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1 Introduction

Semi-infinite programming (SIP, in short) has been long under intensive study and has wide
applications in Chebyshev approximation, engineering design, and optimal control etc.; see,
e.g., [1–5], while generalized semi-infinite programming (GSIP, in short) has applications in re-
verse Chebyshev approximation, maneuverability of a robot and time optimal control etc.; see,
e.g., [6–8].

The study of first-order necessary optimality conditions is important as they play a key role
in the development of optimization theory and the design of optimal algorithms. Various types
of Fritz-John (FJ, in short) and Karush-Kuhn-Tucker (KKT, in short) optimality conditions for
(SIP) have been extensively investigated without or with a constraint qualification, see [9–12]
and [2, 10, 13–16], respectively. Similar necessary optimality conditions for (GSIP) have also
been studied without or with a constraint qualification in [6] and [15, 17–20], respectively. See
Section 2 for a brief review on first-order optimality conditions of (SIP) and (GSIP).

It is known that another approach to study optimality conditions is by virtue of exact penalty
functions. For nonlinear programs, l1 penalty function theory and algorithms have been widely
studied. Clarke [21] and Burke [22] used l1 exact penalty functions to derive KKT necessary
optimality conditions. On the other hand, Yang and Meng [23] and Meng and Yang [24] used
lp(p ∈ [0, 1]) exact penalty functions to derive KKT necessary optimality conditions together
with some nonpositivity condition on the second-order directional derivative of the constraints.
Lower order lp(p ∈ [0, 1]) penalty functions have been investigated in recent years in a framework
of a generalized augmented Lagrangian with a generalized augmenting function [25,26], which is
considered as a generalization of classical augmented Lagrangian theory with a convex quadratic
augmenting function in [27] and a more general convex augmenting function in [28].

In this paper, we will study optimality conditions of (SIP) and (GSIP) by employing lower
order exact penalty functions and the condition that the directional derivative of the objective
function at the candidate point along any feasible direction for the linearized constraint set is
non-negative. We will consider three types of penalty functions for (SIP) and investigate the
relationship among the exactness of these penalty functions. We employ lower order integral
exact penalty functions and the second-order generalized derivative of the constraint function
to establish optimality conditions for (SIP). Our results extend the ones in [23] to (SIP) by using
different types of lp exact penalty functions. More specifically, we will propose three types of pth-
order (p ∈ ]0, 1]) penalty functions, generalizations of the l∞ and lp penalty functions in nonlinear
programming problems, respectively. Under the assumption of exactness of the penalty functions,
we derive first-order optimality conditions for (SIP). We will illustrate that the assumptions in our
results are different from the extended Abadie CQ.

We will also investigate the optimality condition for (GSIP). We will adopt the exact penalty
function technique in terms of a classical augmented Lagrangian function for the lower level
problems of (GSIP) to transform (GSIP) into (SIP) and then apply our previously obtained results
for (SIP) to derive the optimality condition for (GSIP).

The paper is organized as follows. In Section 2, we present a literature review for the optimal-
ity conditions of (SIP) and (GSIP). In Section 3, we give definitions of different types of penalty
functions and study their relationship. In Section 4, we are devoted to the first-order optimality
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condition for (SIP) under the exact penalization assumption. In Section 5, as an application of
the results in Section 4, we study the first-order optimality condition of (GSIP) through a double
penalization.

2 Literature Review

Consider the following semi-infinite program, denoted as (SIP):

min f (x) s.t. g(x, t) ≤ 0, t ∈ Ω,

where f : Rn → R and g : Rn × Ω → R are continuously differentiable real-valued functions,
and Ω is a nonempty and compact set of parameters in Rm. Let

X := {x ∈ Rn : g(x, t) ≤ 0, t ∈ Ω}

be the feasible set and, for x ∈ X, let

Ωx := {t ∈ Ω : g(x, t) = 0}.

Let x∗ be a locally optimal solution of (SIP).

By using a max-reformulation, SIP can be written as a nonlinear program with a nonsmooth
constraint: min f (x) s.t. maxt∈Ω g(x, t) ≤ 0.Correspondingly, Fritz John [9] (see also Pschenichnyi
[10]) derived the following FJ necessary optimality condition

0 ∈ conv{∇ f (x∗),∇xg(x∗, t) (t ∈ Ωx∗)}. (1)

Hettich and Jongen [11] and Borwein [12] derived the FJ necessary optimality condition (1) using
a reduction technique.

Using a constraint qualification that every d with ∇xg(x∗, t)>d ≤ 0 for t ∈ Ωx∗ is a feasible
direction and a Farkas lemma, Hettich and Kortanek [2] showed that the following necessary
optimality condition holds

0 ∈ ∇ f (x∗) + cl cone{∇xg(x∗, t) (t ∈ Ωx∗)}. (2)

Li, et al [13] introduced an extended Abadie CQ for a convex SIP for establishing the necessary
optimality condition (2).

Furthermore, for a convex SIP with a Slater condition, Pschenichnyi [10] derived the follow-
ing KKT condition

0 ∈ ∇ f (x∗) + cone{∇xg(x∗, t) (t ∈ Ωx∗)}. (3)

For a nondifferentiable convex SIP, Lopez and Vercher [14] established (3) using the property of
Farkas-Minkowski, implied by a Slater condition. For a differentiable SIP satisfying an extended
Abadie constraint qualification (see (4)), it was shown in Stein [15] that (3) holds. For an SIP with
a lower semi-continuous objective function and a locally Lipschitz constraint function, Zheng and

3



Yang [16] derived a KKT necessary condition (3) by using a generalized constraint qualification,
which is an extension of the one in [2]. Under the condition that cone{∇xg(x∗, t) (t ∈ Ωx∗)} is
closed, (2) becomes (3).

Let p > 0. Pietrzykowski [29] introduced the following lp integral penalty function

f (x) + ρ

∫
Ω

gp
+(x, t)dµ(t)

and established the convergence of the solution sequence of the penalty problems to an optimal
solution of (SIP). Conn and Gould [30] established the exactness for a modified l1 integral penalty
function with positive feasible parametric areas as a denominator.

For x ∈ X, let
TX(x) := {d : ∃dk → d, τk ↓ 0, s.t. x + τkdk ∈ X}

be the contingent cone of the feasible set X at x and

D(x) := {0 , d ∈ Rn : 〈∇xg(x, t), d〉 ≤ 0,∀t ∈ Ωx}

be the set of feasible directions for the linearized constraint set, see [36]. Clearly

TX(x) ⊂ D(x) ∪ {0}.

The extended Abadie CQ for SIP [15] is said to hold at x ∈ X iff

TX(x) = D(x) ∪ {0}. (4)

It is easy to show that

〈∇ f (x∗), d〉 ≥ 0, ∀d ∈ TX(x∗). (5)

In this paper, we are devoted to the study of the following optimality condition of (SIP)

〈∇ f (x∗), d〉 ≥ 0, ∀d ∈ D(x∗), (6)

via its lower order lp exact penalty function, where TX(x) in (5) is replaced by D(x∗). (6) is
stronger than (5) in general. If the extended Abadie CQ (4) holds, then (6) and (5) are equivalent.
On the other hand, (6) is also nothing new, but another formulation of (2). Indeed, by Farkas
Lemma [2], (6) is equivalent to (2). Thus (6) is weaker than the KKT optimality condition (3).
It is known that some more constraint qualification is needed to establish the KKT optimality
condition (3) from the condition (6), see [2].

Clearly (6) implies that

max
t∈Ωx∗
{〈∇ f (x∗), d〉, 〈∇xg(x∗, t), d〉} ≥ 0, (7)

for all d ∈ Rn. However, the reverse does not always hold as shown by an example. Consider the
problem min x2 s.t. tx1 + x2

2 ≤ 0, t ∈ [−1, 1]. The FJ optimality condition (1) holds at the unique
feasible point x∗ = (0, 0), where Ωx∗ = [−1, 1], ∇ f (x∗) = (0, 1)T ,∇xg(x∗, t) = (t, 0)T , t ∈ [−1, 1],
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while (6) does not hold with D(0, 0) = {0} × (R \ {0}). It is also true that (7) is equivalent to the
FJ optimality condition (1) due to the compactness of the set {∇xg(x∗, t) (t ∈ Ωx∗)}. This follows
from the fact that, for a convex set C, z ∈ cl (C) iff 〈z, d〉 ≤ σ∗C(d) for every d ∈ Rn, where
σ∗C(d) = supx∈C〈x, d〉 is the support function of C, see Section 13 of [31]. In such a case, letting
C := co {∇ f (x∗),∇xg(x∗, t)(t ∈ Ωx∗)} and z = 0, we have

σ∗C(d) = max{〈∇ f (x∗), d〉, 〈∇xg(x∗, t), d〉(t ∈ Ωx∗)}, ∀d ∈ Rn

which gives the desired result.

