being a special case of
the previous one while Holder metric subregularity is a special case of metric p-subregularity. This hierarchy
of regularity properties translates naturally into the corresponding hierarchy of regularity criteria, illustrating
clearly the relationship between the assumptions on the set-valued mapping, the regularity property under
investigation and the resulting regularity criteria.

Following the standard trend initiated by Ioffe [20], criteria for error bounds and metric subregularity
of set-valued mappings in metric spaces are formulated in terms of (strong) slopes [7]. Following [27,28], to
simplify the statements in metric and also Banach/Asplund spaces, several other kinds of primal and dual
space slopes for real-valued functions and set-valued mappings are discussed in this article and the relationships
between them are formulated. These relationships lead to a simple hierarchy of the error bound and metric
subregularity criteria.

Recall that a Banach space is Asplund if the dual of each its separable subspace is separable; see, e.g., [4,33]
for discussions and characterizations of Asplund spaces. Note that any Fréchet smooth space, i.e. a Banach
space which admits an equivalent norm Fréchet differentiable at all nonzero points, is Asplund. Given a Fréchet
smooth space, we will always assume that it is endowed with such a norm.

Some statements in the article look rather long because each of them contains an almost complete list of
criteria applicable in the situation under consideration. The reader is not expected to read through the whole
list. Instead, they can select a particular criterion or a group of criteria corresponding to the setting of interest
to them (e.g., in metric or Banach/Asplund/smooth spaces, in the convex case, etc.)

The structure of the article is as follows. The next section provides some preliminary definitions and facts
which are used throughout the article. In Section 3, we present a survey of error bound criteria for a special
family of extended-real-valued functions on the product of metric or Banach/Asplund spaces from [27,28]. The
criteria are formulated in terms of several kinds of primal and subdifferential slopes. The relationships between
the slopes are presented. Section 4 is devoted to nonlinear metric subregularity of set-valued mappings with
the main emphasis on metric g-subregularity. We demonstrate how the definitions of slopes and error bound
criteria from Section 3 translate into the corresponding definitions and criteria for metric g-subregularity.
Some new relationships between the slopes are established and, in finite dimensions, new objects — limiting
g-coderivatives — are introduced and then used in dual space criteria of metric g-subregularity. In Section 5,
we study a particular case of metric g-subregularity called metric ¢-subregularity and using sharper tools
(slopes) derive more specific regularity criteria. The last section contains concluding remarks.

2 Preliminaries

Recall that a set-valued mapping F' : X = Y is a mapping which assigns to every x € X a subset (possibly
empty) F(x) of Y. We use the notation

gph F:={(z,y) e X xY |y € F(z)}

for the graph of F and F~! :Y = X for the inverse of F. This inverse (which always exists with possibly
empty values) is defined by
Fiy)={zeX[yeF(z)}, yeY,

and satisfies
(z,y) €gphF &  (y,x) €gph F '

A set-valued mapping F' : X = Y between metric spaces is called (locally) metrically subregular at a point
(Z,y) € gph F with constant 7 > 0 if there exists a neighbourhood U of Z such that

rd(xz, F~1(9)) < d(y, F(x)) forall z € U. (1)



This property represents a weaker version of the more robust metric reqularity property which corresponds
to replacing § in the above inequality by an arbitrary (not fixed!) y in a neighbourhood of §.
If instead of (1) one uses the following more general condition:

rd(z, F~1(9)) < (d(y, F(2)))? forall z € U, (2)

where ¢ € (0,1], then the corresponding property is usually referred to as Holder metric subregularity of
order ¢ at (z,y) with constant 7. The case ¢ = 1 corresponds to standard (linear) metric subregularity. If
q1 < g2 < 1, then Holder metric subregularity of order ¢; is in general weaker than that of order go.

If fixed ¥ in the above inequality is replaced by an arbitrary y and the inequality is required to hold
uniformly over all y near g, then we arrive at the definition of Hélder metric regularity of order g.

One can easily see that Holder metric subregularity property (2) is equivalent to the local error bound
property of the extended real-valued function z — (d(y, F(x)))? at T (with the same constant). So one might
want to apply to this model the well developed theory of error bounds. However, most of the error bound
criteria are formulated for lower semicontinuous functions, while the function = — (d(y, F'(x)))? can fail to be
lower semicontinuous even when gph F' is closed.

Another helpful observation is that property (2) can be rewritten equivalently as
rd(x, F71(g)) < (d(g,y))? forall x € U, y € F(x),

or

rd(z, F71(7)) < f(a,y) forallzeU, yey, 3)

where

f(x,y) =

{(d(y,g))q if (z,y) € gph F, (4)

+00 otherwise.

One can also consider property (3) with f: X xY — Ry U{+oo} being a more general than (4) nonlinear
function. This property, which we refer to as metric f-subregularity, is the main object of our study in this
article. The assumptions on function f which are going to be specified in the next two sections allow us to treat
property (3) in the framework of the extended theory of error bounds of functions of two variables developed
in [28] and used there and in [27] for characterizing linear and Holder metric subregularity, respectively.

Two special cases of metric f-subregularity are of special interest: when

f(x,y) :g(y) +igphF(x7y)a reX,yey,

where g : Y — Ry and igpn p is the indicator function of gph F' (igpn p(z,y) = 0 if (z,y) € gph F and
igph (2,y) = 0o otherwise) and when

g(y) = ¢(d(y,v)), yevY,

where ¢ : Ry — R,. We refer to these two properties as metric g-subregularity and metric p-subregularity,
respectively. The particular assumptions on g and ¢ are discussed when the properties are defined.

Our basic notation is standard, see [9,33,41,42]. Depending on the context, X and Y are either metric
or normed spaces. Metrics in all spaces are denoted by the same symbol d(-,); d(z, A) := inf,ca d(z,a) is
the point-to-set distance from x to A. Bs(x) denotes the closed ball with radius § > 0 and centre z. If not
specified otherwise, the product of metric/normed spaces is assumed equipped with the distance/norm given
by the maximum of the distances/norms.

If X and Y are normed spaces, their topological duals are denoted X* and Y™*, respectively, while (-, -)
denotes the bilinear form defining the pairing between the spaces. The closed unit balls in a normed space
and its dual are denoted by B and B*, respectively, while S and S* stand for the unit spheres.

We say that a subset 2 of a metric space is locally closed near Z € (2 if 2 NU is closed for some closed
neighbourhood U of Z. Given an o € Ry := RU {+00}, a denotes its “positive” part: ay := max{«, 0}.

If X is a normed linear space, f : X = Roo, € X, and f(z) < oo, then

of (x) := {z* € X*| liminf flw) = flo) = (@ u = @) > 0} (5)

U—T, UFT ||’LL — LL‘H
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is the Fréchet subdifferential of f at x. Similarly, if z € 2 C X, then

Ng(z) = {x* € X*|  limsup @hu-z) <0} (6)
u—x,uc2\{z} ||U - .23”
is the Fréchet normal cone to 2 at x. In the convex case, sets (5) and (6) reduce to the subdifferential and
normal cone in the sense of convex analysis, respectively. If f(z) = oo or = ¢ 2, we set, respectively, df(z) = 0
or Ng(z) = ). Observe that definitions (5) and (6) are invariant on the renorming of the space (replacing the
norm by an equivalent one).
If F: X =Y is a set-valued mapping between normed linear spaces and (z,y) € gph F', then

D*F(z,y)(y*) :={z" € X" [ (2", —y") € Ngpnr(z,y)}, y" € X"

is the Fréchet coderivative of F at (x,y).
The proofs of the main statements rely on several kinds of subdifferential sum rules. Below we provide
these results for completeness.

Lemma 2.1 (Subdifferential sum rules) Suppose X is a normed linear space, fi1,fs : X — Ry, and
Z € dom f; Ndom fs.
(i) Fuzzy sum rule. Suppose X is Asplund, fi is Lipschitz continuous and fy is lower semicontinuous
in a neighbourhood of T. Then, for any € > 0, there exist x1,22 € X with ||x; — Z| <&, |fi(z:) — fi(T)] < e
(i =1,2) such that
O(f1+ f2)(Z) C Of1(x1) + Ofa(w2) + B

(ii) Differentiable sum rule. Suppose fi is Fréchet differentiable at T. Then,
(f1+ f2)(z) = Vf1(Z) + 0f2(7).
(iii) Convex sum rule. Suppose f1 and fo are convex and fi is continuous at a point in dom fa. Then,

O(f1 + f2)(%) = 0f1(Z) + Ofa(Z).

The first sum rule in the lemma above is known as the fuzzy or approrimate sum rule (Fabian [10]; cf.,
e.g., [26, Rule 2.2], [33, Theorem 2.33]) for Fréchet subdifferentials in Asplund spaces. The other two are
examples of ezact sum rules. They are valid in arbitrary normed spaces (or even locally convex spaces in the
case of the last rule). Rule (ii) can be found, e.g., in [26, Corollary 1.12.2] and [33, Proposition 1.107]. For
rule (iii) we refer the readers to [23, Theorem 0.3.3] and [44, Theorem 2.8.7].

The (normalized) duality mapping J between a normed space Y and its dual Y* is defined as (cf. [32,
Definition 3.2.6])

J(y) = {y" € Sy«

W) =lyll}, yeY. (7)

3 Error Bounds and Slopes

In this section, we recall several facts about local error bounds for a special extended-real-valued function
f: X xY — Ry on a product of metric spaces in the framework of the general model developed in [28]. The

function is assumed to satisfy f(Z,y) =0 and

(P1) f(z,y) > 0if y # 7,

. flzy)
P2) liminf == > 0.
(P2) flzy)do d(y, y)

In particular, y — g if f(x,y) | 0.

Function f is said to have an error bound with respect to x at (Z, ) with constant 7 > 0 if there exists a
neighbourhood U of Z such that

7d(z,5(f)) < f+(z,y) forallz e U, y €Y, (8)
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where
S(f)={z e X]| f(z,y) <0} ={z € X| f(z,y) <0 for some y € Y}.

