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Abstract In this paper, a systematic study of the strong metric subregular-
ity property of mappings is carried out by means of a variational tool, called
steepest displacement rate. With the aid of this tool, a simple characterization
of strong metric subregularity for multifunctions acting in metric spaces is for-
mulated. The resulting criterion is shown to be useful for establishing stability
properties of the strong metric subregularity in the presence of perturbations,
as well as for deriving various conditions, enabling to detect such a property in
the case of nonsmooth mappings. Some of these conditions, involving several
nonsmooth analysis constructions, are then applied in studying the isolated
calmness property of the solution mapping to parameterized generalized equa-
tions.
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1 Introduction

Several remarkable advances in optimization have been made possible in recent
years thanks to a deepened understanding of stability properties of multifunc-
tions. In fact, their study has gained a well-recognized place within modern
variational analysis. Among the properties of multifunctions mainly applied
in optimization and related topics, those describing a Lipschitzian behaviour

A. Uderzo
Dept. of Mathematics and Applications
University of Milano-Bicocca
Tel.: +39-02-64485871
Fax: +39-02-64485705
E-mail: amos.uderzo@unimib.it

http://arxiv.org/abs/1507.04516v1


2 A. Uderzo

play a crucial role. Under this category falls metric regularity, which is most
likely the best known and widely employed. Nonetheless, it turns out that
metric regularity is not strictly requested in certain circumstances, while its
work can be done by a weaker property called metric subregularity, of course
at a lower price in terms of problem assumptions. Consider, for instance, the
algebraic characterization of the tangent space to a manifold, which is defined
by an equation expressed by a smooth mapping. According to a standard ar-
gument, this is the key tool for deriving the Euler-Lagrange multiplier rule in
nonlinear optimization, often presented among the consequences of the cele-
brated Lyusternik’s theorem (see [1,2,3]). In order to establish the non-trivial
inclusion (the kernel of the derivative is contained in the tangent space) metric
regularity is usually invoked, even though the mere metric subregularity would
be enough. As another example, consider the exact penalization principle for
constrained optimization problem with Lipschitz objective function (see [4]).
It happens that this principle can be invoked, provided that a certain error
bound inequality is valid, and for the latter circumstance the metric subregu-
larity of the constraining mapping is enough. All of this contributed to raise
a large interest in metric subregularity, on which a dedicated vast literature
does now exist (see [5,6,7,8,9,10] and references therein).

The main drawback of metric subregularity is its lack of robustness un-
der (even small) perturbations. More precisely, it has been observed that such
property happens to be broken if adding to a metrically subregular mapping
(even single-valued and smooth) a Lipschitz term, yet with a small Lipschitz
constant. This well-known phenomenon explains the difficulty in employing
perturbation schemes, when studying criteria for detecting metric subregular-
ity. In this paper, a systematic study is proposed of a special variant of metric
subregularity, called strong metric subregularity, which is known to exhibit
a notable robustness quality, while keeping rather low requirements in com-
parison with metric regularity. In particular, the present study concentrates
on sufficient conditions for the strong metric subregularity of (possibly) non-
smooth mappings. The analysis of this topic is performed by making use of
a variational tool called steepest displacement rate, that enables to formu-
late a general criterion already in a metric space setting. Such an approach
leads to a unifying scheme of analysis and emphasizes the connection of the
property under study with the notion of local sharp minimality. Strong metric
subregularity along with its stability properties and related infinitesimal char-
acterizations have been considered recently by several authors. For an account
on various aspects of the emerging theory of strong metric subregularity, the
reader may refer to [5].

The contents of the paper are exposed according to the following structure.
In Section 2, after the notion of strong metric subregularity is presented and its
reformulation in terms of isolated calmness property for the inverse mapping is
recalled, the notion of steepest displacement rate is introduced and exploited
to establish the basic characterization. The connection with local sharp mini-
mality is also discussed, while several situations arising in different topics are
illustrated, aimed at providing motivations for the interest in the main sub-
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ject of the paper. In Section 3, two relevant manifestations of the robustness
behaviour of strong metric subregularity are embedded in the framework of
the steepest displacement rate analysis. In Section 4 several known tools of
nonsmooth analysis are combined with the main criterion in order to obtain
conditions for the strong metric subregularity of nonsmooth mappings. Some
of these results are then applied in Section 5 to investigate the isolated calm-
ness property of the solution mapping to parameterized generalized equations,
with base and field term. A final section is reserved for general comments on
the exposed achievements.

2 Strong metric subregularity and its equivalent reformulations

Let us start with recalling the main properties under study. This will be done in
a metric space setting, which is the natural environment where the Lipschitzian
analysis of stability of multifunctions can be conducted. In a metric space
(X, d), the distance from a point x ∈ X to a subset S ⊆ X is denoted by
dist (x, S), with the convention that dist (x,∅) = +∞, while B(x, r) denotes
the closed ball with center x and radius r.

Definition 1 (i) A set-valued mapping F : X ⇒ Y between metric spaces is
called metrically subregular at (x̄, ȳ) ∈ graphF if there exist κ ≥ 0 and r > 0
such that

dist
(
x, F−1(ȳ)

)
≤ κ dist (ȳ, F (x)) , ∀x ∈ B(x̄, r). (1)

Denote by

subregF (x̄, ȳ) = inf{κ ≥ 0 : ∃r > 0 satisfying (1)}

the modulus of subregularity of F at (x̄, ȳ). Whenever F is single-valued, the
simpler notation subregF (x̄) will be used.

(ii) A set-valued mapping F : X ⇒ Y between metric spaces is called
strongly metrically subregular at (x̄, ȳ) ∈ graphF if F is metrically subregular
at (x̄, ȳ) and, in addition, x̄ is an isolated point of F−1(ȳ) or, equivalently, if
there exist κ ≥ 0 and r > 0 such that

d(x, x̄) ≤ κ dist (ȳ, F (x)) , ∀x ∈ B(x̄, r). (2)

Roughly speaking, whereas the well-known metric regularity property of
a mapping F at (x̄, ȳ) ∈ graphF can be viewed as a quantitative form of
local solvability for the inclusion y ∈ F (x), the strong metric subregularity
corresponds to a quantitative form of local uniqueness for the solution x̄ to
the particular inclusion ȳ ∈ F (x). The independence of these two properties
is illustrated in the next example.
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Example 1 Let X = Y = R be equipped with its usual Euclidean metric
structure. Consider the mapping F1 : R ⇒ R defined by

F1(x) =

{
[0, 1/2), if x = 0,
[1,+∞), otherwise.

Clearly, F1 is strongly metrically subregular at (0, 0), with subregF1(0, 0) = 0,
but it fails to be metrically regular near the same point. Notice that F1 has
not closed graph and it is not semicontinuous.

In the same setting, consider the mapping F2 : R ⇒ R defined by F2(x) =
[x,+∞). This multifunction is metrically regular near (0, 0), but it is not
strongly metrically subregular at the same point.

The basic tool of analysis in use throughout the present section is intro-
duced in the next definition.

