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Abstract Convexity properties of a generalized system with infinite dimen-
sional image are investigated by means of the notions of image and its extensions
associated with the system. Complete characterizations of (proper) linear sep-
aration in the image space are given by using the quasi relative interior, which
allow one to obtain necessary and/or sufficient conditions for the impossibility
of an image convex generalized system with infinite dimensional image. These
new results are applied to investigate vector quasi optimization problems and
vector dynamic variational inequalities.
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1 Introduction

Generalized systems provide a general framework to analyse vector equilibrium
problems, vector optimization problems, complementarity systems, variational
and quasi variational inequalities (see, e.g., [1–3]). Such problems can be re-
duced to the impossibility of a generalized system (GS) which can be studied by
means of separation techniques in the image space associated with the (GS) [4–
6]. In this paper, motivated by the pioneering works [2, 3] we provide a further
contribution in the analysis of the property of image convexity of a (GS), giving
particular emphasis to the applications to vector quasi optimization problems
and vector quasi variational inequalities. Image convexity can be investigated
by means of the image space analysis [1], since several of the recently introduced
generalized convexity notions have shown to be equivalent to the convexity of
suitable extensions of the image of the mapping involved in the (GS) [2, 7, 8].
Image convexity provides equivalent formulations of the impossibility of a (GS)
in terms of the disjunction of two convex sets in the image space associated with
the (GS). By using (proper) linear separation arguments related to the quasi
relative interior in the image space, we obtain necessary and/or sufficient con-
ditions for the impossibility of a (GS) and we apply these results to investigate
vector quasi optimization problems and vector dynamic variational inequalities.
So far, there are few results concerning optimization problems and variational
inequalities with infinite dimensional image from the view of the image space.
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To the best of our knowledge, our results, especially complete characterizations
of (proper) linear separation in the image space and related arguments, are new,
compared with those existing in the literature, where, in general, classical sep-
aration techniques related to the interior but not to the quasi relative interior
were employed.

The paper is organized as follows. Section 2 is devoted to preliminary defi-
nitions and results which will be used throughout the paper. In Section 3, the
image of a (GS) is defined and the problem of stating the impossibility of the
(GS) is equivalently expressed by means of the disjunction of two suitable sets in
the image space associated with the (GS). Next we recall some of the main con-
vexity properties of a mapping and we relate such properties to suitable conical
extensions of the image mapping. In Section 4 we analyse the notion of image
convexity of a (GS) and we show that the generalized convexity assumptions
considered in Section 3 are sufficient conditions in order to guarantee the image
convexity of the (GS). Applications to vector quasi optimization problems and
vector dynamic variational inequalities are considered in Section 5, devoting
particular attention to linear separation and saddle point optimality conditions.

2 Preliminaries

A generalized system [1, 2] is defined by

F (x; y) ∈ Hy ⊆ V, x ∈ K, (1)

where y ∈ Y a parameter set, V is a real topological linear space, Hy ⊆ V , for
every y ∈ Y , K is a subset of the topological linear space X, and F : X×Y → V
is a mapping.

In this paper, we consider two generalizations of the previous problems. The
first one is the vector quasi optimization problem (P) defined by

minC(y)f(x), s.t. x ∈ R(y) := {x ∈ K : g(x, y) ∈ D(y)},

where Y and Z are topological linear spaces, f : X → Y, g : X × X → Z,
K ⊆ X, C(y) is a closed pointed convex cone in Y and D(y) a closed convex
cone in Z, for every y ∈ Y := {y ∈ X : y ∈ R(y)}.

We say that y ∈ Y is a vector quasi minimum point (for short, v.q.m.p.) for
(P) if f(y)− f(x) 6∈ C(y) \ {0}, ∀x ∈ R(y). Put

F (x; y) := (f(y)− f(x), g(x, y)), Hy := (C(y) \ {0})×D(y), (2)

where x ∈ X and y ∈ Y . Then y ∈ Y is a v.q.m.p. for (P) iff system (1) is
impossible. Assume, additionally, that C(y), y ∈ Y , is with nonempty interior.
Setting F (x; y) := (f(y) − f(x), g(x, y)), Hy := (intC(y)) ×D(y). Then y ∈ Y
is a weak v.q.m.p. for (P) iff system (1) is impossible.

Let L(X,Y) be the set of continuous linear operators from X to Y and for
l ∈ L(X,Y), denote by 〈l, x〉 the value of l at x. The second problem that will
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be considered is the vector quasi variational inequality (VQVI) that consists in
finding y ∈ Y := {y ∈ X : y ∈ R(y)}, where R(y) is defined as in the previous
problem, such that

〈T (y), x− y〉 6∈ C(y) \ {0}, ∀x ∈ R(y),

where T : X → L(X,Y). Put F (x; y) := (〈T (y), x− y〉, g(x, y)), Hy := (C(y) \
{0})×D(y), where x ∈ X and y ∈ Y . Then y ∈ Y is a solution of (VQVI) iff
(1) is impossible.

The following notations and definitions will be considered throughout the
paper.

Denote by N the set of positive integers. Let IRn be the n dimensional
Euclidean space, where n ∈ N. Let IRn

+ := {x ∈ IRn : x ≥ 0} and IRn
++ := {x ∈

IRn : x > 0}, where n ∈ N. Let IR+ := IR1
+, and so forth.

Let M,Q be subsets of a Hausdorff locally convex topological linear space V .
The closure, the interior, the boundary and the convex hull of M are denoted
by clM , intM , bdM and convM , respectively. It is well known that if V is
finite dimensional, then the relative interior of M , say riM , is the interior of
M relative to its affine hull. Let M + Q := {m + q ∈ V : m ∈ M, q ∈ Q},
IR+M := {tm ∈ V : m ∈ M, t ∈ IR+} and IR++M := {tm ∈ V : m ∈ M, t ∈
IR++}.

The set M ⊆ V is said to be a cone if λM ⊆ M , with λ ≥ 0, and a convex
cone if, in addition, M + M ⊆ M . Denote by coneM := IR+M the cone
generated by M and let cone+M := IR++M . M∗ := {y ∈ V ∗ : 〈x, y〉 ≥ 0, ∀x ∈
M} is the positive polar (or the dual cone) of M , where V ∗ is the topological
dual of V . A convex cone M ⊆ V is called pointed if M ∩ (−M) = {0}.

Let M ⊆ V be a convex set and x ∈ M . NM (x) is the normal cone to M
at x and is defined by NM (x) := {z ∈ V ∗ : 〈z, y − x〉 ≤ 0, ∀ y ∈ M}. It is
clear that 0 ∈ NM (x), and if x = 0, then NM (x) = −M∗. If x ∈ intM , then
NM (x) = {0}. That is to say, if NM (x) 6= {0}, then x ∈ bdM .

Separation arguments related to quasi relative interior, introduced by Bor-
wein and Lewis [9], are useful in investigating the generalized system (1).

Definition 2.1 (see [9]) Let M be a subset of a Hausdorff locally convex topo-
logical linear space V .

(i) We say that x ∈M is a quasi interior point of M , denoted by x ∈ qiM , if
cl cone(M − x) = V , or equivalently, NM (x) = {0};

(ii) We say that x ∈ M is a quasi relative interior point of M , denoted by
x ∈ qriM , if cl cone(M − x) is a linear subspace of V , or equivalently,
NM (x) is a linear subspace of V ∗.

For any convex set M , we have that qiM ⊆ qriM and, intM 6= ∅ implies
intM = qriM [9] and intM = qiM [10]. Moreover, qri{x} = {x}, ∀x ∈ V .
Similarly, if qiM 6= ∅, then qiM = qriM [10, 11], see also [12, 13]. Moreover, if
V is a finite dimensional space, then qiM = intM and qriM = riM [9].

We need the following lemmas.
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Lemma 2.1 Let us consider M and N two nonempty convex subsets of the
Hausdorff locally convex topological linear space Y , x ∈ Y and t ∈ IR. Then the
following statements are true:

(i) qriM + qriN ⊆ qri(M +N);

(ii) qri(M ×N) = qriM × qriN ;

(iii) qri(M − x) = qriM − x;

(iv) If qriM 6= ∅, then qri(tM) = t qriM ;

(v) t qriM + (1− t)M ⊆ qriM , ∀t ∈ (0, 1]; hence, qriM is a convex set;

(vi) If qriM 6= ∅, then cl qriM = clM ;

(vii) If M is a convex cone, then qriM +M = qriM ;

(viii) If qriM 6= ∅, then (qriM)∗ = M∗;

(ix) If qiM 6= ∅, then qiM −N ⊆ qi(M −N); furthermore, if N := {x}, then
qi(M − x) = qiM − x.

