
ETH Library

Robust Optimization of Schedules
Affected by Uncertain Events

Journal Article

Author(s):
Vujanic, Robin; Goulart, Paul; Morari, Manfred

Publication date:
2016-12

Permanent link:
https://doi.org/10.3929/ethz-b-000114653

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Journal of Optimization Theory and Applications 171(3), https://doi.org/10.1007/s10957-016-0920-3

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000114653
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10957-016-0920-3
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


J Optim Theory Appl (2016) 171:1033–1054
DOI 10.1007/s10957-016-0920-3

Robust Optimization of Schedules Affected
by Uncertain Events

Robin Vujanic1 · Paul Goulart2 ·
Manfred Morari1

Received: 22 July 2015 / Accepted: 4 March 2016 / Published online: 28 March 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we present a new method for finding robust solutions to
mixed-integer linear programs subject to uncertain events.We present a newmodeling
framework for such events that result in uncertainty sets that depend parametrically on
the decision taken. We also develop results that can be used to compute corresponding
robust solutions. The usefulness of our proposed approach is illustrated by applying
it in the context of a scheduling problem. For instance, we address uncertainty on the
start times chosen for the tasks or on which unit they are to be executed. Delays and
unit outages are possible causes for such events and can be very common in practice.
Through our approach, we can accommodate them without altering the remainder of
the schedule. We also allow for the inclusion of recourse on the continuous part of the
problem, that is, we allow for the revision of some of the decisions once uncertainty
is observed. This allows one to increase the performance of the robust solutions.
The proposed scheme is also computationally favorable since the robust optimization
problem to be solved remains a mixed-integer linear program, and the number of
integer variables is not increased with respect to the nominal formulation. We finally
apply the method to a concrete batch scheduling problem and discuss the effects of
robustification in this case.

Communicated by Christodoulos Floudas.

B Robin Vujanic
vujanicr@control.ee.ethz.ch

Paul Goulart
paul.goulart@eng.ox.ac.uk

1 Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland

2 Department of Engineering Science, University of Oxford, Oxford, England, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-016-0920-3&domain=pdf


1034 J Optim Theory Appl (2016) 171:1033–1054

Keywords Robust optimization · Mixed-integer optimization · Scheduling ·
Uncertain events

Mathematics Subject Classification 49J53 · 49K99

1 Introduction

The task of robust optimization is to take the known data of an uncertain optimization
problem together with information available on the uncertainty, such as bounds on
the values that uncertain terms may attain, and then formulate and solve a so-called
robust counterpart (RC). The RC is another optimization problem and, in contrast to
the initial uncertain program, it is deterministic. It is constructed in such a way that its
solutions remain feasible for the initial uncertain problem for any possible realization
of the uncertainty.

In this paperwe discuss the computation of robust solutions to uncertain linearmod-
els entailing integer variables, i.e., uncertain mixed-integer linear programs (MILPs).
We propose a framework consisting of both a new concept for modeling uncertainty
and the appropriate RC necessary to determine robust solutions. In contrast to the
usual setting of robust optimization [1–3] in which uncertainty affects the data of the
problem, here we consider the case in which uncertain events directly affect the deci-
sions taken. To illustrate this difference and the capabilities of our results, we focus on
examples involving scheduling problems. In such problems, uncertain events may for
instance represent delays on the decided start time of the tasks. Delayed execution is
a problem that arises frequently in practice and is an issue exacerbated by the fact that
optimization techniques favor schedules that tightly pack processes in certain time
windows, e.g., when prices are lowest. Representing such an event as uncertainty on
the data of the optimization program is not straightforward. This difficulty is illus-
trated in Sect. 2 with a simple example that is later used to discuss how the same
issue can be addressed using the method we propose. Beyond delays, we will discuss
how our proposed architecture can be used to represent more complex uncertain out-
comes, which in turn allow one to encode a diverse range of unexpected events. We
discuss these possibilities on a second, more realistic scheduling model based on dis-
crete time State-Task-Networks (STNs), which are common for scheduling short-term
batch operations.

Our new modeling concept results in uncertainty sets that depend on the decision
taken, also known as endogenous uncertainty [4,5]. For the computation of robust solu-
tions we provide a system that combines a preventive as well as a reactive mechanism.
Preventive action is achieved by immunizing the integer part of the problem against
the decision-dependent uncertainty, while the reactive component is realized through
the introduction of recourse on the continuous decisions and allows one to limit the
amount of necessary conservatism. In the scheduling context, the preventive action
guarantees that the core of the schedule remains unchanged under any contingency,
that is, uncertain events can be accommodated without disrupting the remainder of
the schedule. The reactive component improves the performance of the solution by
adapting the batch sizes to the observed uncertainty.
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1.1 Literature

The first work introducing the ideas of robust optimization appears to be [6], while
the main technique of robust optimization, in which an argument based on duality is
used to replace worst-case performance over an uncertain quantity with the existence
of appropriate multipliers, was proposed in [7]. The robust optimization framework
is most useful when the RC can be formulated as a finite optimization problem, in
which is sometimes also referred to as the explicit RC. Explicit RCs are known for a
number of practically important cases; the references [2,8–10] contain many of these
results. Some of these RCs are also immediately applicable to models entailing integer
variables as noted in [2, Remark 1.2., p. 26] and can be used in conjunction with our
results.