Definition 2 (i) Given a function ϕ : X −→ R ∪ {±∞} defined on a metric
space and an element x̄ ∈ dom f , the value (possibly infinite)

ϕ↓(x̄) = lim inf
x→x̄

ϕ(x)− ϕ(x̄)

d(x, x̄)

is called the steepest descent rate of ϕ at x̄.
(ii) Let F : X ⇒ Y be a set-valued mapping between metric spaces and

let (x̄, ȳ) ∈ graphF . The (nonnegative, possibly infinite) quantity

|F |↓(x̄, ȳ) = dist (ȳ, F (·))
↓
(x̄)

is called the steepest displacement rate of F at (x̄, ȳ).

Remark 1 The employment of the steepest descent rate in connection with
variational problems is witnessed since [11], whereas its application to nondif-
ferentiable optimization goes back at least to [12]. It was with V.F. Demyanov
that it became steady exploited for formulating optimality conditions in met-
ric space settings, as a starting point for more involved nonsmooth analysis
constructions (see [13,14,15,16,17,18]). The use of the distance function from
images of a given multifunction to characterize its Lipschitzian properties fol-
lows the spirit of [19].

A first basic characterization of strong metric subregularity is established
next as a positivity condition on the steepest displacement rate of a given
multifunction.

Proposition 1 A set-valued mapping F : X ⇒ Y is strongly metrically sub-
regular at (x̄, ȳ) ∈ graphF if and only if

|F |↓(x̄, ȳ) > 0. (3)

Moreover, whenever inequality (3) holds true, it results in

subregF (x̄, ȳ) =
1

|F |↓(x̄, ȳ)
, (4)

with the convention that 1/+∞ = 0.
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Proof Necessity: according to Definition 1(ii), corresponding to an arbitrary
κ > subregF (x̄, ȳ) there exists r > 0 such that

dist (ȳ, F (x))

d(x, x̄)
≥

1

κ
, ∀x ∈ B(x̄, r)\{x̄},

whence

|F |↓(x̄, ȳ) ≥
1

κ
.

This evindently implies inequality (3) and, by arbitrariness of κ, the inequality

subregF (x̄, ȳ) ≥
1

|F |↓(x̄, ȳ)
. (5)

Sufficiency: according to Definition 2(ii), in the case |F |↓(x̄, ȳ) = +∞, for
every η > 0 there exists rη > 0 such that

1

η
dist (ȳ, F (x)) ≥ d(x, x̄), ∀x ∈ B(x̄, rη).

Thus F is strongly metrically subregular at (x̄, ȳ) with subregF (x̄, ȳ) ≤ 1/η,
what leads to subregF (x̄, ȳ) = 0. In the case |F |↓(x̄, ȳ) < +∞, for an arbitrary
ǫ ∈ (0, |F |↓(x̄, ȳ)), there is rǫ > 0 such that

1

|F |↓(x̄, ȳ)− ǫ
dist (ȳ, F (x)) ≥ d(x, x̄), ∀x ∈ B(x̄, rǫ),

which shows that F is strongly metrically subregular at (x̄, ȳ) and, by arbi-
trariness of ǫ, leads to

subregF (x̄, ȳ) ≤
1

|F |↓(x̄, ȳ)
. (6)

Then, as inequalities (5) and (6) are both valid now, one obtains (4), thereby
completing the proof. �

Remark 2 Let us recall that after [20] an element x̄ ∈ domϕ is said to be a
local sharp minimizer of a function ϕ : X −→ R ∪ {±∞} defined on a metric
space if there exist positive ζ and r such that

ϕ(x) ≥ ϕ(x̄) + ζd(x, x̄), ∀x ∈ B(x̄, r).

Clearly, x̄ is a local sharp minimizer of ϕ if and only if ϕ↓(x̄) > 0. Thus, on
account of Definition 2 and of Proposition 1, a set-valued mapping F is strongly
metrically subregular at (x̄, ȳ) if and only if x̄ is a local sharp minimizer of
the displacement function x 7→ dist (ȳ, F (x)). Notice that the positivity of the
steepest descent rate of a function is a circumstance essentially connected, in
more structured settings, with nonsmoothness (see [21]).

Another characterization of the main property under study for a multifunc-
tion F : X ⇒ Y can be obtained through the following stability behaviour of
its inverse F−1 : Y ⇒ X , i.e. F−1(y) = {x ∈ X : y ∈ F (x)}.
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Definition 3 (i) A set-valued mapping G : X ⇒ Y between metric spaces is
called calm at (x̄, ȳ) ∈ graphG if there exists κ ≥ 0 and r > 0 such that

sup
y∈G(x)∩B(ȳ,r)

dist (y,G(x̄)) ≤ κ d(x, x̄), ∀x ∈ B(x̄, r). (7)

Denote by

clmG(x̄, ȳ) = inf{κ ≥ 0 : ∃r > 0 satisfying (7)}

the calmness modulus of G at (x̄, ȳ) (clmG(x̄) whenever G is a single-valued
mapping).

(ii) A set-valued mapping G : X ⇒ Y between metric spaces is said to
have the isolated calmness property at (x̄, ȳ) ∈ graphG if G is calm at (x̄, ȳ)
and, in addition, ȳ is an isolated point of G(x̄).

(iii) A function ϕ : X −→ R∪{±∞} is called calm from below at x̄ ∈ dom f
if

ϕ↓(x̄) > −∞.

Isolated calmness seems to have made its first formal appearance in [22],
where it was called “upper-Lipschitz property at a point” (see also [5]).

Theorem 1 ([5]) A set-valued mapping F : X ⇒ Y is strongly metrically
subregular at (x̄, ȳ) ∈ graphF if and only if F−1 has the isolated calmness
property at (ȳ, x̄). In this case, it holds

clmF−1(ȳ, x̄) = subregF (x̄, ȳ).

Below several situations, connecting different topics of optimization and
variational analysis, are illustrated, where the strong metric subregularity nat-
urally emerges. A further relevant motivation for being interested in strong
metric subregularity has to do with the analysis of the solution mapping to
generalized equations. This topic will be discussed in Section 5.