Proof Statements (i)-(vi) can be found in [9, 10, 14, 15]. Statements (vii)-(ix)
can be found in [4, 16]. 2

Lemma 2.2 [17, Lemma 2.6] Let M ⊆ V be a nonempty set and N ⊆ V a
convex cone with qriN 6= ∅. Then cl[cone(M + N)] = cl[cone(M + qriN)] =
cl[coneM + qriN ].

Lemma 2.3 [9, Proposition 2.21] Let X and Y be Hausdorff locally convex
spaces with M a convex subset of X and A : X → Y a linear continuous
operator. Then A(qriM) ⊆ qriA(M).

Lemma 2.4 [18, Lemma 2.5] Let M ⊆ V be a nonempty set and P ⊆ V a
convex cone with intP 6= ∅. Then M + intP = int(M + P ).

3 Image of a Generalized System and Convexity
Properties of Image Mappings

In the first part of this section, we introduce the notions of image associated
with system (1) and of its extensions. In the second part, we recall some of the
main convexity concepts introduced in the literature and point out that they
are closely related to the convexity properties of the extended images of the
functions involved.

Definition 3.1 Ky:=F (K; y), y ∈ Y, is called the image associated with the
generalized system (1).
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Let y ∈ Y ; we recall that the generalized system (1) is impossible iff

Ky ∩Hy = ∅. (3)

In the image space approach, (3) is proved by means of separation techniques
[1]. In particular, when Ky and Hy are “linearly separable” (i.e. they admit a
separating hyperplane), and, moreover, are supposed to be disjoint, we will say
that the system (1) is image convex (see Definition 4.1).

It is evident that convexity properties of the image mapping F (·; y) play a
crucial role in order to state the image convexity of (1). Most of the generalized
convexity properties of the mapping F (·; y) can be related to the convexity of a
suitable approximation of the image Ky, namely its extension with respect the
set Ay ⊆ V , defined by:

E(Ay) := Ky +Ay, y ∈ Y.

The introduction of the extension of the image set allows us to obtain an equiv-
alent formulation of condition (3) [2]:

Proposition 3.1 [2, Theorem 2.1] Let y ∈ Y and assume that

Hy −Ay = Hy. (4)

Then the generalized system (1) is impossible iff

E(Ay) ∩Hy = ∅. (5)

As mentioned by one referee, the condition (4) is related to the so-called free
disposal from the Economics. The following statements provide conditions such
that (4) holds.

Proposition 3.2 Let V be a Hausdorff locally convex topological linear space
and y ∈ V . Condition (4) is fulfilled in the following particular cases:

(i) Ay := −Hy and Hy is a convex cone;

(ii) Ay := −clHy and Hy is defined as in (2);

(iii) Ay := −intHy ∪ {0}, provided that Hy is a convex cone with intHy 6= ∅;

(iv) Ay is a convex cone and Hy := −qriAy, provided that qriAy 6= ∅.

Proof For (i)-(iii) see [19].
(iv) The conclusion follows directly from (vii) in Lemma 2.1. 2

By (iv) of the previous proposition it follows that (4) holds if Ay := −Q,
Hy := riQ, where Q ⊆ IRn is a convex cone.

Hence, proving the impossibility of (1) is equivalent to show that (5) holds,
which, in certain cases, may be easier to prove, because the set E(Ay) may have
some advantageous properties that Ky has not. For example, if (P) is a finite
dimensional convex problem, i.e., f is C(y)-convex and −g(·, y) is D(y)-convex,
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for every y ∈ Y , with Y and Z finite dimensional, then E(Ay) is convex and
system (1) is image convex.

We recall that f : X → Y is C-convex on K, if, for any x1, x2 ∈ K,α ∈]0, 1[,
αf(x1) + (1 − α)f(x2) − f(αx1 + (1 − α)x2) ∈ C, where K is a convex subset
of X and C be a convex cone in Y. Note that, when Y := IR and C := IR+, the
previous definition collapses to that of the classic convexity.

In the second part of this section, we analyse the convexity properties of
extended images E(Ay) in order to weaken the assumptions on F (·, y) which
guarantee the image convexity of (1).

The concept of convexity related to a function has been generalized in several
ways. Some of the most important ones are summarized in the next definition.

Definition 3.2 Let X and Y be real topological linear spaces, K ⊆ X, A ⊆ Y
be a convex cone, and f : X → Y be a mapping.

(i) f is said to be A-convexlike on K, if, for any x1, x2 ∈ K and any α ∈]0, 1[,
there exists x3 ∈ K, such that αf(x1) + (1− α)f(x2)− f(x3) ∈ A;

(ii) Suppose that qriA 6= ∅. f is said to be A-subconvexlike on K, if f(K) +
qriA is convex;

(iii) f is said to be closely A-convexlike on K, if the set cl(f(K)+A) is convex;

(iv) f is said to be A-preconvexlike on K, if, for any x1, x2 ∈ K and α ∈]0, 1[,
there exists x3 ∈ K and ρ > 0, such that αf(x1)+(1−α)f(x2)−ρf(x3) ∈
A;

(v) Suppose that qriA 6= ∅. f is said to be generalized A-subconvexlike on K,
if conef(K) + qriA is convex.

Remark 3.1 In (ii)-(v), we do not suppose that intA 6= ∅. Under the as-
sumption intA 6= ∅, some equivalent characterizations of (ii)-(v) have been
given by many authors. These results are useful in obtaining the image con-
vexity of system (1). Convexlike mappings were considered by Fan [20]. A-
subconvexlike mappings were introduced by Jeyakumar [21] as follows: f is
said to be A-subconvexlike on K, if there exists an a0 ∈ A, such that for
any x1, x2 ∈ K, for any α ∈]0, 1[ and ε > 0, there exists x3 ∈ K such that
εa0 + αf(x1) + (1 − α)f(x2) − f(x3) ∈ A, which is equivalent to assume that
the set f(K) + intA is convex under the assumption that intA 6= ∅ (see, for
example, [7, 22, 23]).

The class of closely A-convexlike mappings was considered in [18]. If intA 6=
∅, then f is A-subconvexlike on K iff it is closely A-convexlike on K [24].

Definitions 3.2 (iv) and (v) were introduced in [8] and [17], respectively. If
intA 6= ∅, then Definition 3.2 (v) collapses to the following: f is generalized A-
subconvexlike onK, if conef(K)+intA is convex. This definition is equivalent to
that given by Yang, Yang and Chen [25] as follows (see, for example, [7, 22, 23]):
there exists an a0 ∈ intA, such that for any x1, x2 ∈ K, α ∈]0, 1[ and ε > 0, there
exists x3 ∈ K and ρ > 0, such that εa0 + αf(x1) + (1− α)f(x2)− ρf(x3) ∈ A.
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Next results ([26, Lemma 3.1], [27, Proposition 5]) state characterizations
of A-convexlike and A-preconvexlike functions, in terms of the properties of
suitable conical extensions of their images.

Proposition 3.3 Let A ⊆ Y be a convex cone. Then

(i) f is A-convexlike on K, iff the set f(K) +A is ,convex.

(ii) f : X → Y is A-preconvexlike on K iff the set cone+f(K) +A is convex.

It is not difficult to show that the following relations hold:

f A-convex ⇒ f A-convexlike ⇒ f A-preconvexlike.

where, in the first implication, K is assumed to be convex, and

f A-preconvexlike ⇒ f generalized A-subconvexlike.

For the last implication, it is enough to observe that, since A is a convex cone,
from Lemma 2.1 (vii) one has cone+f(K) + qriA = cone+f(K) + A + qriA
and the last set is convex in view of Proposition 3.3 (ii). The convexity of
cone+f(K) + qriA implies the convexity of conef(K) + qriA, recalling that
qriA is a convex set.

Similarly, it can be shown that

f A-subconvexlike ⇒ f generalized A-subconvexlike.

The reverse implication does not hold as shown by the following example.

Example 3.1 Let K := {(x1, x2) ∈ IR2
+ : x2

1 + x2
2 > 1}, f : IR2 → IR2 be

defined by f(x1, x2) := (x1, x2) and A := IR+×{0}. It is simple to see that
qriA = IR++×{0} and that:

f(K) + qriA = {(x1, x2) ∈ IR2
+ : x2

1 + x2
2 > 1, x1 > 0},

conef(K) + qriA = {(x1, x2) ∈ IR2
+ : x1 > 0}.