Much research effort in this area has been directed toward making robust optimiza-
tion approaches less conservative. One direction has been to look for new uncertainty
models. The papers [1,11] address over-conservatismby considering ellipsoidal uncer-
tainty sets. In [12], the authors investigate a problem inwhich the amount of uncertainty
is “budgeted.” Conservatism is reduced by assuming that, while all the data may be
affected by uncertainty, within a certain realization only a subset of the data is actually
changed from its nominal value. A second line of research has been directed toward
introducing the possibility of recourse, in particular in the context of multistage deci-
sion problems; see [13–15]. An optimal recourse policy in this setting can be obtained
using dynamic programming, which can become computationally intractable even for
modest model sizes. This difficulty can be overcome by restricting the class of policies
considered in the optimization, in particular to affine policies [16–18]. In this case, a
trade-off is made between performance and computational tractability. We use these
ideas in the present paper.

For the particular application of scheduling under uncertainty, approaches can be
broadly classified according to whether they are preventive or reactive.

Preventive approaches based on robust optimization use and adapt the frameworks
discussed so far. An application to an air separation plant is presented in [19] where the
uncertainties arise due to the integration of the plant in electricity market mechanisms.
The authors of [20] address uncertainties from a bounded set affecting the coefficients
of the objective function and the constraints of a scheduling problem, and their scheme
is verified on the same example discussed in this paper. In a follow-up paper [21],
the authors also discuss the unbounded uncertainty case. In [22], the problem of
quantifying the schedule resilience to uncertain demands is addressed by proposing
several robustness metrics and an approach to improve schedules by considering the
extreme points of the uncertainty set is proposed. In [23], a multi-objective approach
is developed in which the uncertain quantities are parametrized and the Pareto-optimal
surface derived can be used to assess the trade-off between multiple objectives as a
function of the uncertainty realization.

The major advantage of preventive approaches is that they ensure some degree of
immunity of the schedule to the uncertainties.

In reactive approaches, part of the plan may be decided in advance, but it is possible
to revise the schedule in the near short term based on the observation of the unexpected
events. In the approach proposed in [24], uncertainty on the execution length of tasks
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is handled using a shifting algorithm that is simple to implement, but is limited in the
type of uncertainties it can address. The authors of [25] use the same STN framework
discussed in this paper and implement a rolling horizon procedure that is adapted to
ensure fulfillment of due dates. The works [26,27] consider the possibility of changing
starting times, unit reallocations and other rescheduling mechanisms to restore sched-
ule consistency after an unexpected event. A common problem with these reactive
schemes is that the new plan may be completely different from the initial one, which
can be highly impractical. To alleviate this issue, [28] considers machine outages and
rush order arrivals, and develops an approach in which an appropriate penalty term is
introduced in the objective function that minimizes the deviation of the revised sched-
ule from the original one. The scheme presented in [29] includes a knowledge-based
expert systemwith the aim of minimizing the impact on the schedule from uncertainty
on processing time or unit availability. For this same type of uncertainty, [30] devel-
ops a least-impact heuristic algorithm. Another heuristic is proposed in [31] in which
schedule revisions are minimized by fixing binary variables according to a set of rules
established to reflect production needs.

The main advantage of reactive approaches is that they allow one to achieve good
performance despite the presence of uncertainties, but the required real-time flexibility
may be difficult to obtain in real applications.

The scheme proposed in this paper lies between these two types of approaches. It
is composed of a preventive part, which concerns the core decisions of the schedule
(binary variables), and a reactive part determined by the affine recourse policy. It
thereby inherits the main advantages of both approaches.

1.2 Structure of the Paper

We start in Sect. 2 with an introductory motivating example. In Sect. 3, we describe
the class of uncertain optimization problems of interest and our particular uncertainty
model. Since these do not fit traditional robust optimization frameworks, we derive
a new RC in Sect. 3.1. In the second part of the paper we show how these results
can be of practical interest in the context of scheduling under uncertainty. In Sect. 4,
we explain how uncertain events affecting the decisions can be modeled within our
framework and then discuss the steps necessary to compute the corresponding RC.
Finally, in Sect. 5, we apply our scheme to a more realistic scheduling model, discuss
the modeling of more complex uncertain outcomes and report our simulation results
with particular emphasis on their interpretation.

2 A Motivating Example

Consider a problem in which the minimum cost for the execution of two tasks must
be determined. Task 2 should not start before Task 1 and should also not be executed
later than one time step after Task 1 is completed. The execution time for the tasks
is l1, l2 ∈ N, the scheduling horizon is n ∈ N and the cost of execution at a given
time step is c1, c2 ∈ R

n . Furthermore, executing the tasks consumes the amount r j,t ,
j ∈ {1, 2}, t ∈ {1, . . . , n} of a resource that is available only in the limited quantity
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given by Rt . We can model the problem as

min
x

(c�
1 x1 + c�

2 x2)

subject to
n∑

t=1
x j,t = 1, j = 1, 2

n∑

t=1
t · (x2,t − x1,t ) ≥ 0

n∑

t=1
t · (x2,t − x1,t ) ≤ l1 + 1

r1,t x1,t + r2,t x2,t ≤ Rt t = 1, . . . , n
x1, x2 ∈ {0, 1}n .