Consider also the following generalized semi-infinite program, denoted as (GSIP),

min f (x) s.t. g(x, t) ≤ 0, t ∈ Ω ∩Ω(x),

where Ω is a compact subset of Rm, Ω(x) := {t ∈ Rm : vi(x, t) ≤ 0, i = 1, · · · , l} and the
functions f : Rn → R, g : Rn ×Rm → R, and vi : Rn ×Rm → R(i = 1, · · · , l) are continuously
differentiable. Both (SIP) and (GSIP) feature a ‘bi-level’ structure, while for (GSIP) this feature
is often explicitly employed in its study. Let the Lagrange function of the lower level problem be

L(x, t, λ, µ) := λg(x, t) −
l∑

i=1

µivi(x, t),

where λ, µi ≥ 0, i = 1, · · · , l.

Without any constraint qualification, Jongen, et al [6] derived a FJ necessary optimality con-
dition with a FJ Lagrange function, that is, the constraint function g(x, t) in (1) is replaced by
the Lagrange function L(x, t, λ, µ). Based on a local representability of (GSIP) as an ordinary
SIP and a lower level LICQ, Weber [17] described a necessary optimality condition of type (2).
Rückmann and Shapiro [18] obtained a FJ condition with a KKT Lagrange function of the lower
level problem by assuming a lower level MFCQ. Stein [19] obtained four kinds of FJ conditions,
including a strengthened FJ condition for any lower level KKT Lagrange multiplier by assuming
the directionally differentiability of the lower level optimal value function. Stein [15] and Ye and
Wu [20] studied extended ACQ conditions for a GSIP.

On the other hand, a differentiable penalty function is used by Levitin [32] to eliminate the
lower level constraints and (GSIP) can thus be approximated by a sequence of SIP’s. Further
developed by Polak and Royset [33] and Royset et al. [34], an l∞ penalty function and an aug-
mented Lagrangian function are adopted for (GSIP) with min-max form and also algorithms are
proposed.

3 Max-Type and Integral-Type Penalty Functions

Recall that X = {x ∈ Rn : g(x, t) ≤ 0, t ∈ Ω} is the feasible set and, for x ∈ X,

Ωx = {t ∈ Ω : g(x, t) = 0},

is the index set of active constraints of SIP.
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Let R+ := {x ∈ R : x ≥ 0} and R++ := {x ∈ R : x > 0}. A penalty function F : Rn → R is of
the following form

F(x) := f (x) + ρP(x),

where ρ > 0 is a penalty parameter and P : Rn → R+ is a penalty term satisfying

P(x) = 0⇔ x ∈ X.

Let x∗ be a locally optimal solution of SIP. F is said to be exact at x∗ iff there exists ρ̄ > 0 such
that x∗ is a locally optimal solution of F for any ρ ≥ ρ̄.

Let p ∈ ]0, 1] and [a]+ := max{a, 0}. We consider two types of penalty functions, i.e., max-
type penalty and integral-type penalty functions. A pth-order max-type penalty function for SIP
is defined as,

F p
max(x) := f (x) + ρmax

t∈Ω
gp

+(x, t), (8)

where gp
+(x, t) =

(
[g(x, t)]+

)p.

Let µ be a non-negative regular Borel measure defined on Ω with the support of µ being equal
to Ω, that is supp(µ) = Ω, where the support of µ is defined as the set of the points t ∈ Ω such that
any open neighborhood V of t has a positive measure:

supp(µ) := {t ∈ Ω : µ(V) > 0, for any open neighbourhood V of t}.

Two pth-order integral-type penalty functions for SIP are defined, respectively, by

F p
int(x) := f (x) + ρ

∫
Ω

gp
+(x, t) dµ(t), (9)

F̄ p
int(x) := f (x) + ρ

(∫
Ω

g+(x, t) dµ(t)
)p

. (10)

With the assumption supp(µ) = Ω,
∫

Ω
gp

+(x, t) dµ(t) and (
∫

Ω
g+(x, t) dt)p are penalty terms, i.e.,∫

Ω

gp
+(x, t) dµ(t) = 0⇐⇒ g(x, t) ≤ 0, ∀t ∈ Ω, (11)(∫

Ω

g+(x, t) dµ(t)
)p

= 0⇐⇒ g(x, t) ≤ 0, ∀t ∈ Ω.

We show only the necessity of (11) since the sufficiency is trivial. Suppose that there exists t0 ∈ Ω

such that g(x, t0) > 0. The continuity of g ensures the existence of neighborhood V of t0 and α > 0
such that g(x, t) > α, for all t ∈ V. Thus,∫

Ω

gp
+(x, t) dµ(t) ≥

∫
V

gp
+(x, t) dµ(t) ≥ αpµ(V) > 0,

where the last step comes from the fact that Ω = supp(µ). This leads to a contradiction.

Clearly, from the definition, if F p
max (resp. F p

int and F̄ p
int) is exact at x∗, then so is F p̃

max (resp.
F p̃

int and F̄ p̃
int) for all p̃ ∈ ]0, p[. This is due to the fact that the local optimality of x∗ guarantees

that g(x, t) < 1 for all x in a neighborhood of x∗ and thus gp
+(x, t) ≤ g p̃

+(x, t) if p̃ ∈ ]0, p[.
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If the set Ω is finite, say Ω = {t1, · · · , ts}, then the feasible set X is defined by a finite number of
inequalities and hence (SIP) becomes a standard nonlinear programming problem. Correspond-
ingly, taking a regular Borel measure µ =

∑s
i=1 δti , where δti is a Dirac measure defined on Ω, the

pth-order penalty functions (8), (9) and (10) take the form of

F p
max(x) = f (x) + ρmax

1≤i≤s
gp

+(x, ti), (12)

F p
int(x) = f (x) + ρ

s∑
i=1

gp
+(x, ti), (13)

F̄ p
int(x) = f (x) + ρ

 s∑
i=1

g+(x, ti)

p

, (14)

respectively, where (13) and (14) are the pth-order penalty functions for a nonlinear program-
ming problem investigated in Rubinov and Yang [25] for the existence of zero duality gap and
exact penalty results and used in Meng and Yang [24] and Yang and Meng [23] for the study of
optimality conditions. It is easy to see that the exactness of all three penalty functions (12), (13)
and (14) are equivalent, see, e.g., Lemma 4.1 of [26].

Let µ be the Lebesgue measure. Note that Ω is a compact set of Rm. If Ω = cl int Ω, then
supp(µ) = Ω. Here the support ‘supp’ is understood as the support of the Lebesgue measure with
respect to Ω:

supp(µ) =

{
t ∈ Ω :

∫
B(t,δ)∩Ω

dµ(t) > 0 for all δ > 0
}
.

Especially, if Ω is a convex set with an interior point, then Ω = cl intΩ, see, e.g. Theorem 2.33
of [28] and so supp(µ) = Ω.

Throughout the paper we will make the assumptions that Ω = supp(µ) whenever the integral-
type penalty function is dealt with and that in all examples, for simplicity, µ is assumed to be
the Lebesgue measure and dµ(t) is simplified as dt. For the details of real analysis, we refer the
reader to the reference [35].

Next, we explore the relationships among the exact penalty functions F p
max, F̄ p

int and F p
int. First,

let us introduce the following set, for x ∈ Rn,

Ax := arg max
t∈Ω

g+(x, t) = {t ∈ Ω : g+(x, t) = max
t∈Ω

g+(x, t)}.