The error bound modulus

e fzy)
Er f(Z,7) := liminf ———— (9)
fCaio A 5(f))

coincides with the exact upper bound of all 7 > 0 such that (8) holds true for some neighbourhood U of Z and
provides a quantitative characterization of the error bound property. It is easy to check (cf. [28, Proposition 3.1])

e (o) o)
o x,y s z,y
Er f(Z, liminf ——~— = liminf ——=—.
1@.9) = Hmind 2 sy ~ Limit e s )
f(z,y)>0
The case of local error bounds for a function f : X — R, of a single variable with f(Z) = 0 can be covered

by considering its extension f : X XY — R, defined, for some §y € Y, by

f@ﬂ){ﬂ@ ity =9y,

00 otherwise.

Conditions (P1) and (P2) are obviously satisfied.
In the product space X x Y, we are going to use the following asymmetric distance depending on a positive
parameter p:
dp((z,y), (u,v)) := max{d(z, u), pd(y, v)}. (10)
Given an (z,y) € X xY with f(z,y) < oo, the local (strong) slope [7] and nonlocal slope [12] of f at (x,y)
take the following form:

T .— limsu [f(l’ y) ( Uu, )]-‘r
o )~ fawo)
VA= s ) o) 12

They depend on p. We are going to refer to them as the p-slope and nonlocal p-slope of f at (z,y). In the
sequel, superscript ‘¢’ (diamond) will be used in all constructions derived from (12) and its analogues to
distinguish them from “conventional” (local) definitions.

Using (11) and (12), one can define strict (limiting) slopes related to the reference point (z,7):

> _7_ = 1 i f v 9 ) 13
VI~ (z,9) éf&d(z,f)@f&f(z,y)@' flo(z, ) (13)

N B . flz,y) }
‘Vf|> (33 y) 11?01 d(z,z)<p, Oif(w,y)<p max {|Vf|p(£lf, y)7 d(a:, f) ’ (14)
[Vf°(x,7) = lim inf V115 (@, y)- (15)

pL0 d(z,2)<p, 0< f(z,y)<p

They are called, respectively, the strict outer slope, modified strict outer slope, and uniform strict outer slope
of f at (Z,7); cf. [27,28]. The word “strict” reflects the fact that p-slopes at nearby points contribute to
definitions (13)—(15) making them analogues of the strict derivative. The word “outer” is used to emphasize
that only points outside the set S(f) are taken into account. The word “uniform” emphasizes the nonlocal
(non-limiting) character of |V f|%(z,y) involved in definition (15). Observe that the definition of the modified
strict outer slope (14) contains under max a nonlocal (when (z,y) is fixed) component f(z,y)/d(z, ).

Constants (11)—(15) are nonnegative and can be infinite. In (13)—(15), the usual convention that the
infimum of the empty set equals +oc0 is in force. In these definitions, we have not only © — Z and f(z,y) | 0, but
also the metric on X x Y used in the definitions of the corresponding p-slopes changing with the contribution
of the y component diminishing as p | 0.

Now suppose that X and Y are normed linear spaces. In the product space X XY, we consider the following
p-norm || - ||, being the realization of the p-metric (10):

[[(w, v)[l, = max{[[ull, pllvll},  (u,v) € X x V.
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The corresponding dual norm (we keep for it the same notation || - ||,) is of the form:
I o)l =l + o~ 7]l (", v7) € X* x Y™ (16)

One can define subdifferential counterparts of the local slopes (11), (13), and (14): the subdifferential

p-slope
nf el (17)

i
(x*,y")edf(zy), lly*l<p

0f1p(2,y) =

of f at (z,y) (f(z,y) < 00) and the strict outer and, respectively, modified strict outer subdifferential slopes

ofl” Z,y) = lim inf 0 z,Y), 18
‘ f| ( y) pl0 ||z—Z||<p, 0< f(z,y)<p | f|p( y) ( )
of|” z,y) = lim inf max{ 0 T,Y), (x7y) } 19
| f| ( y) pl0 ||lz—Z||<p, 0< f(z,y)<p | f|p( y) ||13 — 171?” ( )

of f at (Z,7).
Note that, unlike the p-slope (11), the subdifferential p-slope (17) is not the realization of the subdifferential

slope [11] for the case of a function of two variables.

The next proposition coming from [27, Proposition 2] summarizes the relationships between the slopes.

Proposition 3.1 (Relationships between slopes)

(i) z;ﬂ;(x,y) > max{|Vf|p(x,y), m} for all p > 0 and all (z,y) € X XY with 0 < f(z,y) <

(i) [VfI°(z,9) > [VfI7H(2,9) > [V (2,9).

If f is convez, then (1) and (ii) hold as equalities.
Suppose X andY are normed linear spaces.

Gii) 71 (7, 5) > 71 (2,9);
(iv) |V flp(x,y) < |0f]p2(x,y) + p for all p> 0 and all (x,y) € X x Y with f(x,y) < co;
) VI (@,9) < 1071 (7.5) and [VI1>*(2,9) < 1071 (7, 9);
(vi) IVfI>(2,9) = 10f17(2,9) and |VfI77(z,9) = [0f7(Z,9)
provided that one of the following conditions is satisfied:
(a) X andY are Asplund and f4 is lower semicontinuous near (Z,9y);
(b) f is convex;
(c) f is Fréchet differentiable near (Z,y) except (T,q);
(d) f = fi1+ fa, where f1 is convexr near (Z,y) and fo is Fréchet differentiable near (z,y) except (Z,y).

Remark 3.1 One of the main tools in the proof of inequalities

Vi@ y) = 10f1 @9), V7" (@9 = [0f77(2,9)
in item (a) of part (vi) of the above proposition, which is crucial for the subdifferential sufficient error bound
criteria, is the fuzzy sum rule (Lemma 2.1) for Fréchet subdifferentials in Asplund spaces. It is possible
to extend these inequalities to general Banach spaces by replacing Fréchet subdifferentials with some other
subdifferentials on the given space satisfying a certain set of natural properties including a kind of (fuzzy or
exact) sum rule. One can use for that purpose loffe approximate or Clarke subdifferentials. Note that the
opposite inequalities in part (v) are specific for Fréchet subdifferentials and fail in general for other types of

subdifferentials.

The uniform strict outer slope (15) provides the necessary and sufficient characterization of error bounds
[28, Theorem 4.1].

Theorem 3.1 (i) Er f(Z,9) < |Vf|°(,9);
(ii) if X and Y are complete and fy is lower semicontinuous near (T,y), then Er f(Z,7) = |V f|°(Z,7).
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Remark 3.2 The nonlocal p-slope (12) depends on the choice of p-metric on the product space. If instead of
the metric d,, defined by (10), one employs in (12) the sum-type parametric metric d;, defined by

dfl)((xv y)7 (u’ 7])) = d(l‘, u) + pd(yv U)a

it will produce a different number. We say that a p-metric d; on X xY is admissible if d, < d;) < d,lj. Thanks
to [28, Proposition 4.2], Theorem 3.1 is invariant on the choice of an admissible p-metric.

Thanks to Theorem 3.1 and Proposition 3.1, one can formulate several quantitative and qualitative criteria
of the error bound property in terms of various slopes discussed above; cf. [27, Corollaries 1 and 2].

4 Nonlinear Metric Subregularity

From now on, F': X = Y is a set-valued mapping between metric spaces and (7, §) € gph F'. We are targeting
several versions of the metric subregularity property, the main tool being the error bound criteria discussed
in the previous section.

4.1 Metric f-subregularity and metric g-subregularity

Alongside the set-valued mapping F', we consider an extended-real-valued function f : X XY — R, satisfying
the assumptions made in Section 3, i.e., f(Z,y) = 0 and properties (P1) and (P2). Additionally, we assume
that f takes only nonnegative values, i.e., f: X xY — Ry U {400}, and

(P3) f(z,y) =0 if and only if y = § and x € F~1(y)).

Hence, S(f) = F~1(¥).
We say that F is metrically f-subregular at (Z,y) with constant 7 > 0 if there exists a neighbourhood U
of Z such that
rd(z, F~Y(9)) < f(z,y) forallz €U, yecY. (20)

Metric f-subregularity property can be characterized using the following (possibly infinite) constant:

r;[F](2,5) == liminf f(z,y)

v d(w, F1(g))’
i ey W FH@)

(21)

which coincides with the supremum of all positive 7 such that (20) holds for some U.
In the special case when f is given by

fx,y) = {d(y,g) if (z,y) € gPL F,

400 otherwise,

conditions (P1)—-(P3) are trivially satisfied and the metric f-subregularity reduces to the conventional metric
subregularity (cf., e.g., [9,33,42]).

In general, property (20) is exactly the error bound property (8) for the function f while constant (21)
coincides with (9). Hence, the main characterization of the metric f-subregularity is given by Theorem 3.1
which yields a series of sufficient criteria in terms of various kinds of local slopes; cf. [27, Corollaries 1 and 2].

In the rest of the section, we consider a special case of metric f-subregularity of F' with f defined by

flz,y) =g(y) +ignr(z,y), z€X, yey, (22)

where g : Y — Ry and igpn p is the indicator function of gph F: igpn p(z,y) = 0 if (z,y) € gph F and
tgph F(2,y) = 0o otherwise.
We say that F' is metrically g-subregular at (z,y) with constant 7 > 0 if there exists a neighbourhood U
of Z such that
rd(x, F71(9)) < g(y) forallz €U, y € F(x). (23)

We will assume that ¢g(g) = 0, g is continuous at g, locally Lipschitz continuous on Y \ {7} and satisfies
the following properties:
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(P1') g(y) > 0if y #,

(P2') liminf

9(y)
g(w)io d(y,7)

These properties obviously imply the corresponding properties (P1) and (P2) for the function f defined by

> 0.