(1)

The uncertain event we consider is a possible delay of one time step in the execution of
Task 1. It is, however, unclear how this type of event could be encoded systematically
within a traditional framework for robust optimization where the uncertainty is on the
data alone. One may, for instance, encode the delay as uncertainty on the execution
length l1, i.e., let l1 belong to the interval L1 = [l̂1, l̂1 + 1], where l̂1 is the nominal
value. The only part of the problem affected by this is the constraint on maximum
delay. However, in this case, the worst-case scenario is when the execution time l1 is
shortest, i.e., when the realization of l1 ∈ L1 is l̂1. The RC is thus identical to (1), but
the solutions it returns do not support delays robustly. In particular, the sequentiality of
tasks 1 and 2 could be violated. The constraint limiting the total resource consumption
is not immunized against delays either. The reason why this approach does not work
in this case is because encoding delays as uncertain execution times is not the right
thing to do. In Sect. 4, we discuss how the problem in this example can be addressed
using our proposed method.

3 Optimization Under Decision-Dependent Uncertainty

Consider the following uncertain mixed-integer linear program:

(UP) :
⎧
⎨

⎩

min c�
x x + c�

y y
subject to Ax + By + Dw ≤ b w ∈ W(x)

x ∈ {0, 1}n

where A ∈ R
m×nx , B ∈ R

m×ny , b ∈ R
m , cx ∈ R

nx , cy ∈ R
ny and D ∈ R

m×nw .
We assume that the uncertainty setW(x) in our problem is dependent on the decision
variable x , i.e., W is a set-valued mapping W : Rn ⇒ R

nw . This uncertainty model
differs from most other literature on robust optimization [2,3] where the problem
uncertainty is typically assumed to be a static set.

Uncertainty arises because the realization of the term w ∈ W(x) is unknown at the
time when the problem is to be solved, although we have some influence over the set
from which the uncertain terms are drawn. We aim to deal with this uncertainty in a
robust fashion, i.e., we would like to find a solution x� that remains feasible for the
constraints in (UP) for any possible realization of w ∈ W(x�).
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Models of uncertainty that depends on the decision taken have appeared previously
in the literature, for example in the context of stochastic optimization applied to the
planning of offshore oil or gas field infrastructure [5,32]. Note that the RC to this
problem, in the general case whereW is any arbitrary set-valued map, typically leads
to very difficult optimization problems. In the present work, we consider uncertainty
models in the particular form

W(x) = ⊕nx
k=1 xk · Wk, (2)

in which the ⊕ operator indicates the Minkowski sum of sets, each Wk is a (static)
finite set of vectors in Rnw , and the multiplication means the product of each element
inWk by the scalar quantity xk , the k-th component of the vector x ∈ R

nx .
We allow for the possibility of recourse on the continuous part of the problem,

i.e., we can adapt the continuous decisions y depending on the observed uncertainty
outcome. The particular functional dependency we choose is the affine model

y = Yw + v w ∈ W(x) (3)

where Y ∈ R
ny×nw and v ∈ R

ny are new optimization variables. This type of recourse
policy is common and has already been used in other contexts; see, e.g., [2,16,18,33].

In Sect. 4, we show how the uncertainty structure (2) may be of practical interest
in the context of scheduling under uncertainty. In the next section, we show that it is
possible to compute a robust solution to (UP)with uncertainty structured as in (2) and
under the affine policy (3) by solving a mixed-integer linear program with the same
number of integer variables of (UP).

3.1 The Explicit Robust Counterpart

In the following theorem, we determine how to compute a solution to the uncertain
problem (UP) that robustly satisfies the constraints and optimizes the nominal objec-
tive.

Theorem 3.1 A robust feasible solution to (UP) that optimizes the nominal objective
under affine recourse (3) can be found by solving the following deterministic, finite
dimensional optimization problem

(RCP) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minx,v,Y,Φ,Ψ c�
x x + c�

y v

subject to Ax + Bv + Φ1nx ≤ b
1nk×m · diag(ψk) ≥ [(BY + D)Wk]� ∀k = 1, . . . , nx
0 ≤ φk ≤ xkψk ∀k = 1, . . . , nx
0 ≤ ψk − φk ≤ (1 − xk)ψk ∀k = 1, . . . , nx
x ∈ {0, 1}nx ,

where 1nx = [1, . . . , 1]� ∈ R
nx , 1nk×m = [1, . . . , 1]� ∈ R

nk×m and the
new auxiliary optimization variables Φ = [φ1, . . . , φk, . . . , φnx ] ∈ R

m×nx and
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Ψ = [ψ1, . . . , ψk, . . . , ψnx ] ∈ R
m×nx have been introduced. Wk is assumed to be

a finite set of vectors, nk is the number of vectors contained in it and Wk is the matrix
formed by taking these vectors as columns. The constant upper bound ψk ∈ R

m has
to be chosen such that

(BY + D)w ≤ ψk ∀w ∈ Wk, ∀k = 1, . . . , nx . (4)

We call (RCP) the explicit robust counterpart to (UP).

Proof Applying our recourse model (3) to (UP) and assuming optimization toward
the nominal objective results in the robust problem

min
(
c�
x x + c�

y (Yw + v)
)

w=0
subject to Ax + B(Yw + v) + Dw ≤ b ∀w ∈ W (x)

x ∈ {0, 1}nx .

The objective simplifies to minx (c�
x x + c�

y v). We examine the uncertain constraints
row-wise, and for the i-th row obtain

Ai x + Bi (Yw + v) + Diw ≤ b, ∀w ∈ W (x)

⇐⇒ Ai x + Biv + max
w∈W (x)

{(BY + D)iw} ≤ bi , i = 1, . . . ,m.

