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Abstract We propose and analyze the convergence of a novel stochastic algo-

rithm for monotone inclusions that are sum of a maximal monotone operator

and a single-valued cocoercive operator. The algorithm we propose is a natural

stochastic extension of the classical forward-backward method. We provide a

non-asymptotic error analysis in expectation for the strongly monotone case, as
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well as almost sure convergence under weaker assumptions. For minimization

problems, we recover rates matching those obtained by stochastic extensions

of so called accelerated methods. Stochastic quasi Fejér’s sequences are a key

technical tool to prove almost sure convergence.
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1 Introduction

Maximal monotone operators have been studied extensively since [1], because

of their wide applicability in pure and applied sciences [2,3]. The corresponding

framework allows for a unified treatment of equilibrium problems, variational

inequalities, and convex optimization, see e.g. [4,2,5]. A key problem in this

context is to find a solution of an inclusion defined by a maximal monotone

set-valued operator [4] and, in this paper, we assume the operator defining

the inclusion to be the sum of a maximal monotone operator and a single-

valued cocoercive operator. Such structured inclusions encompass fixed point

problems, variational inequalities, and composite minimization problems [6,

7]. The literature on algorithmic schemes for solving structured inclusions

is vast. In particular, approaches are known that separate the contribution

of the two summands, notably forward-backward splitting algorithms [4,8].

Since the seminal works [9,10], forward-backward splitting methods have been
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considerably developed to be more flexible, faster and robust to errors, see [4,

11–15].

In this paper, we assume the single valued operator to be known only

through stochastic estimates. This setting is practically relevant to consider

measurements with non vanishing random noise, or cases where the compu-

tation of stochastic estimates is cheaper than the evaluation of the operator

itself. While there is a rich literature on stochastic proximal gradient split-

ting algorithms for convex minimization problems [16,17], and various results

for variational inequalities are available [18–20], we are not aware of previous

studies of stochastic splitting algorithms for solving monotone inclusions, ex-

cept for the concurrent papers [25,26]. In this paper, we propose a natural

stochastic forward-backward splitting method and prove: 1) a non-asymptotic

error analysis in expectation, and 2) strong almost sure convergence of the it-

erates. More specifically, under strong monotonicity assumptions, we provide

non asymptotic bounds for convergence in norm and in expectation, leverag-

ing on a non asymptotic version of Chung’s lemma [21, Chapter 2, Lemma

5]. Almost sure convergence is obtained under the weaker assumption of uni-

form monotonicity of B using the concept of stochastic quasi-Fejèr sequences

[22,23]. For variational inequalities, we obtain additional convergence results

without stronger monotonicity assumptions.

A few features of our approach are worth mentioning. First, our assump-

tions on the stochastic estimates are weaker than those usually required in the

literature, see e.g. [24]. In particular, our assumptions are different from those
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in [25,26], assuming an error summability condition. Second, our approach

allows to avoid averaging the iterates, an aspect crucial in situations where

structure is meant to induce sparse solutions and averaging can be detrimen-

tal, see e.g. [27].

The paper is organized as follows. Section 2 collects some basic definitions.

In Section 3 we establish the main results of the paper. Section 4 focuses on

variational inequalities and minimization problems.

2 Preliminaries and Notation

Before discussing our main contributions, we set the notation and recall basic

concepts and results we need in the following.

Throughout, (Ω, A, P) is a probability space, N
∗ = N\{0}, H is a real

separable Hilbert space. We denote by 〈· | ·〉 and ‖ · ‖ the scalar product and

the associated norm of H. An operator A : H → 2H is denoted by A : H ⇒ H.

The class of all lower semicontinuous convex functions G : H → ]−∞, +∞]

such that domG :=
{

x ∈ H : G(x) < +∞
}

6= ∅ is denoted by Γ0(H). We

denote by σ(X) the σ-field generated by a random variable X : Ω → H, where

H is endowed with the Borel σ-algebra. A sequence (Fn)n∈N of sub sigma

algebras of A such that, for every n ∈ N, Fn ⊆ Fn+1 is called a filtration.

Let, for every n ∈ N, Xn : Ω → H be an integrable random variable with

E[‖Xn‖] < +∞. The sequence (Xn)n∈N is called a random process.

Let A : H ⇒ H be a set-valued operator. The domain and the graph of A

are denoted by domA and graA (see [4]). The set of zeros of A is denoted by
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zerA :=
{

w ∈ H : 0 ∈ Aw
}

. Moreover, A is monotone iff

(

∀
(

(w, u), (y, v)
)

∈ (graA)2
)

〈w − y | u − v〉 ≥ 0, (1)

and maximally monotone iff it is monotone and there exists no monotone

operator B : H ⇒ H such that graB properly contains graA.

Suppose that A is monotone and let y ∈ domA. We say that A is uniformly

monotone at y iff there exists an increasing function φ : [0, +∞[ → [0, +∞]

vanishing only at 0 such that

(

∀(w, u) ∈ graA
)(

∀v ∈ Ay
)

〈w − y | u − v〉 ≥ φ(‖w − y‖). (2)

In the case when φ = µ| · |2, for some µ ∈ ]0, +∞[, we say that A is µ-strongly

monotone at y. If A − µ I is monotone, for some µ ∈ ]0, +∞[, we say that A

is µ-strongly monotone. We say that A is strictly monotone at y ∈ domA iff,

for every (w, u) ∈ graA and for every v ∈ Ay, w 6= y ⇒ 〈w − y | u − v〉 > 0.

Let β ∈ ]0, +∞[. A single-valued operator B : H → H is β-cocoercive iff

(∀(w, y) ∈ H2) 〈w − y | Bw − By〉 ≥ β‖Bw − By‖2.