(22). Property (P3) is satisfied automatically. Observe that, thanks to the continuity of g, property (P2')
entails the equivalence

gy l0 & y—y

which leads to simplifications in some definitions.
Metric g-subregularity (23) can be equivalently characterized using the following constant being the real-
ization of (21):

rg[F](z,9) == liminf 9() (24)

Sy d F-1(75))’
ser = pere) 1O 0)

4.2 Primal space and subdifferential slopes

The p-slope (11) and nonlocal p-slope (12) of f at (x,y) € gph F in the current setting can be rewritten as

follows:
: l9(y) — g(v)] ¢
IVFg,p(x,y) == lim sup e (25)
” ()= (2,), () £(zy) Dp((U,0), (2,9))
(u,v)€gph F
l9(y) —g(v)]+
IVF|S (z,y) = sup . (26)
»r () 2(.) Dp((u,0), (2,9))
(u,v)Egph F

We will call the above constants, respectively, the (g, p)-slope and nonlocal (g, p)-slope of F at (z,y).
The strict slopes (13)—(15) produce the following definitions:

VF|,(Z,y) :=lim in VF z,Y), 27

| l¢(Z,9) pl0  d(e.3)<p d(y.5)<p ‘ lg.0(2,9) (27)
(z,y)€gph F, 2 ¢ F ' (7)

SR e : 9(y) }

VF|I(z,7) :=lim inf max < |VF z,Y), — o, 28

VR @ty it {9 (28)

(z,y)Egph F, ¢ F~ ()

VF|[%(z,7) := lim inf VF]® (z,9). 29
| |g( 9) L0 d(z,2)<p,d(y,5)<p | |g’p( 2 (29)
(z,y)€gph F, z¢ F ()

They are called, respectively, the strict g-slope, modified strict g-slope, and uniform strict g-slope of F at
(S_Ca g)

The continuity of g was taken into account when writing down (27)—(29). Note that conditions (z,y) €
gph F and = ¢ F~'(g) imply y # 7.

If X and Y are normed linear spaces, the subdifferential slopes of f are defined by (17), (18), and (19). In
the current setting, the last two constants take the following form:

[0f17 (z,9) = lim inf 0f1p(2,9), (30)

pl0  |lz—z|<p, IIy—zﬂlfp
(z,y)€gph F, ¢ F'~ ()

0f17 " (z,7) = lim inf max{|8f|p(x,y),‘q(y)}. (31)

Pl Jlz—z|<p, ly—gli<p |l — ||
(z,y)€gph F, z¢ F ()

The next statement is a consequence of Proposition 3.1.

Proposition 4.1 (Relationships between slopes)

9(y)

() [VFI, (2,y) > max{vmg,p(x,y), T —

} for all p >0 and all (x,y) € gph F;



(ii) [VF[3(z,9) > [VF[](2,5) > [VF|y(7,7).

If F and g are convez, then (1) and (ii) hold as equalities.
Suppose X andY are normed spaces.

(iii) |VF|gp(z,y) < |0f|p2(x,y) + p for all p> 0 and (x,y) € gph F';
(iv) [TF],(75) < 1071 (7,5) and [VF; (7,9) < [O7]*> (&, 5);
(v) IVFly(7,9) = 107> (7,5) and [VEI; (z,9) = 071> (7, 5)

provided that one of the following conditions is satisfied:

(a) X andY are Asplund and gph F is locally closed near (Z,q);

(b) F is convex and g is either convexr or Fréchet differentiable near § except j.

Observe that condition (b) in part (v) of Proposition 4.1 ensures that function f defined by (22) satisfies
either condition (b) or condition (d) in part (vi) of Proposition 3.1.

Now we define the subdifferential (g, p)-slope and approzimate subdifferential (g, p)-slope of F at (x,y) €
gph F:

OF|, ,(x,y) = inf x|, 32
OFlpya) = it ] (32)

OF|% (x,y) := liminf inf x* 33
10F15.p(:9) Y =y z*eD*F<z7y><ag(y'>+pB*)” | (33)

and use them to define strict subdifferential g-slopes:

OF|,(7,7) = li inf IF |y (2, y), 34

0F|g(z,9) =l il 10Flg,(z0) (34)
(z,y)€gph F, x g F~'(7)

OF|%(z,y) := lim inf oF|2 (z,y), 35

19F ;@) pl0 Jle—zll<p, lly-7l<p 0F g, (2.9) (35)

(z,y)Egph F, z¢ F~ 1 (7))

OF|t(z,7) = lim inf max{aF oz, y), g(y)_ }, 36
OFl; @0 =10 s OF oo 9) =3 %)
(z,y)€gph F,zg F~(7)

max{|8F;,p(x,y;v) 9) } (37)

o
i ol

inf
lz—zl<p, ly—yll<p
(zy)€gph F,z¢ F~ ' (y)
They are called, respectively, the strict subdifferential g-slope, approximate strict subdifferential g-slope, mod-
ified strict subdifferential g-slope, and modified approxzimate strict subdifferential g-slope of F at (Z, 7).

The next proposition gives relationships between the subdifferential slopes (17), (30)—(37).

Proposition 4.2 (Relationships between subdifferential slopes) Suppose X andY are normed spaces
and f is given by (22).

(1) [0F|5 ,(x,y) < |0F|4 p(x,y) for all p >0 and (v,y) € gph F';
(ii) [0F|5(z,9) < [0F|y(z,9) < [OF[; (2,y) and
|0F|3(z,9) < |[0F|g*(7,9) < [OF[} (%, 7).

If X and Y are Asplund and gph F is locally closed near (Z,7), then

(iii) |0f]p(x,y) > lim inf inf |z*|| for all p >0 and (z,y) € gph F near (Z,§);
(m',z/')ﬁ()z,y%y”—w a*€D*F(z',y")(99(y")+pB")
z',y')Egph F

(iv) [0f17 (2,9) > [0F|3(2.5) and [0f]~" (2,9) > [0F|5" (z,7).
If either F' and g are convex or g is Fréchet differentiable near y except y, then

(v) 10£1p(x.y) = |0F|g.p(x.y) for all p> 0 and (x,y) € gph F near (z,5) with y # §:
(vi) [0f17 (2,9) = |0F|4(2,9) and |0f]7 " (&,5) = |OF [} (Z, 7).
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Proof Inequalities (i) and (ii) follow directly from the definitions.
(iii) Let p > 0 and (x,y) € gph F near (Z,y) be given such that gph F' is locally closed and g is lower
semicontinuous near (z,y). The fuzzy sum rule (Lemma 2.1) is applicable to f: for any € > 0,

of(z,y) C U {z*,y" +v*} + eBx~xy~. (38)

|‘(w/7yl)7(w)y)‘l<57 (z',g//)/egphF
(x*vy*)EnghF(x Y )
! * 17
lly" —yll<e, v*€dg(y”)

By definition (17),

af|,(x,y) > lim inf ¥ —e
1971¢(:) ew<|<x’,y’><w,y>|<s, P )

(90;721*)€ng1; F(xl»yll/)
ly” —yll<e,v"€dg(y")
ly*+v*|[<p

= lim inf la*|
€40 |I(=",y")— (=) lI<e, (¢',y')€gph F
z*eD*F(z',y")(y*)
ly" —yll<e, v*€dg(y")
lly*—v*|I<p

= lim inf |
€40 |I(z",y")—(z,y)lI<e, (z',y")€gph F
z*eD*F(a',y")(0g(y"")+pB*)

" —yll<e
= lim inf inf [lz*]|
0" y) = (y)l<e z" €D F(a',y")(dg(y" ) +pB")
(',y')€gph F
" —yll<e
= lim inf inf |z*]|.

(@',y")=(x,y),y"' =y a*€D*F(z',y")(0g(y")+pB")
(¢'y")egph F

(iv) By (30) and (iii),

|0f|” (Z,7) > lim inf lim inf |z
0 l(@y)=(@9)l<p €0 |2’y )= (z,y)llI<e, ly" —yll<e
(z,y)€gph F,zg¢ F~1(5)  a"€D"F(z'y")(8g(y")+pB")

(«',y")€gph F

For a fixed (z,y) with ¢ F~1(y) and a sufficiently small € > 0, it holds B.(z) N F~1(y) = 0 and ||(x,y) —
(@,9)ll +& < p. Besides, [ly” — o[l < |ly" =yl + [ly" — yll < 2e. Hence,

‘af|>((i, 17) > lim inf lim inf Hx*”
POl ") () lI<p €0 Iy —y' || <2e
(«',y')€gph F,2'¢F~'(5) =" €D"F(a'.y')(dg(y")+pB")
= lim inf |8F|a (IL'/,y/) _ |8F‘a({f,y)
pl0 @ )~ (@) I<p 9P Y

(«'y")egph F, ' ¢ F~1(5)

The proof of the other inequality goes along the same lines.
(v) The proof is similar to that of (iii). Instead of the fuzzy sum rule, one can use either the differentiable
rule (Lemma 2.1(ii)) or the convex sum rule (Lemma 2.1(iii)) to write down, for all (x,y) € gph F near (Z, §)

with y # g, the representation:

Of (z,y) = U {z*,99(y) + v},

(z*,y*)GnghF(:c,y)
where dg(y) = {Vg(y)} if g is differentiable at y. By definition (17),

0f|p(x,y) = inf "] = 2] = [0F |g.p (2, y)-

in
(z",y")ENgpn F (2,y) z* €D F(z,y)(9g(y)+pB”)
v €dg(y), ly"+v*(<p

(vi) follows from (v) in view of representations (30) and (31). O

Proposition 4.2 allows one to eliminate subdifferential slopes of f from the estimates in Proposition 4.1.
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Proposition 4.3 (Relationships between slopes) Suppose X and Y are normed spaces.

() [VFly(z,9) > |0F[(2,9) and |VF[3(2,5) = [OF[g*(Z,)
provided that X andY are Asplund and gph F is locally closed near (T,7);
(ii) [VF|y(z,9) = |0F|4(Z,5) and [VF|}(z,9) = |OF|} (Z,7)
provided that g is Fréchet differentiable near § except § and one of the following conditions is satisfied:

(a) X and Y are Asplund and gph F is locally closed near (Z,7);
(b) F is convex;
(ili) |[VF[;(z,9) = |VF|} (z,9) = |[VF|y(z,9) = |0F|} (z,5) = |0F|4(&,5) provided that F and g are convex.

4.3 Limiting g-coderivatives

In finite dimensions, strict subdifferential g-slopes (34) and (35) can be equivalently expressed in terms of
certain kinds of limiting coderivatives.