The maximization in the expression is then treated as follows: We examine
supw∈W (x) di · w and obtain

max
w∈W (x)

{(BY + D)iw} (1)= σ⊕nx
k=1xk ·Wk

{(BY + D)i } (2)=
nx∑

k=1

xk · σWk {(BY + D)i } ,

where

(1) follows from the definition of support function σ and the structure imposed on
W (x) in (2),

(2) follows from the properties of support functions that σX⊕Y = σX + σY ; see [34,
Ex. 3.35, p. 120], and that σY (αx) = σαY (x) = ασY (x) for α ∈ R+; see [35,
Thm. 13.2].

We thus have

max
w∈W (x)

{(BY + D)iw} =
nx∑

k=1

xk · max
w∈Wk

{(BY + D)iw} =
nx∑

k=1

xk · ψik

in which

ψik ≥ max
w∈Wk

(BiY + Di )w = max
λ∈Λ

(BiY + Di )Wk · λ

=
{
minφi φi

s.t. 1φi ≥ [(BiY + Di )Wk]� ∀i = 1, . . . ,m, ∀k = 1, . . . , nx ,

(5)
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where Λ is the simplex Λ = {λ ∈ R
nk | 1�λ = 1, λ ≥ 0

}
andWk is a matrix with the

vectors inWk as columns. The minimization in (5) can be dropped, given its position
with respect to the inequality, and the constraint can be rewritten in matrix form as

1nk×m · diag(ψk) ≥ [(BY + D)Wk]� ∀k = 1, . . . , nx .

Since xk is binary, the bilinear form xkψik can be substituted by the continuous opti-
mization variable zik subject to the following set of linear constraints

0 ≤ zik ≤ xkψ ik
0 ≤ ψik − zik ≤ ψ ik(1 − xk)

}

i = 1, . . . ,m, k = 1, . . . , nx ,

where the upper bound ψ ik has to be chosen according to the requirement in (4). This
immediately leads to the desired robust counterpart (RCP). 
�
Remark 3.1 In the application examples, we will use this result, which assumes finite
Wk . It is, however, possible to handle cases in whichWk is a compact polyhedral. In
this case, ifWk is expressed in vertex form

Wk =
{

w ∈ R
nw : w =

nk∑

i=1

wiλi ,

nk∑

i=1

λi = 1, λ ≥ 0

}

,

then nk is the number of vertices wi , and Wk is the matrix formed by taking these
vertices vectors as columns.

Solving the deterministic optimization problem (RCP)produces anoptimal solution
(x�, v�,Y �,Φ�, Ψ �). A robust solution to the original uncertain program (UP) is
then given by (x�, y�), where y� can be determined once the uncertainty w has been
observed by computing y� = Y �w + v�, according to the affine recourse policy (3).
From a computational perspective, (RCP) is a mixed-integer linear program and has
the same number of integer variables as the nominal version of (UP). In applications it
is likely that Wk = 0 for many values of k, and in such cases the dimension of (RCP)

can be reduced by dropping the corresponding columns in Φ and Ψ (or setting them
to 0).

Remark 3.2 The objective of the optimization in Theorem 3.1 is assumed to be the
nominal performance (i.e., the performance of the solution whenw = 0). It is straight-
forward to optimize for the worst case instead (i.e., the performance of the solution
for the worst possible w ∈ W(x)), by rewriting (UP) as

⎧
⎪⎪⎨

⎪⎪⎩

min t

subject to

[
c�
x
A

]

x +
[
c�
y −1
B 0m×1

] [
y
t

]

+
[
01×nw

D

]

w ≤
[
0
b

]

w ∈ W(x)

x ∈ {0, 1}n ,

and applying Theorem 3.1 to this reformulation.
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So far, we have worked under the assumption that recourse is available on the entire
vector y. In the application example discussed in Sect. 5, the notion of timewill require
us to introduce additional structure on the recourse matrix Y to ensure causality of the
policy.

Finally, when recourse is not possible at all, i.e., all decisions must be made before
the uncertainty realization is observed, then the result in Theorem 3.1 can be simplified
as follows:

Corollary 3.1 The explicit RC to (UP) when no recourse is available (Y = 0) is the
following deterministic optimization problem

min c�
x x + c�

y y
subject to (A + H)x + By ≤ b

x ∈ {0, 1}nx ,

(6)

in which the i-th row, k-th column entry of the matrix H ∈ R
m×nx is

Hik
.= max

wk∈Wk
di · wk, (7)

where di is the i-th row of the matrix D.

This robustification is useful for certain problems in which recourse is either not
available or not necessary, like in the purely binary simple scheduling problem intro-
duced in Sect. 2 or as in the model discussed in [36]. The major advantage in this case
is that the computation of a robust solution involves an optimization program that is
as hard as the original nominal problem in the sense that its dimension (number of
variables and constraints) is the same.

In the next section we present an application example of this proposed robust
optimization framework.

4 Robust Schedule Optimization

In Sect. 2, we showed that it may be unclear how to encode even a relatively simple
uncertain outcome, such as a possible execution delay, as uncertainty on the data of
the problem. Using the framework proposed in this paper, in which uncertainty is not
on the data (e.g., prices, or measured physical quantities such as positions in space,
concentrations, voltages etc.) but rather on the decisions taken, representing this type
of uncertain outcome is a straightforward task.