Example 2 From Remark 2 it should be clear that every scalar function ϕ :
X −→ R ∪ {±∞} defined in a metric space is strongly metrically subregular
at each of its local sharp minimizers (if any). As an obvious consequence, the
related epigraphical set-valued mapping Fϕ : X ⇒ R, defined as

Fϕ(x) = [ϕ(x),+∞),

is strongly metrically subregular at (x̄, ϕ(x̄)), whenever x̄ is a local sharp
minimizer of ϕ. It is worth noting that if ϕ is calm from below at x̄, then it
can be perturbed in such a way to have the point x̄ as a local sharp minimizer.
Indeed, if for some l > 0 it is ϕ↓(x̄) > −l, then function ϕ+ ld(·, x̄) admits a
local sharp minimizer at x̄. Now, for a lower semicontinuous (henceforth, for
short, l.s.c.) proper function ϕ : X −→ R∪{+∞} defined in a complete metric
space, the set of all points at which ϕ is calm from below is large enough. In
fact, as a direct consequence of the Ekeland variational principle, it is possible
to prove that such set is dense in domϕ. All of this should show that it is not
difficult to generate situations where strong metric subregularity appears.
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Example 3 Let L(X,Y) denote the space of all linear bounded operators be-
tween two normed spaces, having null vector 0. Given Λ ∈ L(X,Y), its injec-
tivity constant is defined as

α(Λ) = inf
‖u‖=1

‖Λu‖

(see, for instance, [23]). By linearity, for any pair (x̄, ȳ) ∈ X×Y, with ȳ = Λx̄,
one finds

|Λ|↓(x̄, ȳ) = |Λ|↓(0,0) = lim inf
x→0

‖Λx‖

‖x‖
= α(Λ). (8)

While any bounded linear operator Λ is known to be metric subregular at
each point of its graph, according to Proposition 1 it is strongly metrically
subregular iff α(Λ) > 0 and

subregΛ(x̄, ȳ) = subregΛ(0,0) =
1

α(Λ)
.

Notice that, whenever X and Y are finite-dimensional spaces, α(Λ) > 0 holds
iff KerΛ = Λ−1(0) = {0}, that is iff Λ is injective. This fact fails to remain
true in abstract normed space. Consider, for instance, the identity operator
Id : ℓ1 −→ ℓ∞ (the immersion of ℓ1 into ℓ∞), which is injective, and define for
each n ∈ N the elements xn = {xn

k} ∈ ℓ1 as follows

xn
k =

{
1/n, for 1 ≤ k ≤ n,
0, for k ≥ n+ 1,

n ∈ N.

It is clear that ‖xn‖ℓ1 = 1, whereas ‖xn‖ℓ∞ = 1/n for every n ∈ N. Conse-
quently, one has

α(Id) = inf
‖u‖

ℓ1
=1

‖Idu‖ℓ∞ ≤ inf
n∈N

‖xn‖ℓ∞ = 0,

so Id is not strongly metrically subregular (anywhere). On the other hand, it is
clear that Id : ℓ1 −→ ℓ1 is strongly metrically subregular, with subreg Id(x) =
1, for every x ∈ ℓ1.

Recall that the injectivity constant is connected with the Banach constant
of linear operators, through transposition. Namely, given Λ(X,Y), one defines

β(Λ) = α(Λ⊤),

where Λ⊤ stands for the transpose of Λ. This allows one to link the notion
of strong metric subregularity with that of metric regularity, which is well
known to amount to openness (at a linear rate) in the case of linear operators.
More precisely, whenever Λ is open, one has 0 < β(Λ) = α(Λ⊤), so that
Λ⊤ is strongly metrically subregular. For more details see [23]. The current
example helps also to illustrate the fact that, whereas the appearance of sharp
minimality for a given function is a syntom of nonsmoothness, strong metric
subregularity is a property that may happen to take place for very nice (even
linear) mappings.
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Example 4 Let ϕ : X −→ R∪{+∞} be a proper, l.s.c. convex function defined
on a Banach space X, whose dual is indicated by X∗. Let us denote by ∂ϕ(x̄) the
subdifferential of ϕ at x̄ ∈ domϕ in the sense of convex analysis. Generalizing
a previous result valid in Hilbert spaces, in [24] it is has been proved that
the set-valued mapping ∂ϕ : X ⇒ X∗ is strongly metrically subregular at
(x̄, x̄∗) ∈ graph∂ϕ if and only if there exist positive γ and r such that

ϕ(x) ≥ ϕ(x̄) + 〈x̄∗, x− x̄〉+ γ‖x− x̄‖2, ∀x ∈ B(x̄, r),

where 〈·, ·〉 : X∗×X −→ R denotes the duality pairing X∗ and X. In particular,
in the case of a (global) minimizer x̄ of ϕ, ∂ϕ is strongly metrically subregular
at (x̄,0∗), where 0∗ stands for the null vector of X∗, iff

ϕ(x) ≥ ϕ(x̄) + γ‖x− x̄‖2, ∀x ∈ B(x̄, r).

The last inequality formalizes a variational behaviour known as quadratic
growth condition, which has been studied in connection with second-order
sufficient conditions in nonlinear programming (see [25]). Notice that, if a
function admits a sharp minimizer, it satisfies the quadratic growth condition
around that point, but the converse may not be true. Similar characteriza-
tions of various metric regularity properties have been recently extended to
the Mordukhovich subdifferential mapping (see [26]). Investigations by means
of second-order variational analysis tools revealed that they are also interre-
lated to the tilt-stability of local minimizer (see [26,27]).

Remark 3 From Example 4 it is possible to see at once that if ϕ is a proper,
l.s.c. convex function, whose subdifferential mapping is strongly metrically
subregular at (x̄,0∗), where x̄ ∈ domϕ is a minimizer of ϕ, then x̄ turns
out to be Tykhonov well-posed, namely every minimizing sequence {xn} of
ϕ converges to x̄. Now, it is worth noting that the notion of strong metric
subregularity generalizes, yet in a local form, such a behaviour to solutions
of equations/inclusions. More precisely, if a set-valued mapping F : X ⇒ Y ,
defining with ȳ the inclusion ȳ ∈ F (x), is strongly metrically subregular at
(x̄, ȳ), then for every sequence {yn} in Y , with yn −→ ȳ as n → ∞, and for
every sequence {xn} in X of solutions of the inclusions with data perturbed
yn ∈ F (x), according to (2) one finds

d(xn, x̄) ≤ κdist (ȳ, F (xn)) ≤ κd(ȳ, yn),

so xn −→ x̄, provided that the elements of {xn} fall in a proper neighbourhood
of x̄.

3 Perturbation stability

As it happens for other Lipschitzian properties of multifunctions, a method for
establishing criteria or conditions for the validity of strong metric subregularity
consists in analyzing its stability in the presence of perturbations. Two results
of this type are presented in what follows, which are both proved through the
criterion discussed in Section 2.
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Theorem 2 Let F : X ⇒ Y be a set-valued mapping between metric spaces
and let g : Z −→ X a mapping defined on a metric space. Let z̄ ∈ Z and let
(g(z̄), ȳ) ∈ graphF . Suppose that:
(i) g is continuous at z̄ and strongly metrically subregular at z̄;
(ii) F is strongly metrically subregular at (g(z̄), ȳ).
Then, their composition F ◦ g : Z ⇒ Y is strongly metrically subregular at
(z̄, ȳ), and it results in

subreg (F ◦ g)(z̄, ȳ) ≤ subreg g(z̄) · subregF (g(z̄), ȳ).