The limiting outer g-coderivative EZ>F(.’E, y) and the approzimate limiting outer g-coderivative E?QF(@ 7)
of F at (Z,y) are defined by their graphs as follows:

gph D37 F(z,9) :=={(y*, ") € Y* x X* | 3@, yx, 5, ¥, vi) C X X Y x X* x Y™ x Y™ such that

(zk,yx) € gPh F, zp & F~H(Y), (yi,xk) € gph D*F(xy, yi),

UZ € 8g(yk)7 (:Ekayk) — (Eag), yl: - UZ - Oa ||y*||$z - LB*,
if y* # 0, then either yj # 0 (Vk € N) and ”z’:” — ”z*”, ory, =0 (VkeN)}, (39)
k

gphﬁ?“F(:E,gj) ={(y",2") €Y x X | Ik, Yk, 1, Yy v5) C X XY X X* X Y™ x Y™ such that
(zx,yx) € gph F, z & F~(y), (yi, ;) € gph D*F(k, i),
'UZ € gg(yk), (mk’yk) — (97:,17), yI: - UZ — 0, Hy*llx;; — .Z‘*,
Y Yy
lvill v

*

if y* # 0, then either yi # 0 (Vk € N) and ory, =0 (VkeN)}, (40)

|’
where

9g(v) := {v* €Y* | (vy,v}) — (v,0*) such that v} € dg(vi)}

is the limiting subdifferential of g at y; cf. [33,42].
The sets defined by (39) and (40) are closed cones in X X Y. Hence, all limiting outer g-coderivatives are
closed positively homogeneous set-valued mappings.

Proposition 4.4 Suppose X andY are finite dimensional normed linear spaces. The following equalities hold

true.

() 0F,@y) = _ inf  [o"],
T EDg>F(w7y)(SY*)

(ii) [0F|3(Z,y) = inf [l

z*€D}”*F(2,9)(Sy+)

Proof (i) Let (y*,x*) € gphﬁ?F(g’c,g), ly*|l = 1, and p > 0. Choose a sequence (zk, Yk, T}, Yf, Vi, Ok)
corresponding to (y*, z*) in accordance with definition (39). Then, for a sufficiently large k, it holds ||zx —Z|| <
ps llye = 9ll < p, (wx, yx) € gPh F, wx ¢ F7HG), yi € Og(yw) + pB*, af € D*Fak, yi) (yi), and [|log — ™[ < p.

)
Hence, by (32) and (34), |0F|4(z,y) < ||z}|| < ||z*| + p, and consequently

OFl, ) < i),
z*e€D;” F(%,5)(Sy«)

Conversely, by definitions (32) and (34), there exist sequences (vx,yr) — (Z,y) with (xg,yx) € gph F,
rr ¢ F7Yy) and (a},y;,v;) € X* x Y* x Y* with (y},2}) € gph D*F(zg,yx), vi € Og(yr) such that
yr — v — 0 and ||zf|| — |0F|4(Z,7). Without loss of generality, j — z* € X* and either y; # 0 for all
k €N, or y; =0 for all k € N. In the first case, we can assume that y; /||y || = y* € S}.., and consequently,
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by definition (39), (z*,y*) € gph D}~ F(Z,7). In the second case, (z*,y*) € gph D}> F(Z,3) for any y* € Y*.
Hence,
|0F|g(z,5) = |l2"| = _ _ _inf (e
z*eD;” F(2,9)(Sy«)

This proves assertion (i). With minor changes, the above proof is applicable to assertion (ii). O

Remark 4.1 The above definitions of the limiting g-coderivatives follow the original idea of limiting coderiva-
tives; cf. [33]. In particular, they define positively homogeneous set-valued mappings with not necessarily
convex graphs. However, there are also several important distinctions. Firstly, similar to the corresponding
definition introduced in [22], these are “outer” objects: only sequences (zy,yr) € gph F with z; components
lying outside of the set F'~!(y) are taken into consideration. Secondly, as it is reflected in their names, each of
the limiting outer g-coderivatives depends on properties of the function g, more specifically on properties of
its Fréchet subdifferentials near g. It is not excluded in any of the definitions that ||vf| — oo and consequently
lyj || = oo, and nevertheless the sequence (yj) produces a finite element y* € Y.

Remark 4.2 The definitions of the limiting g-coderivatives can be simplified if one imposes an additional
requirement on g, namely that ||[v*|| > « for some a > 0 and all v* € dg(y) when y € Y is sufficiently close
to g. Then the case y; = 0 (Vk € N) can be dropped.

Remark 4.8 Analyzing the definitions of the limiting g-coderivatives and the proof of Proposition 4.4, one
can notice that there is no need to care much about the convergence of the sequences in Y*. The limiting
g-coderivatives in Proposition 4.4 can be replaced by the corresponding limiting sets in X* only. For example,
instead of the limiting outer g-coderivative defined by (39), one can consider the following simplified set:

Sy7 F(z,y) =={a" € X* | 3@r, yr, 25, Y, k) C X XY X X* x Y x Y™
such that (zx, yx) € gph F, 2 & F~1(y), (yi,27) € gph D F (zk, y),
v € 09(yk), (zk,yk) = (Z,9), yi —vi — 0, zf — x*}.
Proposition 4.4 (i) remains true if D}~ F(&,%)(S}-.) there is replaced by S}~ F(Z, 7). This way, one can also

relax the assumption that dimY < co.

Remark 4.4 One can define also g-coderivative (indirect) counterparts of the modified strict subdifferential
g-slopes (36) and (37). It is sufficient to add to the list of properties in definitions (39) and (40) an additional
requirement that g(yx)/||zr —Z|| — 0 as k — oo. The corresponding sets can be used for characterizing metric
g-subregularity. However, the analogues of the equalities in Proposition 4.4 would not hold for them.

4.4 Criteria of metric g-subregularity

The next theorem is a consequence of Theorem 3.1.

Theorem 4.1 (i) °r,[F|(7,y) < [VF[}(Z,7);
(ii) if X andY are complete and gph F' is locally closed near (Z,y), then *r,[F|(%,y) = |[VF|} (7, 7).

The next two corollaries summarize quantitative and qualitative criteria of metric g-subregularity, respec-
tively.

Corollary 4.1 (Quantitative criteria) Let v > 0. Consider the following conditions:

(a) F is metrically g-subregular at (Z,y) with some T > 0;

(b) [VFTS(z.9) > 7.
i.e., for some p > 0 and any (z,y) € gph F with x ¢ F~1(y), d(z,%) < p, and d(y,j) < p, it holds
IVF[ (z,y) >, and consequently there is a (u,v) € gph F' such that

9(y) — 9(v) > ~vd,((u, ), (2, 9)); (41)
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(C) }1;1}_}£f d(xa j) -
z¢F~(7), yEF (v)

(@) IV, (@.5) > 7,
i.e., for some p > 0 and any (x,y) € gph F with x ¢ F~Y(y), d(z,Z) < p, and d(y,j) < p, it holds
IVE|g (2, y) > v, and consequently, for any € > 0, there is a (u,v) € gph F' N Be(x,y) such that (41)
holds true;

(e) VFIF (7 ) > 7,
i.e., for some p > 0 and any (x,y) € X xY withx ¢ F~X(y), d(x,z) < p, d(y,§) < p, and g(y)/d(z,%) < 7,
it holds |V F|g p(z,y) > v and consequently, for any € > 0, there is a (u,v) € gph F' N B.(x,y) such that
(41) holds true;

(f) X andY are normed spaces and WZ(J’C,@) >,

i.e., for some p > 0 and any (z,y) € gph F with x ¢ F~1(3), |x — Z|| < p, and ||y — §|| < p, it holds
|OF (3 ,(z,y) >, and consequently there exists an € > 0 such that

2| >~ for all 2™ € D*F(z,y)(0g(B:(y)) + pB"); (42)

(g) X andY are normed spaces and WZ"‘(%,@) > 7,
i.e., for some p > 0 and any (z,y) € XxY withx ¢ F~X(y), |lx—2| < p, |ly—5l < p, and g(y)/||xz—2| < 7,
it holds |OF; ,(z,y) >~ and consequently, there exists an € > 0 such that (42) holds true;

(h) X andY are normed spaces and |OF|4(Z,g) > 7,
i.e., for some p > 0 and any (v,y) € gph F with x ¢ F~1(y), |l — Z|| < p, and ||y — §|| < p, it holds
|OF|g,p(z,y) > 7, and consequently

lz*|| >~ for all z* € D*F(x,y)(0g(y) + pB*); (43)

(i) X andY are normed spaces and W;‘(a’:,gj) > 7,
i.e., for some p > 0 and any (z,y) € X XY withx ¢ F~X(y), [|lz—2| < p, ly=3l < p, and g(y)/||xz—2| < 7,
it holds |OF |g p(z,y) > v and consequently, (43) holds true;

() X and Y are finite dimensional normed spaces and

l=*|| >~ forallz* € E?QF(E,@(S;‘/*);
(k) X and Y are finite dimensional normed spaces and
|z*| >~ for all z* € D}~ F(z,7)(Sy-).
The following implications hold true:
(i) (c) = (e), (d) = (e), (¢) = (b), () = (g) = (1), () = (h) = (), () = (k);

(ii) if v < 7, then (a) = (b);
(iii) if 7 <7, X and Y are complete, and gph F' is locally closed near (Z,y), then (b) = (a).

Suppose X and Y are normed spaces.

(iv) (f) = (d) and (g) = (e) provided that X and Y are Asplund and gph F' is locally closed near (Z,7);
(v) () & (d) and () = (e)
provided that g is Fréchet differentiable near § except § and one of the following conditions is satisfied:
(a) X and Y are Asplund and gph F is locally closed near (Z,7);
(b) F is convex;
(vi) (b) & (d) & (e) & (h) < (i) provided that F and g are convex;
(vii) (f) < (j) and (h) & (k) provided that dim X < oo and dimY < oo.

The conclusions of Corollary 4.1 are illustrated in Fig. 1.