Proposition 3.1. Let p ∈ ]0, 1] and supp(µ) = Ω. We have

(i) if F p
int is an exact penalty function at x∗, so is F̄ p

int;

(ii) if F̄ p
int is an exact penalty function at x∗, so is F p

max;

(iii) if F p
max is an exact penalty function at x∗ and

lim inf
x→x∗

µ(Ax) > 0, (15)

so is F̄ p
int, where the definition of ‘liminf’ is referred to the one in [28].
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Proof: (i) When p = 1, (i) is trivial. Let p ∈ ]0, 1[. If F p
int is an exact penalty function at x∗, there

are a neighborhood B(x∗) of x∗ and ρ̄ > 0 such that, for any x ∈ B(x∗) and ρ ≥ ρ̄,

f (x) + ρ

∫
Ω

g+(x, t)p dµ(t) ≥ f (x∗), ∀x ∈ B(x∗).

Following a special case of Hölder’s inequality, see [35, Theorem 5.1], we have, for any x ∈ B(x∗)
and ρ ≥ ρ̄µ(Ω)1−p,

f (x) + ρ

(∫
Ω

g+(x, t) dµ(t)
)p

≥ f (x) + ρ̄µ(Ω)1−pµ(Ω)p−1
∫

Ω

g+(x, t)p dµ(t) ≥ f (x∗).

(ii) It is easy to see that gp
+(x, t) ≤

(
max

t∈Ω
g+(x, t)

)p
= max

t∈Ω
gp

+(x, t),∀x ∈ Rn. So,(∫
Ω

g+(x, t) dµ(t)
)p

≤

(∫
Ω

max
t∈Ω

g+(x, t) dµ(t)
)p

= [µ(Ω)]p max
t∈Ω

gp
+(x, t),

where µ(Ω) > 0, since supp(µ) = Ω. By assumption, F̄ p
int is an exact penalty function at x∗, that

is, there exists ρ̄ > 0 such that for every ρ ≥ ρ̄ there exists δρ > 0 satisfying

F̄ p
int(x) = f (x) + ρ

(∫
Ω

g+(x, t) dµ(t)
)p

≥ f (x∗), ∀x ∈ B(x∗, δρ). (16)

Let ρ̂ = [µ(Ω)]pρ̄. For each ρ ≥ ρ̂, we have from (16)

F p
max(x) = f (x) + ρmax

t∈Ω
gp

+(x, t) ≥ f (x) +
ρ

[µ(Ω)]p

(∫
Ω

g+(x, t) dµ(t)
)p

≥ f (x∗),

for any x ∈ B(x∗, δρ
[µ(Ω)]p ). This means that F p

max is an exact penalty function at x∗.

(iii) The condition (15) is equivalent to the existence of two constants ε > 0 and δ1 > 0 such
that

µ(Ax) ≥ ε
1
p , ∀x ∈ B(x∗, δ1).

Thus, for any x ∈ B(x∗, δ1), we have(∫
Ω

g+(x, t) dµ(t)
)p

≥

(∫
Ax

g+(x, t) dµ(t)
)p

= [µ(Ax)]p max
t∈Ω

gp
+(x, t) ≥ εmax

t∈Ω
gp

+(x, t). (17)

Since F p
max is an exact penalty function, there exists ρ̄ > 0 such that for every ρ ≥ ρ̄, δρ > 0 (with

δρ < δ1) is found such that

F p
max(x) = f (x) + ρmax

t∈Ω
gp

+(x, t) ≥ f (x∗), ∀x ∈ B(x∗, δρ). (18)

Let ρ̂ =
ρ̄

ε
. For any ρ ≥ ρ̂ (implying ρε ≥ ρ̄), it follows from (17) and (18) that

F̄ p
int(x) = f (x) + ρ

(∫
Ω

g+(x, t) dµ(t)
)p

≥ f (x) + ρεmax
t∈Ω

gp
+(x, t) ≥ f (x∗),

for all x ∈ B(x∗, δρε). That is, F̄ p
int is an exact penalty function at x∗. �

The extended MFCQ of (SIP) at x∗ is said to hold (see, [37]) iff there exists h ∈ Rn such that

∇xg(x∗, t)T h < 0, ∀t ∈ Ωx∗ .
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Proposition 3.2. Assume that the extended MFCQ of (SIP) holds at x∗ and f is locally Lipschitz
continuous near x∗. Then F1

max is an exact penalty function. If in addition, the condition (15)
holds, then F1

int is also exact.

Proof: Let C(Ω) be the space of all continuous functionals on Ω, G(x)(·) := g(x, ·) and

K := C−(Ω) := {y ∈ C(Ω) : y(w) ≤ 0,∀w ∈ Ω}.

Consider the following optimization problem

min f (x) s.t. G(x) ∈ K, t ∈ Ω.

It follows from page 510 of [37] that the extended MFCQ is equivalent to the following
Robinson’s constraint qualification:

G(x∗) + DG(x∗)h ∈ int(K).

Again it follows from Proposition 3.111 of [37] that, if the Robinson’s constraint qualification
holds at x∗ and f is locally Lipschitz continuous near x∗, then the penalty function

θ(x) := f (x) + ρdist(G(x),K)

is exact at x∗, where dist(G(x),K) = min{dist(G(x), y) : y ∈ K} and the distance between two
functionals φ, ϕ ∈ C(Ω) is defined as

dist(φ, ϕ) := max
t∈Ω
‖φ(t) − ϕ(t)‖.

Now we have dist(G(x),K) = max
t∈Ω

g+(x, t). Thus F1
max is an exact penalty function.

If in addition, (15) holds, then, by Proposition 3.1 (iii), F1
int is also exact.. �

We now give various examples to illustrate the results of Propositions 3.1 and 3.2. First the
exactness of penalty function F̄ p

int can indeed be strictly weaker than that of F p
int as shown by the

following example.

Example 3.1. Consider the SIP problem

min f (x) s.t. g(x, t) ≤ 0, t ∈ Ω,

where

f (x) =

x2, if x ≥ 0,
−x

5
3 , otherwise,

g(x, t) = 2tx − t2 and Ω = [−1, 1].

Then, for x ≤ 0 sufficiently small,∫
Ω

g+(x, t)1/2 dt =

∫ 0

2x
(2tx − t2)1/2 dt=

∫ 1

−1
x2(1 − s2)1/2 ds =

π

2
x2,

where

t = (1 − s)x, and
(∫

Ω

g+(x, t) dt
)1/2

=

(
−

4
3

x3
)1/2

.

Thus it follows that F̄1/2
int is exact at x∗ = 0 and F1/2

int is not.
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Clearly,

Ax =

{
Ωx, if x < X,
Ω, otherwise.

Since µ(Ω) > 0 by the assumption supp(µ) = Ω, the condition (15) can be rewritten as

lim inf
x→x∗

µ(Ax) = lim inf
x→x∗
x<X

µ(Ωx) > 0.

The following example shows that condition (15) in Proposition 3.1 is sufficient, not neces-
sary, and that the extended MFCQ in Proposition 3.2 is also only sufficient for F1

max to be an exact
penalty function.

Example 3.2. Consider the following linear SIP problem

min x1 s.t. tx1 + t3x2 ≤ 0, t ∈ [−1, 1].

It is easy to see that X = {(0, 0)}, the point x∗ = (0, 0) is the optimal solution and Ωx∗ = [−1, 1]. It
is obvious that lim inf

x→x∗
µ(Ax) = 0, i.e., condition (15) doesn’t hold, and that the extended MFCQ

does not hold. For the latter, we have ∇xg(x∗, t)T h = th1 + t3h2 = 0 ≮ 0 when t = 0 ∈ Ωx∗ . Next,
we check the exactness of integral-type penalty function

F1
int(x1, x2) := x1 + ρ

∫ 1

−1
[tx1 + t3x2]+ dt.

It suffices to consider the area {(x1, x2) : x1 < 0}. For x1 < 0, 0 < − x1
x2
≤ 1,

F1
int(x1, x2) = x1 + ρ

∫ 0

−

√
−

x1
x2

+

∫ 1

√
−

x1
x2

 tx1 + t3x2 dt = x1

[
1 −

ρ

2

(
−1 −

x2

2x1
−

x1

x2

)]
.