Proof Set x̄ = g(z̄). Since F is strongly metrically subregular at (x̄, ȳ), corre-
sponding to an arbitrary κF > subregF (x̄, ȳ), there exists r > 0 such that

dist (ȳ, F (x)) ≥
1

κF
d(x, x̄), ∀x ∈ B(x̄, r). (9)

Owing to hypothesis (i), corresponding to an arbitrary κg > subreg g(x̄), there
exists δ > 0 such that, up to a further reduction of its value, if neeeded,

d(x̄, g(z)) ≥
1

κg
d(z, z̄) and g(z) ∈ B(x̄, r), ∀z ∈ B(z̄, δ). (10)

From inequalities (10) and (9), one obtains

dist (ȳ, F (g(z)))

d(z, z̄)
≥

d(g(z), x̄)

κFd(z, z̄)
≥

1

κFκg
, ∀z ∈ B(z̄, δ)\{z̄},

whence |F ◦g|↓(z̄, ȳ) ≥ (κFκg)
−1 > 0 follows. To complete the proof it remains

to apply Proposition 1. �

The following example shows that the continuity assumption on the inner
mapping can not be dropped out, in general.

Example 5 Let Z = X = Y = R be endowed with the usual Euclidean metric
structure. Consider the functions g : R −→ R and F : R −→ R, defined
respectively by

g(z) =

{
0, if z = 0,
2, otherwise,

and F (x) =

{
|x|, if |x| ≤ 1,
2− |x|, otherwise.

Here z̄ = x̄ = ȳ = 0. It is evident that both g and F have a sharp minimizer
at 0, whereas their composition F ◦ g ≡ 0 does not.

Strong metric subregularity is not preserved under composition of set-
valued mappings, as shown by the next counterexample.

Example 6 In the same setting as in Example 5, let G : R ⇒ R be defined by

G(z) =

{
R, if z = 0,
{2}, otherwise,
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and let F be as in the previous example. As one readily checks, G is strongly
metrically subregular at (0, 0). If composing G and F , one finds

(F ◦G)(z) =

{
(−∞, 1], if z = 0,
{0}, otherwise.

It is easily seen that F ◦G fails to be strongly metrically subregular at (0, 0).
Notice that multifunction G is upper hemicontinuous at 0.

For the next result, a slightly more structured setting is needed.

Theorem 3 Let F : X ⇒ Y be a set-valued mapping defined on a metric
space X and taking values in a linear metric space Y , whose metric is shift
invariant. If F is strongly metrically subregular at (x̄, ȳ) ∈ graphF , then for
any mapping g : X −→ Y such that subregF (x̄, ȳ) · clm g(x̄) < 1, then the
set-valued mapping F + g is strongly metrically subregular at (x̄, ȳ+ g(x̄)) and
it results in

subreg (F + g)(x̄, ȳ + g(x̄)) ≤
subregF (x̄, ȳ)

1− subregF (x̄, ȳ) · clm g(x̄)
. (11)

Proof Notice that, by virtue of the shift-invariance of the metric on Y , for any
x ∈ X one has

dist (ȳ, F (x)) ≤ dist (ȳ + g(x̄), F (x) + g(x)) + d(g(x), g(x̄)).

Consequently, one obtains

|F + g|↓(x̄, ȳ + g(x̄)) ≥ lim inf
x→x̄

dist (ȳ, F (x)) − d(g(x), g(x̄))

d(x, x̄)

≥ |F |↓(x̄, ȳ)− lim sup
x→x̄

d(g(x), g(x̄))

d(x, x̄)

≥
1

subregF (x̄, ȳ)
− clm g(x̄) > 0.

The strong metric subregularity of F + g at (x̄, ȳ + g(x̄)) follows at once by
the characterization provided in Proposition 1, whereas the estimate (11) is a
straightforward consequence of (4). �

Remark 4 (i) The result provided by Theorem 3 on the persistence of strong
metric subregularity under calm additive perturbations can be found in [5]
(see Theorem 3I.6), formulated for multifunctions acting in finite-dimensional
spaces, with a different proof. It is worth noting that, since neither the Eke-
land variational principle nor the convergence of iteration procedures are used
in the proof of Theorem 3, metric completeness plays no role in the above
robustness phenomenon. Instead, it may be viewed as a direct consequence
of a stability behaviour for the local sharp minimality called superstability,
which was observed already by B.T. Polyak (see [20]). Essentially, it means
that a point preserves its local minimality even in the presence of additive
calm perturbations.
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This makes the robustness of strong metric subregularity different from the
corresponding behaviour of metric regularity, requiring on one hand metric
completeness and on the other hand the Lipschitz property of perturbations
(see [5,28]).

(ii) Note that the shift-invariance assumption on the metric of Y is not
actually restrictive. Indeed, a result due to Kakutani ensures that any linear
metric space can be equivalently remetrized by a shift-invariant metric (see
Theorem 2.2.11 in [29]).

4 Strong metric subregularity of nonsmooth mappings

The main subject of this paper is the strong metric subregularity of (possibly)
nonsmooth mappings f : X −→ Y. To deal with them, throughout this section
(X, ‖ ·‖) and (Y, ‖ ·‖) are supposed to be normed (vector) spaces. The (closed)
unit ball and the unit sphere in any normed space are indicated by B and S,
respectively, whereas, in the case of dual spaces, by B∗ and S∗, respectively.

4.1 A criterium via first-order ǫ-approximations

Differentiability is a wise combination of linearity and approximation. The
approach of analysis considered in this subsection relies on the employment of
positively homogeneous (for short, p.h.) mappings as an appealing substitute
of derivatives (that are linear operators), while calmness replaces the classical
convergence of the remainder term. To do so, set

H(X,Y) = {h : X −→ Y : p.h. and continuous at 0}.

Definition 4 Let f : X −→ Y be a mapping between normed spaces, let
x̄ ∈ X and let ǫ > 0. A mapping h ∈ H(X,Y) is said to be a first-order
ǫ-approximation of f at x̄ if

clm (f − h(· − x̄))(x̄) < ǫ.

Remark 5 Whenever h is a first-order ǫ-approximation of f at x̄, the map-
ping f(x̄) + h(· − x̄) is a special case of what is called in [5] an “estimator”.
Of course, first-order ǫ-approximation is a nonsmooth analysis notion, which
allows to include (Fréchet) differentiability. Indeed, note that if f is Fréchet
differentiable at x̄, with derivative Df(x̄) ∈ L(X,Y), then Df(x̄) is a first-order
ǫ-approximation of f at x̄, for every ǫ > 0. P.h. functions and mappings, or
some special classes of them, have been utilized as a rough material for con-
structing generalized derivatives since the very birth of nonsmooth analysis
(see, for instance, [30,31]). On the other hand, the idea of studying properties
of nonlinear mappings by means of “approximate differentials”, which avoid
differentiability assumptions, precedes even nonsmooth analysis (see, for in-
stance, [32]).
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After having replaced linear operators with p.h. mappings, the next step
consists in extending to H(X,Y) the definition of injective constant, by letting

α0(h) = inf
‖u‖=1

‖h(u)‖.