Example 4.1 (modeling the uncertainty)Consider the scheduling problemof Sect. 2.
Suppose we have determined a plan in which the execution of Task 1 is started at
t = 1, while Task 2 is started at t = 2, i.e., for n = 4, we have x1 = [1, 0, 0, 0]� and
x2 = [0, 1, 0, 0]�. However, at the time of planning we do not know whether we will
be able to actually implement this solution because some external event may force us
to delay the starting time of Task 1 by one time step. This interaction can be encoded
as
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x̂1 = x1 + w1 = [1, 0, 0, 0]� + [−1,+1, 0, 0]�. (8)

Note that x2 is not subject to any direct perturbation. While it may be affected by
possible changes of x1 through the scheduling constraints, these interactions are auto-
matically captured by our system. Note also that the value of the disturbancew clearly
depends on the choice x . We can represent this systematically using the model (UP)

with the uncertainty structure (2) written as

W(x) = ⊕ j,t x j,t · W j,t , (9)

which can be parsed as follows. First, if x j,t = 0, then the uncertainty associated
with the corresponding task being started at step t is suppressed. On the other hand,
when x j,t = 1, the uncertainty set from which w is picked is W j,t . This set contains
all the possible disturbances on the operation of task j if it is started at time step t .
For the particular case in this example, we thus have

W1,t = {0, wt } , W2,t = {0} , t ∈ {1, . . . , 4} , (10)

with

w1 = [−1, 1, 0, 0, 0, 0, 0, 0]�
w2 = [0,−1, 1, 0, 0, 0, 0, 0]�
w3 = [0, 0,−1, 1, 0, 0, 0, 0]�
w4 = [0, 0, 0,−1, 0, 0, 0, 0]�,

where w4 indicates that if task is started at t = 4 it can no longer be recuperated at a
later time within the scheduling horizon.

On more complex scheduling models, our architecture allows one to encode a
wide variety of possible uncertain outcomes. We discuss some of these possibilities
in Sect. 5. Notice that all of the uncertainty sets in the previous example include the
vector 0. This is necessary in order to represent a situation in which the schedule is
executed as planned. We also emphasize that it is important to have an appropriate
representation of the desired uncertain event. For example, a possible delay of two time
steps can be represented with a construction similar to (10), namely W1,1 = {0, w1}
with

w1 = [−1, 0, 1, 0, 0, 0, 0, 0]�.

On the other hand, a delay of up to two time steps requiresW1,1 = {0, w1, w
′
1

}
with

w1 = [−1, 1, 0, 0, 0, 0, 0, 0]�
w′

1 = [−1, 0, 1, 0, 0, 0, 0, 0]�.

Such differences are significant and will usually lead to different robust counterparts.
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According to (8), uncertain scheduling problems within our framework are gener-
ally of the form

min c�
x x + c�

y y
subject to A(x + w) + By ≤ b w ∈ W(x)

x ∈ {0, 1}nx ,

which is a special case of (UP) in which D = A. Modeling the uncertainty will
output nx sets of vectors Wk ⊂ R

nx , which fully determine the map W(x). Each set
Wk contains a number of vectors nk determined by the number of different possible
outcomes considered. Thus, the memory requirement to store the uncertainty is of the
order O(n2x · nk). In typical applications, the number nk is small. For the one-step
delay example, we have for instance nk = 1 or 2, as shown in (10). Furthermore, we
often have Wk = {0} for many values of k.

Once the uncertainty setsWk are determined, a robust solution to the corresponding
uncertain scheduling problem can be obtained using the robust counterparts derived
in Sect. 3.1.

Example 4.2 (computation of the RC) Thematrices of model (1) for n = 4 are given
by

minx c�
1 x1 + c�

2 x2

subject to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

−1 −1 −1 −1 0 0 0 0
0 0 0 0 −1 −1 −1 −1
1 2 3 4 −1 −2 −3 −4

−1 −2 −3 −4 1 2 3 4
r11 0 0 0 r21 0 0 0
0 r12 0 0 0 r22 0 0
0 0 r13 0 0 0 r23 0
0 0 0 r14 0 0 0 r24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
x1
x2

]

≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

−1
−1
0

l1 + 1
R1
R2
R3
R4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x1, x2 ∈ {0, 1}4 .

(11)

The sets Wk are given in (10). To obtain the RC, we can use the simplified result in
Theorem 3.1, since the model is purely binary. While this result holds for a generic
matrix D, as noted above, we have D = A. The entries of H can be determined using
Eq. (7). For example, entry H6,4 (sixth row, fourth column) is

H6,4 = max
w4∈W4

a6 · w4 = max {0, 4} = 4,

where a6 is the sixth row of the constraint matrix in (11). After completing these
calculations, one can verify that the resulting RC is given by
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minx c�
1 x1 + c�

2 x2

subject to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

−1 −1 −1 0 0 0 0 0
0 0 0 0 −1 −1 −1 −1
2 3 4 4 −1 −2 −3 −4

−1 −2 −3 0 1 2 3 4
r11 0 0 0 r21 0 0 0
r12 r12 0 0 0 r22 0 0
0 r13 r13 0 0 0 r23 0
0 0 r14 r14 0 0 0 r24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
x1
x2

]

≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

−1
−1
0

l1 + 1
R1
R2
R3
R4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x1, x2 ∈ {0, 1}4 ,

(12)

in which the changes with respect to the nominal problem (11) have been highlighted
with a bold italic font. We can observe how the 0 entry on the third row, fourth column
correctly prevents starting Task 1 at t = 4, because a delay would push its execution
out of the scheduling horizon. Further, the modified entries in rows 5 and 6 force Task
2 to start at least one time step after initiating Task 1, which robustly accommodates
delays as desired. Finally, the last four rows show how resource consumption can be
immunized against delays. For example, the eighth row reflects that an amount of
resources sufficient to start Task 1 at time step t = 2 should be left available even if
nominally we decide to start this task at t = 1.