Remark 4.5 The existence of a v > 0 such that one of the conditions (j) or (k) in Corollary 4.1 holds true
is equivalent to the kernel of the corresponding limiting outer g-coderivative being equal to {0} which is a
traditional type of a qualitative coderivative regularity condition. Conditions (j) and (k), on the other hand,
provide additionally quantitative estimates of the regularity modulus.
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(c)
F,g convex l F,g convex y<T
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Fig. 1 Corollary 4.1

Corollary 4.2 (Qualitative criteria) Suppose X and Y are complete metric spaces and gph F' is locally
closed near (z,y). Then, F is metrically g-subregular at (&, ) if one of the following conditions holds true:
(a) [VF[5(z,7) > 0;

(b) lim inf 9(y)

_ g x, j)
z@F~ (), yEF (z)

(c) |[VF|,(z,7) > 0, or equivalently,

> 0;

lim inf VF|, ,(x,y) > 0;
pL0  d(z,z)<p,d(y,5)<p | |gv/)( y)

(z,y)€gph F,z¢ F~1(7)

(d) |VFE[;(z,5) >0, or equivalently,

lim inf [VE|g,(x,y) > 0.
POz z)<p, df;?%)<p e

(z,y)Egph F, 2¢ F~'(y)

If X andY are Asplund spaces, then the following conditions are also sufficient
(e) |OF|5(%,5) > 0, or equivalently,

hm 1nf aF a z, > O,
pl0 llz—z|<p, ly—7lI<p |0Fg,(x,y)
(z’y)EgPhF,m¢F_l(,g)
() W;Jr(i"vg) > 0, or equivalently,
lim inf |OF Z,p(x’ y) > 0.

pl0 |\9c—:2||<p, Hz(,y%” <p
(z,y)€gph F, z¢ F ' (7)

If X and'Y are Banach spaces, then the next two conditions:

(g) |0F|4(Z,5) > 0, or equivalently,

i pa OF|g,p(2,y) > 0,
pd0  Jlz—z|<p, ly—7ll<p |0F|g,0(z,y)
(z,y)€gph F, x¢ F~1(7)

(h) [oF[f(z,5) > 0, or equivalently,

lim inf |OF g, p(z,y) >0,
pl0 Hm—i||<p, Hi(,y%” <p

(z,y)€Egph F, z¢ F ' (7))

are sufficient provided that one of the following conditions is satisfied:

— X and Y are Asplund spaces and g is Fréchet differentiable near i except y,

— F is convex and g is either convex or Fréchet differentiable near § except y.
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If X andY are finite dimensional normed spaces, then the following conditions are also sufficient:

() 0¢ Dy F(z,5)(S5-);
(j) 0 ¢ D;” F(z,9)(Sy), provided that F is conver, and g is either convex or Fréchet differentiable near g
except Y.

Moreover,

(i) condition (a) is also necessary for the metric g-subreqularity of F at (Z,7);
(ii) (b) = (d), (¢) = (d), (d) = (a), (e) = (f) = (h), (e) = (g) = (), (i) = (j).
Suppose X and Y are Banach spaces.

(i) If X and Y are Asplund, then (e) = (c) and (f) = (d);

(iv) if g is Fréchet differentiable near § except y and either X and Y are Asplund or F' is convez, then (e)
< (¢) and (f) & (d);

(v) if F and g are conver, then (a) < (¢) & (d) < (g) < (h);

(vi) if X andY are finite dimensional normed spaces, then (e) < (i) and (g) < (j).

The conclusions of Corollary 4.2 are illustrated in Fig. 2.

rg[F](Z,9) >0

lim inf d?(y)_) >0 oFP 0
r—x m7x r a7
g F—1(g) ‘ |g(z’y) >
yEF ()

|

| F',g convex

X,Y Banach, g differentiable ~
X,Y Asplund | | | | X,Y Asptund
X,Y Asplund or F convex N

S —— e At o 1 B
0¢ D> F(a,9)(S5.) [« — — = 0F[5(z,5) > 0 [OF5 " (@,9) > 0’8y comex
dim X <oo 4
dim Y <oo <
-

0¢ Dy F(a,9)(8.) |« - = = ~{10F], (2,9) > 0 - ———{ oF; (z,5) > 0

F',g convex

Fig. 2 Corollary 4.2

5 Metric ¢p-subregularity
5.1 Definition

In this section, for a set-valued mapping F' : X = Y, we consider the property of metric ¢-subregularity being
a realization of the property of metric g-subregularity in the case when g has a special structure:

g(y) = @(d(yvg))7 yey, (44)

where ¢ : Ry — R, is continuously differentiable, with (possibly infinite) ¢’(0) understood as the right-hand
derivative, and satisfies the following properties:

(1)

©(0) =0,
(92) '

(t) >0 for all t € Ry.
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Thanks to ($2), ¢ is an increasing function. Hence, ¢(t) > 0 for all ¢ > 0. Obviously, function g defined
by (44) is continuous at g, locally Lipschitz continuous on Y \ {g} and satisfies g(y) = 0 and properties (P1’)
and (P2').

Remark 5.1 The requirement of continuous differentiability of ¢ and property (#2) can be weakened. For many
estimates, it is sufficient to assume that ¢ is differentiable on (0,d) for some ¢ > 0 and liminfy o ¢’ (¢) > 0.

We say that F' is metrically ¢-subregular at (Z,§) with constant 7 > 0 if there exists a neighbourhood U
of Z such that
rd(z, F71(9)) < ¢(d(y,5)) forallz €U, y € F(x), (45)

or, taking into account the monotonicity of ¢,
rd(x, F~1(9)) < @(d(y, F(z))) for all x € U. (46)

Metric p-subregularity can be equivalently characterized using the following constant being the realization
of (24):

ro[F)(2,7) == hgl};lf W (47)
zgF~1 ()

If ¢ is the identity function, i.e., p(t) = ¢ for all ¢ € Ry, then (46) (and (45)) reduces to the standard
definition of metric subregularity; cf. [28]. Model (46) covers also more general, nonlinear regularity properties.
For instance, if ¢(t) = t9, t € Ry, with 0 < ¢ < 1, then (46) turns into the definition of Holder metric
subregularity; cf. [27].

5.2 Primal space and subdifferential slopes

Given a p > 0 and (z,y) € gph F, as the main primal space local tool, in this section we are going to use the
p-slope of F at (x,y):

. [d( Y,y )_ (’Uag)]+
IVFE|,(z,y) := lim sup , (48)
’ ()= (@), (ww)£@y)  dp((u,0), (2,9))
(u,v)€gph F
while the definition
e(d(y,y)) — eld(v,y
VE (o) = s PAI) Z2ld0g) (19)
(u,v)#(z,y) P((ua U)? ({177 y))
(u,v)Egph F

of the nonlocal (¢, p)-slope of F at (z,y) involves ¢ and is the realization of the nonlocal g-slope (26) for the
case when ¢ is given by (44).

Tt is easy to notice that the p-slope (48) is the realization of the g-slope (25) for the case when g(y) = d(y, 7),
y € Y. When g is given by (44), the g-slope (25) still has a simple representation in terms of (48).

Proposition 5.1 Suppose (x,y) € gph F, y £ G, p > 0, and g is given by (44). Then,
p(@y) = ¢'(d(y, 9) IVF|p(2,y).

Proof By (25), the differentiability of ¢, ($2), and (48),

[p(d(y,y)) — ¢(d(v, 7))+

|VF|,,(x,y) = lim sup
“r () (@), w2y (U 0), (2, 9))
(u,v)€gph F
, -~ _ ~
_ Jim sup [¢"(d(y, 9))(d(y,y) — d(v,9)) + o(d(v,y))]+
(u0)= (), (u,0)£(@,y) dp((u,v), (z,y))
(u,v)Egph F
, _ : [d(y,y) —dw, )]+ _
=¢'(d(y, 7)) lim sup =¢'(d(y,9)) IVF|,(z,y).
(u,v) = (2,y), (u,v)£(z,y) dp((uav)a(m>y)) .

(u,v)Egph F

In the above formula, o(-) stands for a function from Ry to Ry with the property o(t)/t — 0 as ¢ | 0. O
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Thanks to Proposition 5.1, the strict g-slopes (27)-(29) produce the following definitions:

VF|,(Z,7) :=lim inf "(d(y, ) [VF|,(z,y), 50
VFl@g)=tm S d9) V() (50)
(z,y)€gph F, z¢ F~'(g)
. _ w(d(y,y))}
inf max < @' (d(y, 9))|VF|,(z,y), =Tl 8 51
iyt { )Vl S G51)
(z,y)€gph F, z ¢ F~*(7)
VF[$(z,7) := lim inf VF]S (z,y). 52
VF @) = lm it VER() (52)
(v,y)€gph F, 2 ¢ F~ (7)
We call the above constants, respectively, the strict ¢-slope, modified strict p-slope, and uniform strict p-slope
of F at (z,7).
If X and Y are normed spaces, we define the subdifferential p-slope and approximate subdifferential p-slope
(p>0) of F at (z,y) € gph F with y # y as follows:

IVF[f(z,y) = lim

oF|,(z,y) = inf
19F 1, (@.y) " €D* F(w,y)(J (y—7)+oB")

OF|%(x,y) := liminf inf
[OF Y, (z,9) v=y—7 z*€D* F(z,y)(J(v)+pB")

||, (53)

i (54)

J in the above formulas stands for the duality mapping (7).

Similar to (48), constants (53) and (54) are the realizations of the (g, p)-slopes (32) and (33), respectively,
in the case g(y) = ||y — g||- They do not depend on ¢. Using some simple calculus, one can formulate
representations for (g, p)-slopes (32) and (33) in the case when g is given by (44). In the next proposition and
the rest of the article, we use the notation

Eo(y) = (@' (ly — 7))~

Proposition 5.2 Suppose X and Y are normed spaces, (x,y) € gph F, y £, p > 0, and g is given by (44).
The following representations hold:

(i) 9g(y) = ¢'(ly = wl)J (y = 9);
(i) [0Fg.p(z,y) = ¢ (ly = 9ll) [0F ¢, (o (2, v);
(i) [OF[g ,(z,y) = ¢'(ly = gll) 1OF ¢, (2,)-
Proof (i) follows from the composition rule for Fréchet subdifferentials (see, e.g., [26, Corollary 1.14.1]).
(ii) Substituting (i) into (32) and taking into account that D*F(z,y)(tv*) = tD*F(x,y)(v*) for any
v* € Y* and t > 0, we obtain:

OF |y p(x,y) = inf x*
19Flg.0(2,9) r*eD*F(w)(ga’<|\y—@|\>J(y—y>+pB*)” |
=¢(ly—7 inf | = (|ly — 3l |OF z,y).
Glly=al ol =l 9D 10l ()
Similarly, substituting (i) into (33), we obtain (iii). O

Now we can define the strict subdifferential p-slope, approximate strict subdifferential @-slope, modified
strict subdifferential @-slope, and modified approzimate strict subdifferential p-slope of F at (Z,7):