Remark 6 By applying Proposition 1 it is readily seen that h ∈ H(X,Y) is
strongly metrically subregular at 0 if and only if it holds α0(h) > 0. It is to be
noted however that, in contrast with the linear case, such a characterization is
not valid for the strong metric subregularity of h at every point of X. Consider,
for instance, the norm function ‖ · ‖ : X −→ R, with the dimension of X being
greater than 1 (possibly infinite). Clearly, it is α0(‖·‖) = 1. Taking any element
ū in the unit sphere S of X, one finds

‖ · ‖↓(ū) = lim inf
x→ū

|‖x‖ − ‖ū‖|

‖x− ū‖
≤ sup

δ>0
inf

x∈S∩B(ū,δ)\{ū}

|‖x‖ − ‖ū‖|

‖x− ū‖
= 0,

and hence ‖ · ‖ fails to be strongly metrically subregular at ū, even though it
is so at 0.

Theorem 4 Let f : X −→ Y be a mapping between normed spaces and let
x̄ ∈ X. If f is first-order ǫ-approximated at x̄ by h ∈ H(X,Y), with α0(h) > ǫ,
then f is strongly metrically subregular at x̄, and

subreg f(x̄) ≤
1

α0(h)− ǫ
.

Vice versa, if f is strongly metrically subregular at x̄, then for any mapping
h ∈ H(X,Y) first-order ǫ-approximating f at x̄, with ǫ < subreg f(x̄), it results
in

α0(h) ≥
1

subreg f(x̄)− ǫ
,

so h is strongly metrically subregular at 0.

Proof According to Definition 4, for both the assertions of the thesis the re-
spective hypotheses imply

clm (f − h(· − x̄))(x̄) = clm (h(· − x̄)− f)(x̄) < ǫ.

To prove the first assertion it suffices to apply Theorem 3, with F anf g given
by

F (x) = f(x̄) + h(x− x̄) and g(x) = f(x)− f(x̄)− h(x− x̄),

respectively, and to observe that F is strongly metrically subregular at x̄ iff h
is so at 0, while clm g(x̄) = clm (f − h(· − x̄))(x̄).

Analogoulsy, to prove the second assertion, it suffices to apply once again
Theorem 3, now with

F (v) = f(x̄+ v) + f(x̄) and g(v) = h(v)− f(x̄+ v)− f(x̄).
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Indeed, f is strongly metrically subregular at x̄ iff F is so at 0, whereas

clm g(0) = clm (h(· − x̄)− f)(x̄).

The quantitative estimates complementing the thesis are direct consequences
of inequality (11). �

As a special case of Theorem 4 it is possible to derive the following criterion
for smooth mappings.

Corollary 1 A Fréchet differentiable mapping f : X −→ Y between normed
spaces is strongly metrically subregular at x̄ ∈ X if and only if α(Df(x̄)) > 0
and

subreg f(x̄) ≤
1

α(Df(x̄))
.

In particular, if X and Y are finite-dimensional spaces, f is strongly metrically
subregular at x̄ if and only if

KerDf(x̄) = {0}.

4.2 A sufficient condition via outer ǫ-prederivative

In order to introduce the next tool of nonsmooth analysis to be used, recall
that a set-valued mapping F : X ⇒ Y is said to be p.h. if 0 ∈ F (0) and
F (tx) = tF (x) for all x ∈ X and t > 0. In [33] p.h. set-valued mappings have
been used to define a notion of generalized derivative. Below, a generalization
of it, which seems to be adequate for the purposes of the present analysis, is
introduced.

Definition 5 Let f : X −→ Y be a mapping between normed spaces, let
x̄ ∈ X and let A : X ⇒ Y a p.h. homogeneous set-valued mapping. Given
ǫ > 0, A is said to be an outer (Fréchet) ǫ-prederivative of f at x̄ if there exists
δ > 0 and a function r : δB −→ [0, ǫ] such that

f(x̄+ v)− f(x̄) ∈ A(v) + r(v)‖v‖B, ∀v ∈ δB. (12)

Remark 7 Recall that, according to [33], A is said to be an outer prederivative
of f at x̄ if (12) holds true with a function r : δB −→ [0, ǫ] such that lim

v→0

r(v) =

0. In such an event, A is an outer ǫ-prederivative of f at x̄, for every ǫ > 0.

Given a p.h. set-valued mapping A : X ⇒ Y, to detect its strong metric
subregularity at (0,0), it seems to be natural to introduce a injectivity constant
notion as follows

α(A) = inf
‖u‖=1

dist (0,A(u)) .

In the light of Prosition 1, it is readily seen that A is strongly metrically
subregular at (0,0) if and only α(A) > 0 and, upon this condition, it is

subregA(0,0) =
1

α(A)
.
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By employing the above nonsmooth analysis tools, one can establish the fol-
lowing sufficient condition for strong metric subregularity.

Theorem 5 Suppose that a mapping f : X −→ Y between normed spaces
admits an outer ǫ-prederivative A : X ⇒ Y at x̄, such that α(A) > ǫ. Then, f
is strongly metrically subregular at x̄ and

subreg f(x̄) ≤
1

α(A) − ǫ
.

If, in particular, A is an outer prederivative of f at x̄, then then stricter
estimate holds

subreg f(x̄) ≤
1

α(A)
.

Proof Let positive ǫ, δ and r : δB −→ [0, ǫ] be as in Definition 5. Then one
obtains for every x ∈ B(x̄, δ)

‖f(x̄)− f(x)‖ = d(0, f(x)− f(x̄)) (13)

≥ dist (0,A(x− x̄) + r(x − x̄)‖x− x̄‖B) ,

On the other hand, observe that for any v ∈ δB\{0} it is

dist (0,A (v/‖v‖) + r (v)B) = inf
y∈A(v/‖v‖), u∈B

‖y + r(v)u‖

≥ inf
y∈A(v/‖v‖), u∈B

[‖y‖ − |r(v)|‖u‖]

≥ dist (0,A(v/‖v‖))− r(v).

Therefore, letting ȳ = f(x̄), from inequality (13) it follows

|f |↓(x̄, ȳ) ≥ lim inf
x→x̄

dist (0,A(x − x̄) + r(x − x̄)‖x− x̄‖B)

‖x− x̄‖

≥ lim inf
x→x̄

dist

(
0,A

(
x− x̄

‖x− x̄‖

)
+ r(x − x̄)B

)

≥ inf
‖u‖=1

dist (0,A(u))− lim sup
x→x̄

r(x − x̄) = inf
‖u‖=1

dist (0,A(u))− ǫ.

Thus, to show the first assertion in the thesis, it suffices to apply the charac-
terization stated in Proposition 1, along with the estimate (4). For the second
assertion, on account of Remark 7 and of the last inequalities, one has that

|f |↓(x̄, ȳ) ≥ α(A) − ǫ, ∀ǫ ∈ (0, α(A)).

which leads immediately to the estimate to be proved. �

Remark 8 Among the p.h. set-valued mappings that can be used as prederiva-
tives, one can consider in particular those generated by a convex weakly closed
set of linear operators. In other terms, given a set U ⊆ L(X,Y) convex and
closed with respect to the weak topology, let

A(x) = {y ∈ Y : y = Λx, Λ ∈ U}.
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According to [33], this is an example of fan. In this case one has

α(A) = inf
Λ∈U

α(Λ).