Note that even if the nominal model (1) is modified, e.g., by introducing new
constraints, a new RC can still be easily recomputed. The uncertainty model remains
identical, and one only needs to determine the new matrix H . Hence the approach
remains straightforward to apply even on more complex scheduling models.

In the next section we investigate the application of the more sophisticated robust
counterpart (RCP).

5 Case Study: Robust State-Task-Networks

In this section we further explore the capabilities of our approach based on a more
realistic scheduling model. We work within the framework of State-Task-Networks
(STNs), a commonmodel for batch scheduling problems which was initially proposed
in [37].

We first introduce the nominal model, then discuss the type of uncertain outcomes
that we want to consider and finally draw a few interpretations from the resulting
robust schedules.

5.1 Nominal Model

Our concise description of the model is based on [37,38]. As represented in Fig. 1, we
are given a set of available processing units i ∈ I, depicted in the lower half of the
figure, a set of possible tasks j ∈ Ji that can be performed on each unit, represented by
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Feed
A Heating Hot

A Reaction 2 Int.
AB

Reaction 3

Impure
E

Separation Prod.
2

Prod.
1

Feed
B

Feed
C

Reaction 1

Int.
BC

Heater Reactor 1 Reactor 2
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1h
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50%

2h
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60%

2h
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20%

80%
1h

90%
1h

10% 2h

A

B

C

P1 P1

P2

Fig. 1 Example STN structure, taken from [37,38]. The circles represent states (materials), while the
rectangles are the tasks (processes). Depicted are also the units on which the tasks can be processed, and
the dashed arrows indicate which task can be processed on which unit. Furthermore, the production recipes
are shown, including material balances and processing times to obtain the output materials

the rectangles and the dashed arrows, a production recipe for each task (mass balance
coefficients and processing times), and a set of given input, intermediate and output
materials in a given state, indicated with the circles. We are also provided with data
concerning the prices of the raw materials and the end products. To be determined
are the sequence and timing of the tasks taking place in each unit within a finite time
horizon divided in t ∈ T discrete steps, the amount of material undergoing each task
(batch sizes), as well as the amount of raw input material purchased and final products
sold.

A mathematical model for this, as given in [37], is as follows.

5.1.1 Optimization Variables

– xi j t ∈ {0, 1} is set to 1 if unit i starts processing task j at time step t ; it is 0
otherwise.

– ybatchi j t ∈ R is the amount of material assigned to task j in unit i at the beginning
of the time step t .

– ystatest ∈ R is the amount of material stored in state s ∈ S at the beginning of period
t .

Thus, in the dimensions given for the generic problem (UP), nx = |I| · |J | · |T |, and
ny = (|I| · |J |+|S|) · |T |, whereJ = ∪i∈IJi . We have modified the notation in [37]
to be consistent with our formulation (UP): x is boolean, while y is the continuous
part of the problem.
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5.1.2 Constraints

– Allocation constraints ensure that at a given time step, a unit can start to process at
most 1 task. As long as the unit is processing this task, no other task can be started
on the same unit. This can be written as

∑

j∈Ji

xi j t ≤ 1 ∀i, t
∑

j∈Ji

t+τ j−1∑

t ′=t
xi j t ′ − 1 ≤ Mi j (1 − xi j t ) ∀i, t, j ∈ Ji ,

(13)

where Ji is the set of tasks j that can be performed on unit i , τ j = maxs τ js , and
τ js is the number of time steps required to produce material in state s with process
task j . Mi j is a sufficiently large positive number. The second constraint implies
that if xi j t = 1, then for all the time steps t ′ = t + 1, . . . , t + τ j − 1 and for all
j ∈ Ji , xi j t = 0.

– Capacity limitations on the amount of material undergoing process j

xi j t · Vmin
i j ≤ ybatchi j t ≤ xi j t · Vmax

i j ∀ j, t, i ∈ I j

0 ≤ ystatest ≤ Cs ∀s, t, (14)

where I j is the set of units capable of performing task j , Vmin
i j and Vmin

i j are the
capacities of processing task j on unit i , and Cs is the maximum capacity for
storing state s.

– States update equation, derived from material balances

ystatest = ystates,t−1 +
∑

j∈J̄s

ρ̄ js

∑

i∈I j

ybatchi j,t−τ js
−
∑

j∈Js

ρ js

∑

i∈I j

ybatchi j t + Rst − Dst ∀s, t,

(15)

where Js is the set of tasks consuming material in state s, and the constant ρ js is
the proportion of input from state s ∈ S j used by task j , so that

∑
s∈S j

ρ js = 1. In

an analogous way, J̄s is the set of tasks producing material in state s, the constant
ρ̄ js is the proportion of output in state s ∈ S̄ j produced by task j . Dst is the
demand, over time, of material in state s, and finally, Rst is the quantity of raw
material in feed state s at time t .