The resolvent of any maximally monotone operator A is JA := (I +A)−1.

We recall that JA is well defined and single valued [1], and can therefore be

identified with an operator JA : H → H. When A = ∂G for some G ∈ Γ0(H),

then JA coincides with the proximity operator of G [28], which is defined as

proxG : H → H : w 7→ argmin
v∈H

G(v) +
1

2
‖w − v‖2. (3)

We next recall the concept of stochastic quasi Fejér sequence, which was in-

troduced and studied in the papers [29,22,23]. This concept provides a unified
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approach to prove convergence of several algorithms in convex optimization;

see [4] and references therein.

Definition 2.1 [23] Let S be a non-empty subset of H. A random process

(wn)n∈N∗ in H is stochastic quasi-Fejér monotone with respect to the set S if

E[‖w1‖
2] < +∞ and there exists (εn)n∈N∗ ∈ ℓ1

+(N∗) such that

(∀w ∈ S)(∀n ∈ N
∗) E[‖wn+1 − w‖2|σ(w1, . . . , wn)] ≤ ‖wn − w‖2 + εn a.s.

3 Main Results

The following is the main problem studied in the paper.

Problem 3.1 Let A : H ⇒ H be maximally monotone, let β ∈ ]0, +∞[ and

let B : H → H be β-cocoercive. Assume that zer(A + B) 6= ∅. The goal is to

find w ∈ H such that

0 ∈ Aw + Bw. (4)

3.1 Algorithm

We propose the following stochastic forward-backward splitting algorithm for

solving Problem 3.1. The key difference with respect to the classical setting is

that we assume to have access only to a stochastic estimate of B.

Algorithm 3.1 Let (γn)n∈N∗ be a sequence in ]0, +∞[, (λn)n∈N∗ be a se-

quence in [0, 1], and (Bn)n∈N∗ be a H-valued random process such that, for
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every n ∈ N
∗, E[‖Bn‖2] < +∞. Let w1 : Ω → H be a random variable such

that E[‖w1‖
2] < +∞ and set

(∀n ∈ N
∗)





















zn = wn − γnBn

yn = JγnAzn

wn+1 = (1 − λn)wn + λnyn.

(5)

We will consider the following conditions for the filtration (Fn)n∈N∗ , where

Fn = σ(w1, . . . , wn), for every n ∈ N
∗.

(A1) For every n ∈ N
∗, E[Bn|Fn] = Bwn.

(A2) There exist (αn)n∈N∗ in ]0, +∞[ and δ ∈ ]0, +∞[ such that, for every

n ∈ N
∗, E[‖Bn − Bwn‖2|Fn] ≤ δ2(1 + αn‖Bwn‖2).

(A3) There exists ε ∈ ]0, +∞[ such that (∀n ∈ N
∗) γn ≤ (2 − ǫ)β/(1 + 2δ2αn).

(A4) Let w be a solution of Problem 3.1 and let, χ2
n = λnγ2

n

(

1 + 2αn‖Bw‖2
)

,

for every n ∈ N
∗. Then the following hold:

∑

n∈N∗

λnγn = +∞ and
∑

n∈N∗

χ2
n < +∞. (6)

Remark 3.1

(i) If, for every n ∈ N
∗, Bn = Bwn, Algorithm 3.1 reduces to the well known

forward–backward splitting in [30, Section 6]. However, under Assump-

tions (A1)-(A2)-(A3)-(A4), weak convergence of (wn)n∈N∗ is not guaran-

teed since (A4) implies inf γn = 0, while to apply the classic theory we need

inf γn > 0. Under our assumptions, only ergodic convergence of (wn)n∈N∗

has been proved in the deterministic case; see [10,31].
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(ii) A stochastic forward-backward splitting algorithm for monotone inclusions

has been recently analyzed in [25,26], under rather different assumptions.

Indeed, they consider a fixed stepsize and a summability condition on

E[‖Bn − Bwn‖2|Fn]. In the case A = ∂G and B = ∇F , for some G

and F ∈ Γ0(H) such that F is differentiable with β−1-Lipschitz continuous

gradient, Algorithm 3.1 is a variant of the algorithm in [16], also studied

in [17].

(iii) Condition (A2) is a more general than the condition usually assumed in

the context of stochastic optimization, where αn = 0.

(iv) If A = 0, (A4) becomes
∑

n∈N∗ λnγn = +∞ and
∑

n∈N∗ λnγ2
n < +∞.

The latter are the usual conditions required for stochastic gradient descent

algorithms; see e.g. [32].

Example 3.1 Let (G, B, P ) be a probability space, let b : H × G → H be a

measurable function such that
∫

G
‖b(w, y)‖P (dy) < +∞, and suppose that B

satisfies

(∀w ∈ H) Bw =

∫

G

b(w, y)P (dy). (7)

If an independent and identically distributed sequence (yn)n∈N∗ of realizations

of the random vector y is available, then one can take Bn = b(wn, yn). If in

addition B is a gradient operator and G is finite dimensional, we are in the

classical setting of stochastic optimization [24].



Stochastic Forward-Backward Splitting for Monotone Inclusions 9

3.2 Almost Sure Convergence

In this section we describe our main results about almost sure convergence of

the iterates of Algorithm 3.1. All the proofs are postponed to Section 3.4.

Proposition 3.1 Suppose that (A1), (A2), (A3), and (A4) are satisfied. Let

(wn)n∈N∗ be the sequence generated by Algorithm 3.1 and let w be a solution

of Problem 3.1. Then the following hold:

(i) The sequence (E[‖wn − w‖2])n∈N∗ converges to a finite value.