Therefore, f is not A-subconvexlike on K, but it is generalized A-subconvexlike
on K.

Next theorem states a characterization of the generalized convexity concepts,
introduced in Definition 3.2, in terms of the properties of the extended image
associated with the generalized system (1).

Theorem 3.1 Let Ay ⊆ V be a convex cone, F : X × Y → V a mapping and
K ⊆ X. Then

(a) F (·; y) is Ay-convexlike on K iff the set E(Ay) is convex;

(b) F (·; y) is Ay-preconvexlike on K iff the set cone+E(Ay) is convex;
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(c) F (·; y) is closely Ay-convexlike on K iff the set clE(Ay) is convex.

(d) F (·; y) is Ay-subconvexlike on K iff the set E(qriAy) is convex.

Assume that that intAy 6= ∅.

(e) F (·; y) is Ay-subconvexlike on K iff the set intE(Ay) is convex;

(f) F (·; y) is generalized A(y)-subconvexlike on K iff the set int[coneE(Ay)]
is convex under the assumption that 0 ∈ Ky = F (K; y).

Proof (a) It follows from Proposition 3.3 (i).
(b) From Proposition 3.3 (ii) we have that F (·; y) is Ay-preconvexlike on K iff
the set cone+ F (K; y) +Ay is convex. We observe that

cone+E(Ay) := {u ∈ V : u = λ(F (x; y) + a), x ∈ K, a ∈ Ay, λ > 0}
= {u ∈ V : u = λF (x; y) + a, x ∈ K, a ∈ Ay, λ > 0}
= cone+F (K; y) +Ay,

where the first equality is due to the hypothesis that Ay is a cone. This com-
pletes the proof of part (b).
(c) and (d) follow directly by Definition 3.2 (iii) and (ii) respectively.
(e) It follows from Definition 3.2 (ii) and Lemma 2.4.
(f) Let M ⊆ V be a nonempty set with 0 ∈M and P ⊆ V a cone. We first note
that cone(M + P ) = coneM + P . In fact, since P is a cone, cone(M + P ) ⊆
cone(coneM + P ) = coneM + P . Let ta+ b ∈ coneM + P , where a ∈M, b ∈ P
and t ≥ 0. If t = 0, then ta+ b = b ∈ cone(M + P ) since 0 ∈M . If t > 0, then
ta+ b = t(a+ 1

t b) ∈ cone(M + P ).
From Definition 3.2 (v) we have that F (·; y) is generalized Ay-subconvexlike

on K iff the set coneF (K; y) + intAy is convex. Since 0 ∈ F (K; y), by Lemma
2.4 it follows that

coneF (K; y) + intAy = int[coneF (K; y) + Ay]

= int[cone(F (K; y) + Ay)] = int[coneE(Ay)].

This completes the proof. 2

4 Image Convexity of Generalized Systems

In this section, we formally recall and analyse the concept of image convexity
of system (1) and we establish sufficient conditions for its fulfillment.

Definition 4.1 The generalized system (1) is said to be image convex, if for all
y ∈ Y such that (1) is impossible, the sets Ky and Hy are linearly separable.

Observe that, if Hy is a cone, then the image convexity is equivalent to the
fact that, whenever (1) is impossible, there exists λ∗ ∈ H∗y \ {0} such that

〈λ∗, F (x; y)〉 ≤ 0, ∀x ∈ K.
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Although, in most of the applications clHy is a convex cone, for further
developments, we first state some results that do not rely on such an assumption.

Proposition 4.1 Assume that (4) is fulfilled. Then, Ky and Hy are (properly)
linearly separable iff E(Ay) and Hy are (properly) linearly separable.

Proof We preliminary note that for given two nonempty subsets B and C in
V , B and C are (properly) linearly separable iff {0} and B − C are (properly)
linearly separable. Indeed, let λ∗ ∈ V ∗ \ {0}. Then,

sup
b∈B
〈λ∗, b〉 ≤ inf

c∈C
〈λ∗, c〉 ⇔ 〈λ∗, b〉 ≤ 〈λ∗, c〉, ∀b ∈ B, ∀c ∈ C

⇔ 〈λ∗, b− c〉 ≤ 0, ∀b ∈ B, ∀c ∈ C,

which proves that the linear separability between B and C is equivalent to the
one between {0} and B − C. For the proper separability, we have further to
ensure that

inf
b∈B
〈λ∗, b〉 < sup

c∈C
〈λ∗, c〉 ⇔ inf

b∈B
c∈C

〈λ∗, b− c〉 < 0.

Now let B := Ky and C := Hy. Then Ky and Hy are (properly) linearly
separable iff {0} and Ky − Hy are (properly) linearly separable. By (4) it
follows that

Ky −Hy = Ky −Hy +Ay = E(Ay)−Hy,

which implies that the (proper) separability between {0} and E(Ay) − Hy is
equivalent to the (proper) separability between {0} and Ky−Hy. This completes
the proof. 2

Proposition 4.2 Let V be a Hausdorff locally convex topological linear space
and suppose that clAy = −clHy. Then Ky and Hy are linearly separable iff
Ncone conv(E(Ay))(0) 6= {0}, that is, 0 6∈ qi[cone conv(E(Ay)].

Proof Note that Ky and Hy are linearly separable iff there exists λ∗ ∈ V ∗ \{0}
such that

〈λ∗, u− w〉 ≤ 0, ∀u ∈ Ky,∀w ∈ Hy.

Since clAy = −clHy, this is equivalent to

〈λ∗, u+ w〉 ≤ 0, ∀u ∈ Ky,∀w ∈ Ay.

The previous inequality holds iff 〈λ∗, e−0〉 ≤ 0, ∀e ∈ conv(E(Ay)), and, in turn,
iff 〈λ∗, e− 0〉 ≤ 0, ∀e ∈ cone conv(E(Ay)), i.e., 0 6= λ∗ ∈ Ncone conv(E(Ay))(0) or
equivalently, by Definition 2.1, 0 6∈ qi[cone conv(E(Ay))]. 2

Remark 4.1 Observe that the condition Ncone conv(E(Ay))(0) 6= {0} is equiva-
lent to [cone convE(Ay)]∗ 6= {0}.

9



Next result given in [28] states that a point and a set can be separated
properly in Hausdorff locally convex topological linear spaces under suitable
assumptions in terms of the quasi relative interior.

Theorem 4.1 Let M be a nonempty subset of the Hausdorff locally convex topo-
logical linear space V . Then 0 6∈ qri[cone convM ] iff 0 and M can be separated
properly, i.e., there exists l∗ ∈ V ∗\{0} such that 〈l∗, x〉 ≤ 0,∀x ∈M with strict
inequality for some x̄ ∈M .

Similarly to Proposition 4.2 , we have the following:

Proposition 4.3 Let V be a Hausdorff locally convex topological linear space
and suppose that clAy = −clHy.Then the sets Ky and Hy are properly linearly
separable iff Ncone conv(E(Ay))(0) is not a linear subspace of V ∗, that is, 0 6∈
qri[cone conv(E(Ay))].

Proof Observe that Ky and Hy are properly linearly separable iff there exists
λ∗ ∈ V ∗ \ {0} such that

〈λ∗, u− w〉 ≤ 0, ∀u ∈ Ky,∀w ∈ Hy,

with strict inequality for some ū ∈ Ky and w̄ ∈ Hy. Since clAy = −clHy, this
is equivalent to

〈λ∗, u+ w〉 ≤ 0, ∀u ∈ Ky,∀w ∈ Ay, (6)

with strict inequality for some ū ∈ Ky and w̄ ∈ Ay. Note that if strict inequality
holds in (6) for some ū ∈ Ky and w̄ ∈ clAy, then with no loss of generality we
can suppose that w̄ ∈ Ay. Finally, (6) is equivalent to 0 6∈ qri[cone conv(E(Ay))]
by setting M := E(Ay) = Ky +Ay in Theorem 4.1. 2

We aim now to state sufficient conditions that ensure the image convexity
of the system (1).

Theorem 4.2 Let Ay be a convex cone such that (4) holds, let Hy be a con-
vex set such that Hy = cone+Hy, and assume that F (·; y) is generalized Ay-
subconvexlike on K. Then, if V is finite dimensional with 0 6∈ riHy, or if
intAy 6= ∅, then system (1) is image convex.