©'(lly = 9l) 10F ¢, () (x,), (55)

OF|,(Z,y) := lim inf
0F (7. 7) pl0  fz—z|<p. [y—3ll<p
(z,y)€gph F, a2 F~1(5)
4(z,y) := lim inf "Uly — ) |0F|2 ), 56
o(7,7) L B ' (lly = gl) 1OFIE, (), (z,y) (56)
(z,y)€gph F, ¢ F ' (g)

OF

e SN : _ d(y,y))

OF |t (z,7) := lim inf max{ "(Jly — OF x, ’gp( = , 57

Orlt ) =ty e { Ol — 0D I0Fle (o), SO 1)
(z,y)€gph F,xgF ' (y)

T ETat (5 A\ 1 , _ d(y,y))

OF|“*(z,y) := lim inf max{ "(ly — gIDIOF|E (1, (2, ,¢( — . 58

9OF[" (@ 9) = i lz—zll<p, ly—gll<p # Ul = IDIOFIE, () |z —z|| 5%

(z,y)€gph F, x g F ' (7)
In view of Proposition 5.2, these constants coincide, respectively, with the corresponding strict subdifferential
g-slopes (34), (35), (36), and (37). Factor £,(y) in (55)—(58) cannot be dropped in general.
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Proposition 5.3 Suppose X and Y are normed spaces. The following assertions hold true:
i) [OF > lim inf "y — gl 10F|,(z,9);
) 19Fl(@.9) = I lz—all<p, lly—gll<p # Uy =7l 10F (=)
(z,y)€gph F, ¢ F~'(7)
(i) [0F|%(z,g) >lim  inf Gy =gl |OF|%(z,y);
PO flz—z|[<p, ly—gll<p
(z,y)€gph F,z¢ F~'(7)

i) [OF]*(z,5) > lim inf max{' GINOF], (2. y), L4 y))}
(i) PRS0 >t ot e (= gDIOF (). T
(»,y)Egph F,z¢ F ' (7)
@) PR @ 2ty ey - bforly(e. . SO0,
pl0  la—zl<p, ly—7ll<p |z -z
(z,y)€gph F, ¢ F ' (5)

If ¢'(0) < o0, then the above relations hold as equalities.

Proof We consider the first inequality. The others can be treated in the same way. If |0F|,(Z,y) = oo, the

inequality holds trivially. Let |0F|,(Z,y) < v < oo. Fix an arbitrary p > 0 and choose an o > 0 and a
P € (0,p) such that ¢'(t) > « for all t € [0,p) and p’ < ap. By (55), there exists an (z,y) € gph F' with
loz -z < o, ly—9ll < p and o ¢ F~Y(y); a y* € Y*, an 2* € D*F(x,y)(y*), and a v* € J(y — ¥)
such that [0 — y*|| < (¢/(ly - 51))~* and @/(ly — g)le"]| < 7 Hence, [}z — &l < p, ly — 7]l < p, and
[v* —y*|| < a™tp’ < p, and consequently the right-hand side of (i) is less than . The conclusion follows since
~ was chosen arbitrarily.

Let ¢'(0) < oo. To prove the opposite inequality, we proceed in the same way starting with the right-hand
side of (i). If it is infinite, the opposite inequality holds trivially. Suppose that the right-hand side of (i)
is less than some positive number v. Fix an arbitrary p > 0 and choose an « > 0 and a p’ € (0,p) such
that ¢'(t) < « for all t € [0,p) (in view of continuity of ') and p’ < a~'p. For this p’, there exists an
(z,y) € gph F with ||z —z|| < o, |ly =yl < p/ and = ¢ F~1(y); a y* € Y*, an 2* € D*F(z,y)(y*), and a
v* € J(y — ) such that [[v* — y*|| < ¢ and @/(ly — g)l|s*]| < 7. Hence, ||z — 3]l < p, |y — gl < p, and
lv* —y*|l < atp < (¢(|ly — 9ll))"p, and consequently, by (55), |0F|,(Z,y) < ~. The conclusion follows

since v was chosen arbitrarily. a

The next statement summarizes the relationships between the ¢-slopes. It is a consequence of Proposi-
tions 4.1, 4.2, 4.3, and 5.2.

Proposition 5.4 (Relationships between slopes)
) IVFIS fa9) > max {0 (9 (o).
(i) [VF[(z,9) = [VF[S(2,9) > [VF,(2,7).

If F and ¢ are convex, then (i) and (ii) hold as equalities.

p(d(y,y))

(()(ﬂ))} for all p > 0 and (z,y) € gph F with

Suppose X and Y are normed spaces.
(iil) |0F[5(z,y) < |0F|,(z,y) for all p > 0 and (z,y) € gph F';
(iv) [0F[%(z,9) < |0F|,(2,7) < |[OF|}(7,9) and
|0F|¢,(z,9) < |0F|3"(z,9) < [OF [ (2,9);
(V) IVF|o(z,9) > [0F|%(2,9) and [VF[f(z,5) > [OF|3" (2, 9)
provided that X andY are Asplund and gph F is locally closed near (Z,7);
(vi) |VF|,(2,9) = |0F|,(2,9) and [VF|(2,7) = |0F|}(z,7)
provided that'Y is Fréchet smooth and one of the following conditions is satisfied:

(a) X is Asplund and gph F is locally closed near (Z,§);
(b) F is convez.

5.3 Limiting outer y-coderivative

In finite dimensions, one can define the limiting outer w-coderivative of F being the realization of the limiting
g-coderivative (39) and a counterpart of the strict subdifferential ¢-slopes (55) and (56). Note that, due to
the assumptions imposed on ¢, the definition takes a simpler form, cf. Remark 4.2.
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gph D37 F(z,7) ::{(y*,x*) eY* x X* | g, yr, 25, Y, v5) CX XY x X* x Y™ x Y™ such that

(xfmyk) € gphF’ T ¢ F_l(g)a (y;;ax;::) € gphD*F(x/myk)a ’UZ € J(yk - g)y

(@, yr) = (2,9), vk — ¢ (lyr — 7)ok = 0, [ly*[lag — 2™,

if y* # 0, then yli — y* } (59)
Iyl Nyl

The above formula takes into account the representation from Proposition 5.2(ii). Thanks to the continuous
differentiability of ¢ and convexity of a norm, dg(y) = 9g(y) for all y € Y \ {0}. Taking into consideration
the closedness of the Fréchet normal cone, one can conclude that the realization of the approximate limiting
outer g-coderivative (40) also reduces to (59).

Remark 5.2 One can define also a @-coderivative counterpart of the modified strict subdifferential ¢-slopes
(57) and (58); cf. Remark 4.4.

The next proposition is a consequence of Proposition 4.4.

Proposition 5.5 Suppose X and Y are finite dimensional normed linear spaces. Then,

0F|,(7,9) = |0F[(z,y) = inf =]
m*ED;>F(I,y)(S;‘,*)

5.4 Criteria of metric p-subregularity

The next theorem is a consequence of Theorem 4.1.

Theorem 5.1 (i) *r,[F](7,9) < |VF|3,(7,7);
(ii) if X and Y are complete and gph F is locally closed near (%,7), then *r,[F|(Z,9) = [VF|3,(Z, 7).

The estimate in the next proposition can be useful when formulating necessary conditions of ¢-subregu-
larity. It incorporates the following constant characterizing the behaviour of ¢ near 0:

()
W] = hIEL%)nf o)

It is well defined since ¢(t) > 0 for all ¢ > 0. Obviously, 9[p] > 0. If ¢(t) = t? (t > 0), then J[p] = q.

(60)

Proposition 5.6 Suppose X andY are normed spaces and F is convex near (z,7y). Then, 9] *ro[F|(Z,7) <

Proof If *r,[F](Z,y) = 0 or ¥[¢] = 0, the conclusion is trivial. Suppose 0 < 7 < *r,[F|(z,y) and 0 < 71 <
~v2 < U[ep]. Then there exists a p > 0 such that

rd(w, F7' (@) < ¢(ly = 9ll), Vo € By(2)\ F7'(7), y € F(a), (61)
¢'(ly = gDlly — 9l = v2elly = 7l), ¥y € B,(y). (62)

Since ¢’(0) > 0, we can also assume that

p< oY vie ) (63)

Choose an arbitrary (z,y) € gphF with ||z — Z|| < p, ly — 9l < p, * ¢ F~1(y); v* € J(y — 3); and
z* € D*F(z,y)(v* +&,(y)pB*) where &,(y) = (¢'(ly—9l)))~*. By (61), one can find a point u € F~1(f) such
that

Tz —ull < e(ly =7l (64)
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By the convexity of F', the Fréchet normal cone to its graph coincides with the normal cone in the sense of
convex analysis, and consequently it holds

(% u—z) < ("7 =) +&Wely —ull = =(1 = & W) lly — I
Combining this with (62), (63), and (64), we have
¢ (ly = giDllz"Mu =zl = =¢'(ly = gD (", w = 2) = (" (ly = 7l) = p)lly — 7l
> 2¢(lly = 7l = (2 = )e(lly = gl) = nellly = gl > nrlu —=|.
Hence,
' (lly = glDllz" | >y,

and it follows from definitions (55) and (53) that [0F,(Z,y) > 717. Passing to the limit in the last inequality
as y1 — V[p| and T = *r [F|(Z,y), we arrive at the claimed inequality. O

The next two corollaries summarize quantitative and qualitative criteria of metric ¢-subregularity.