5.1.3 Objective

The objective is to optimize the economic performance of the system. Profit maxi-
mization can be expressed as follows:

max
∑

s∈S
cs,|T | · ystates,|T |
︸ ︷︷ ︸

value of end products

− cs0 · ystates0︸ ︷︷ ︸
cost of feedstocks

, (16)
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where cst is the unit price of material in state s at time t .
Notice that the resulting STN model

(PSTN) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max profits (16)
subject to allocation constraints (13)

unit capacity limits (14)
states update equations (15)
x ∈ {0, 1}nx

fits the nominal version of our generic mixed-integer model (UP). The authors of
[37] discuss several ways in which this nominal model could be further enriched,
for instance with constraints related to usage of utilities or cleaning requirements.
Furthermore, the big-M formulation in (13) is often replaced with other models
that are computationally more efficient. All of these additional modeling details
fit naturally into our prototype problem (UP), but are excluded for clarity of
exposition.

5.1.4 Data of the Nominal Instance

We use the example batch processing scheme and data introduced in [37] to construct
an instance of the nominal problem. We summarize it here for completeness. The
available processing units are a heater, two reactors 1 and 2, and a column, as shown
in Fig. 1. The heater can only perform the heating task, the column only separation,
while reactors 1 and 2 can perform any of the three reactions. The plant is used to
process the input materials A, B and C into the final products 1 and 2. The material
balances for each task (ρ js, ρ̄ js), as well as the processing times τ js are reported on
the figure, while the processing and storage capacities Vmax

i j and Cs are reported in

Table1, and Vmin
i j = 0 kg, ∀i, j . The time horizon considered is of 10h divided in

steps of 1h each. For the objective function, we assign a value of 10units/kg for each
of the two final products 1 and 2, intermediates are assigned a value of −1, since it is
undesirable to have them left in storage at the end of the horizon, and raw materials
have a cost of 0.

Table 1 Parameter values for the nominal problem instance

Parameter value (kg)
CA,B,C,prod1,prod2 ChotA CintAB CintBC CimpureE

+∞ 100 200 150 100

Vmax
heater, j Vmax

reactor1, j Vmax
reactor2, j Vmax

column, j

100 80 50 20 ∀ j ∈ J
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5.2 Uncertain Outcomes Considered and Schedule Robustification

Using our system, we can represent a diverse range of uncertain outcomes affecting
the nominal schedule PSTN. With arrangements similar to (8) it is possible to encode,
for instance, uncertainty on which unit a task will be processed, or that instead of
processing a given task on a given unit, a sequence of other tasks on other units may
be started instead. It is also possible to limit these uncertain outcomes to particular
time windows. These options allow one to model complex uncertainty outcomes. As a
concrete example for the chemical plant in Fig. 1, we may encode the fact that instead
of running reaction 1 on reactor 1, we may want to run reaction 2 on the same reactor
starting on the same time step, followed one time step later by reaction 1 on reactor 2,
and that this swap may happen only in the first half of the scheduling horizon. Specific
timewindows in this casemay help encode the fact that, for instance, task rescheduling
can only occur during certain hours of the day. On longer planning horizons, one can
also encode alternatives in which certain processes are run overnight instead of during
the day. All of this can be represented by an appropriately constructed perturbation of
xi j t , as in (8).

In the following, we present the results of our numerical experiments under two
possible scenarios. In the first scenario, the execution of heating tasks by the heater
can be delayed by one time step (1h) any time. In the second scenario, we allow for
swapping the execution of reaction 2 from reactor 1 to reactor 2 any time after the first
4h.

To achieve this, we let w act on the decisions according to the following uncertain
version of PSTN

∑

j∈Ji

(xi j t + wi j t ) ≤ 1 ∀i, t
∑

j∈Ji

t+τ j−1∑

t ′=t
(xi j t ′ + wi j t ′) − 1 ≤ Mi j (1 − (xi j t + wi j t )) ∀i, t, j ∈ Ji

(xi j t + wi j t ) · Vmin
i j ≤ ybatchi j t ≤ (xi j t + wi j t ) · Vmax

i j ∀ j, t, i ∈ I j ,

(17)

and where all of the other equations are identical to the nominal model, including the
objective function (we opt to optimize for the nominal objective). The construction of
uncertaintiesw that model possible execution delays is essentially the same as in (10).
This shows that modeling uncertain events within our framework remains straightfor-
ward even on more complex scheduling systems. For unit swaps, the construction is
analogous. The uncertain equations remain the same as in (17), andWi j t = {0, wi j t

}

where

wi j t [unit1, j ′, t ′] = −1,
wi j t [unit2, j ′, t ′] = +1,

}

∀ j ′, t ′ ≥ 4,

in which wi j t [i ′, j ′, t ′] is the (i ′, j ′, t ′)-entry of the vector wi j t . All other entries of
wi j t are 0.

Once the appropriate uncertainty sets for these two scenarios are constructed, robust
schedules can be computed using Theorem 3.1. One last arrangement concerning the
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structure of thematrixY introduced in (3) has to bemade. This is to enforce causality of
the policy, meaning that recourse decisions cannot depend on uncertainty realizations
happening in the future. If we index the problem’s variables by time, we have that

yt =
t−1∑

t ′=0

Yt,t ′ · wt ′ + vt , t = 0, . . . , |T |, (18)

where yt = [ybatchi j t ′ , ystatest ′ ]t ′=t , vt ∈ R
nv where nv = |I| · |J |+|S| and Yt,t ′ ∈ R

nv×nY

with nY = |I| · |J |. Accordingly, we must impose the following lower-triangular
structure on Y :

y =

⎛

⎜
⎜
⎜
⎝

0 . . . 0
Y1,0 0 0

...
. . .