Notice that, whenever f is Fréchet differentiable at x̄, Definition 5 applies
with A(v) = {Df(x̄)v} and r(v) = ‖f(x̄+v)−f(x̄)−Df(x̄)v‖/‖v‖, being now
U = {Df(x̄)}. Therefore the sufficient part of Corollary 1 can be achieved also
from Theorem 5.

4.3 A scalarization approach

Let (Y, ‖ · ‖) be now a normed space, which is partially ordered by a relation
≤Y or, equivalently, by a convex cone Y+ ⊆ Y, in the sense that

y1 ≤Y y2 iff y2 − y1 ∈ Y+.

In this setting, a mapping f : X −→ Y is said to be Y+-convex if

f(tx1 + (1− t)x2) ≤Y tf(x1) + (1− t)f(x2), ∀t ∈ [0, 1], ∀x1, x2 ∈ X.

Y+-convex mappings are found quite easily in nature. For instance, if f : X −→
Rm is given by f(x) = (f1(x), . . . , fm(x)), with each function fi : X −→ R

being convex, then f is Rm
+ -convex, where Rm

+ = {y ∈ Rm : yi ≥ 0, i =
1, . . . ,m}. One immediately sees that if f is Y+-convex and if y∗ ∈ Y∗

+ =
{y∗ ∈ Y∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ Y+}, then each scalar function y∗ ◦ f : X −→ R

is convex.
Since the scalarization approach to strong metric subregularity exploits the

connection of that property with the sharp minimality of scalarized terms, the
following characterization of a sharp minimizer for a convex function will be
useful in the sequel.

Lemma 1 Let ϕ : X −→ R ∪ {+∞} be a proper convex function. An element
x̄ ∈ domϕ is a (global) sharp minimizer of ϕ if and only if 0∗ ∈ int ∂ϕ(x̄).
Moreover, it results in

ϕ↓(x̄) = sup{ρ > 0 : ρB∗ ⊆ ∂ϕ(x̄)}.

Proof Necessity: suppose point x̄ to be a sharp minimizer of ϕ and take ǫ ∈
(0, ϕ↓(x̄)). Then, setting ρ = ϕ↓(x̄)− ǫ one gets

ϕ(x)− ϕ(x̄)

‖x− x̄‖
≥ ρ ≥

〈
x∗,

x− x̄

‖x− x̄‖

〉
, ∀x∗ ∈ ρB∗, ∀x ∈ X\{x̄}.

This means that ρB∗ ⊆ ∂ϕ(x̄) and, by arbitrariness of ǫ, that ϕ↓(x̄) ≤ sup{ρ >
0 : ρB∗ ⊆ ∂ϕ(x̄)}.

Sufficiency: from the definition of sugradient of ϕ at x̄, it is possible to
deduce

ϕ(x) − ϕ(x̄)

‖x− x̄‖
≥ sup

x∗∈∂ϕ(x̄)

〈
x∗,

x− x̄

‖x− x̄‖

〉
, ∀x ∈ X\{x̄}.
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Since by hypothesis there exists ρ > 0 such that ρB∗ ⊆ ∂ϕ(x̄), it is true that

sup
x∗∈∂ϕ(x̄)

〈x∗, u〉 ≥ sup
x∗∈ρB∗

〈x∗, u〉 = ρ, ∀u ∈ X : ‖u‖ = 1.

From this and the previous inequality it is possible to conclude that

ϕ↓(x̄) ≥ ρ > 0.

Actually, this shows that ϕ↓(x̄) ≥ sup{ρ > 0 : ρB∗ ⊆ ∂ϕ(x̄)}. The proof is
complete. �

To formulate the next condition for the strong metric subregularity of a
Y+-convex mapping f : X −→ Y at x̄ ∈ X, define

̺(f)(x̄) = sup{ρ > 0 : ρB∗ ⊆ ∂(y∗ ◦ f)(x̄), y∗ ∈ S
∗ ∩ Y

∗
+}.

Theorem 6 Let f : X −→ Y be a mapping between normed spaces, with Y

partially ordered by a cone Y+, and let x̄ ∈ X. Suppose that f is Y+-convex
and

0∗ ∈
⋃

y∗∈S∗∩Y∗

+

int ∂(y∗ ◦ f)(x̄).

Then f is strongly metrically subregular at x̄. Moreover, one has

subreg f(x̄) ≤
1

̺(f)(x̄)
.

Proof From the well-known dual representation of a norm

‖v‖ = sup
y∗∈B∗

〈y∗, v〉 = sup
y∗∈S∗

〈y∗, v〉,

one obtains

‖f(x̄)− f(x)‖

‖x− x̄‖
= sup

y∗∈S∗

〈
y∗,

f(x)− f(x̄)

‖x− x̄‖

〉

≥ sup
y∗∈S∗∩Y∗

+

(y∗ ◦ f)(x) − (y∗ ◦ f)(x̄)

‖x− x̄‖
, ∀x ∈ X\{x̄}.

Since by hypothesis there exist ρ > 0 and y∗0 ∈ S∗ ∩ Y∗
+ such that ρB∗ ⊆

∂(y∗0 ◦ f)(x̄) and function y∗0 ◦ f is convex, then in the light of Lemma 1, x̄
is a sharp minimizer of y∗0 ◦ f . Consequently, setting ȳ = f(x̄), from the last
inequality one has

|f |↓(x̄, ȳ) ≥ (y∗0 ◦ f)↓(x̄) ≥ ρ.

The proof of all assertions in the thesis is therefore completed by applying
Proposition 1. �
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Theorem 6 demonstrates a typical use of the scalarization method in the
presence of convexity assumption. It should be clear that this method ex-
tends its potential far beyond convexity and can be employed in combination
with more general subdifferential constructions. For example, by utilizing the
Fréchet subdifferential, defined as

∂̂ϕ(x̄) =

{
x∗ ∈ X

∗ : lim inf
x→x̄

ϕ(x) − ϕ(x̄)− 〈x∗, x− x̄〉

‖x− x̄‖
≥ 0

}

(for more details, the reader is referred to [2,28,34,35]), the following finite-
dimensional generalization of Lemma 1 has been proved in [21] (see Theorem
4 therein).

Lemma 2 Let ϕ : Rn −→ R ∪ {±∞} and x̄ ∈ domϕ. Then ϕ↓(x̄) > 0 if and

only if 0∗ ∈ int ∂̂ϕ(x̄).

The above lemma allows one to obtain the next result valid for mappings
defined in a finite-dimensional space.

Theorem 7 Given a mapping f : Rn −→ Y and x̄ ∈ Rn, if

0∗ ∈
⋃

y∗∈S∗

int ∂̂(y∗ ◦ f)(x̄),

then f is strongly metrically subregular at x̄.