(ii)
∑

n∈N∗ λnγnE[〈wn − w | Bwn − Bw〉] < +∞. Consequently,

lim
n→∞

E[〈wn − w | Bwn − Bw〉] = 0 and lim
n→∞

E[‖Bwn − Bw‖2] = 0.

(iii)
∑

n∈N∗

λnE[‖wn−yn−γn(Bn−Bw)‖2]<+∞ and
∑

n∈N∗

λnE[‖wn−yn‖2]<+∞.

Proposition 3.1 states similar properties to those stated for the forward-

backward splitting algorithm in [13]. These properties are key to prove almost

sure convergence, which is stated in the next theorem.

Theorem 3.2 Suppose that conditions (A1), (A2), (A3), and (A4) are satis-

fied. Let (wn)n∈N∗ be the sequence generated by Algorithm 3.1 and let w be a

solution of Problem 3.1. Then the following hold:

(i) (wn)n∈N∗ is stochastic quasi-Fejèr monotone with respect to zer(A + B).

(ii) There exists an integrable random variable ζw such that ‖wn − w‖2 → ζw

a.s.

(iii) If B is uniformly monotone at w, then wn → w a.s.
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(iv) If B is strictly monotone at w and weakly continuous, then there exists

Ω1 ∈ A such that P(Ω1) = 1, and, for every ω ∈ Ω1, there exists a

subsequence (wtn
(ω))n∈N∗ such that wtn

(ω) ⇀ w.

Almost sure convergence is the one traditionally studied in the stochastic

optimization literature. However, most papers focus on the finite dimensional

setting, and require boundedness of the variance of the stochastic estimate

of the gradients or subgradients (namely, αn = 0 in assumption (A2)). Weak

almost sure convergence of the iterates generated by the stochastic forward-

backward splitting algorithm can be derived from the results in [25,26], with-

out additional monotonicity assumptions on A or B, under more restrictive

assumptions on the stochastic error, with a nonvanishing stepsize.

Remark 3.2 Under the same assumptions as in Theorem 3.2, suppose in ad-

dition that B is strictly monotone at w. The assumptions of Theorem 3.2(iv)

are satisfied when either H is finite dimensional or B is bounded and linear.

3.3 Nonasymptotic Bounds

In this section we focus on convergence in expectation. We provide results for

the case when either A or B is strongly monotone. We derive a nonasymptotic

bound for E[‖wn − w‖2] similarly to what has been done for the stochastic

gradient algorithm for the case of minimization of a smooth function in the

finite dimensional case [33, Theorem 1]. In the next theorem we will consider

the following assumption.
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Assumption 3.3 Let w be a solution of Problem 3.1. Furthermore, suppose

that A is ν-strongly monotone and B is µ-strongly monotone at w, for some

(ν, µ) ∈ [0, +∞[
2

such that ν + µ > 0.

To state the results more concisely, for every c ∈ R, we define the function

ϕc : ]0, +∞[ → R : t 7→



















(tc − 1)/c if c 6= 0;

log t if c = 0.

(8)

Theorem 3.4 Let (λ, α) ∈ ]0, +∞[2 and let (wn)n∈N∗ be the sequence gener-

ated by Algorithm 3.1. Assume that conditions (A1), (A2), (A3), and Assump-

tion 3.3 are satisfied and suppose that infn∈N∗ λn ≥ λ, supn∈N∗ αn ≤ ᾱ, and

that γn = c1n
−θ for some θ ∈ ]0, 1] and for some c1 ∈ ]0, +∞[. Set

t = 1 − 2θ−1 ≥ 0, c =
c1λ(2ν + µε)

(1 + ν)2
, and τ =

2δ2c2
1(1 + α‖Bw‖)

c2
. (9)

Let n0 be the smallest integer such that for every integer n ≥ n0 > 1, it holds

max{c, c1}n−θ ≤ 1. Define, (∀n ∈ N
∗) sn = E[‖wn − w‖2]. Then, for every

n ≥ 2n0, the following hold:

(i) Suppose that θ ∈ ]0, 1[. Then

sn+1 ≤
(

τc2ϕ1−2θ(n)+sn0
exp

(cn1−θ
0

1 − θ

))

exp
(−ct(n + 1)1−θ

1 − θ

)

+
τ2θc

(n − 2)θ

(10)

(ii) Suppose that θ = 1. Then

sn+1 ≤ sn0

( n0

n + 1

)c

+
τc2

(n + 1)c

(

1 +
1

n0

)c

ϕc−1(n) . (11)
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(iii) The sequence (sn)n∈N∗ satisfies

sn =







































O(n−θ), if θ ∈ ]0, 1[ ,

O(n−c) + O(n−1), if θ = 1, c 6= 1,

O(n−c) + O(n−1 log n), if θ = 1, c = 1.

(12)

Theorem 3.4 implies that, even without assuming (A4), in the strongly

monotone case there is convergence in quadratic mean for every θ ∈ ]0, 1]. The

constants in (10) and (11) depend on the monotonicity constant of A + B. By

(12) it follows that the best rate is obtained with θ = 1, for a choice of c1

ensuring c > 1.

3.4 Proofs of the Main Results

We start with a result characterizing the asymptotic behavior of stochas-

tic quasi-Fejér monotone sequences. The following statement is given in [34,

Lemma 2.3] without a proof. A version of Proposition 3.2 in the finite di-

mensional setting can also be found in [23]. The concept of stochastic Fejér

sequences has been revisited and extended in a Hilbert space setting in [25].

Proposition 3.2 Let S be a non-empty closed subset of H, and let (wn)n∈N∗

be stochastic quasi-Fejér monotone with respect to S. Then the following hold.