Proof Assume that Ky ∩ Hy = ∅; we must show that Ky and Hy are linearly
separable. By Proposition 4.1 it is enough to prove that E(Ay) and Hy are
linearly separable. By assumptions on the set Hy, it follows that

cone+Ky ∩Hy = ∅. (7)

Let V be finite dimensional and 0 6∈ riHy. Then (7) yields coneKy ∩ riHy = ∅
and so

0 6∈ coneKy − riHy = coneKy + riAy − riHy,

since V is finite dimensional and riHy = riHy − riAy in view of (4). Therefore

[coneKy + riAy] ∩ riHy = ∅
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and being F (·; y) generalized Ay-subconvexlike on K, it follows that coneKy +
riAy is a convex set which is linearly separable from Hy, by the separation
theorem for finite dimensional convex sets [29]. By Lemma 2.2 we have that

cl[coneKy + riAy] = cl[cone(Ky + riAy)] = cl[cone(Ky +Ay)] = clcone(E(Ay)),

which implies that E(Ay) andHy are linearly separable, i.e., (1) is image convex.
Assume now that intAy 6= ∅. Since (4) holds and intAy 6= ∅, it follows from

Lemma 2.4 that intHy = Hy − intAy 6= ∅. Similar to the proof of the previous
part, noticing that because of (7) 0 6∈ intHy , we have

0 6∈ coneKy − intHy = coneKy + intAy −Hy

and, in turn,
[coneKy + intAy] ∩ intHy = ∅.

Since F (·; y) generalized Ay-subconvexlike on K, it follows that coneKy +intAy
is a convex set which is linearly separable from Hy, by the separation theorem
for convex sets [12]. By Lemma 2.2 cl[coneKy + intAy] = clcone(E(Ay)), which
implies that E(Ay) and Hy are linearly separable, i.e., (1) is image convex. 2

Remark 4.2 The assumption that F (·; y) is generalized Ay-subconvexlike on
K can be replaced by F (·; y)Ay-convexlike, Ay-subconvexlike orAy-preconvexlike
on K. In the first two cases Hy can be assumed to be any nonempty convex
set, while in the third case the assumption 0 6∈ riHy is not needed.

Next example shows that the assumption 0 6∈ riHy is necessary for the
validity of Theorem 4.2.

Example 4.1 Let K := {(x1, x2, x3) ∈ IR3 : x2
1 + x2

2 = 1, x3 = 0}, F (·; y) :
IR3 → IR3 be defined by F (x1, x2, x3; y) := (x1, x2, x3) and Hy = Ay :=
{(x1, x2, x3) ∈ IR3 : x1 = x2 = 0}. It is easy to see that

Ky := F (K; y) = K, Ay = riAy, coneKy = {(x1, x2, x3) ∈ IR3 : x3 = 0}.

Then, coneKy + riAy = IR3 and F is generalized Ay-subconvexlike on K, but
Ky is not linearly separable from Hy. Note that 0 ∈ riHy and cone+Ky +Ay =
IR3 \Ay so that F (·; y) is not Ay-preconvexlike on K.

Next result extends the analysis to the case where V is an infinite dimensional
space and the interior of the set Ay, and therefore of Hy, is not necessarily
nonempty.

Theorem 4.3 Let V be a Hausdorff locally convex topological linear space. Let
Ay be a convex cone such that qriAy 6= ∅ and clAy = −clHy. Then, if addition-
ally F (·; y) is generalized Ay-subconvexlike on K, and 0 6∈ qi[cl(cone E(Ay))],
system (1) is image convex.
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Proof By Lemma 2.2 we have that

cl[coneE(Ay)] = cl[coneF (K; y) + qriAy].

Since F (·; y) is generalized Ay-subconvexlike on K, it follows from the previous
equality that cl[coneE(Ay)] is convex and so

cl[coneE(Ay)] = cl[cone convE(Ay)]. (8)

Indeed, the inclusion cl[coneE(Ay)] ⊆ cl[cone convE(Ay)] is obvious. For the
reverse inclusion, we first note that if E ⊆ V is a cone, so is convE. Let t ≥ 0
and a ∈ convE. Then there are ai ∈ E and ti ∈ [0, 1](i = 1, · · · , l) with∑l
i=1 ti = 1 such that a =

∑k
i=1 tiai. Therefore, ta =

∑l
i=1 ti(tai) ∈ convE

since E is a cone, which implies that convE is a cone. Since cl[coneE(Ay)] is
convex, it follows that

cone convE(Ay) ⊆ conv coneE(Ay) ⊆ conv cl[coneE(Ay)] = cl[coneE(Ay)],

and taking the closure in the left-hand side, we obtain

cl[cone convE(Ay)] ⊆ cl[coneE(Ay)].

Therefore (8) is fulfilled and from the assumptions we have

0 6∈ qi[cl(cone E(Ay))] ⇔ cl[coneE(Ay)] 6= V

⇔ cl[cone convE(Ay)] 6= V

⇔ 0 6∈ qi[cone convE(Ay)].

As a consequence, Proposition 4.2 yields that Ky and Hy are linearly separable,
which completes the proof. 2

Remark 4.3 The assumption that F (·; y) is generalized Ay-subconvexlike on
K can be replaced by any of the following: F (·; y) is Ay-convexlike on K, F (·; y)
is Ay-preconvexlike on K or F (·; y) is Ay-subconvexlike on K. In the first two
cases, the set coneE(Ay) is convex and the assumption 0 6∈ qi[cl(cone E(Ay))] is
equivalent to 0 6∈ qi[coneE(Ay)], which is equivalent to 0 6∈ qiE(Ay) if 0 ∈ E(Ay).

5 Applications

In this section, we shall apply the results obtained in Sections 3 and 4 to in-
vestigate vector quasi optimization problems and vector dynamic variational
inequalities.

5.1 Applications to Vector Quasi Optimization Problems

One of the most important consequences of our analysis is that, for an image
convex vector quasi optimization problem, the optimality of a weak vector quasi
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minimum point can be expressed by means of a saddle point condition under a
Slater type constraint qualification.

Let C(y), y ∈ X, be a family of closed, pointed, convex cones in Y with
nonempty quasi relative interiors, that define a variable ordering relation on the
space Y; let K ⊆ X, let D(y), y ∈ X be a family of closed convex cones in Z,
which define the feasible values of the image g(K, y) of the constraints, for a
given y, and consider the vector quasi optimization problem (P):

minC(y)f(x) s.t. x ∈ R(y) := {x ∈ K : g(x, y) ∈ D(y)}.

Set F (x; y) := (f(y) − f(x), g(x, y)) and Hy := (qriC(y)) ×D(y). We say that
y ∈ Y := {y ∈ X : y ∈ R(y)} is a weak v.q.m.p. for (P) iff system (1)
is impossible or equivalently, iff (3) holds. This definition of weak v.q.m.p.
collapses to the classic one, given in Section 2, provided that intC(y) 6= ∅, y ∈ Y.

We remark that several of the results presented in this section do not require
any additional assumption on the set K so that they can be applied to a wide
class of problems including nonlinear integer vector optimization problems.

Vector optimization problems with a variable domination structure have
extensively been considered in the literature (see e.g. [7, 30] and references
therein) but in general the feasible set is fixed or it is not defined by means of
explicit constraints as it happens for problem (P) . In particular, this allows
us to obtain saddle point optimality conditions for the Lagrangian function
Ly,θ : Z∗ ×K → IR associated with (P) and defined by

Ly,θ(λ, x) := 〈θ, f(x)〉 − 〈λ, g(x, y)〉, ∀(λ, x) ∈ Z∗ ×K,

where y ∈ K and θ ∈ Y∗.

Proposition 5.1 Suppose that y ∈ R(y) is a weak v.q.m.p. for (P) and that
(1) is image convex. Then there exist θ∗ ∈ C(y)∗ and λ∗ ∈ D(y)∗, (θ∗, λ∗) 6= 0,
such that (λ∗, y) is a saddle point for Ly,θ∗ on D(y)∗ ×K, i.e.,

Ly,θ∗(λ, y) ≤ Ly,θ∗(λ∗, y) ≤ Ly,θ∗(λ∗, x), ∀(λ, x) ∈ D(y)∗ ×K. (9)

Proof From (viii) in Lemma 2.1, one has (qriC(y))∗ = C(y)∗. The image
convexity of (1) implies that there exist θ∗ ∈ (qriC(y))∗ = C(y)∗ and λ∗ ∈
D(y)∗, (θ∗, λ∗) 6= 0, such that

〈θ∗, f(y)− f(x)〉+ 〈λ∗, g(x, y)〉 ≤ 0, ∀x ∈ K. (10)

Since y ∈ R(y), one has 〈λ∗, g(y, y)〉 ≥ 0, so that (10) implies 〈λ∗, g(y, y)〉 = 0.
This leads to the inequality Ly,θ∗(λ

∗, y) ≤ Ly,θ∗(λ∗, x), ∀x ∈ K. The inequality
Ly,θ∗(λ, y) ≤ Ly,θ∗(λ

∗, y), ∀λ ∈ D(y)∗, is equivalent to 〈λ, g(y, y)〉 ≥ 0, ∀λ ∈
D(y)∗, which is fulfilled since g(y, y) ∈ D(y). 2

The following proposition provides a useful characterization of the saddle
point condition.