Since 1
2s + s ≥

√
2, for s ∈ (0, 1], F1

int(x1, x2) ≥ 0 for ρ large enough. For x1 < 0, 1 < − x1
x2
, or

x1 < 0, x2 < 0,

F1
int(x1, x2) = x1 + ρ

∫ 0

−1
tx1 + t3x2 dt = x1

[
1 − ρ

(
1
2
−

1
4

(
−

x2

x1

))]
.

In both above cases, for some ρ > 0, F1
int ≥ 0 holds. Thus F1

int is exact at x∗, and so is F1
max, by

Proposition 3.1 (ii).

4 Optimality Conditions of SIP

In this section, we shall employ the exactness of F p
max, F p

int and F̄ p
int(p ∈ ]0, 1]) to develop optimal-

ity conditions (6) of SIP. From Theorem 3.1, we know that exactness of F p
max is weaker than that

of F̄ p
int and the exactness of F̄ p

int is weaker than that of F p
int. Let x∗ be a locally optimal solution of

SIP.
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Two cases are treated separately according to the different value p. We consider first the case
when p = 1.

(SIP) can be rewritten as

min f (x) s.t. max
t∈Ω

g(x, t) ≤ 0. (19)

The exactness of F1
max is equivalent to saying that problem (19) has an l1 exact penalty function in

the usual sense, see Clarke [21]. By using the calculus of nonsmooth analysis, see e.g. Theorem
2.8.6 in [21], it is easy to prove that the exactness of F1

max guarantees the KKT-type optimality
condition (3), so does the exactness of F1

int or that of F̄1
max.

Below is an example to show that the exactness of F1
max is strictly weaker than that of F1

int.

Example 4.1. Consider the SIP problem with

f (x) = −x1 − x2, g(x, t) = tx1 + t2x2,Ω = [0, 1].

Then the feasible set is X = {x ∈ R2 : x1 + x2 ≤ 0, x1 ≤ 0} and thus x∗ = (0, 0) is the optimal
solution. We also have that

max
t∈[0,1]

g+(x, t) =


x1 + x2, if x1 + x2 ≥ 0, x1 + 2x2 ≥ 0,
0, if x1 + x2 ≤ 0, x1 ≤ 0,

−
x2

1
4x2
, otherwise.

Noting that −x1 − x2 −
x2

1
4x2

= −
(2x2+x1)2

4x2
, it is easy to see that for ρ ≥ 1, F1

max is exact at x∗.
x∗ is a KKT point as well: by taking λ = 1, t = 1, (−1,−1) + 1 · (1, 1) = 0. However, for
x ∈ {x : x1 ≤ 0, x1 + x2 ≥ 0},

F1
int(x) = −x1 − x2 + ρ

(
1
2

x1 +
1
3

x2 −
1
6

x3
1

x2
2

)
=

ρ

6

(
x1 −

x3
1

x2
2

)
+ (

ρ

3
− 1)(x1 + x2)

=
(x1 + x2)

6

(
(2ρ − 6) + ρ

x1

x2
− ρ

x2
1

x2
2

)
.

So, by taking x = (−s + s2, s), s ↓ 0, we know that for ρ large enough F1
int(x) < 0 and thus F1

int is
not exact at x∗.

Compared with p = 1, the case of p ∈ ]0, 1[ needs more effort. First, we briefly describe some
notation that will be used in the sequel. Given a continuous function h : Rn → R, the upper
Dini-directional derivative of h at a point x in the direction d ∈ Rn is defined by

D+h(x; d) := lim sup
λ↓0

h(x + λd) − h(x)
λ

.

11



A function h : Rn → R is called to be C1,1 if it is continuously differentiable and its derivative
is locally Lipschitz function on Rn. The generalized upper and lower second-order directional
derivatives of a C1,1 function h at x in the direction d ∈ Rn are defined, respectively, by

h◦◦(x; d) := lim sup
y→x,λ↓0

〈∇h(y + λd), d〉 − 〈∇h(y), d〉
λ

,

h◦◦(x; d) := lim inf
y→x,λ↓0

〈∇h(y + λd), d〉 − 〈∇h(y), d〉
λ

,

see [38–40]. Recall D(x) = {0 , d ∈ Rn : 〈∇xg(x, t), d〉 ≤ 0 ∀t ∈ Ωx} and let

Ω=
x (d) := {t ∈ Ωx : 〈∇xg(x, t), d〉 = 0},

Ω<
x (d) := {t ∈ Ωx : 〈∇xg(x, t), d〉 < 0},

where D(x) is called the cone of feasible directions for the linearized constraint set for (SIP),
see [36].

Before stating our main result, we present two lemmas, which are needed in our proof, one of
which is compiled from [23] for the estimates of the upper Dini-directional derivative D+h(x, t; ·)
when h is a pth order penalty term.

Lemma 4.1. (Fatou’s Lemma [35, Chapter 11, Corollary 5.7]) Let (Z,M, µ) be a measure space
and fk : Z → [0,+∞[ be integrable for each k. Assume that

lim inf
k→∞

∫
Z
| fk(t)| dµ(t)

exists. Then ∫
Z

lim inf
k→∞

fk(t) dµ(t) ≤ lim inf
k→∞

∫
Z

fk(t) dµ(t).

Lemma 4.2. [23] Let h̄(x) = (max{h(x), 0})p with p ∈ ]0, 1[ and h be continuously differentiable
at x.

(i) If h(x) < 0, then D+h̄(x; d) = 0;

(ii) If h(x) = 0 and 〈∇h(x), d〉 < 0, then D+h̄(x; d) = 0;

(iii) If p = 0.5, h(x) = 0 and 〈∇h(x), d〉 = 0, then D+h̄(x; d) ≤
√

max{ 12h◦◦(x; d), 0};

(iv) If p ∈ ]0.5, 1[, h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x; d) is finite, then D+h̄(x; d) = 0;

(v) If p ∈ ]0, 0.5[, h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x; d) < 0, then D+h̄(x; d) = 0.

Now we establish a necessary optimality condition for SIP by virtue of the exact penalty
function F p

int.

12



Theorem 4.1. Let p ∈ ]0, 1[ and F p
int be exact at x∗. Under any one of the three assumptions

below,
(i) p = 0.5 and g◦◦(x∗, t; d) ≤ 0 for all t ∈ Ω=

x∗(d) and d ∈ D(x∗),
(ii) p ∈ ]0.5, 1[ and g(·, t) is C1,1, for all t ∈ Ω=

x∗(d), and
(iii) p ∈ ]0, 0.5[ and g◦◦(x∗, t; d) < 0, for all t ∈ Ω=

x∗(d) and d ∈ D(x∗),
we have

〈∇ f (x∗), d〉 ≥ 0,∀d ∈ D(x∗). (20)

Proof: For p ∈ ]0, 1[ and d ∈ D(x∗), we have

0 ≤ D+F p
int(x∗; d) = 〈∇ f (x∗), d〉 + ρ lim sup

λ↓0

∫
Ω

gp
+(x∗ + λd, t)

λ
dµ(t). (21)

Firstly, we claim that for any t ∈ Ω,

gp
+(x∗ + λd, t)

λ
→ 0 as λ ↓ 0. (22)

Note that Ω = (Ω\Ωx∗)∪Ω<
x∗(d)∪Ω=

x∗(d). For t ∈ Ω\Ωx∗ , g(x∗, t) < 0. Thus by (a) of Lemma 4.2,

D+gp
+(x∗, t; d) = 0.

For t ∈ Ω<
x∗(d), g(x∗, t) = 0 and 〈Og(x∗, t), d〉 < 0. Thus, by (b) of Lemma 4.2, we still have

D+gp
+(x∗, t; d) = 0.

For the case t ∈ Ω=
x∗(d), that is g(x∗, t) = 〈∇g(x∗, t), d〉 = 0, we consider the following three

subcases:
Subcase (i) p = 0.5. By (c) of Lemma 4.2 and the assumption, we have

0 ≤ D+gp
+(x∗, t; d) ≤

√
max{

1
2

g◦◦(x∗, t; d), 0} = 0.