. . .
...

Y|T |−1,0 . . . Y|T |−1,|T |−1 0

⎞

⎟
⎟
⎟
⎠

w + v. (19)

Note also that deploying the reactive part of the schedule in real time does not involve
any difficult computations. In particular, it is not necessary to solve a new optimization
problem.Namely, the problem (RCP) is solvedbefore the schedule is started, providing
the robust x� and v�, as well as the recourse matrix Y �. During operations, as the
uncertainties wt are observed through time, one only needs to evaluate the expression
(18) to determine how the continuous quantities have to be regulated to respond to the
uncertain events.

5.3 Results

Computations are carried on a PC with a 2.5-GHz CPU and 24GB RAM; the opti-
mization problems are modeled using cvxpy [39] and solved with Gurobi 6.0.4 [40].
In both scenarios, the nominal model is solved in approximately 0.2 s, while the RC
takes 1.1 s. The nominal schedule is depicted in Fig. 2 and reproduces the result in [37].
In the following, we discuss more in detail the results concerning the robust versions.

Fig. 2 Nominal batch production schedule for the example process plant shown in Fig. 1
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(a)

(b)

Fig. 3 Illustration of a robust schedule that can support time delays in the heating operation. a Robust
schedule. b Adaptation when the external event (heating delay) occurs

5.3.1 Heater Delay

Figure3a depicts the robust schedule under the possibility of heating delay. If we
compare it with the nominal one in Fig. 2, it is evident that they only differ in the way
the heater is operated.

Note that heating is used directly only by reaction 2 (see Fig. 1) and, through the
intermediate products, it is also necessary for reaction 3 and the separation. Since these
are executed for the first time during t = 3, the robust solution prescribes to preload
the heater at t = 1 with a sufficient quantity to support these first reactions, leave
at least one time step available for a possible 1 h delay by processing the remaining
quantity of A into hot A at t = 5.

Figure3b showswhat happens to the robust schedulewhen an external event occurs.
In this case, the heating planned for t = 1 is shifted to t = 2. This change can be
accommodated because the heater is not occupied at this time, and all of the rest of the
schedule is compatible with this modification. This is the most important feature of the
proposed approach: The robust solution for xi j t remains feasible for any disturbance
realization. The decision pertinent to batch sizes (ybatchi j t ) can be made a function of the
observed uncertainty realization through the affine policy (3); however, in this case,
all batch sizes remain unchanged, indicating that the possibility of recourse is not
exploited.
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(a)

(b)

Fig. 4 Illustration of a robust schedule that can support unit exchanges: after t =4h, instead of running
reaction 2 on reactor 1, it should be possible to run the same reaction on reactor 2. a Robust schedule. b
Adaptation when the external event (unit swap) occurs

The nominal and the robust schedules are similar because the utilization factor of
the heater is relatively low. This is also reflected in the objective function: Resorting
to a robust schedule does not decrease the attained objective (2744.4units for both
nominal and robust cases).

5.3.2 Exchange of Processing Unit

In the second scenario we study the effect of exchanging processing unit for reaction
2, from reactor 1 to reactor 2, but only after the first 4h. The results are illustrated in
Fig. 4.

In this case, the robust schedule is substantially different from the nominal one,
in particular after t = 4; see Fig. 4a. Notice that, after this time, when reaction 2 is
executed on reactor 1, reactor 2 is kept free to allow for the possible exchange. Since
the capacity of the second reactor is smaller, the exchange has impact on the quantities
and timing processed by the interdependent tasks. This also means that intermediate
products may have to be stored for longer periods, and the robust schedule ensures
that storage capacities are not surpassed under any contingency.

Figure4b confirms that the decision on xi j t is unaffected by and remains feasible
for the disturbance realization shifting the execution of reaction 2 from reactor 1 to
reactor 2 at t = 4. In contrast to the previous case, however, the possibility of recourse
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is exploited: since the alternative unit is smaller, the batch sizes following the uncertain
outcome are reduced.

In terms of objective, since reaction 2 is necessary for producing all the final prod-
ucts, and the processing units (reactor 1 and 2) are heavily utilized, the introduction of
the margins necessary for exchanges results in a decreased objective. In this example,
the nominal objective drops from 2774.4 to 2513.8 units.

6 Conclusions

We presented a new framework for handling uncertain mixed-integer linear models
with a robust approach. We proposed a new modeling system for uncertainties that
are on the decision taken rather than on the data, together with the results necessary
for computing the corresponding robust solutions. We then illustrated how the frame-
work can be applied in the context of a scheduling problem subject to operational
uncertainties, such as unit delays or required unit swaps.

Further lines of inquiry include the investigation of the application of the proposed
framework to other scheduling systems, in particular to continuous time formulations.
These could be approached by combining the more traditional results of robust opti-
mization with the methods discussed in this paper. In Theorem 3.1, we provide a RC
for generic MILPs. Another line of investigation is thus its application to problems
beyond scheduling, in which the interaction expressed in (8) could be relevant.
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