Proposition 5.2 Let Z be a locally convex topological linear space, let θ∗ ∈
C(y)∗, λ∗ ∈ D(y)∗ and y ∈ K. Then (λ∗, y) is a saddle point for Ly,θ∗ on
D(y)∗ ×K, iff,
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(i) Ly,θ∗(λ
∗, y) ≤ Ly,θ∗(λ∗, x), ∀x ∈ K;

(ii) g(y, y) ∈ D(y);

(iii) 〈λ∗, g(y, y)〉 = 0.

Proof It is immediate to prove that (i)-(iii) imply that (λ∗, y) is a saddle point
for Ly,θ∗ on D(y)∗ ×K. Actually, (ii) and (iii) lead to

Ly,θ∗(λ, y) = 〈θ∗, f(y)〉 − 〈λ, g(y, y)〉 ≤ 〈θ∗, f(y)〉
= 〈θ∗, f(y)〉 − 〈λ∗, g(y, y)〉 = Ly,θ∗(λ

∗, y), ∀λ ∈ D(y)∗.

For the reverse implication, we first show that if (λ∗, y) is a saddle point for
Ly,θ∗ on D(y)∗ ×K then (ii) is fulfilled.

By the first inequality in the saddle point condition we have:

〈θ∗, f(y)〉 − 〈λ, g(y, y)〉 ≤ 〈θ∗, f(y)〉 − 〈λ∗, g(y, y)〉, ∀λ ∈ D(y)∗. (11)

Since D(y) is a closed and convex cone in the locally convex topological linear
space Z, we have D(y) = (D(y)∗)∗ (see e.g., [12]). We declare that g(y, y) ∈
D(y). In fact, if g(y, y) 6∈ D(y), then there is λ̄ ∈ D(y)∗ such that 〈λ̄, g(y, y)〉 <
0. Since D(y)∗ is a cone, then tλ̄ ∈ D(y)∗ for all t ≥ 0, and thus

−〈tλ̄, g(y, y)〉 = −t〈λ̄, g(y, y)〉 → +∞, as t→ +∞,

which contradicts (11).
Let us prove (iii). Since λ∗ ∈ D(y)∗ and g(y, y) ∈ D(y), we have 〈λ∗, g(y, y)〉 ≥

0. Setting λ := 0 in (11) leads to 〈λ∗, g(y, y)〉 ≤ 0 and consequently 〈λ∗, g(y, y)〉 =
0. 2

From Proposition 5.1 it follows that the existence of a saddle point of the
Lagrangian function associated with (P) is ensured by the image convexity of
system (1).

The analysis developed in the previous sections leads us to state Lagrangian-
type necessary optimality conditions. We consider, at first, the case where the
image associated with (P) is finite dimensional or with nonempty interiors.

Theorem 5.1 Let F (x; y) := (f(y) − f(x), g(x, y)) and Ay := −clHy and let
y ∈ R(y) be a weak v.q.m.p. for (P). Suppose that V := Y × Z is finite dimen-
sional or intC(y) 6= ∅ and intD(y) 6= ∅, and, moreover, that any of the following
conditions holds:

(a) F (·; y) is Ay-convexlike on K;

(b) F (·; y) is Ay-subconvexlike on K;

(c) F (·; y) is Ay-preconvexlike on K;

(d) F (·; y) is generalized Ay-subconvexlike on K.

Then there exist θ∗ ∈ C(y)∗ and λ∗ ∈ D(y)∗, (θ∗, λ∗) 6= 0, such that (λ∗, y) is
a saddle point for Ly,θ∗ on D(y)∗ ×K.
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Proof We preliminarily observe that any of the assumptions (a)-(c) guarantees
that (d) is fulfilled. From (vi) in Lemma 2.1 it follows that Ay = −clHy =
(−C(y))× (−D(y)) and from (vii) in Lemma 2.1 one has

Hy −Ay = (qriC(y)×D(y)) + (C(y)×D(y)) = Hy. (12)

Note that, since C(y) is pointed, we have 0 6∈ riHy = (riC(y)) × (riD(y)).
Therefore by Theorem 4.2, we have that (1) is image convex and the result
follows from Proposition 5.1. 2

Remark 5.1 Let F (x; y) := (f(y) − f(x), g(x, y)), Ay := −clHy, intC(y) 6= ∅
and intD(y) 6= ∅. If f and g(·, y) are C(y)-convex and −D(y)-convex on K,
respectively, then any of the conditions (a)-(d) in Theorem 5.1 holds.

From assumptions, we have 0 ∈ Ay and int Ay 6= ∅. We only need to show if
f and g(·, y) are C(y)-convex and −D(y)-convex on K, respectively, then F (·; y)
is Ay-convexlike and Ay-preconvexlike on K.

We first prove the set F (K; y) + Ay = F (K; y) − [C(y) × D(y)] is convex.
Let t ∈]0, 1[, xi ∈ K, ci ∈ C(y) and di ∈ D(y)(i = 1, 2) be given. Set

x := (1− t)x1 + tx2, c := (1− t)c1 + tc2 and d := (1− t)d1 + td2.

Since K,C(y) and D(y) are convex, x ∈ K, c ∈ C(y) and d ∈ D(y). Since
f and g(·, y) are C(y)-convex and −D(y)-convex on K, respectively, one has
(1−t)f(x1)+tf(x2) ∈ f(x)+C(y) and (1−t)g(x1, y)+tg(x2, y) ∈ g(x, y)−D(y).
Consequently,

(1− t)[F (x1; y)− (c1, d1)] + t[F (x2; y)− (c2, d2)]

= (1− t)[(f(y)− f(x1), g(x1, y))− (c1, d1)]

+t[(f(y)− f(x2), g(x2, y))− (c2, d2)]

= (f(y)− ((1− t)f(x1) + tf(x2))− ((1− t)c1 + tc2),

(1− t)g(x1, y) + tg(x2, y)− ((1− t)d1 + td2))

= (f(y)− ((1− t)f(x1) + tf(x2))− c, (1− t)g(x1, y) + tg(x2, y)− d)

= (f(y)− ((1− t)f(x1) + tf(x2)), (1− t)g(x1, y) + tg(x2, y))− (c, d)

∈ (f(y)− f(x), g(x, y))− [C(y)×D(y)]( sinceC(y) andD(y) are convex cones)

= F (x; y)− [C(y)×D(y)]

⊆ F (K; y)− [C(y)×D(y)],

and we obtain the convexity of F (K; y)− [C(y)×D(y)]. It follows from Propo-
sition 3.3 (i) that F (·; y) is Ay-convexlike on K.

Since F (K; y) + Ay is convex, so is cone+(F (K; y) + Ay) and it follows
from part (b) of Theorem 3.1 that F (·; y) is Ay-preconvexlike on K, and hence,
generalized Ay-subconvexlike on K.

Next result is concerned with the case where the image associated with (P)
is infinite dimensional with possibly empty interiors.
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Theorem 5.2 Let F (x; y) := (f(y)− f(x), g(x, y)) and Ay := −clHy. Suppose
that y ∈ R(y) is a weak v.q.m.p. for (P), qriD(y) 6= ∅ and that any of the
following conditions holds:

(a) F (·; y) is Ay-convexlike on K and 0 6∈ qi coneE(Ay);

(b) F (·; y) is Ay-preconvexlike on K and 0 6∈ qi coneE(Ay);

(c) F (·; y) is Ay-subconvexlike on K, and 0 6∈ qi[cl(cone E(Ay))];

(d) F (·; y) is generalized Ay-subconvexlike on K, and 0 6∈ qi[cl(cone E(Ay))].

Then there exist θ∗ ∈ C(y)∗ and λ∗ ∈ D(y)∗, (θ∗, λ∗) 6= 0, such that (λ∗, y) is
a saddle point for Ly,θ∗(λ, x) on D(y)∗ ×K.