Subcase (ii) p ∈ ]0.5, 1[. By (d) of Lemma 4.2 and the assumption g(·, t) is C1,1, we have
D+gp

+(x∗, t; d) = 0.
Subcase (iii) p ∈ ]0, 0.5[. By (e) of Lemma 4.2 and the assumption g◦◦(x∗, t; d) < 0, we have
D+gp

+(x∗, t; d) = 0.

In all, we have D+gp
+(x∗, t; d) = 0 for any t ∈ Ω. Noting the non-negativity of gp

+(x∗+λd,t)
λ

, thus
we obtain the claim (22).

Secondly, we claim that for any constant ε > 0 there exists λ∗ > 0 such that

gp
+(x∗ + λd, t)

λ
≤ ε, (23)

holds for any (t, λ) ∈ Ω× ]0, λ∗[. Indeed, by the continuity of gp
+(x∗+λd,t)

λ
with respect to (t, λ),

for any t ∈ Ω, there exist a neighborhood Vt of t and λt > 0 such that gp
+(x∗+λd,t′)

λ
≤ ε, for all

13



(t′, λ) ∈ Vt× ]0, λt[. By the compactness of Ω, there are t1, · · · , tk belonging to Ω such that
Ω ⊂

⋃
k Vtk . By letting λ∗ = min1≤i≤k λti , we obtain the claim (23).

By applying Fatou’s Lemma to the sequence of functions
{
ε −

gp
+(x∗+λd,t)

λ
: λ ↓ 0

}
, we have

lim inf
λ↓0

∫
Ω

(
ε −

gp
+(x∗ + λd, t)

λ

)
dµ(t) ≥ µ(Ω)ε −

∫
Ω

lim sup
λ↓0

gp
+(x∗ + λd, t)

λ
dµ(t)

= µ(Ω)ε −
∫

Ω

D+gp
+(x∗, t; d) dµ(t)

= µ(Ω)ε.

So the last term in the right hand side equality (21) vanishes. Thus we have proved

〈∇ f (x∗), d〉 ≥ 0, ∀d ∈ D(x∗).

�

Remark 4.1. It should be noted that when p ∈ ]0, 1[, we need to use integral-type exact penalty
functions, instead of max-type exact penalty functions, to deal with necessary optimality condi-
tions of SIP. The reason why we do so can be shown by the following example.

Example 4.2. Consider the following linear SIP

min x s.t. 2tx − t2 ≤ 0, t ∈ [−1, 1].

The optimal solution is x∗ = 0, Ωx∗ = {0} and D(x∗) = {0 , d ∈ R}. It is easy to see that F
1
2
max is

exact at x∗. We now show that F
1
2
int is not exact at x∗. Indeed, for x ∈ ] − 1

2 , 0[ sufficiently small,
we have

F
1
2
int(x) = x + ρ

∫ 1

−1
(2tx − t2)

1
2
+ dt = x + ρ

∫ 0

2x
(2tx − t2)

1
2 dt = x +

ρπ

2
x2 < 0 = F

1
2
int(0).

Since the constraint function is linear, then the second-order condition g◦◦(x∗, t; d) = 0 is true for
all t and d. But

〈∇ f (x∗), d〉 < 0,

whenever d ∈ R−. So, for this example, we cannot develop the optimality conditions by only
assuming the exactness of F

1
2
max and the second-order conditions presented in Theorem 4.1.

Remark 4.2. The following example modified from one in [23] shows that extended Abadie CQ
is satisfied but the assumptions of Theorem 4.1 are not. On the other hand, the situation that the
extended Abadie CQ is not satisfied but the assumptions in Theorem 4.1 are satisfied is illustrated
in Example 4.4.

Example 4.3. Consider the following SIP problem

min x s.t. t(x2 − x) ≤ 0, t ∈ [1, 2].

14



Then X = [0, 1], and x∗ = 0 is the unique optimal solution. It is easy to show that

Ωx∗ = [1, 2], TX(x∗) = (cone ∪t∈Ωx∗ ∇xg(x∗, t))◦ = [0,∞[,

g◦◦(x∗, t; d) = 2td2 and D(x∗) = ]0,∞[.

Thus the extended Abadie CQ is satisfied. We have that

F
1
2
int(x) = x +

(
ρ

∫ 2

1
t

1
2 dt

)
[(x2 − x)]

1
2
+ =

(1 − ρ̂2)x2 + ρ̂2x

x −
√

x2 − x
≥ 0,

for all sufficiently small x < 0, where ρ̂ = ρ
∫ 2

1
t

1
2 dt, and that

F
1
2
int(x) ≥ 0,

for x ≥ 0 and thus F
1
2
int is exact, but the assumption (i) of Theorem 4.1 is not satisfied.

Example 4.4. Consider the following SIP problem

min f (x) = x3 s.t. g(x, t) = tx6 ≤ 0, t ∈ Ω = [0, 1].

The optimal solution is x∗ = 0. The extended Abadie CQ is invalid at x∗, since ∇xg(x∗, t) = 0 for
all t ∈ Ω and

{0} = TX(x∗) , D(x∗) = R \ {0}.

Theorem 4.1 is applicable for the case of p = 1
2 . In fact, by a simple calculation, we have for

x ≥ 0,

F
1
2
int(x) = x3 + ρ

∫ 1

0
max{tx6, 0}

1
2 dt ≥ 0;

and for x < 0,

F
1
2
int(x) = x3 + ρ

∫ 1

0
max{tx6, 0}

1
2 dt = (1 − ρ

∫ 1

0
t

1
2 dt)x3 = (1 −

2
3
ρ)x3 ≥ 0,

whenever ρ ≥ 3
2 . So, F

1
2
int is an exact penalty function at x∗. It is clear that

g◦◦(x∗, t; d) = 0 ≤ 0,

for all t ∈ Ω and d ∈ R. Thus the assumption (i) of Theorem 4.1 is satisfied. Indeed, KKT
condition (3) also holds for this example.

Next we employ the exactness of F̄int(p ∈ ]0, 1[) to develop the optimality condition (20) of
SIP. We first give a proposition that is needed in the proof of the necessary optimality condi-
tions (20) of SIP.

Proposition 4.1. Let g : R+ → R+ be a non-negative function, f : R+ → R be a continuous and
strictly increasing function and λ0 ∈ R+. Then

lim sup
λ→λ0

f (g(λ)) ≤ f (lim sup
λ→λ0

g(λ)). (24)

15



Proof: Let {λk} be a sequence such that limk→∞ λk = λ0 and

lim sup
λ→λ0

f (g(λ)) = lim
k→∞

f (g(λk)).

Then lim supk→∞ g(λk) ≤ lim supλ→λ0
g(λ). As the limit limk→∞ f (g(λk)) exists and f is strictly

increasing, limk→∞ g(λk) exists. If limk→∞ g(λk) = ∞, then lim supλ→λ0
g(λ) = ∞. Thus (24)

holds. Assume now that limk→∞ g(λk) < ∞. By the continuity and monotonicity of f ,

lim
k→∞

f (g(λk)) = f ( lim
k→∞

g(λk)) ≤ f (lim sup
λ→λ0

g(λ)),

and the assertion (24) holds. �

Theorem 4.2. Let p ∈ ]0, 1[ and F̄ p
int be exact at x∗. Under any one of the three assumptions in

Theorem 4.1, the necessary optimality condition (20) holds.

Proof: Let d ∈ D(x∗). We have that

0 ≤ D+F̄ p
int(x∗, d)

=〈∇ f (x∗), d〉 + ρ lim sup
λ↓0

(
∫

Ω
g+(x∗ + λd, t) dµ(t))p

λ

≤〈∇ f (x∗), d〉 + ρ

lim sup
λ↓0

∫
Ω

g+(x∗ + λd, t) dµ(t)

λ1/p

p

,

(25)

where the last inequality follows from Proposition 4.1. Note that

lim sup
λ↓0

∫
Ω

g+(x∗ + λd, t) dµ(t)

λ1/p = lim sup
λ↓0

∫
Ω

(
gp

+(x∗ + λd, t)
λ

)1/p

dµ(t).

Following exactly the proof in Theorem 4.1, we have for any t ∈ Ω,

gp
+(x∗ + λd, t)

λ
→ 0 as λ→ 0.

and that for any constant ε > 0 there exists λ∗ > 0 such that for any (t, λ) ∈ Ω× ]0, λ∗[,

gp
+(x∗ + λd, t)

λ
≤ ε.