(i) Let w ∈ S. Then, there exist ζw ∈ R and an integrable random variable

ξw ∈ H such that E[‖wn − w‖2] → ζw and ‖wn − w‖2 → ξw almost surely.

(ii) (wn)n∈N∗ is bounded a.s.

(iii) The set of weak subsequential limits of (wn)n∈N∗ is non-empty a.s.
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We next prove Proposition 3.1.

Proof (of Proposition 3.1) Let n ∈ N
∗. Since w is a solution of Problem 3.1

we have

w = JγnA(w − γnBw) . (13)

It follows from (5) and the convexity of ‖ · ‖2 that

‖wn+1 − w‖2 ≤ (1 − λn)‖wn − w‖2 + λn‖yn − w‖2. (14)

Since JγnA is firmly non-expansive by [4, Proposition 23.7], setting

un = wn − yn − γn(Bn − Bw). (15)

we have

‖yn − w‖2 ≤ ‖(wn − w) − γn(Bn − Bw)‖2 − ‖un‖2 (16)

= ‖wn − w‖2 − 2γn 〈wn − w | Bn − Bw〉 + γ2
n‖Bn − Bw‖2 − ‖un‖2.

Since E[‖Bn‖2] < +∞ by assumption, we derive that E[‖Bn − Bw‖2] < +∞.

On the other hand, by induction we get that E[‖wn − w‖2] < +∞ and hence

E[‖wn − w‖] < +∞ and therefore E[|〈wn − w | Bn − Bw〉|] < +∞, so that

E[〈wn − w | Bn − Bw〉 |Fn] is well-defined. Assumption (A1) yields

E[〈wn − w | Bn − Bw〉] = E[E[〈wn − w | Bn − Bw〉 |Fn]

= E[〈wn − w | E[Bn − Bw|Fn]〉]

= E[〈wn − w | Bwn − Bw〉]. (17)
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Moreover, using assumption (A2) and the cocoercivity of B, we have

E[‖Bn − Bw‖2] =

= E[‖Bwn − Bw‖2] + E[‖Bn − Bwn‖2] + 2E[〈Bwn − Bw, Bn − Bwn〉]

≤ E[‖Bwn − Bw‖2] + δ2(1 + αnE[‖Bwn‖2])

+ 2E [〈Bwn − Bw, E[Bn − Bwn|Fn〉]]

≤ (1 + 2δ2αn)E[‖Bwn − Bw‖2] + δ2(1 + 2αn‖Bw‖2)

≤
1 + 2δ2αn

β
E[〈wn − w | Bwn − Bw〉] + 2δ2(1 + 2αn‖Bw‖2). (18)

Recalling the definition of ε, from (14), (16), (17), and (18) we get that

E[‖wn+1 − w‖2] ≤ (1 − λn)E[‖wn − w‖2] + λnE[‖yn − w‖2]

≤ E[‖wn − w‖2] − γnλn

(

2 −
γn(1 + 2δ2αn)

β

)

·

· E[〈wn − w | Bwn − Bw〉] + 2δ2χ2
n − λnE[‖un‖2]

≤ E[‖wn − w‖2] − εγnλnE[〈wn − w | Bwn − Bw〉] + 2δ2χ2
n

− λnE[‖un‖2]. (19)

(i): Since the sequence (χ2
n)n∈N∗ is summable by assumption (A4), we de-

rive from (19) that (E[‖wn+1 − w‖2])n∈N∗ converges to a finite value.

(ii): It follows from (19) that

∑

n∈N∗

γnλnE[〈wn − w | Bwn − Bw〉] < +∞. (20)

Since
∑

n∈N∗ λnγn = +∞ by (A4), we get lim E[〈wn − w | Bwn − Bw〉] = 0,

which implies, by cocoercivity, limE[‖Bwn − Bw‖2] = 0.
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Since B is cocoercive, it is Lipschitzian. Therefore, by (i), there exists

M ∈ ]0, +∞[ such that

(∀n ∈ N
∗) E[〈wn − w | Bwn − Bw〉] ≤ β−1

E[‖wn − w‖2] ≤ M. (21)

Hence, we derive from (A4) and (18) that

∑

n∈N∗

λnγ2
nE[‖Bn − Bw‖2] < +∞. (22)

(iii) It follows from (19) that
∑

n∈N∗ γnλnE[‖un‖2] < +∞. Finally, by (22)

we obtain

∑

n∈N∗

λnE[‖wn −yn‖2] ≤ 2
∑

n∈N

λnE[‖un‖2]+2
∑

n∈N∗

λnγ2
nE[‖Bn −Bw‖2] < +∞.

Therefore, (iii) is proved.

Next we prove Theorem 3.2, which is based on Propositions 3.2 and 3.1.

Proof (Theorem 3.2) (i) Let n ∈ N
∗. Reasoning as in the proof of Proposition

3.1, we have

‖yn − w‖2 (23)

≤ ‖wn − w‖2− 2γn 〈wn − w | Bn − Bw〉 + γ2
n‖Bn − Bw‖2 − ‖un‖2,

where un = wn − yn − γn(Bn − Bw) is defined as in (15).