Proof The thesis can be achieved through the same argument as in the proof
of Theorem 6. Indeed, by hypothesis there exists y∗0 ∈ S∗ such that 0∗ ∈

int ∂̂(y∗0 ◦ f)(x̄). In the light of Lemma 2 this implies

(y∗0 ◦ f)↓(x̄) > 0. (14)

Since it is

‖f(x̄)− f(x)‖

‖x− x̄‖
= sup

y∗∈S∗

〈
y∗,

f(x)− f(x̄)

‖x− x̄‖

〉

≥
(y∗0 ◦ f)(x) − (y∗0 ◦ f)(x̄)

‖x− x̄‖
, ∀x ∈ X\{x̄},

by virtue of inequality (14) it follows

|f |↓(x̄, ȳ) ≥ (y∗0 ◦ f)
↓(x̄) > 0.

Proposition 1 allows one to complete the proof. �
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5 An application

An application of the above exposed ideas and techniques is going to be il-
lustrated now, which concerns the stability behaviour of solution mappings to
generalized equations. A generalized equation is a rather general problem that
is able to provide a proper framework for studying several specific issues in
mathematical analysis, having or not having a variational nature. Among the
others, let us mention optimality conditions in constrained or unconstrained
optimization, various types of constraint systems, variational inequalities and
complementarity problems, equilibrium problems, differential inclusions.

Here, parameterized generalized equations are considered that can be for-
malized as follows

(GE) 0 ∈ f(p, x) + T (x),

where f : P × X −→ Y (sometimes referred to as the base of (GE)) and
T : X ⇒ Y (referred to as the field) are the problem data. (P, d) is a metric
space where the parameters vary, whereas (X, ‖ · ‖) and (Y, ‖ · ‖) are supposed
to be normed vector spaces. The solution mapping associated to (GE) is the
(generally) set-valued mapping implicitly defined by

Sf,T (p) = {x ∈ X : 0 ∈ f(p, x) + T (x)}.

In this context, an issue of interest is how to certify and to quantify a cer-
tain stability behaviour of Sf,T , near a solution x̄ ∈ Sf,T (p̄). More precisely,
here the stability behaviour quantitatively described by the isolated calmness
property is investigated. This amounts to establish for solutions to (GE) lying
near a reference one a reaction, which is (directly) proportional to the pa-
rameter variations. Following the spirit of classical and more recent implicit
function theorems, this question is approached by analyzing a semplified vari-
ant of (GE), called approximated generalized equation (AGE), on which the main
regularity assumption is made. Of course, a (AGE) can be defined in several
ways, depending on the features of the problem data. In what follows, deal-
ing with a nonsmooth analysis setting, the use of an adaptation of the outer
ǫ-prederivative is proposed.

Definition 6 Given ǫ > 0, a p.h. set-valued mapping A : X ⇒ Y is said to
be a partial outer ǫ-prederivative of a mapping f : P × X −→ Y at (p̄, x̄),
uniformly with respect to p, if there exist positive δ and ζ and a function
r : P × δB −→ [0, ǫ] such that

f(p, x) ∈ f(p, x̄)+A(x− x̄)+r(p, x− x̄)‖x− x̄‖B, ∀x ∈ B(x̄, δ), ∀p ∈ B(p̄, ζ).

Now, assuming that the base f of (GE) admits, for some ǫ > 0, as a partial
outer ǫ-prederivative at (p̄, x̄) a mapping A, one can associate with (GE) an
approximated generalized equation defined by

(AGE) 0 ∈ f(p̄, x̄) +A(x− x̄) + T (x).
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It turns out that the strong metric subregularity of the mapping A + T is a
key assumption to guarantee the isolated calmness property of Sf,T , as below
stated.

Theorem 8 With reference to a generalized equation (GE), let x̄ ∈ Sf,T (p̄).
Suppose the data of (GE) to satisfy the following assumptions:
(i) function f(·, x̄) is calm at p̄ with modulus clm f(·, x̄)(p̄);
(ii) f admits a partial outer ǫ-prederivative A at (p̄, x̄), uniformly with respect
to p;
(iii) the set-valued mapping x ⇒ f(p̄, x̄)+A(x−x̄)+T (x) is strongly metrically
subregular at (x̄,0), with modulus subreg (A+ T )(x̄,0), such that

ǫ · subreg (A+ T )(x̄,0) < 1. (15)

Then, Sf,T has the isolated calmness property at (p̄, x̄) and the below estimate
holds

clmSf,T (p̄, x̄) ≤
clm f(·, x̄)(p̄) · subreg (A+ T )(x̄,0)

1− ǫ · subreg (A+ T )(x̄,0)
. (16)

Proof Take an arbitrary η such that

0 < η <
1

ǫ
− subreg (A + T )(x̄,0),

what is possible by virtue of condition (15). By the assumption (i), correspond-
ing to η there exists ζ > 0 such that

‖f(p, x̄)− f(p̄, x̄)‖ ≤ (clm f(·, x̄)(p̄) + η)d(p, p̄), ∀p ∈ B(p̄, ζ).

By the assumption (ii), there exist ζ̃ ∈ (0, ζ), δ > 0 and a function r : P ×
δB −→ [0, ǫ] such that

f(p, x) ∈ f(p, x̄)+A(x− x̄)+ r(p, x− x̄)‖x− x̄‖B, ∀x ∈ B(x̄, δ), ∀p ∈ B(p̄, ζ̃).

Consequently, one obtains

dist (0, f(p, x) + T (x)) ≥

dist (0, f(p, x̄) +A(x− x̄) + r(p, x − x̄)‖x− x̄‖B+ T (x)) ≥

dist (0, f(p, x̄) +A(x − x̄) + T (x))− ǫ‖x− x̄‖ ≥

dist (0, f(p̄, x̄) + (clm f(·, x̄)(p̄) + η)d(p, p̄)B+A(x − x̄) + T (x))

−ǫ‖x− x̄‖ ≥

dist (0, f(p̄, x̄) +A(x − x̄) + T (x))− (clm f(·, x̄)(p̄) + η)d(p, p̄)− ǫ‖x− x̄‖

for every x ∈ B(x̄, δ) and p ∈ B(p̄, ζ̃), wherefrom it follows

dist (0, f(p̄, x̄) +A(x − x̄) + T (x)) ≤ dist (0, f(p, x) + T (x))

+ (clm f(·, x̄)(p̄) + η)d(p, p̄) + ǫ‖x− x̄‖.
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Now, according to assumption (iii), since x̄ is evidently a solution to (AGE),
corresponding to η > 0 there exists δ̃ ∈ (0, δ) such that

‖x− x̄‖ ≤ (subreg (A+ T )(x̄,0) + η)dist (0, f(p̄, x̄) +A(x− x̄) + T (x))

≤ (subreg (A+ T )(x̄,0) + η)

(
dist (0, f(p, x) + T (x))

+ (clm f(·, x̄)(p̄) + η)d(p, p̄) + ǫ‖x− x̄‖

)

and hence

(1− ǫ(subreg (A+ T )(x̄,0) + η))‖x− x̄‖ ≤ (subreg (A+ T )(x̄,0) + η)

·

(
dist (0, f(p, x) + T (x))

+ (clm f(·, x̄)(p̄) + η)d(p, p̄)

)

for every x ∈ B(x̄, δ̃) and p ∈ B(p̄, ζ̃). As a consequence, whenever it is x ∈
Sf,T (p) ∩ B(x̄, δ̃), it results in

‖x− x̄‖ ≤
(subreg (A+ T )(x̄,0) + η) · (clm f(·, x̄)(p̄) + η)

(1− ǫ(subreg (A+ T )(x̄,0) + η))
d(p, p̄),

for every p ∈ B(p̄, ζ̃). The last inequality shows that Sf,T has the isolated
calmness property at (p̄, x̄) with

clmSf,T (p̄, x̄) ≤
(subreg (A+ T )(x̄,0) + η) · (clm f(·, x̄)(p̄) + η)

(1− ǫ(subreg (A+ T )(x̄,0) + η))
.

