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Abstract. An elementary geometric construction known as Napoledresitem produces an

equilateral triangle built on the sides of any initial trige: the centroids of each equilateral
triangle meeting the original sides, all outward or all imdjacomprise the vertices of the

new equilateral triangle. In this note we observe that twpdleon iterations yield triangles

with useful optimality properties. Two inner transfornoats result in a (degenerate) triangle
whose vertices coincide at the original centroid. Two otremsformations yield an equilateral
triangle whose vertices are closest to the original in theseef minimizing the sum of the

three squared distances.

1. INTRODUCTION. In elementary geometry, one way of constructing an equilat-
eral triangle from any given triangle is as follows: in a @ahe centroids of equilat-
eral triangles erected, either all externally or all intdlyy on the sides of the given
triangle form an equilateral triangle, illustrated in Rigd [1]. This result is generally
referred to adNapoleon’s theorepmotwithstanding its dubious origins — seg for

a detailed history of the theorem. We will refer to these tmtsions aghe outer and
inner Napoleon transformatiorend the associated equilateral trianglestesouter
and inner Napoleon trianglesf the original triangle, respectively. Conversely, given
its outer and inner Napoleon triangles in position (i.eythee oppositely oriented and
have the same centroid), the original triangle is uniquetgtnined §]. A fascinating
application of Napoleon triangles is the planar tesseltatised by Escher: a plane can
be tiled using congruent copies of the hexagon defined byehéces of any triangle
and its outer Napoleon triangle, knownEscher’s theorer].

1509.07218v1 [math.OC] 24 Sep 2015

arXiv

Figure 1. An illustration of (left) the Fermat poin#’, outer Torricelli configuratiom ,+ 5 ~r and outer
Napoleon triangleA 4~ gn v, @nd (right) inner Torricelli configuratiol 4., p,.c, and inner Napoleon
triangle A 4, By, Of @ triangle A 4pc. Note that centroids of Torricelli configurations, Napaieo
triangles and the original triangle all coincide, i€AApc) = (A rprer) = (A yNgNeN) =
C(AATBTCT) = C(AANBNCN)'
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Equilaterals built on the sides of a triangle make a variégppearances in the clas-
sical literature. Torricelli uses this construction todte Fermat'’s point minimizing the
sum of distances to the vertices of a given triangle, noweddhe Fermat-Torricelli
problem[5]. The unique solution of this problem is known e Fermat-Torricelli
pointof the given triangle, located as follow§][ If an internal angle of the triangle is
greater thar120°, then the Fermat point is at that obtuse vertex. Otherwieethree
lines joining opposite vertices of the original triangledagxternally erected triangles
are concurrent, and they intersect at the Fermat point,igeegi. The triangle defined
by the new vertices of the erected equilateral trianglesfisrred to ashe Torricelli
configuration 7, g].

In this paper we demonstrate some remarkable, but not inatedgiobvious, op-
timality properties of twice iterated Napoleon triangl€ast, two composed inner
Napoleon transformations of a triangle collapse the oalgiao a point located at its
centroid which, by definition, minimizes the sum of squaristishces to the vertices of
the given triangle. Surprisingly, two composed outer Napaoltransformations yield
an equilateral triangle optimally aligned with the oridiba virtue of minimizing the
sum of squared distances between the paired vertices. Meceseply, for any triangle
A 4 with the vertices A, B, C' € RY, we will say that the trianglé\ 4/ z/¢ is an
optimally aligned equilateral triangle of\ 4 5 if it solves the following constrained
optimization problem:

minimize ||[A— A'||>+||B - B'|* + ||C — C'|?

. 2 2 2 (1)
subjectto ||A'—B'||"=||A"-C'||" = ||B'— |
where A’, B',C" € R? and||.|| denotes the standard Euclidean normish As we
show below, this optimization problem has a unique solusiotiong asA, B, C' are
not collinear.

2. TORRICELLI AND NAPOLEON TRANSFORMATIONS. For any ordered

triple x = [Xl,XQ,Xg]T € R34, let R, denote the rotation matrix corresponding to a
counter-clockwise rotation by/2 in the plane, defined by orthonormal vectarand

t, in which the triangle/A, formed byx is positively oriented (i.e. its vertices in
counter-clockwise order follow the sequence — 1 —+2 —3 — 1 —...),?