We next estimate the conditional expectation with respect to Fn of each

term in the right hand side of (23). Since wn is Fn-measurable, using condition

(A1),

E[〈wn − w | Bn − Bw〉 |Fn] = 〈wn − w | E[Bn − Bw|Fn〉

= 〈wn − w | Bwn − Bw〉 . (24)
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Noting that Bwn is Fn-measurable since wn is Fn-measurable and B is con-

tinuous, and using condition (A2) and cocoercivity of B, we derive

E[‖Bn − Bw‖2|Fn]

= E[‖Bn − Bwn‖2|Fn] + E[‖Bwn − Bw‖2|Fn]

+ E[〈Bwn − Bw, Bn − Bwn〉|Fn]

≤ δ2(1 + αn‖Bwn‖2) + ‖Bwn − Bw‖2

≤ ‖Bwn − Bw‖2 + δ2(1 + 2αn‖Bwn − Bw‖2 + 2αn‖Bw‖2)

≤
(1 + 2δ2αn)

β
〈wn − w | Bwn − Bw〉 + δ2(1 + 2αn‖Bw‖2), (25)

Now, note that by convexity we have

‖wn+1 − w‖2 ≤ (1 − λn)‖wn − w‖2 + λn‖yn − w‖2. (26)

Taking the conditional expectation and invoking (23), (24), (25), we obtain,

E[‖wn+1 − w‖2|Fn] ≤ (1 − λn)‖wn − w‖2 + λnE[‖yn − w‖2|Fn]

≤ ‖wn − w‖2 − γnλn

(

2 −
γn(1 + 2δ2αn)

β

)

〈Bwn − Bw | wn − w〉

+ 2δ2χ2
n − λnE[‖un‖2|Fn]

≤ ‖wn − w‖2 − εγnλn 〈Bwn − Bw | wn − w〉 + 2δ2χ2
n − λnE[‖un‖2|Fn].

Hence (wn)n∈N∗ is stochastic quasi-Fejér monotone with respect to the set

zer(A + B), which is nonempty, closed, and convex.

(ii): It follows from Proposition 3.2(i) that (‖wn − w‖2)n∈N∗ converges a.s

to some integrable random variable ζw.
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(iii) Since B is uniformly monotone at w, there exists an increasing function

φ : [0, +∞[ → [0, +∞[ vanishing only at 0 such that

〈Bwn − Bw | wn − w〉 ≥ φ(‖wn − w‖). (27)

and thus w is the unique solution of Problem 3.1. We derive from Proposition

3.1 (ii) and (27) that

∑

n∈N∗

λnγnE[φ(‖wn − w‖)] < ∞, (28)

and hence

∑

n∈N∗

λnγnφ(‖wn − w‖) < ∞ a.s. (29)

Since (λnγn)n∈N∗ is not summable by (A4), we have limφ(‖wn − w‖) = 0

a.s. Consequently, taking into account (ii), there exist Ω1 ⊂ Ω and an inte-

grable random variable ζw in H such that P (Ω1) = 1, and, for every ω ∈ Ω1,

limφ(‖wn(ω) − w‖) = 0 and ‖wn(ω) − w‖2 → ζw. Let ω ∈ Ω1. Then, there

exists a subsequence (kn)n∈N∗ such that φ(‖wkn
(ω) − w‖) → 0, which implies

that ‖wkn
(ω)− w‖ → 0, and therefore wn(ω) → w. Since ω is arbitrary in Ω1,

the statement follows.

(iv): By Proposition 3.1(i), limE[‖Bwn−Bw‖2] = 0, and hence there exists

a subsequence (kn)n∈N∗ such that limn→∞ E[‖Bwkn
− Bw‖2] = 0. Therefore,

there exists a subsequence (pn)n∈N∗ of (kn)n∈N∗ such that ‖Bwpn
−Bw‖2 → 0

almost surely. Thus, it follows from (ii) and Proposition 3.2(iii) that there ex-

ists Ω1 ∈ A such that P(Ω1) = 1 and, for every ω ∈ Ω1, (wn(ω))n∈N∗ has weak

cluster points and ‖Bwpn
(ω)− Bw‖2 → 0. Fix ω ∈ Ω1 and let z(ω) be a weak

cluster point of (wpn
(ω))n∈N∗ , then there exists a subsequence (wqpn

(ω))n∈N∗
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such that wqpn
(ω) ⇀ z(ω). Since B is weakly continuous, Bwqpn

(ω) ⇀ Bz(ω).

Therefore, Bw = Bz(ω), and hence 〈Bz(ω) − Bw | z(ω) − w〉 = 0. Since B is

strictly monotone at w, we obtain, w = z(ω). This shows that wqpn
(ω) ⇀ w.

Defining (tn)n∈N∗ by setting, for every n ∈ N
∗, tn = qpn

the statement follows.

The following lemma establishes a non asymptotic bound for numerical

sequences satisfying a given recursive inequality. This is a non asymptotic

version of Chung’s lemma [21, Chapter 2, Lemma 5] (see also [33]).

Lemma 3.1 Let α be in ]0, 1], and let c and τ be in ]0, +∞[, let (ηn)n∈N∗ be

the sequence defined by (∀n ∈ N
∗) ηn = cn−α. Let (sn)n∈N∗ be such that

(∀n ∈ N
∗) 0 ≤ sn+1 ≤ (1 − ηn)sn + τη2

n. (30)

Let n0 be the smallest integer such that, for every n ≥ n0 > 1, it holds ηn ≤ 1,

set t = 1 − 2α−1 ≥ 0, and define ϕ1−2α and ϕc−1 as in (8). Then, for every

n ≥ 2n0, if α ∈ ]0, 1[,

sn+1 ≤
(

τc2ϕ1−2α(n) + sn0
exp

(cn1−α
0

1 − α

))

exp
(−ct(n + 1)1−α

1 − α

)

+
τ2αc

(n − 2)α

(31)

and, if α = 1,

sn+1 ≤ sn0

( n0

n + 1

)c

+
τc2

(n + 1)c

(

1 +
1

n0

)c

ϕc−1(n). (32)