Corollary 5.1 (Quantitative criteria) Let v > 0. Consider the following conditions:

(a) F is metrically p-subregular at (T,7) with some T > 0;

(b) [VF[(2,9) >,
i.e., for some p > 0 and any (x,y) € gph F with x ¢ F~Y(y), d(x,Z) < p, and d(y,j) < p, it holds
IVF[S, (x,y) >, and consequently there is a (u,v) € gph I such that

@(d(y,zj)) - gD(d('U,ﬂ)) > vdp((u,v), ((E,y));

o e(d(y,y) _ .
© I Caem T

zgF~ (), yeF (z)
(d) |VF‘<P(fvg) > 7;

i.e., for some p > 0 and any (z,y) € gph F with x ¢ F~1(y), d(z,%) < p, and d(y,j) < p, it holds

©'(d(y,9))|VF|y(x,y) > ~, and consequently, for any € > 0, there is a (u,v) € gph F' N B.(x,y) such that

o' (d(y, ))(d(y,g) — d(v,7)) > vd,((u, v), (2,y)); (65)

(&) WFT:(5,9) > 7,
i.e., for some p > 0 and any (v,y) € X x Y with x ¢ F~Y(y), d(z,2) < p, d(y,5) < p, and
o(d(y,y))/d(x,z) < 7, it holds ¢’ (d(y,u))|VF|,(x,y) > v and consequently, for any € > 0, there is a
(u,v) € gph F'N B.(x,y) such that (65) holds true;

(f) X and Y are normed spaces and |OF|(Z, ) > 7,
i.e., for some p > 0 and any (v,y) € gph F with x ¢ F~1(g), | — Z|| < p, and ||y — §|| < p, it holds

O (lly — gj||)|6F|Zw(y)p(x,y) > vy, and consequently there exists an € > 0 such that

¢'(ly = g)llz" > v for all 2™ € D*F(x,y)(J(B:(y — 7)) + & (y)pB"); (66)

(¢) X and Y are normed spaces and w‘;f(f,gj) > 7,
i.e., for some p > 0 and any (v,y) € X x Y with x ¢ F~XY), |z —Z|| < p, ly — 4l < p, and ¢(|ly —
gD/ lx— || <7, it holds ¢'(|ly —QH)|6F|gw(y)p(m,y) > v and consequently, there exists an € > 0 such that
(66) holds true;

(h) X andY are normed spaces and [0F|,(Z,7) > v,
i.e., for some p > 0 and any (v,y) € gph F with x ¢ F~1(y), |l — Z|| < p, and ||y — §|| < p, it holds
& (ly — TIDIOF e, o) > 7, and consequently

¢(ly = gllz"ll > for all 2™ € D*F(x,y)(J(y — ) + & (y)pB"); (67)

1 an are normed spaces an z,y) >,

i) X andY d d aFj;
i.c., for some p > 0 and any (z,y) € X x Y with @ ¢ FY(3), o — 2] < p. |y — 7l < p. and o(|ly -
gl)/llz — Z|| <, it holds ¢'(|ly — GI)IOF ¢, (y)p(x,y) > and consequently, (67) holds true;
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(j) X and Y are finite dimensional normed spaces and

l*|| >~ for all 2" € 5:;>F(£,yj)(8§/*).
The following implications hold true:
(i) (¢) = (), (d) = (e), (e) = (b), (f) = (g) = (1), (f) = (h) = (i);

(ii) if v < 7, then (a) = (b);
(iii) if 7 <7, X and Y are complete, and gph F is locally closed near (Z,y), then (b) = (a).

Suppose X and Y are normed spaces.

(iv) if F is convex, and v < 9[p]T, then (a) = (h);
(v) (f) = (d) and (g) = (e) provided that X andY are Asplund and gph F is locally closed near (T,7);
(vi) (h) & (d) and (i) < (e)
provided that'Y is Fréchet smooth and one of the following conditions is satisfied:
(a) X is Asplund and gph F is locally closed near (Z,§);
(b) F is convex;
(vii) (b) & (d) & (e) & (h) & (i) provided that F and ¢ are convex;
(viii) if X andY are finite dimensional normed spaces, then (f) < (h) < (j).

The conclusions of Corollary 5.1 are illustrated in Fig. 3.

(c)

F,¢p convex \L F, convex <7
<z — T T — — < — T T = = < -7 T T~
@ (@) ®m=" " Tz
A <
el
| X, }}j?s}lﬂunél I\ [Y smooth X,Y complete /
close
| gp | | (X Asplund gph F closed/
. h F closed
(J)<——_——>(f) g lgp or ) /
x N dim X<<>O4 Fconvex /
dim Y <oco /
~ - | F,p convex /
~ \ 7
Ve
U —— o 5
> F,p convex XY normed”
T~ F convex
= — = = y<e]T

Fig. 3 Corollary 5.1

Corollary 5.2 (Qualitative criteria) Suppose X and Y are complete metric spaces and gph F is locally

closed near (Z,y). Then, F is metrically o-subregular at (Z,y) provided that one of the following conditions
holds true:

o P9
(b) hin_}lgrclf i.7) > 0;

e F~ (), yEF ()
(c) |VF|,(z,7) > 0 or equivalently,

im inf "(d(y, )|V F|,(z,y) > 0;
pl0  d(z,x)<p,d(y,5)<p 4 ( (y y))' |p( y)
(z,y)€gph F, x¢ F 1 (7)

(d) [VE[}(z,9) >0, or equivalently,

lim inf "(d(y,§)|VF|,(x,y) > 0.
pd0 d(z,7)<p, w&féiyg)))<p (P( (y y))| |p( y)

(x,y)Egph F, ¢ F~ ()

If X andY are Asplund spaces, then the following conditions are also sufficient:
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()

OF|g(z,7) > 0, or equivalently,

lim inf "(ly — gl |OF|* z,y) > 0;
R B @ (lly = yDIOFE, (), (@,y)
(¢.y)egph F,a ¢ F~(5)

(f) |0F %" (z,y) > 0, or equivalently,

lim inf #'(ly = IDIOFIE, (), (2 9) > 0.
PO Jlo—al|<p, 2zt <, et

(z,y)Egph F, z¢ F ' (7))

If X and Y are Banach spaces, then the next two conditions:

(g) |10F|4(Z,9) > 0, or equivalently,
¢'(ly = gIOF e, (y)p(x,y) > 0,

lim inf
PO lz—z|<p, Hy—ﬂl\f/ﬂ
(z,y)€gph F,2¢ F'~ (7))

(h) [oF[£(z,5) > 0, or equivalently,

li inf ! —qg|)|OF 0
ol0 I\w—i\|<p,m“’7(”y*g”’<p #llly = IN1OFle, o) > 0

(e.0)<8ph Fag - (3
are sufficient provided that one of the following conditions is satisfied:
— X is Asplund and Y is Fréchet smooth,
— F is convex and either Y is Fréchet smooth or ¢ is convez.
If X andY are finite dimensional normed spaces, then the following condition is also sufficient:
(i) 0¢ Dy F(z,5)(Sy.)-
Moreover,
(i) condition (a) is also necessary for the metric p-subregularity of F at (T,7);
(ii) (b) = (d), (¢) = (d), (d) = (a), (e) = (f) = (h), (¢) = (g) = (h).
Suppose X and Y are Banach spaces.
(iii) If X and Y are Asplund, then (e) = (c) and (f) = (d);
(iv) if Y is Fréchet smooth and either X is Asplund or F' is convex near (Z,7), then (e) < (c) and (f) < (d);
(v) if F is convex near (Z,y) and ¥[p] > 0, then condition (g) is also necessary for the metric p-subregularity
of F at (Z,7);
(vi) if F is convex near (Z,y) and ¢ is convexr near 0, then (a) < (c)
(vil) if X andY are finite dimensional normed spaces, then (e) < (g)

& (d) & (2) & (h);
< (i).
The conclusions of Corollary 5.2 are illustrated in Fig. 4.

5.5 Holder Metric Subregularity

Let a real number ¢ € (0,1] be given.
A set-valued mapping F': X = Y between metric spaces is called Hélder metrically subregular of order ¢
at (Z,7) € gph F with constant 7 > 0 if there exists a neighbourhood U of Z such that

rd(z, F~1(3)) < (d(g, F(x)))? for all x € U. (68)
This property is a special case of the metric p-subregularity property when
p(t)=1t1, teRy. (69)

It is easy to check that function ¢ defined by (69) is continuously differentiable (with possibly infinite ¢’'(0)
understood as the right-hand derivative) and satisfies conditions (Y1) and (2). In particular,
1 ifg=1,

Pt)=qt"", teRy\{0} and ¢(0)= ,
+oo if0<qg<1.

The representations and estimates of the previous section are applicable and lead to a series of criteria of

Holder metric subregularity; cf. [27].
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Fig. 4 Corollary 5.2

6 Conclusions

This article demonstrates how nonlinear metric subregularity properties of set-valued mappings between

general metric or Banach spaces can be treated in the framework of the theory of (linear) error bounds for

extended real-valued functions of two variables and provides a comprehensive collection of quantitative and

qualitative regularity criteria with the relationships between the criteria identified and illustrated. Several

kinds of primal and subdifferential slopes of set-valued mappings are used in the criteria.

7 Conflict of Interest

The author declares that he has no conflict of interest.

References

10.

11.

. Apetrii, M., Durea, M., Strugariu, R.: On subregularity properties of set-valued mappings. Set-Valued Var. Anal. 21(1),

93-126 (2013)

Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Proceedings of 2003 MODE-SMAI Conference,
ESAIM Proc., vol. 13, pp. 1-17. EDP Sci., Les Ulis (2003)

Azé, D., Corvellec, J.N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM
Control Optim. Calc. Var. 10(3), 409-425 (2004)

Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

Borwein, J.M., Zhuang, D.M.: Verifiable necessary and sufficient conditions for openness and regularity for set-valued and
single-valued maps. J. Math. Anal. Appl. 134, 441-459 (1988)

Corvellec, J.N., Motreanu, V.V.: Nonlinear error bounds for lower semicontinuous functions on metric spaces. Math. Program.,
Ser. A 114(2), 291-319 (2008)

De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180-187 (1980). In Italian

Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal.
12(1-2), 79-109 (2004)

Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2 edn.
Springer Series in Operations Research and Financial Engineering. Springer, New York (2014)

Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta
Univ. Carolinae 30, 51-56 (1989)

Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Var.
Anal. 18(2), 121-149 (2010)


https://www.researchgate.net/publication/257666554_On_Subregularity_Properties_of_Set-Valued_Mappings?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/257666554_On_Subregularity_Properties_of_Set-Valued_Mappings?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/265332955_A_survey_on_error_bounds_for_lower_semicontinuous_functions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/265332955_A_survey_on_error_bounds_for_lower_semicontinuous_functions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/266553275_Techniques_of_Variational_Analysis?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/222881847_Verifiable_necessary_and_sufficient_conditions_for_openness_and_regularity_of_set-valued_and_single-valued_maps?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/222881847_Verifiable_necessary_and_sufficient_conditions_for_openness_and_regularity_of_set-valued_and_single-valued_maps?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220589747_Nonlinear_error_bounds_for_lower_semicontinuous_functions_on_metric_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220589747_Nonlinear_error_bounds_for_lower_semicontinuous_functions_on_metric_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/265826167_Implicit_functions_and_solution_mappings_A_view_from_variational_analysis?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/265826167_Implicit_functions_and_solution_mappings_A_view_from_variational_analysis?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/266513063_Subdifferentiability_and_trustworthiness_in_the_light_of_a_new_variational_principle_of_Borwein_and_Preiss?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/266513063_Subdifferentiability_and_trustworthiness_in_the_light_of_a_new_variational_principle_of_Borwein_and_Preiss?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/229031606_Error_Bounds_Necessary_and_Sufficient_Conditions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/229031606_Error_Bounds_Necessary_and_Sufficient_Conditions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/277282775_Regularity_and_conditioning_of_solution_mappings_in_variational_analysis?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/277282775_Regularity_and_conditioning_of_solution_mappings_in_variational_analysis?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==

24

12.