By applying Fatou’s Lemma to the sequence
{
ε1/p −

(
gp

+(x∗+λd,t)
λ

)1/p
}

and Proposition 4.1, we
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have

lim inf
λ↓0

∫
Ω

ε1/p −

(
gp

+(x∗ + λd, t)
λ

)1/p dµ(t)

≥ µ(Ω)ε1/p −

∫
Ω

lim sup
λ↓0

(
gp

+(x∗ + λd, t)
λ

)1/p

dµ(t)

≥ µ(Ω)ε1/p −

∫
Ω

(
lim sup

λ↓0

gp
+(x∗ + λd, t)

λ

)1/p

dµ(t)

= µ(Ω)ε1/p −

∫
Ω

(
D+gp

+(x∗, t; d)
)1/p dµ(t)

= µ(Ω)ε1/p.

Thus the second term of the last equation in (25) vanishes. This completes the proof. �

5 Optimality Conditions of GSIP

Assume that Ω ∩Ω(x) , ∅ for all x ∈ Rn. As in Polak and Royset [33], we will associate (GSIP)
with an SIP problem via augmented Lagrangian of the lower level problem and derive optimality
conditions for (GSIP) by applying Theorems 4.1 to the resulted SIP.

Let val(GSIP) be the optimal value of the problem (GSIP), X(GSIP) be the feasible set of
(GSIP) and x̂ be a locally optimal solution of (GSIP). Let x ∈ Rn. The lower level problem
associated with (GSIP) is

Q(x) max
t∈Ω

g(x, t) s.t. vi(x, t) ≤ 0, i = 1, · · · , l.

Let valQ(x) be the optimal value of the problem Q(x). Clearly

x ∈ X(GSIP) iff valQ(x) ≤ 0.

Let f̄ (x, µ, c) := f (x) and

ḡ(x, t, µ, c) := g(x, t) −
1
2c

l∑
i=1

{([cvi(x, t) + µi]+)2 − µ2
i }, (x, µ, c) ∈ Rn ×Rl ×R++.

Consider the following SIP problem, denoted as (SIPg),

min
(x,µ,c)∈Rn×Rl×R++

f̄ (x, µ, c) s.t. ḡ(x, t, µ, c) ≤ 0, t ∈ Ω.

Let val(SIPg) be the optimal value of (SIPg) and X(SIPg) be the feasible set of (SIPg).

We will show the equivalence between (GSIP) and (SIPg) in Proposition 5.1. For a fixed
x ∈ Rn, it is clear that ḡ(x, t, µ, c) is the classical augmented Lagrangian of the lower level prob-
lem Q(x), see [27]. There are other generalized augmented Lagrangians that may be used to
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reformulate (GSIP) as an SIP, see [41, 42]. The reason that we choose to use the classical aug-
mented Lagrangian is that it is a C1,1 function, see [39], as long as g(·, t) and each vi(·, t) is twice
continuously differentiable. It is worth noting that the C1,1 property plays a crucial role in the
establishment of optimality conditions when using lower order exact penalty functions, see [23].

Furthermore, for function α(x) := [max{β(x), 0}]2, where β is a C2 function, we have

∇α(x) = 2 max{β(x), 0}∇β(x), (26)

α◦◦(x; d) =

0, if β(x) ≤ 0,
2[β(x)dT∇2β(x)d + 〈∇β(x), d〉2], if β(x) > 0,

(27)

see [39].

Before proceeding, we will investigate the relations between the optimal solutions of (GSIP)
and (SIPg). Let H̄(x, µ, c) := maxt∈Ω ḡ(x, t, µ, c). It is easy to see that (x, µ, c) is feasible for (SIPg)
if H̄(x, µ, c) ≤ 0 and that

H̄(x, µ, c) ≥ valQ(x), ∀(x, µ, c) ∈ Rn ×Rl ×R++.

Thus we obtain the relation between the optimal values of (GSIP) and (SIPg) as follows

val(SIPg) ≥ val(GSIP).

Let ν(x, u) = maxt∈Ω ĝ(x, t, u), where

ĝ(x, t, u) :=

g(x, t), if v(x, t) ≤ u,
−∞, otherwise.

Then ν(x, 0) is the optimal value of the lower level problem Q(x).

Next we recall some concepts from Rockafellar [27]. Problem Q(x) is said to satisfy the
quadratic growth condition iff there is a c ≥ 0 such that ḡ(x, t, 0, c) is bounded above as a function
of t ∈ Ω. Problem Q(x) is said to be stable of degree 2 iff there is a neighborhood U of the origin
in Rl and a C2 function πx : U → R such that

ν(x, u) ≤ πx(u),∀u ∈ U, and ν(x, 0) = πx(0).

Lemma 5.1. (Rockafellar [27]) Under the quadratic growth condition of Q(x), we have

val Q(x) = min
(µ,c)∈Rl×R++

H̄(x, µ, c)

iff the problem Q(x) is stable of degree 2.

Therefore we have

Proposition 5.1. Assume that, for all x ∈ Rn, Q(x) satisfies the quadratic growth condition and is
stable of degree 2. Then problems (GSIP) and (SIPg) have the same optimal value, i.e., val(GSIP)
= val(SIPg), and furthermore,
(i) if x̂ is a locally optimal solution of (GSIP), then there exists (µ̂, ĉ) ∈ Rl×R++ such that (x̂, µ̂, ĉ)
is a locally optimal solution of (SIPg);
(ii) if (x̂, µ̂, ĉ) is a locally optimal solution of (SIPg), then x̂ is a locally optimal solution of (GSIP).
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Proof: (i) Let x̂ be a locally optimal solution of (GSIP). There is a neighborhood W(x̂) of x̂ such
that f (x) ≥ f (x̂) for all x ∈ W(x̂) ∩ X(GSIP). For any (x, µ, c) ∈ W(x̂) × Rl × R++ satisfying
H̄(x, µ, c) ≤ 0, by Lemma 5.1, there exists (µx, cx) ∈ Rl ×R++ such that

H̄(x, µ, c) ≥ H̄(x, µx, cx) = valQ(x).

Then valQ(x) ≤ 0. That is x ∈ X(GSIP). Especially, for x̂ there is (µ̂, ĉ) satisfying

H̄(x̂, µ̂, ĉ) = valQ(x̂) ≤ 0.

Thus (x̂, µ̂, ĉ) ∈ XS IPg . We obtain f̄ (x, µ, c) = f (x) ≥ f (x̂) = f̄ (x̂, µ̂, ĉ) and this completes the
proof.
(ii) The proof proceeds similarly. For any x ∈ W(x̂) satisfying valQ(x) ≤ 0, there is (µx, cx) such
that H̄(x, µx, cx) = valQ(x) ≤ 0, that is (x, µx, cx) is feasible for (SIPg). Then

f (x) = f̄ (x, µx, cx) ≥ f̄ (x̂, µ̂, ĉ) = f (x̂).

Thus
val(GSIP) = val(SIPg).

�

Under the assumptions of Proposition 5.1, we transform (GSIP) into an equivalent SIP prob-
lem (SIPg). For (x, µ, c) ∈ X(SIPg), let Ω(x,µ,c) = {t ∈ Ω : ḡ(x, t, µ, c) = 0} be the index set of active
constraints of val(SIPg) at (x, µ, c).

It follows from (26) that we have

∇xḡ(x, t, µ, c) = ∇xg(x, t) − ∇T
x v(x, t)[cv(x, t) + µ]+,

∇µḡ(x, t, µ, c) = −
1
c

([cv(x, t) + µ]+ − µ),

∇cḡ(x, t, µ, c) =
1

2c2

l∑
i=1

{([cvi(x, t) + µi]+)2 − µ2
i − 2c[cvi(x, t) + µi]+vi(x, t)}.