0 —1
Rx::[mt][l 0][nat]Ta 2
where3
Mo 1 X1 7 X0, € {z € S 'n"z = 0}, if x is collinear
BE=9 a0’ otherwise, U P(n) === otherwise (3)
lIx3—x2ll5’ ! [lx3—x11l2 ’ !

whereP (n) : = I; — nn7 is the projection ont@, S~ (the tangent space 6f ! at
pointn € S?1), andl, is thed x d identity matrix. Note that\, is both positively
and negatively oriented i is collinear. Consequently, to define a plane containing

1Here,R denotes the set of real numbers, &is thed-dimensional Euclidean space.

2AT denotes the transpose of matAx

3For any trivial triangleAx all of whose vertices are located at the same point wifix= 0 by setting
—r = 0 whenevex = 0.

[



suchx we select an arbitrary vectarperpendicular ton in (3). It is also convenient

to havec(x) denote the centroid of\, i.e.c(x) : = % S X

In general, the Torricelli and Napoleon transformationghoée points in Euclidean
d-space can be defined based on their original planar defisifio a 2-dimensional
subspace oR“ containingx. That is to say, for anx € R3¢, select a 2-dimensional
subspace dk? containingx, and then construct the erected triangles on the sideof
in this subspace to obtain the Torricelli and Napoleon fiamnsations ofx. Accord-
ingly, let T, : R3¢ — R3? andN, : R* — R3¢ denote the Torricelli and Napoleon
transformations where the sig#, and—, determines the type of the transformation,
inner and outer, respectively. One can write closed-forpressions of the Torricelli
and Napoleon transformations as:

Lemma 1. The Torricelli and Napoleon transformations of any triptec R3? on a
plane containingk are, respectively, given dy

1 3
T (x) = <5K + g(lg @ Ry) L) X, (4)
1
N, (x) = g(Kx + Ti(x)) , (5)
where
011 0 -1 1
K=]101|®I, and L= 1 0 -1 ®I,. (6)
110 -1 1 0

Proof. One can locate the new vertex of an equilateral triangleamdly or outwardly,
constructed on one side df, in the plane containing using different geometric
properties of equilateral triangles. We find it convenientse the perpendicular bi-
sector of the corresponding sideAt,, the line passing through its midpoint and being
perpendicular to it, such that the new vertex is on this liigeand a proper distance
away from the side of\,,.

For instance, ley = [y1,y2,v3]" = T, (x). Consider the side of\, joining x;
andx,, using the bisectot,, : = 2(x; + x5), to locate the new vertex;s, of in-

2
wardly erected triangle on this side as

V3
ys = bis + TRX(X2 —x1), (7)

whereR (2) defines a counter-clockwise rotation §yin the plane wherex is posi-

tively oriented. Note that the height of an equilateraltgke from any side isé—g times
its side length. Hence, by symmetry, one can concldjle (

Given a Torricelli configuratioy = [y, -, Y3]T = T_ (x), by definition, the ver-
tices of associated Napoleon triangle= [z, z, z3]T = N_ (x) are given by

1 1 1
7, = 5(yl + X9 +x3), 20 = g(X1 +y2 +x3) andzz = §(X1 +x2+y3), (8)

which is equal to%), and so the result follows. [ |

4Here,® denotes the Kronecker produé] [



Note that the Torricelli and Napoleon transformations@ire unique if and only if
x € R*? is non-collinear. If, contrarilyx is collinear, ther\, is both positively and
negatively oriented and faf > 3 there is more than one 2-dimensional subspace of
R? containingx.

Remark 1 ([3]). For anyx = [x1,Xa, Xg]T € R4, the centroid of the Torricelli con-

figurationy = [y, yo, yg]T = T (x), the Napoleon configuration = N_ (x) and
the original triplex all coincide,

c(x) = c(y) = c(z), ©9)

and distances between the associated elementsinfly are all the same, i.e. for any
i#j€{1,2,3}

v = xill, = lly; — x5l - (10)

An observation key to all further results is that Napole@m&formations of equi-
lateral triangles are very simple.

Lemma 2. The inner Napoleon transformatids, of any triplex = [Xl,XQ,Xg]T €

R3¢ comprising the vertices of an equilateral triangle, collapses it to the trivial
triangle all of whose vertices are located at its centroic),

N, (x) = 13 @ c(x), (11)

whereas the outer Napoleon transformati¥n reflects the vertices @k, with respect
to its centroide(x), °

N_(x) =2 -13®c(x) — x. (12)

Proof. Observe that the inwardly erected triangle on any side ofjailateral triangle
is equal to the equilateral triangle itself, i'B, (x) = x, and so, by definition, one has
(11). Alternatively, using §), one can obtain

_ 1
~ 3

whereK is defined as ing).