Proof We preliminarily observe that any of the assumptions (a)-(c) guarantees
that (d) is fulfilled (see Remark 4.3). Similar to the proof of Theorem 5.1, we
have that (12) is fulfilled and Theorem 4.3 yields that (1) is image convex. Thus
the conclusion follows from Proposition 5.1. 2

The saddle point condition does not guarantee that y is a weak v.q.m.p. of
(P): to this aim, we have to ensure that the multiplier θ∗ ∈ C(y)∗ is non zero.

Next results state some important features of the quasi relative interior,
which will be used in what follows. For a critical review of the properties of the
quasi-relative interior of a set, see also [13].

Theorem 5.3 [9, Theorem 3.10] Let V be a locally convex topological linear
space partially ordered by a closed convex cone P ⊆ V with cl(P − P ) = V .
Then

y ∈ qriP ⇔ 〈y∗, y〉 > 0, ∀y∗ ∈ P ∗ \ {0}.

The following example shows that the closedness of the convex cone P in The-
orem 5.3 cannot be removed.

Example 5.1 Let V be an infinite dimensional normed space, let f : V → IR be
a non continuous linear functional and P be the null space of f , i.e., P = kerf .
Then P is a convex cone with clP = V , which implies that P ∗ = {0} and
P = qiP = qriP . Note that, if we take y 6∈ P , then the right-hand side of the
equivalence in Theorem 5.3 is fulfilled since P ∗ = {0}, but y 6∈ qriP .

Proposition 5.3 [28, Proposition 2.6] Let V be a locally convex topological
linear space and P ⊆ V be a convex cone with cl(P−P ) = V . Then qriP = qiP .

Let y ∈ Y . We consider the following generalized Slater condition:

0 ∈ qri [conv(g(K, y)−D(y))] = qri [convg(K, y)−D(y)]. (13)

Note that the equality in (13) follows from the facts that D(y) is convex and
conv(A + B) = convA + convB (see, e.g., [12]), where A and B are nonempty
subsets of Z.
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Remark 5.2 Note that (see, e.g., [11, 28]) the condition 0 ∈ qi [convg(K, y)−
D(y)] is equivalent to 0 ∈ qri [convg(K, y) − D(y)] and 0 ∈ qi [(convg(K, y) −
D(y)) − (convg(K, y) − D(y))]. If qiD(y) 6= ∅, then from Lemma 2.1 (iv) and
(ix) we have convg(K, y) − qiD(y) ⊆ qi [convg(K, y) − D(y)] 6= ∅ and so the
generalized Slater condition (13) reduces to 0 ∈ qi [convg(K, y) −D(y)], which
implies that (13) is equivalent to the first two relations in Theorem 4.2 in [11]. If
intD(y) 6= ∅, then by Lemma 2.4, the generalized Slater condition (13) collapses
to 0 ∈ convg(K, y)− intD(y), which is milder than the classical Slater condition
0 ∈ g(K, y)− intD(y).

Proposition 5.4 Assume that Y and Z are locally convex topological linear
spaces, Ay := −clHy. Suppose that qriD(y) 6= ∅, cl(C(y)−C(y)) = Y, cl(D(y)−
D(y)) = Z. Consider the following statements:

(i) Ky and Hy are linearly separable;

(ii) E(Ay) and Hy are linearly separable;

(iii) 0 6∈ qi[cone conv(E(Ay))];

(iv) Ky and Hy are properly linearly separable;

(v) E(Ay) and Hy are properly linearly separable;

(vi) 0 6∈ qri[cone conv(E(Ay))];

(vii) Ky and Hy admit a regular linear separation, i.e., there exists (θ∗, λ∗) ∈
C(y)∗ ×D(y)∗ with θ∗ 6= 0 such that (10) holds, or equivalently,

〈θ∗, u〉+ 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ Ky;

(viii) E(Ay) and Hy admit a regular linear separation, i.e., there exists (θ∗, λ∗) ∈
C(y)∗ ×D(y)∗ with θ∗ 6= 0 such that

〈θ∗, u〉+ 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ E(Ay).

Then (i)⇔(ii)⇔(iii)⇔(iv)⇔(v)⇔(vi)⇐(vii)⇔(viii). Furthermore, if the gener-
alized Slater condition (13) holds, then (i)-(viii) are equivalent.

Proof Since Ay := −clHy and Hy = (qriC(y)) × D(y), as in the proof of
Theorem 5.1 it can be shown that (4) is fulfilled. Now Propositions 4.1-4.3 yield
that (i)-(iii) are equivalent and (iv)-(vi) are equivalent. Moreover, by the proof
of Proposition 4.1, it follows that a linear functional separates E(Ay) and Hy
iff it separates Ky and Hy, so that (vii) and (viii) are equivalent. It is obvious
that (vii)⇒(i). We show (i) and (iv) are equivalent. Clearly, (iv)⇒(i). Assume
that (i) is true. Then there exists (θ∗, λ∗) ∈ H∗y \ {0} = C(y)∗×D(y)∗ \ {0} (by
(viii) in Lemma 2.1) such that

〈θ∗, u〉+ 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ Ky.

17



Since θ∗ 6= 0 or λ∗ 6= 0 and, by assumptions, qiHy = qriHy 6= ∅, it follows
from Theorem 5.3 that sup(u,v)∈Hy

(〈θ∗, u〉 + 〈λ∗, v〉) > 0, which implies that
(iv) holds.

Suppose that the generalized Slater condition (13) holds. We prove that
(i)⇒(vii). We first note from Proposition 5.3 that qriD(y) = qiD(y) 6= ∅.
Assume that (i) is true, i.e., there exists (θ∗, λ∗) ∈ C(y)∗ × D(y)∗ \ {0} such
that (10) holds. Ab absurdo, assume that θ∗ = 0 so that λ∗ 6= 0. Then from
(10) we have

〈λ∗, v〉 ≤ 0, ∀v ∈ g(K, y)

and so
〈λ∗, v〉 ≤ 0, ∀v ∈ convg(K, y)−D(y),

which implies that

〈λ∗, v〉 ≤ 0, ∀v ∈ cl cone [convg(K, y)−D(y)],

Since the generalized Slater condition (13) holds, from Remark 5.2 one has
cl cone [convg(K, y)−D(y)] = Z and thus it follows that λ∗ = 0, a contradiction.
This implies that (vii) holds. 2

Theorem 5.4 Assume that Z is a locally convex topological linear space. Let
y ∈ K. Suppose that qriD(y) 6= ∅, cl(C(y) − C(y)) = Y, cl(D(y) −D(y)) = Z
and that the generalized Slater condition (13) holds. If there exist θ∗ ∈ C(y)∗

and λ∗ ∈ D(y)∗, (θ∗, λ∗) 6= 0, such that (λ∗, y) is a saddle point for Ly,θ∗ on
D(y)∗ ×K, then y is a weak v.q.m.p. for (P).

Proof Assume that (λ∗, y) is a saddle point for Ly,θ∗ on D(y)∗×K. By Propo-
sition 5.2 it easily follows that the second inequality in (9) is equivalent to (10)
and, in turn, to the condition

〈θ∗, u〉+ 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ Ky.

Similarly to the proof in Proposition 5.4, we can show that θ∗ 6= 0. Since θ∗ 6= 0,
from Theorem 5.3 we obtain

〈θ∗, u〉+ 〈λ∗, v〉 > 0, ∀(u, v) ∈ (qriC(y))×D(y) = Hy.

It follows that (3) holds and y is a weak v.q.m.p. for (P). 2

Theorems 5.1, 5.2 and 5.4 generalize Theorem 6.15 in [27]. In case C(y)
and D(y) are fixed cones for every y ∈ X and the function g does not depend
on y, then Theorem 5.4 is related to Theorem 3.2 in [17] stated for a set-
valued opimization problem where the saddle point condition for the Lagrangian
function is replaced by the equivalent characterization given in Proposition 5.2.
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5.2 Applications to Vector Dynamic Variational Inequal-
ities

Let T := [0, T ] with T > 0 and Er := Lp(T , IRr), where p > 0 and r ∈ N. The
dual space of Er, L

q(T , IRr),, where 1
q + 1

p = 1, will be denoted by E∗r . The
canonical bilinear form on E∗r × Er is given by

� g, h�:=

∫
T

〈g(t), h(t)〉dt, ∀(g, h) ∈ E∗r × Er.