Let (x, µ, c) ∈ Rn ×Rl ×R++ and t ∈ Ω. Define the index sets

Î+
(x,µ,c)(t) := {i ∈ {1, · · · , l} : cvi(x, t) + µi > 0},

Î0
(x,µ,c)(t) := {i ∈ {1, · · · , l} : cvi(x, t) + µi = 0},

and the cone of feasible directions for the linearized constraint set for (SIPg) by

D(x, µ, c) := {0 , d = (d1, d2, d3) ∈ Rn ×Rl ×R :
〈∇xḡ(x, t, µ, c), d1〉 + 〈∇µḡ(x, t, µ, c), d2〉 + ∇cḡ(x, t, µ, c)d3 ≤ 0, ∀t ∈ Ω(x,µ,c)}.

Lemma 5.2. Let x̂ be a locally optimal solution of (GSIP) and the assumptions of Proposition 5.1
hold. Let (µ̂, ĉ) be the corresponding multiplier as in (1) of Proposition 5.1 such that (x̂, µ̂, ĉ) is a
locally optimal solution of (SIPg). Then the cone D(x̂, µ̂, ĉ) is of the following form

{0 , d = (d1, d2, d3) ∈ Rn ×Rl ×R : 〈∇xg(x̂, t) − ∇T
x v(x̂, t)µ̂, d1〉 ≤ 0, ∀t ∈ Ω(x̂,µ̂,ĉ)}. (28)
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Proof: Let t̃ ∈ Ω(x̂, µ̂, ĉ). By the assumption that (x̂, µ̂, ĉ) is a locally optimal solution of (SIPg), t̃
solves the problem maxt∈Ω ḡ(x̂, t, µ̂, ĉ) for which the following hold

min
(µ,c)

max
t∈Ω

ḡ(x̂, t, µ, c) = max
t∈Ω

min
(µ,c)

ḡ(x̂, t, µ, c) = valQ(x̂) = max
t∈Ω∩Ω(x̂)

g(x̂, t).

Or equivalently, that (t̃, µ̂, ĉ) is a saddle point of the augmented Lagrangian ḡ(x̂, ·, ·, ·). Thus t̃
solves the lower level problem

max{g(x̂, t) : t ∈ Ω, v(x̂, t) ≤ 0}

and augmenting Lagrange multiplier µ̂ is also a Lagrange multiplier of the lower level problem,
see [27]. By the first order necessary optimality condition, we have

0 ∈ ∇t[g(x̂, t̂) − µ̂T v(x̂, t̂)] + NΩ(t̂), 〈µ̂, v(x̂, t̂)〉 = 0, v(x̂, t̂) ≤ 0, µ̂ ≥ 0.

It is easy to see that Î+
(x̂,µ̂,ĉ)(t̂) = {i ∈ {1, · · · , l} : µ̂i > 0} and

[ĉvi(x̂, t̂) + µ̂i]+ = µ̂i, i = 1, · · · , l.

Thus ∇µḡ(x̂, t̂, µ̂, ĉ) = 0,∇cḡ(x̂, t̂, µ̂, ĉ) = 0. As t̃ ∈ Ω(x̂,µ̂,ĉ) is arbitrary, (28) holds. �

Let p = 1 and let the assumptions of Proposition 5.1 hold and

G1
max(x, µ, c) := f̄ (x, µ, c) + max

t∈Ω
ḡ+(x, t, µ, c)

be exact at (x̂, µ̂, ĉ) where the pair (µ̂, ĉ) is obtained from Proposition 5.2. Then it is easy to see
from the case of (SIP), see Section 3, that the following KKT-type optimality condition holds:

0 ∈ ∇ f (x̂) + cone{∇xg(x̂, t) − ∇T
x v(x̂, t)µ̂, t ∈ Ω(x̂,µ̂,ĉ)}.

For p ∈ ]0, 1[, let the integral-type double penalty function of (SIPg) be defined by

Gp
int(x, µ, c) := f̄ (x, µ, c) + ρ

∫
Ω

ḡp
+(x, t, µ, c) dµ(t).

By applying Theorem 4.1 and Lemma 5.2, we have.

Theorem 5.1. Let the assumptions of Proposition 5.1 hold. Let x̂ be a locally optimal solution
of (GSIP) and Gp

int be exact at the point (x̂, µ̂, ĉ) where the pair (µ̂, ĉ) is obtained from Proposi-
tion 5.1. Then, under one of the following assumptions,
(i) p ∈ ]0.5, 1[,
(ii) p = 0.5 and ḡ◦◦(x,µ,c)(x̂, t, µ̂, ĉ; d) ≤ 0 for all d ∈ D(x̂, µ̂, ĉ) and t ∈ Ω(x̂,µ̂,ĉ) with

〈∇(x,µ,c)ḡ(x̂, t, µ̂, ĉ), d〉 = 0, and
(iii) p ∈ ]0, 0.5[ and ḡ◦◦(x,µ,c)(x̂, t, µ̂, ĉ; d) < 0 for all d ∈ D(x̂, µ̂, ĉ) and t ∈ Ω(x̂,µ̂,ĉ) with

〈∇(x,µ,c)ḡ(x̂, t, µ̂, ĉ), d〉 = 0,

we have

〈∇ f (x̂), d1〉 ≥ 0, (29)

for all d1 ∈ R
n satisfying 〈∇xg(x̂, t) − ∇T

x v(x̂, t)µ̂, d1〉 ≤ 0, t ∈ Ω(x̂,µ̂,ĉ).
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Remark 5.1. If (x̂, µ̂, ĉ) solves Gp
int, then so does (x̂, µ̂, c) for any c ≥ ĉ. Since for any (x, t, µ) and

c1 ≤ c2, ḡ(x, t, µ, c1) ≥ ḡ(x, t, µ, c2), it follows that Gp
int(x, µ, c1) ≥ Gp

int(x, µ, c2).

We now compute the generalized second-order directional derivative ḡ◦◦(x,µ,c)(x̂, t, µ̂, ĉ; d) for
d ∈ D(x̂, µ̂, ĉ) and t ∈ Ω(x̂, µ̂, ĉ).

Lemma 5.3. Let d ∈ D(x̂, µ̂, ĉ) and t ∈ Ω(x̂, µ̂, ĉ). Then the following formula holds:

ḡ◦◦(x,µ,c)(x̂, t, µ̂, ĉ; d) = dT
1 [∇2

xxg(x̂, t) −
l∑

i=1

µ̂i∇
2
xxvi(x̂, t)]d1

−
∑

i∈Î+
ẑ (t)

(
√

ĉdT
1∇xvi(x̂, t) +

d2i
√

ĉ
)2 +

l∑
i=1

d2
2i

ĉ
.

(30)

Proof: By definition ḡ(x, t, µ, c), let

ḡ(x, t, µ, c) := k(x, t, µ, c) + h(x, t, µ, c), (x, µ, c) ∈ Rn ×Rl ×R++

where

k(x, t, µ, c) := g(x, t) +

l∑
i=1

µ2
i

2c
, h(x, t, µ, c) = −

l∑
i=1

hi(x, t, µ, c),

hi(x, t, µ, c) :=
([cvi(x, t) + µi]+)2

2c
for i = 1, · · · , l.

For function k, k is a C2 function and

k◦◦(x,µ,c)(x̂, t, µ̂, ĉ; d) = dT
1∇

2
xxg(x̂, t)d1 +

d>2 d2

ĉ
+ µTµ

d2
3

ĉ3 −

l∑
i=1

2
µ̂id2id3

ĉ2 .