Now consider outwardly erected equilateral triangles @endildes of an equilateral
triangle, and lety = [y1,y2,ys]' = T_(x). Note that each erected triangle has a
common side with the original triangle. Sinde, is equilateral, observe that the mid-
point of the unshared vertices of an erected triangle andrig@al triangle is equal to
the midpoint of their common sides, i.(y, + x1) = 3(x, + x3) and so on. Hence,
we haveT _(x) = Kx — x. Thus, one can verify the result usird) @s

N, (x) (Kx+ T, (x)) = %(Kx +x) =13 ®c(x), (13)

N (x) = l(Kx—i— T_(x)) = %(Kx—l—Kx —-x)=2-13®c(x)—x. (14)

3 n

SHere, 13 is theR3 column vector of all ones, anddenotes the standard array product.



Since the Napoleon transformation of any triangle resalemi equilateral triangle,
motivated from Lemma, we now consider the iterations of the Napoleon transfor-
mation. For any: > 0 let N% : R* — R3¢ denote thek-th Napoleon transformation
defined to be

NEF! =N o N, (15)
where we seNY : =id, andid : R** — R3? is the identity map ofiR3.
Itis evident from Lemma that:

Lemma3. For anyx € R*¥ andk > 1,
Ni“(x) =1;®c(x), and N'i“(x) = N]i(x). (16)

As a result, the basis of iterations of the Napoleon tramsétions consists df . and
N3, whose explicit forms, excep¥? , are given above. Using) and @2), the closed-
form expression of the double outer Napolean transformafio can be obtained as:

Lemma4. An arbitrary triple,x = [xl,x2,x3]T € R34 gives rise to the double outer
Napoleon triangleN? : R3¢ — R3?, according to the formula

2 1
N2 (x) ==x+ =T, (x). (17)
3 3
Proof. By Napoleon's theoremN_(x) is an equilateral triangle. Usingb) and
Lemma2, one can obtain the result as follows:

N2 (x)=N_(N_(x)) =2-13®c(z) —N_(x) =2-13®c(z) — % (Kx+T_(x)),(18)
2 1 2 1 2 1

= g(Kx—i-x) -3 (Kx+T_(x))= 3XT3 (Kx—T_(x))= 3Xt §T+(x),(19)

whereK is defined as ing). [ |

Notice thatN? (x) is a convex combination of andT , (x), see Figure.

3. OPTIMALITY OF NAPOLEON TRANSFORMATIONS. To best of our
knowledge, the Napoleon transformatisn is mostly recognized as being a function
into the space of equilateral triangles. In addition to thiserited propertyN2 has
an optimality property that is not immediately obvious.dugh the double inner
Napoleon transformatiolN? is not really that interesting to work with, it gives a
hint about the optimality oN? : for any given triangleN? yields a trivial triangle all
of whose vertices are located at the centroid of the givemgle which, by defini-
tion, minimizes the sum of squared distances to the vert€dise original triangle.
Surprisingly, one has a similar optimality property 1t :

Theorem 1. The double outer Napoleon transformatidi (x) (17) yields the equi-
lateral triangle most closely aligned with, in the sense that it minimizes the to-
tal sum of squared distances between corresponding verfideat is to say, for any



Figure 2. (left) Outer,A 4~ g~v o~ , and double outer) , » g o, Napoleon transformations of a triangle
A4 pc. (right) The double outer Napoleon triangle , » 5o ~p is @ convex combination of the original
triangle A 4 ¢ and its inner Torricelli configuratiols 4. 5., cp. -

x = [x1, %2, %3] € R, N2 (x) is an optimal solution of the following problem

3

minimize Ixi — yill?
2 (20)

subjectto [y, — yal|* = [y — vsl* = ly2 — vsl®

wherey = [yl,YQ,Y3]T € R34, Further, if x is non-collinear, thenZ0) has a unique
solution.

Proof. Using the method of Lagrange multipliersl], we first show that an optimal
solution of Q) lies in the plane containing the triangle,. Then, to show the result,
we solve R0) using a proper parametrization of equilateral triangheR3.