Proof Note that, for every n ∈ N
∗ and for every integer m ≤ n:

n
∑

k=m

k−α ≥ ϕ1−α(n + 1) − ϕ1−α(m), (33)
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where ϕ1−α is defined by (8). Since all terms in (30) are positive for n ≥ n0,

by applying the recursion n − n0 times we have

sn+1 ≤ sn0

n
∏

k=n0

(1 − ηk) + τ

n
∑

k=n0

n
∏

i=k+1

(1 − ηi)η
2
k. (34)

Let us estimate the first term in the r.h.s. of (34). Since 1 − x ≤ exp(−x) for

every x ∈ R, from (33), we derive

sn0

n
∏

k=n0

(1 − ηk) = sn0

n
∏

k=n0

(

1 −
c

kα

)

≤ sn0
exp

(

−c

n
∑

k=n0

k−α

)

≤































sn0

( n0

n + 1

)c

if α = 1,

sn0
exp

( c

1 − α
(n1−α

0 − (n + 1)1−α)
)

if 0 < α < 1.

(35)

To estimate the second term on the right hand side of (34), let us first consider

the case α < 1, and let m ∈ N
∗ such that n0 ≤ n/2 ≤ m + 1 ≤ (n + 1)/2. We

have

n
∑

k=n0

n
∏

i=k+1

(1 − ηi)η
2
k =

m
∑

k=n0

n
∏

i=k+1

(1 − ηi)η
2
k +

n
∑

k=m+1

n
∏

i=k+1

(1 − ηi)η
2
k

≤ exp
(

−

n
∑

i=m+1

ηi

)

m
∑

k=n0

η2
k + ηm

n
∑

k=m+1

(

n
∏

i=k+1

(1 − ηi) −

n
∏

i=k

(1 − ηi)

)

≤ exp
(

−

n
∑

i=m+1

ηi

)

m
∑

k=n0

η2
k + ηm

≤ c2 exp
( c

1 − α
((m + 1)1−α − (n + 1)1−α)

)

ϕ1−2α(n) + ηm (36)

≤ c2 exp
(−ct(n + 1)1−α

1 − α

)

ϕ1−2α(n) +
2αc

µ(n − 2)α
. (37)
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Hence, combining (35) and (37), for α ∈ ]0, 1[ we get

sn+1 ≤
(

τc2ϕ1−2α(n) + sn0
exp
(cn1−α

0

1 − α

))

exp
(−ct(n + 1)1−α

1 − α

)

+
τ2αc

(n − 2)α

(38)

We next estimate the second term in the right hand side of (34) in the case

α = 1. We have

n
∑

k=n0

n
∏

i=k+1

(1 − ηi)η
2
k ≤

c2

(n + 1)c

(

1 +
1

n0

)c

ϕc−1(n).

Therefore, for α = 1, we obtain,

sn+1 ≤ sn0

( n0

n + 1

)c

+
τc2

(n + 1)c

(

1 +
1

n0

)c

ϕc−1(n), (39)

which completes the proof.

We are now ready to prove Theorem 3.4.

Proof (Theorem 3.4) Since µ + ν > 0, then A + B is strongly monotone at w.

Hence, zer(A + B) = {w}. Let n ∈ N
∗. Since γnA is γnν-strongly monotone,

by [4, Proposition 23.11] JγnA is (1 + γnν)-cocoercive, and then

‖yn − w‖2 = ‖JγnA(wn − γnBn) − JγnA(w − γnBw)‖2

≤
1

(1 + γnν)2
‖(wn − w) − γn(Bn − Bw)‖2.

Next, proceeding as in the proof of Proposition 3.1 and recalling (17)-(18), we

obtain

E[‖yn − w‖2] ≤
1

(1 + γnν)2

(

E[‖wn − w‖2] − γn

(

2 − γn

1 + 2δ2αn

β

)

·

· E[〈wn − w | Bwn − Bw〉] + 2γ2
nδ2(1 + αn‖Bw‖2)

)

. (40)
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Since B is strongly monotone of parameter µ at w,

〈Bwn − Bw | wn − w〉 ≥ µ‖wn − w‖2 . (41)

Therefore, from (40), recalling the definition of ε in (A3), we get

λnE[‖yn − w‖2] ≤
λn

(1 + γnν)2

(

(1 − γnµǫ)E[‖wn − w‖2] + 2δ2χ2
n

)

. (42)

Hence, by definition of wn+1,

E[‖wn+1 − w‖2] ≤

(

1 −
λnγn(2ν + γnν2 + µǫ)

(1 + γnν)2

)

E[‖wn − w‖2] +
2δ2χ2

n

(1 + γnν)2
.

(43)

Now, suppose that n ≥ n0. Since γn ≤ γn0
= c1n

−θ
0

≤ 1, we have

λnγn(2ν + γnν2 + 2µǫ)

(1 + γnν)2
≥

λ(2ν + µε)

(1 + ν)2
γn = cn−θ. (44)

On the other hand,

2δ2χ2
n

(1 + γnν)2
≤ 2δ2(1 + α‖Bw‖2)c2

1n
−2θ . (45)

Then, putting together (43), (44), and (45), we get

E[‖wn+1 − w‖2] ≤ (1 − ηn)E[‖wn − w‖2] + τη2
n, (46)

with τ = 2δ2c2
1(1 + α‖Bw‖2)/c2 and ηn = cn−θ.

(i)&(ii): Inequalities (10) and (11) follow from (46) by applying Lemma

3.1.

(iii) For θ ∈ ]0, 1[, the statement follows from (10). For θ = 1, the statement

follows from (11) and (8).
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4 Special Cases

In this section, we study two special instances of Problem 3.1, namely vari-

ational inequalities and minimization problems. Moreover, for variational in-

equalities, we prove an additional result showing that a suitably defined merit

function [35] goes to zero when evaluated on the iterates of the stochastic

forward-backward algorithm. This merit function has been used to quantify

the inaccuracy of an approximation of the solution in [18].