Let Dr := {h ∈ Er : h(t) ∈ IRr
+, a. e. on T }. Dr is a closed convex cone in Er

with Dr − Dr = Er. The polar of Dr is given by D∗r = {V ∗ ∈ E∗r : V ∗(t) ∈
IRr

+, a. e. on T }. It is known [9, 10] that qiDr = Dr+ := {g ∈ Er : g(t) ∈
intIRr

+, a. e. on T }.
Let J := (J1, ..., Jk), where Ji ∈ E∗r , i = 1, ..., k and k ∈ N, and define

� J, h�k := (� J1, h�, · · · ,� Jk, h�)

=
(∫

T

〈J1(t), h(t)〉dt, · · · ,
∫

T

〈Jk(t), h(t)〉dt
)
,∀h ∈ Er.

In this section, without other specifications, let K be a nonempty convex
subset of Er, T := (T1, ..., Tk), where Ti : Er → E∗r , i = 1, ..., k and C : Er → IRk

such that for each H ∈ K, C(H) is a nonempty closed pointed convex cone in
IRk. Let g : Er → Ez be −Dz-convex on X and f : Er → Ew be affine, where
z, w ∈ N.

Let Ω := {H ∈ K : g(H) ∈ Dz, f(H) = 0}, which is supposed to be
nonempty. Since g is −Dz-convex on K and f is affine, Ω is convex. We
consider the following vector dynamic variational inequality (for short, VDVI),
with a variable ordering relation: find H̄ ∈ Ω such that

� T (H̄), H − H̄ �k 6∈ C(H̄)\{0}, ∀H ∈ Ω.

(VDVI) provides a generalization of time-dependent traffic equilibrium problem
(see, e.g., [31–33]).

Let H̄ ∈ Ω. Set

F (H; H̄) := (� T (H̄), H − H̄ �k, g(H), f(H)),

H := (C(H̄)\{0})×Dz × {0},
E := KH̄ − clH = F (K; H̄)− clH

= (� T (H̄), · − H̄ �k, g(·), f(·))(K)− [C(H̄)×Dz × {0}].

For the sake of simplicity we avoid mentioning the dependence of the sets E and
H on H̄.

Since g is −Dz-convex on K and f is affine, then E is convex. We observe
that (VDVI) is equivalent to (3) and from Proposition 3.1 one has the following
characterization of the optimality condition of (VDVI) in the image space:
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Proposition 5.5 H̄ ∈ Ω is a solution of (VDVI) iff

H ∩KH̄ = ∅, or equivalently, H ∩ E = ∅.

The following proposition plays an important role in investigating Lagrangian-
type necessary and sufficient optimality conditions for (VDVI).

Theorem 5.5 Let H̄ ∈ Ω be a solution of (VDVI). Then the following state-
ments are true:

(a) If qriE 6= ∅, then qri[(g, f)(K) − (Dz × {0})] 6= ∅; Similarly, if qiE 6= ∅,
then qi[(g, f)(K)− (Dz × {0})] 6= ∅;

(b) qri(clH) 6= ∅.

Moreover, suppose g : Er → Ez and f : Er → Ew are affine with g(x) :=
g0(x) + U0 and f(x) := f0(x) + V0, where g0 : Er → Ez and f0 : Er → Ew are
linear continuous operators, U0 ∈ Ez and V0 ∈ Ew are given. Then:

(c) If qriK 6= ∅, then qriKH̄ 6= ∅, qriE 6= ∅ and qri[(g, f)(K)−(Dz×{0})] 6= ∅;

(d) If there exists a point x0 ∈ K such that (g(x0)f(x0)) ∈ qi[(g, f)(K)] and
(g(x0), f(x0)) ∈ Dz ×{0}, or equivalently, qi[(g, f)(K)]∩ (Dz ×{0}) 6= ∅,
then (0, 0) ∈ qi[(g, f)(K)− (Dz × {0})].

Proof (a) The proof is similar to that in [34].
(b) Clearly, clH = C(H̄)×Dz ×{0}. Since C(H̄) is a nonempty closed pointed
convex cone in IRk, qriC(H̄) = riC(H̄) 6= ∅. From [9, 10, 34], we have qriDz =
qiDz = Dz+ and qri{0} = {0}. As a consequence, (ii) in Lemma 2.1 allows that
qri(clH) = riC(H̄)×Dz+ × {0}.
(c) Assume that qriK 6= ∅. Since g0 and f0 are linear continuous operators, so
is H 7→ (� T (H̄), H �k, g0(H), f0(H)) and moreover KH̄ is convex. From (iii)
in Lemma 2.1 and Lemma 2.3 it follows that

qriKH̄ = qri[(� T (H̄), · − H̄ �k, g(·), f(·))(K)]

= qri[(� T (H̄),−H̄ �k, U0, V0) + (� T (H̄), · �k, g0(·), f0(·))(K)]

= (� T (H̄),−H̄ �k, U0, V0) + qri[(� T (H̄), · �k, g0(·), f0(·))(K)]

⊇ (� T (H̄),−H̄ �k, U0, V0) + (� T (H̄), · �k, g0(·), f0(·))(qriK)

= (� T (H̄), · − H̄ �k, g(·), f(·))(qriK) 6= ∅.

Since KH̄ is convex and E = KH̄ − clH, it follows from (i) and (iv) in Lemma
2.1 and (b) that

qriE = qri(KH̄ − clH) ⊇ qriKH̄ − qri(clH) 6= ∅

and therefore qri[(g, f)(K)−Dz × {0}] 6= ∅ in view of (a).
(d) Notice that the condition that there is x0 ∈ K such that (g(x0)f(x0)) ∈
qi[(g, f)(K)] and (g(x0)f(x0)) ∈ (Dz×{0}) is equivalent to qi[(g, f)(K)]∩(Dz×

20



{0}) 6= ∅. If qi[(g, f)(K)]∩(Dz×{0}) 6= ∅, then (0, 0) ∈ qi[(g, f)(K)]−(Dz×{0}).
As a consequence, from (ix) in Lemma 2.1 one has

qi[(g, f)(K)− (Dz × {0})] ⊇ qi[(g, f)(K)]−Dz × {0} 3 (0, 0).

The proof is complete. 2

The following proposition illustrates that under suitable conditions, the as-
sumption in (d) of Theorem 5.5 holds.

Proposition 5.6 Suppose g : Er → Ez and f : Er → Ew are affine with
g(x) := g0(x)+U0 and f(x) := f0(x)+V0, where g0 : Er → Ez and f0 : Er → Ew
are linear continuous operators, U0 ∈ Ez and V0 ∈ Ew are given. Then:

(i) If qriK 6= ∅, qri[(g0, f0)(K)] 6= ∅ and (g0, f0)(qriK)∩((Dz−U0)×{−V0}) 6=
∅, then qri[(g, f)(K)] ∩ (Dz × {0}) 6= ∅.;

(ii) If qiK 6= ∅, qi[(g0, f0)(K)] 6= ∅ and (g0, f0)(qiK)∩((Dz−U0)×{−V0}) 6= ∅,
then qi[(g, f)(K)] ∩ (Dz × {0}) 6= ∅.

Proof We declare that qri[(g0, f0)(K)]+(U0, V0) = qri[(g, f)(K)]. In fact, from
(iii) in Lemma 2.1 we have

qri[(g0, f0)(K)] = qri[(g, f)(K)− (U0, V0)] = qri[(g, f)(K)]− (U0, V0).

This implies that qri[(g0, f0)(K)]+(U0, V0) = qri[(g, f)(K)]. If qi[(g0, f0)(K)] 6=
∅, then from (ix) in Lemma 2.1 we have that qi[(g0, f0)(K)] + (U0, V0) =
qi[(g, f)(K)].
(i) Since g0 and f0 are linear continuous operators, so is H 7→ (g0(H), f0(H)).
If qriK 6= ∅, qri[(g0, f0)(K)] 6= ∅ and (g0, f0)(qriK) ∩ ((Dz −U0)× {−V0}) 6= ∅,
then from above we have qri[(g, f)(K)] = qri[(g0, f0)(K)] + (U0, V0) 6= ∅ and
from Lemma 2.3 it follows that

qri[(g, f)(K)]− (Dz × {0}) = qri[(g0, f0)(K)] + (U0, V0)− (Dz × {0})
⊇ (g0, f0)(qriK) + (U0, V0)− (Dz × {0})
= (g0, f0)(qriK)− (Dz − U0)× {−V0} 3 (0, 0).

(ii) Assume that qiK 6= ∅, qi[(g0, f0)(K)] 6= ∅ and (g0, f0)(qiK) ∩ ((Dz − U0)×
{−V0}) 6= ∅. Notice that qriK = qiK 6= ∅. The rest of the proof is similar to
that in (i). 2

Next, we aim to prove that there exists (θ∗, U∗, V ∗) ∈ NE(0, 0, 0) with
(θ∗, U∗) ∈ (C(H̄)∗\{0})×D∗z .