13.
14.
15.
16.
17.

18.
19.

20.
21.
22.
23.

24.
25.

26.
27.
28.
29.

30.
31.

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.
45.

46.

47.

48.

Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: About error bounds in metric spaces. In: D. Klatte, H.J. Liithi
K. Schmedders (eds.) Operations Research Proceedings 2011. Selected papers of the Int. Conf. Operations Research (OR
2011), August 30 — September 2, 2011, Zurich, Switzerland, pp. 33-38. Springer-Verlag, Berlin (2012)

Frankowska, H.: An open mapping principle for set-valued maps. J. Math. Anal. Appl. 127(1), 172-180 (1987)
Frankowska, H.: High order inverse function theorems. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(suppl.), 283-303 (1989)
Frankowska, H., Quincampoix, M.: Holder metric regularity of set-valued maps. Math. Program. 132(1-2, Ser. A), 333-354
2012

Gaydu, M., Geoffroy, M.H., Jean-Alexis, C.: Metric subregularity of order ¢ and the solving of inclusions. Cent. Eur. J.
Math. 9(1), 147-161 (2011)

Henrion, R., Jourani, A.: Subdifferential conditions for calmness of convex constraints. SIAM J. Optim. 13(2), 520-534
(2002)

Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13(2), 603-618 (2002)
Henrion, R., Outrata, J.V.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258(1), 110-130
(2001)

Ioffe, A.D.: Metric regularity and subdifferential calculus. Russian Math. Surveys 55, 501-558 (2000)

Ioffe, A.D.: Nonlinear regularity models. Math. Program. 139(1-2), 223-242 (2013)

Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal.
16(2-3), 199-227 (2008)

Toffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems, Studies in Mathematics and its Applications, vol. 6. North-
Holland Publishing Co., Amsterdam (1979)

Klatte, D.: On quantitative stability for non-isolated minima. Control Cybernet. 23(1-2), 183-200 (1994)

Klatte, D., Kruger, A.Y., Kummer, B.: From convergence principles to stability and optimality conditions. J. Convex Anal.
19(4), 1043-1072 (2012)

Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. 116(3), 3325-3358 (2003)

Kruger, A.Y.: Error bounds and Holder metric subregularity. arXiv: 1411.6414 (2015)

Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49-79 (2015)

Kummer, B.: Inclusions in general spaces: Hoelder stability, solution schemes and Ekeland’s principle. J. Math. Anal. Appl.
358(2), 327-344 (2009)

Leventhal, D.: Metric subregularity and the proximal point method. J. Math. Anal. Appl. 360(2), 681-688 (2009)

Li, G., Mordukhovich, B.S.: Holder metric subregularity with applications to proximal point method. SIAM J. Optim. 22(4)
1655-1684 (2012)

Lucchetti, R.: Convexity and Well-Posed Problems. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC
22. Springer, New York (2006)

Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

Mordukhovich, B.S., Ouyang, W.: Higher-order metric subregularity and its applications. Optimization Online (07/4440)
1-17 (2014)

Ngai, H.V., Théra, M.: Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to
optimization. Set-Valued Anal. 12(1-2), 195-223 (2004)

Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity.
SIAM J. Optim. 19(1), 1-20 (2008)

Ngai, H.V., Tron, N.H., Théra, M.: Hélder metric subregularity via error bounds Preprint

Pang, J.S.: Error bounds in mathematical programming. Math. Programming, Ser. B 79(1-3), 299-332 (1997)

Penot, J.P.: Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal. 13(6), 629-643 (1989)

Penot, J.P.: Error bounds, calmness and their applications in nonsmooth analysis. In: Nonlinear analysis and optimization
I1. Optimization, Contemp. Math., vol. 514, pp. 225-247. Amer. Math. Soc., Providence, RI (2010)

Penot, J.P.: Calculus without Derivatives, Graduate Texts in Mathematics, vol. 266. Springer, New York (2013)
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

Yen, N.D., Yao, J.C., Kien, B.T.: Covering properties at positive-order rates of multifunctions and some related topics. J.
Math. Anal. Appl. 338(1), 467-478 (2008)

Zglinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co. Inc., River Edge, NJ (2002)
Zheng, X.Y., Ng, K.F.: Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces.
SIAM J. Optim. 18, 437-460 (2007)

Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J.
Optim. 20(5), 2119-2136 (2010)

Zheng, X.Y., Ng, K.F.: Metric subregularity for proximal generalized equations in Hilbert spaces. Nonlinear Anal. 75(3)
1686-1699 (2012)

Zheng, X.Y., Ouyang, W.: Metric subregularity for composite-convex generalized equations in Banach spaces. Nonlinear
Anal. 74(10), 3311-3323 (2011)



https://www.researchgate.net/publication/265491812_About_error_bounds_in_metric_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/265491812_About_error_bounds_in_metric_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/265491812_About_error_bounds_in_metric_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/222917152_An_open_mapping_principle_for_set-valued_maps?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/237775586_HIGH_ORDER_INVERSE_FUNCTION_THEOREMS?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/225846870_Holder_metric_regularity_of_set-valued_maps?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/225846870_Holder_metric_regularity_of_set-valued_maps?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/225524732_Metric_subregularity_of_order_q_and_the_solving_of_inclusions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/225524732_Metric_subregularity_of_order_q_and_the_solving_of_inclusions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133489_Subdifferential_Conditions_for_Calmness_of_Convex_Constraints?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133489_Subdifferential_Conditions_for_Calmness_of_Convex_Constraints?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133042_On_the_Calmness_of_a_Class_of_Multifunctions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/255664014_A_Subdifferential_Condition_for_Calmness_of_Multifunctions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/255664014_A_Subdifferential_Condition_for_Calmness_of_Multifunctions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/231121635_Metric_regularity_and_subdifferential_calculus?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/257479952_Nonlinear_regularity_models?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/226383871_On_Metric_and_Calmness_Qualification_Conditions_in_Subdifferential_Calculus?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/226383871_On_Metric_and_Calmness_Qualification_Conditions_in_Subdifferential_Calculus?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/230873007_Theory_of_Extremal_Problems?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/230873007_Theory_of_Extremal_Problems?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/247016450_On_quantitative_stability_for_non-isolated_minima?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/259313514_From_Convergence_Principles_to_Stability_and_Optimality_Conditions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/259313514_From_Convergence_Principles_to_Stability_and_Optimality_Conditions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/241018477_On_Frechet_Subdifferentials?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/262108538_Error_Bounds_and_Metric_Subregularity?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/222672210_Inclusions_in_general_spaces_Hoelder_stability_solution_schemes_and_Ekeland's_principle?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/222672210_Inclusions_in_general_spaces_Hoelder_stability_solution_schemes_and_Ekeland's_principle?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/222414198_Metric_Subregularity_and_the_Proximal_Point_Method?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/266074157_Holder_Metric_Subregularity_with_Applications_to_Proximal_Point_Method?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/266074157_Holder_Metric_Subregularity_with_Applications_to_Proximal_Point_Method?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/267005715_Convexity_and_well-posed_problems?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/267005715_Convexity_and_well-posed_problems?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/276306359_Higher-Order_Metric_Subregularity_and_Its_Applications?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/276306359_Higher-Order_Metric_Subregularity_and_Its_Applications?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/263372439_Error_Bounds_and_Implicit_Multifunction_Theorem_in_Smooth_Banach_Spaces_and_Applications_to_Optimization?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/263372439_Error_Bounds_and_Implicit_Multifunction_Theorem_in_Smooth_Banach_Spaces_and_Applications_to_Optimization?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133741_Error_Bounds_in_Metric_Spaces_and_Application_to_the_Perturbation_Stability_of_Metric_Regularity?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133741_Error_Bounds_in_Metric_Spaces_and_Application_to_the_Perturbation_Stability_of_Metric_Regularity?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/234786686_Metric_regularity_openness_and_Lipschitzian_behavior_of_multifunctions?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/266994722_Calculus_without_derivatives?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/241272776_Covering_properties_at_positive-order_rates_of_multifunctions_and_some_related_topics?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/241272776_Covering_properties_at_positive-order_rates_of_multifunctions_and_some_related_topics?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133037_Metric_Subregularity_and_Constraint_Qualifications_for_Convex_Generalized_Equations_in_Banach_Spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133037_Metric_Subregularity_and_Constraint_Qualifications_for_Convex_Generalized_Equations_in_Banach_Spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133696_Metric_Subregularity_and_Calmness_for_Nonconvex_Generalized_Equations_in_Banach_Spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/220133696_Metric_Subregularity_and_Calmness_for_Nonconvex_Generalized_Equations_in_Banach_Spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/257179673_Metric_subregularity_for_proximal_generalized_equations_in_Hilbert_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/257179673_Metric_subregularity_for_proximal_generalized_equations_in_Hilbert_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/229346580_Composite-convex_generalized_equations_in_Banach_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/229346580_Composite-convex_generalized_equations_in_Banach_spaces?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/268748015_Error_Bounds_and_Holder_Metric_Subregularity?el=1_x_8&enrichId=rgreq-6538ede668ec552e77bc343afc3addfb-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1MjExNDtBUzoyMDUwMzUwODM0NDAxMjlAMTQyNTg5NTU4MTU3MA==
https://www.researchgate.net/publication/272752114