4.1 Variational Inequalities

In this section we focus on a special case of Problem 3.1, assuming that A is

the subdifferential of G ∈ Γ0(H).

Problem 4.1 Let B : H → H be β-cocoercive, for some β ∈ ]0, +∞[, let

G be a function in Γ0(H). The problem is to solve the following variational

inequality [36,5,4]

find w ∈ H such that (∀w ∈ H) 〈w − w | Bw〉 + G(w) ≤ G(w), (47)

under the assumption that (47) has at least one solution.

Several stochastic algorithms for variational inequalities have been studied on

finite dimensional spaces: the sample average approximation [37,38] (see also

references therein), the mirror proximal stochastic approximation algorithm

[18], and stochastic proximal methods [19,20].
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Problem 4.1 reduces to a particular case of Problem 3.1 with A = ∂G

and Algorithm 3.1 can be specialized according to the fact that, (∀n ∈ N
∗),

JγnA = proxγnG.

When G is the indicator function of a non-empty, closed, convex subset

C of H, Problem 4.1 reduces to the problem of solving a classic variational

inequality [36,39], namely to find w such that

(∀w ∈ C) 〈Bw | w − w〉 ≤ 0. (48)

Proximal algorithms are often used to solve this problem; see [4, Chapter 25]

and references therein. Note that, by [40, Lemma 1], since cocoercivity of B

implies Lipschitz continuity, w is a solution of (48) if and only if

(∀w ∈ C) 〈Bw | w − w〉 ≤ 0 . (49)

As it has been done in [18], it is therefore natural to quantify the inaccuracy

of a candidate solution u ∈ H by the merit function

V (u) = sup
w∈C

〈Bw | u − w〉 . (50)

In particular, note that (∀u ∈ H) V (u) ≥ 0 and V (u) = 0 if and only u is

a solution of (49). We will consider convergence properties of the following

iteration, which differs from the one in Algorithm 3.1 only by the averaging

step.

Algorithm 4.1 Let C be a nonempty bounded closed convex subset of H. Let

(γt)t∈N∗ be a sequence in ]0, +∞[. Let (λt)t∈N∗ be a sequence in [0, 1], and let
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(Bt)t∈N∗ be a H-valued random process such that (∀n ∈ N
∗) E[‖Bn‖2] < +∞.

Let w1 : Ω → H be a random variable such that E[‖w1‖
2] < +∞ and set

(∀n ∈ N
∗)





































For t = 1, . . . , n




















zt = wt − γtBt

yt = PCzt

wt+1 = (1 − λt)wt + λtyt

wn =
(
∑n

t=1
γtλtwt

)

/
∑n

t=1
(γtλt).

(51)

The next theorem gives an estimate of the function V when evaluated on

the expectation of wn. Note that we do not impose any additional monotonicity

property on B.

Theorem 4.2 (Ergodic convergence) In the setting of problem (47), assume

that G = ιC for some nonempty bounded closed convex set C in H. Let

(wn)n∈N∗ be the sequence generated by Algorithm 4.1 and suppose that condi-

tions (A1), (A2), and (A3) hold. Set

θ0 = sup
u∈C

1

2
E[‖w1 −u‖2] and θ1,n =

1

2

n
∑

t=1

(

λtγ
2
t (1+ δ2αt)E[‖Bwt‖

2]+ δ2λtγ
2
t

)

,

(52)

then

V (E[wn]) ≤ (θ0 + θ1,n)

( n
∑

t=1

λtγt

)−1

. (53)

Moreover, suppose that the condition (A4) is also satisfied. Then,

lim
n→+∞

V (E[wn]) = 0. (54)

In particular, if (∀t ∈ N
∗) λt = 1 and γt = t−θ for some θ ∈ ]1/2, 1[, we get

V (E[wn]) = O(nθ−1). (55)
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Proof Since C is a non-empty closed convex set, PC is non-expansive. Hence,

from the convexity of ‖ · ‖2, for every t ∈ N
∗ and every u ∈ C,

‖wt+1 − u‖2 ≤ (1 − λt)‖wt − u‖2 + λt‖PC(wt − γtBt) − PCu‖2

≤ (1 − λt)‖wt − u‖2 + λt‖wt − u − γtBt‖
2

≤ ‖wt − u‖2 − 2λtγt 〈wt − u | Bt〉 + λtγ
2
t ‖Bt‖

2.

We derive from conditions (A1) that E[〈wt − u | Bt〉 |Ft] = 〈wt − u | Bwt〉 and

from (A3) that

E[‖Bt‖
2|Ft] ≤

≤ E[‖Bt − Bwt‖
2|Ft] + E[‖Bwt‖

2|Ft] + 2E[〈Bt − Bwt | Bwt〉 |Ft]

≤ ‖Bwt‖
2 + δ2(1 + αt‖Bwt‖

2). (56)

Therefore, (56) and the monotonicity of B yield

2λtγt 〈wt − u | Bu〉 ≤ ‖wt − u‖2 − E[‖wt+1 − u‖2|Ft]

+ λtγ
2
t (1 + δ2αt)‖Bwt‖

2) + δ2λtγ
2
t , (57)

which implies that

2E[〈wn − u | Bu〉]

≤

( n
∑

t=1

λtγt

)−1(

E[‖w1 − u‖2 +

n
∑

t=1

(

λtγ
2
t (1 + σ2λtαt)E[‖Bwt‖

2] + σ2λtγ
2
t )
)

)

.