Theorem 5.6 Let H̄ ∈ Ω be a solution of (VDVI), let g be −Dz-convex on K
and f be affine. If (0, 0, 0) 6∈ qiE and

(0, 0) ∈ qi[(g, f)(K)− (Dz × {0})], (14)

then KH̄ and H admit a regular linear separation, i.e., there exists (θ∗, U∗, V ∗) ∈
(C(H̄)∗\{0})×Dz

∗ × E∗w such that

〈θ∗,� T (H̄), H − H̄ �k〉+� U∗, g(H)� +� V ∗, f(H)�≤ 0, ∀H ∈ K.
(15)
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Proof From the hypotheses that g is −Dz-convex on K and f is affine it follows
that (g, f)(K)− (Dz × {0}) and E are convex sets (see Remark 5.1).

Since H̄ ∈ Ω is a solution of (VDVI), one has (0, 0, 0) ∈ E and since (0, 0, 0) 6∈
qiE , Theorem 4.3 and Remark 4.3 allow that H and KH̄ are linearly separable,
that is, there is (θ∗, U∗, V ∗) ∈ H∗\{(0, 0, 0)} = (C(H̄)∗ ×D∗z × E∗w)\{(0, 0, 0)}
such that (15) holds. It follows that for any H ∈ K,α ∈ C(H̄) and U ∈ Dz,

〈θ∗,� T (H̄), H − H̄ �k −α〉+� U∗, g(H)− U � +� V ∗, f(H)�≤ 0. (16)

Recalling that (0, 0, 0) ∈ E , it follows from (16) that (θ∗, U∗, V ∗) ∈ NE(0, 0, 0).
It remains to prove θ∗ 6= 0. Suppose to the contrary that θ∗ = 0. Then from

(16) it follows that

� U∗, g(H)− U � +� V ∗, f(H)�≤ 0, ∀H ∈ K, ∀U ∈ Dz,

or equivalently, (U∗, V ∗) ∈ N(g,f)(K)−(Dz×{0})(0, 0). From (14) it follows that
N(g,f)(X)−Dz×{0}(0, 0) = {(0, 0)} and thus, (U∗, V ∗) = (0, 0). Consequently,
(θ∗, U∗, V ∗) = (0, 0, 0), a contradiction. This completes the proof. 2

Remark 5.3 From Theorem 5.6, one can see that the condition (14) guaranteed
by qi[(g, f)(K)]∩ (Dz ×{0}) 6= ∅ (see Theorem 5.5 (d)) plays an important role
in deriving the regular linear separation between KH̄ and H.

Next proposition provides a further sufficient condition for (14).

Proposition 5.7 Let g be −Dz-convex on K, f be affine and the following
assumptions hold:

∃H̄ ∈ K s.t. g(H̄) ∈ qiDz = qriDz and f(H̄) = 0, (17)

and f(K) = Ew. Then, (14) is fulfilled.

Proof Since g is −Dz-convex on K and f is affine, (g, f)(K)− (Dz ×{0}) is a
convex set (see Remark 5.1).

Condition (17) implies that (0, 0) ∈ (g, f)(K) − (Dz × {0}). Ab absurdo,
assume that (14) is not fulfilled. This is equivalent to say that

N(g,f)(K)−(Dz×{0})(0, 0) 6= {(0, 0)},

that is, there exists (U∗, V ∗) ∈ Ez∗ × E∗w\{(0, 0)} such that

� U∗, g(H)− U � +� V ∗, f(H)�≤ 0, ∀H ∈ K, ∀U ∈ Dz, (18)

Computing (18) for H := H̄ we obtain:

− � U∗, U � +� U∗, g(H̄)�≤ 0, ∀U ∈ Dz. (19)

We declare that U∗ ∈ Dz
∗. Suppose to the contrary that U∗ 6∈ Dz

∗. Then there
is Ū ∈ Dz such that � U∗, Ū �< 0. Letting U := tŪ , t > 0, in (19) leads to

+∞← −� U∗, tŪ � +� U∗, g(H̄)�≤ 0
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as t→ +∞, a contradiction. Setting U := 0 in (19) we obtain

� U∗, g(H̄)�≤ 0.

Since g(H̄) ∈ qiDz, by Theorem 5.3 it follows that U∗ = 0: actually, if U∗ ∈
Dz
∗\{0} we should have� U∗, g(H̄)�> 0. Therefore U∗ = 0 and (18) becomes

� V ∗, f(H)�≤ 0, ∀H ∈ K.

This implies that V ∗ = 0, since f(K) = Ew. Thus, (U∗, V ∗) = (0, 0), a contra-
diction, which completes the proof. 2

By the previous proposition and Theorem 5.6, we obtain the following result.

Corollary 5.1 Assume that g is −Dz-convex on K, f is affine with f(K) =
Ew, (0, 0, 0) 6∈ qiE and condition (17) is fulfilled. If H̄ ∈ Ω is a solution of
(VDVI), then KH̄ and H admit a regular linear separation.

Proof It follows from Proposition 5.7 and Theorem 5.6. 2

From the previous results it follows that the existence of a saddle point for
the Lagrangian function LH̄,θ∗ : D∗z × E∗w × K → IR associated with (VDVI)
defined by

LH̄,θ∗(U, V,H) := 〈θ∗,� T (H̄), H − H̄ �k〉+� U, g(H)� +� V, f(H)�

is a necessary optimality condition for (VDVI), where H̄ ∈ K and θ∗ ∈ IRk.

Corollary 5.2 Let H̄ ∈ Ω be a solution of (VDVI), let g be −Dz-convex on K
and f be affine. If (0, 0, 0) 6∈ qiE and (14) holds, then there exists (θ∗, U∗, V ∗) ∈
(C(H̄)∗\{0})×Dz

∗ × E∗w such that (U∗, V ∗, H̄) is a saddle point for LH̄,θ∗ on
Dz
∗ × E∗w ×K, i.e.,

LH̄,θ∗(U
∗, V ∗, H) ≤ LH̄,θ∗(U∗, V ∗, H̄) ≤ LH̄,θ∗(U, V, H̄),

∀(U, V,H) ∈ Dz
∗ × E∗w ×K. (20)

Proof Since H̄ ∈ Ω and (14) holds, from Theorem 5.6 one has (15) is fulfilled
and moreover � U∗, g(H̄)�≥ 0. Putting H̄ in (15) we get

� U∗, g(H̄)�≤ 0,

which implies � U∗, g(H̄)�= 0 and in turn LH̄,θ∗(U
∗, V ∗, H̄) = 0, so that the

first inequality in (20) is equivalent to (15). The second inequality in (20)

� U, g(H̄)� +� V, f(H̄)�≥ 0, ∀(U, V ) ∈ Dz
∗ × E∗w,

follows from the fact that H̄ ∈ Ω. 2

Finally, we remark that, similarly to (VDVI), it is possible to consider a
weak vector dynamic variational inequality (for short, WVDVI): find H̄ ∈ Ω
such that

� T (H̄), H − H̄ �k 6∈ intC(H̄), ∀H ∈ Ω,
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where we assume that intC(H̄) 6= ∅.
We note that the necessary optimality conditions obtained for (VDVI) in

Theorem 5.6, Corollaries 5.1 and 5.2 also hold in case H̄ is a solution of (WVDVI).
Moreover, it can be shown the saddle point condition (20) is a sufficient optimal-
ity condition for (WVDVI) provided that θ∗ 6= 0, while the sufficient optimality
conditions for (VDVI) can also be obtained under stronger regularity conditions
(see, for example, [4, 33]).

Theorem 5.7 Let g be −Dz-convex on K and f be affine. Assume that (14)
holds and that there exists (θ∗, U∗, V ∗) ∈ (C(H̄)∗\{0}) × Dz

∗ × E∗w such that
(U∗, V ∗, H̄) is a saddle point for LH̄,θ∗ on Dz

∗×E∗w×K, i.e., (20) holds. Then
H̄ is a solution of (WVDVI).

6 Conclusions

We have investigated image convexity properties of a generalized system with
infinite dimensional image by exploiting the quasi relative interior and we have
obtained necessary and/or sufficient conditions for the impossibility of this gen-
eralized system. Moreover, we have applied these new results to investigate
vector quasi optimization problems and vector dynamic variational inequalities.
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12. Zãlinescu C.: Convex Analysis in General Vector Spaces. World Scientific Pub-
lishing Co., Inc., River Edge, NJ (2002)
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