For function h, we claim that

h◦◦(x̂, t, µ̂, ĉ; d) =

− m∑
i=1

hi

◦◦ (x̂, t, µ̂, ĉ; d)

= −
∑

i∈Î+
ẑ (t)

(hi)◦◦(x̂, t, µ̂, ĉ; d) = −
∑

i∈Î+
ẑ (t)

dT∇2hi(x̂, t, µ̂, ĉ)d (31)

where the third equality follows from the fact that hi is C2 for i ∈ Î+(t). We now prove the second
equality. On one hand,− m∑

i=1

hi

◦◦ (x̂, t, µ̂, ĉ; d) = −

 m∑
i=1

hi


◦◦

(x̂, t, µ̂, ĉ; d)

≤ −
∑

i∈Î+(t)

(hi)◦◦(x̂, t, µ̂, ĉ; d) −
∑

i<Î+(t)

(hi)◦◦(x̂, t, µ̂, ĉ; d)

= −
∑

i∈Î+(t)

(hi)◦◦(x̂, t, µ̂, ĉ; d). (by (27))

21



On the other hand, since the hi’s are C2 for i < Î0(t), we have m∑
i=1

hi


◦◦

(x̂, t, µ̂, ĉ; d) =
∑

i<Î0(t)

(hi)◦◦(x̂, t, µ̂, ĉ; d) +

 ∑
i∈Î0(t)

hi


◦◦

(x̂, t, µ̂, ĉ; d)

=
∑

i∈Î+(t)

(hi)◦◦(x̂, t, µ̂, ĉ; d) +

 ∑
i∈Î0(t)

hi


◦◦

(x̂, t, µ̂, ĉ; d), (32)

where, for i ∈ Î+(t),

(hi)◦◦(x̂, t, µ̂, ĉ; d) = µ̂idT
1∇

2
xvi(x̂, t)d1 + ĉ〈∇xvi(x̂, t), d1〉

2 +
d2

2i

ĉ
+
µ̂2

i d2
3

ĉ3

+ 2d2i〈∇xvi(x̂, t), d1〉 − 2
µ̂id2id3

ĉ2 .

Next, we claim that the second term of the right hand side of the equation (32) vanishes. By
definition of second-order directional derivative, for any sequences (xν, µν, cν) → (x̂, µ̂, ĉ) and
λν ↓ 0 as ν→ ∞, the last term is no larger than

lim inf
ν→∞

〈∇(
∑

i∈Î0(t) hi)((xν, t, µν, cν) + λνd) − ∇(
∑

i∈Î0(t) hi)(xν, t, µν, cν), d〉
λν

,

This is further equal to zero by choosing any particular sequences (xν, µν, cν) → (x̂, µ̂, ĉ) and
λν ↓ 0 such that for all i ∈ Î0(t),

cνvi(xν, t) + µνi
2cν

< 0 and
(cν + λνd3)vi(xν + λνd1, t) + (µνi + λνd2i)

2(cν + λνd3)
< 0.

Indeed, the sequences can be chosen as follows. Let (xν, µν, cν) = (x̂, µν, ĉ) with µνi ↑ µ̂i for all
i ∈ Î0(t) and µνi = µ̂i for the other i’s. Then the first strict inequality is satisfied. This also means
that the continuous function Fi(x, µ, c) := cvi(x,t)+µi

2c is strictly less than 0 at (x̂, µν, ĉ). Thus, for
given d = (d1, d2, d3) ∈ D(x̂, µ̂, ĉ), there is λν ↓ 0 such that Fi(x̂ + λνd1, µ

ν + λνd2, cν + λνd3) < 0.
This is just the second strict inequality. Combining these two parts, the second term of the right
hand side of the equation (32) vanishes. Thus formula (31) follows. The conclusion follows
easily. �

We have the following corollary of Theorem 5.1.

Corollary 5.1. Assume that the following conditions hold:

(i) G
1
2
int(x, µ, c) is exact at (x̂, µ̂, ĉ);

(ii) g(·, t) and −vi(·, t) (i = 1, · · · , l) are concave for each t ∈ Ω; and

(iii) Î+(t) = {1, · · · , l} and 〈∇xvi(x̂, t), d1〉 = 0 for d ∈ D(x̂, µ̂, ĉ), t ∈ Ω(x̂, µ̂, ĉ) and i ∈ Î+(t).

Then (29) holds.

Proof: Under our assumptions and the formula (30), we have that

ḡ◦◦(x̂, t, µ̂, ĉ; d) = dT
1 [∇2

xxg(x̂, t) −
l∑

i=1

µ̂i∇
2
xxvi(x̂, t)]d1.
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By the assumed concavities, inequality ḡ◦◦(x̂, t, µ̂, ĉ; d) ≤ 0 holds. So condition (ii) of Theo-
rem 5.1 holds. Thus our assertion follows. �

Finally, we present below an example which verifies Theorem 5.1 (ii).

Example 5.1. Consider the following GSIP problem

min
x∈R

x3 s.t. − t ≤ 0, t ∈ Ω ∩Ω(x),

with Ω = [−1, 1],Ω(x) = {t ∈ R : x3 − t ≤ 0}. Then X = {x : x ≥ 0} and the solution x̂ = 0 is
unique. Let

ḡ(x, t, µ, c) := −t −
1
2c

([c(x3 − t) + µ]2
+ − µ

2)

and the p-th order integral-type double penalty function (p ∈ ]0, 1[)

Gp
int(x, µ, c) := x3 + ρ

∫ 1

−1
[ḡ(x, t, µ, c)]p

+ dt.

The lower level problem Q(x) : mint∈[−1,1] −t s.t. x3 − t ≤ 0, has a unique KKT multiplier. The
perturbed problem of the lower level problem Q(x) is

max
t∈[−1,1]

−t s.t. x3 − t ≤ u.

Its value function is ν(x, u) = u − x3 for all points near (x, u) = (0, 0), and is twice continuously
differentiable. Thus the lower level problem is stable of degree 2 (in a neighborhood of the origin).
Therefore, the original GSIP can be equivalently transformed into an SIP in a neighborhood of
the origin.

We will verify that penalty function G1
int is not exact but G

1
2
int is exact at (x̂, µ̂, ĉ) = (0, 1, ĉ) for

some ĉ > 0. For this we only need to consider points near (0, 1, ĉ). It is also enough to consider
the case when x ≤ 0.

Let x ≤ 0. The effective integral interval of y consists of the two parts:

A := {t : x ≤ 0, c(x3 − t) + µ ≤ 0, ḡ(x, t, µ, c) ≥ 0},

B := {t : x ≤ 0, c(x3 − t) + µ ≥ 0, ḡ(x, t, µ, c) ≥ 0}.

Then A = {t : x ≤ 0, x3 +
µ

c ≤ t ≤ µ2

2c } and

B =

{
t : x ≤ 0, t ≤ x3 +

µ

c
,

t ∈

x3 −
1 − µ +

√
(1 − µ)2 − 2cx3

c
, x3 −

1 − µ −
√

(1 − µ)2 − 2cx3

c


 .

By choosing ĉ large enough, and since (x, µ, c) is in a neighborhood of (0, 1, ĉ), then A = ∅, and

B =

t ∈

x3 −
1 − µ +

√
(1 − µ)2 − 2cx3

c
, x3 −

1 − µ −
√

(1 − µ)2 − 2cx3

c

 : x ≤ 0

 .
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So,

Gp
int(x, µ, c) = x3 + ρ

∫ x3−(1−µ−
√

(1−µ)2−2cx3 )/c

x3−(1−µ+
√

(1−µ)2−2cx3 )/c

[
−

c
2

t2 − (1 − µ − cx3)t −
c
2

x6 − x3µ
] 1

p
dt

= x3 + ρ
(c
2

) 1
p
∫ √(1−µ)2−2cx3/c

−
√

(1−µ)2−2cx3/c
[((1 − µ)2 − 2cx3)/c2 − t2]

1
p dt.

It is easy to calculate that

G1
int(x, 1, ĉ) = x3 +

ρĉ
2

∫ √
−2ĉx3/ĉ

−
√
−2ĉx3/ĉ

−
2x3

ĉ
− t2 dt = x3 +

4ρ
3
·

(
2
ĉ

) 1
2

· (−x)
9
2 ,

G
1
2
int(x, µ, c) = x3 + ρ ·

√
c
2
·

(1 − µ)2 − x3

c2 ·

∫ 1

−1

√
1 − t2 dt

= x3 + ρ ·

√
c
2
·

(1 − µ)2 − x3

c2 ·
π

2

≥ x3 + ρ ·

√
c
2
·

1
c2 ·

π

2
· (−x3).

Then G
1
2
int(x, µ, c) ≥ 0 near (0, 1, ĉ). Thus G1

int is not exact and G
1
2
int is exact.

We also have D(x̂, µ̂, ĉ) = R3, and ḡ◦◦(x̂, t, µ̂, ĉ; d) ≡ 0. Hence, all the conditions in Theo-
rem 5.1 (ii) are satisfied and thus the optimality condition (29) for GSIP holds.
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