Thus, supu∈C E[〈wn − u | Bu〉] ≤ (θ0+θ1,n)
(
∑n

t=1
λtγt

)−1
, which proves (53).

Finally, since C is bounded, θ0 < +∞. Now, additionally assume that (A4)

is satisfied. Then
∑+∞

t=1
λtγt = +∞, hence, to get (54), it is enough to prove

that (θ0+θ1,n)n∈N∗ is bounded. Since (A4) implies that
∑+∞

t=1
λtγ

2
t < +∞ and
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∑+∞

t=1
λtγ

2
t αt < +∞, we are left to prove that (E[‖Bwt‖

2])t∈N∗ is bounded.

This directly follows from Proposition 3.1(i). The last assertion of the state-

ment follows from (53) with, for every t ∈ N
∗, γt = t−θ and λt = 1.

Remark 4.1 Under slightly different assumptions, an alternative method to

solve Problem 4.1 is the mirror-prox algorithm in [18]. With respect to forward-

backward, the mirror-prox algorithm requires two projections per iteration,

rather than one. With such procedure, E[V (wn)] → 0; see [18]. In general,

V (E[wn]) ≤ E[V (wn)].

4.2 Minimization Problems

In this section, we specialize the results in Section 3 to minimization problems.

In the special case of composite minimization, stochastic implementations of

first order methods received much attention [16,17,27,41–43] for the ease of

implement and the low memory requirement of each iteration. In particular,

[42] derives an optimal rate of convergence for the objective function values.

Similar accelerated algorithms have been also studied in the machine learning

community [44–49].

Problem 4.2 Let β ∈ ]0, +∞[, let G ∈ Γ0(H), and let F : H → R be a convex

differentiable function, with a β−1-Lipschitz continuous gradient. The problem

is to

minimize
w∈H

F (w) + G(w), (58)

under the assumption that the set of solution to (58) is non-empty.
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Problem 4.2 is a specific instance of Problem 3.1, with A = ∂G and B = ∇F .

Indeed, ∇F is cocoercive thanks to the Baillon-Haddad Theorem [4, Corol-

lary 18.16]. Algorithm 3.1 can therefore be specialized to the minimization

setting, with, for every n ∈ N
∗, JγnA = proxγnG. When G is an indicator

function, and (∀n ∈ N
∗) λn = 1, related results have been obtained in [50].

Theorem 3.4 applied to Problem 4.2 is the extension to the nonsmooth case

of [33, Theorem 1]. Algorithm 3.1 for minimization is closely related to the

FOBOS algorithm studied in [16] (see also [17]). The main difference with

these papers is that our convergence results consider convergence of the it-

erates with no averaging, without boundedness assumptions. The asymptotic

rate O(n−1) for the iterates improves the O((log n)/n) rate derived from [16,

Corollary 10] for the average of the iterates and it coincides with the one that

can be derived by applying optimal methods [42], and the methods in [51–54].

In stochastic optimization, the study of almost sure convergence has a long

history; see e.g. [55–58] and references therein. Recent results on convergence

of projected stochastic gradient algorithm can be found in [59,60,34].

5 Conclusions

We studied a stochastic version of the forward-backward splitting algorithm,

providing various convergence results in the strongly and uniformly mono-

tone case. The monotone inclusions framework is key to derive convergence of

primal-dual algorithms in the deterministic setting, and we believe that the

extension to the stochastic case is an interesting research direction.
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50. Yousefian, F., Nedić, A., Shanbhag, U.V.: On stochastic gradient and subgradient meth-

ods with adaptive steplength sequences. Automatica J. IFAC 48(1), 56–67 (2012)



32 Lorenzo Rosasco et al.

51. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex

stochastic composite optimization i: a generic algorithmic framework. SIAM J. Optim.

22(4), 1469–1492 (2012)

52. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly con-

vex stochastic composite optimization ii: shrinking procedures and optimal algorithms.

SIAM J. Optim. 23(4), 2061–2089 (2013)

53. Hazan, E., Kale, S.: Beyond the regret minimization barrier:optimal algorithms for

stochastic strongly-convex optimization. J. Mach. Learn. Res. 15, 2489–2512 (2014)

54. Juditsky, A., Nesterov, Y.E.: Deterministic and stochastic primal-dual subgradient

methods for minimizing uniformly convex functions. Stochastic Systems 4(1), 44–80

(2014)

55. Robbins, H., Siegmund, D.: A convergence theorem for non negative almost super-

martingales and some applications. In: Optimizing methods in statistics, pp. 233–257.

Academic Press, New York (1971)

56. Kushner, H.J., Clark, D.S.: Stochastic approximation methods for constrained and un-

constrained systems, vol. 26. Springer-Verlag, New York (1978)

57. Benveniste, A., Métivier, M., Priouret, P.: Adaptive algorithms and stochastic approx-

imations. Springer-Verlag, Berlin (1990)

58. Chen, X., White, H.: Asymptotic properties of some projection-based robbins-monro

procedures in a hilbert space. Stud. Nonlinear Dyn. Econom. 6, 1–53 (2002)

59. Bennar, A., Monnez, J.M.: Almost sure convergence of a stochastic approximation pro-

cess in a convex set. Int. J. Appl. Math. 20(5), 713–722 (2007)

60. Monnez, J.M.: Almost sure convergence of stochastic gradient processes with matrix

step sizes. Statist. Probab. Lett. 76(5), 531–536 (2006)

61. Combettes, P.L., Pesquet, J.C.: Proximal thresholding algorithm for minimization over

orthonormal bases. SIAM J. Optim. 18(4), 1351–1376 (2007)

62. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.

Ser. B 58(1), 267–288 (1996)