The Lagrangian formulation o2Q) minimizes

3
2 2 2
Ly, Au de) = D I = yills + M (v = val3 = llva = vsl2)

1=1
2 2
+ /\2(HY1 —valls = lly2 — Yst) ,  (21)

where)\;, A\, € R are Lagrange multipliers. Necessary conditions for thallgpopti-
mal solutions of 20) is ©

(yi —x1) + Ai(ys —y2) + Aa(y1 — ¥2)
VyL(y, A1, 0) =2 | (y2 = %2) + Mi(y2 —v1) + Aa(ys —y1) | =0, (22)
(Y3 - X3) - )\1(}’3 - Yl) - )\2(}’3 - Yz)

from which one can conclude that an optimal solution28)(lies in the plane con-
taining A,. Accordingly, without loss of generality, suppose thaf is a positively
oriented triangle ilR?, i.e. its vertices are in counter-clockwise ordeRih

In general, an equilateral triangle, in R? with verticesy = [yi,y2,y3] € R®
can be uniquely parametrized using two of its vertices,ysagndy,, and a binary

SHere,Vy denotes the gradient taken with respect to the coordinate
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variablek € {—1,+1} specifying the orientation of\,; for instance k = +1 if
A, is positively oriented, and so on. Consequently, the rem@ivertex,ys, can be
located as

1 V3
ys = 5(}’1 +y2) + kTRﬂ/Q(YQ - V1), (23)
whereR;/, = {(1) _01 is the rotation matrix defining a rotation hy/2.

Hence, one can rewrite the optimization proble®)(n term of new parameters as
an unconstrained optimization problem as:fory, € R* andk € {—1,1},

L 2
minimize [x; = yi[5 + [xz = y2l5 + [[xs — My: = Myof[,  (24)

whereM : = %I — k@Rﬂ/Q, andI is the 2 x 2 identity matrix. Note thatM +
MT =1, M™ = MMT =T andM? = —-M".

For a fixedk € {—1, 1}, (24) is a convex optimization problem g¢f, andy, be-
cause every norm oR” is convex and compositions of convex functions with affine
transformations preserve convexityl]. Hence, a global optimal solution c24) oc-
curs where the gradient of the objective function is zero at,

RRER (f\ﬁa);p)} =Tt (25)

which simplifies to

2I —M yi| X1+MTX3 (26)
~MT 2L | |yo| | X0+ Mxs |

Note that the objective functiorf,(y), is strongly convex since its HessiaviZ f (y),
satisfies

ng(y)Z[ A

which means that for a fixeld € {—1, +1} the optimal solution ofZ4) is unique.
Now observe that

1f21 M|[ 2 -M] [I 0
§{MT 21] {—MT 21]:{0 I]’ (28)

hence the solution of linear equatid26j is

vi| _1[2I M| [x;+MTxz] 1 2x1 +2M x5 +Mx, +M2x,4
V2 MT 2T | | x,+Mxs MTx; +(M2) " x5+ 2x, + 2Mx;

3

- | @

o+ B R )] o
%(Xg‘i‘%) +kﬁ§Rﬂ—/2(Xl—X3)

12+ M x3+Mxo|
T3 2%+ MTxy +Mxs |

Here, substituting; andy, back into 3) yields

1

1 X1+x2+X3>
=—|x3+ + k R, /o(xy—x1). 31
Y3 2(3 3 2\/§ /2(2 1) (31)




Thus, overall, we have

2 11 V3 2x + T, (x),if k = +1
=-xt- | 2Kx+kbk— (I @R, o) Lx | =43~ 3 _+*77 " (32
y=gxtg| gKxth3 (Is ® Ry ) Lix {%x—l—%T_(x),ifk‘:—l-( )

whereK andL are defined as ingj. Recall that\ is assumed to be positively ori-
ented, i.,eRx = R /», and so it is convenient to have the results in terms of Teltric
transformationd’ | (4). As a result, the difference gf andx is simply given by

(T, (x) —x),if bk =+1,

(T_(x) —x),if k= —1. (33)

y-—x=

|=

3

Finally, one can easily verify that the optimum valuekos equal to+1 since the
distance ok to its inner Torricelli configuratiofl’, (x) is always less than or equal to
its distance to the outer Torricelli configuratidh (x). Here, the equality only holds
if x is collinear. Thus, an optimal solution 02@) coincides with the double outer
Napoleon transformatiory? (x) (17), and it is the unique solution oR() if x is
non-collinear. [ |

As a final remark we would like to note that our particular iett in the optimal-
ity of Napoleon triangles comes from our research on coatduh robot navigation,
where a group of robots require to interchange their (stmatt adjacencies through
a minimum cost configuration determined by the double outgrdieon transforma-
tion [12].
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