From the last inequality and the arbitrariness of η, it is possible to deduce the
estimate in the thesis, thereby completing the proof. �

Corollary 2 With reference to a generalized equation (GE), let x̄ ∈ Sf,T (p̄).
Suppose the data of (GE) to satisfy the following assumptions:
(i) function f(·, x̄) is calm at p̄ with modulus clm f(·, x̄)(p̄);
(ii’) f has a partial outer prederivative A at (p̄, x̄), uniformly with respect to
p;
(iii) the set-valued mapping x ⇒ f(p̄, x̄)+A(x−x̄)+T (x) is strongly metrically
subregular at (x̄,0), with modulus subreg (A+ T )(x̄,0).
Then Sf,T has the isolated calmness property at (p̄, x̄) and the stricter estimate

clmSf,T (p̄, x̄) ≤ clm f(·, x̄)(p̄) · subreg (A+ T )(x̄,0) (17)

holds.

Proof The thesis can be easily achieved by applying Theorem 8. Recall indeed
that with assumption (ii’) being valid, A is an outer partial ǫ-prederivative
of f at (p̄, x̄), for any ǫ > 0. Then, it suffices to observe that, since ǫ can be
taken arbitrarily “small”, condition (15) is fulfilled independently of the value
of subreg (A+ T )(x̄,0). �
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Remark 9 A result quite close to Theorem 8, called “implicit mapping theo-
rem with strong metric subregularity”, can be found in [5] (Theorem 3I.12).
Instead of prederivatives, partial estimators (i.e. first-order ǫ-approximations)
are employed there. In this regard, it is must be noted that the technique of
proof in Theorem 8 can be readily adapted to derive a version of it, employing
partial first-order ǫ-approximations of the base term.

Theorem 8 reduces the study of the isolated calmness property of Sf,T to
the certification of the strong metric subregularity of the set-valued mapping
defining (AGE). The latter question is expected to be easier to be faced than
a direct study of Sf,T , inasmuch as the former set-valued mapping is explic-
itly defined in terms of problem data or their approximation, while Sf,T can
be hardly calculated in practice. Besides, in some special case, the study of
the strong metric subregularity of the set-valued mapping defining (AGE) may
happen to be particularly simple. Let us consider, as an example, the case in
which the field term T happens to be single-valued near x̄.

Corollary 3 Let x̄ ∈ Sf,T (p̄) be a solution to (GE). Suppose that:
(i) function f(·, x̄) is calm at p̄ with modulus clm f(·, x̄)(p̄);
(ii) f admits a partial outer ǫ-prederivative A at (p̄, x̄), uniformly with respect
to p;
(iii) T is single-valued near x̄ and calm at x̄, with modulus clmT (x̄);
(iv) the following condition holds

α(A) − clmT (x̄) > ǫ. (18)

Then Sf,T has the isolated calmness property at (p̄, x̄) and the following mod-
ulus estimate holds

clmSf,T (p̄, x̄) ≤
clm f(·, x̄)(p̄)

α(A) − clmT (x̄)− ǫ
.

Proof Observe first of all that A(· − x̄) is strongly metrically subregular at
(x̄,0) iff A is so at (0,0), and one has

subregA(· − x̄)(x̄,0) = subregA(0,0).

Under the current assumptions, it is possible to apply Theorem 3, with F =
A(· − x̄) and g = f(p̄, x̄) + T . Indeed, it is clear that

clm (f(p̄, x̄) + T )(x̄) = clmT (x̄),

so, in force of condition (18), it holds

subregA(· − x̄)(x̄,0) · clm (f(p̄, x̄) + T )(x̄) =
clmT (x̄)

α(A)
< 1.

Consequently, the set-valued mapping x ⇒ f(p̄, x̄) + A(x − x̄) + T (x) turns
out to be strongly metrically subregular at (x̄,0), with

subreg (A+ T )(x̄,0) ≤
1

α(A) − clmT (x̄)
.
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One is therefore in a position to apply Theorem 8, as the validity of condition
(15) is ensured by the assumption (18). Thus the proof is complete. �

In the remaining part of this section, while continuing to assume T to
be single-valued, a further result is presented, which can be obtained via the
scalarization approach.

Theorem 9 With reference to a generalized equation (GE), let x̄ ∈ Sf,T (p̄).
Suppose that:
(i) T is single-valued near x̄ and calm at x̄, with modulus clmT (x̄);
(ii) f(·, x) is calm at p̄, uniformly with respect to x near x̄, with modulus
clm f(·, x)(p̄);
(iii) the space (Y, ‖ · ‖) is partially ordered by a cone Y+ and the mapping
f(p̄, ·) is Y+-convex;
(iv) both the conditions

0∗ ∈
⋃

y∗∈S∗∩Y∗

+

int ∂(y∗ ◦ f)(x̄) (19)

and

clmT (x̄)

̺(f(p̄, ·))(x̄)
< 1 (20)

hold true.
Then Sf,T has the isolated calmness property at (p̄, x̄) and the following mod-
ulus estimate holds

clmSf,T (p̄, x̄) ≤
clm f(·, x)(p̄)

̺(f(p̄, ·))(x̄)− clmT (x̄)
.

Proof Hypothesis (iii) and condition (19) allow one to apply Theorem 6 to the
mapping f(p̄, ·). According to it, f(p̄, ·) turns out to be strongly metrically
subregular at x̄ and it results in

subreg f(p̄, ·)(x̄) ≤
1

̺(f(p̄, ·))(x̄)
.

Now, since owing to condition (20) it is

subreg f(p̄, ·)(x̄) · clmT (x̄) < 1,

Theorem 3 guarantees that the mapping x 7→ f(p̄, x) + T (x) is strongly met-
rically subregular at (x̄,0) and that it results in

subreg (f(p̄, ·) + T )(x̄,0) ≤
1

̺(f(p̄, ·))(x̄)− clmT (x̄)
.

This means that, corresponding to η > 0, there exists r > 0 such that

‖x− x̄‖ ≤
(1 + η)‖f(p̄, x) + T (x)‖

̺(f(p̄, ·))(x̄)− clmT (x̄)
, ∀x ∈ B(x̄, r).
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By taking account of hypothesis (i), one has that for some ζ > 0 and r̃ ∈ (0, r)
it holds

‖x− x̄‖ ≤
(1 + η)‖f(p̄, x)− f(p, x)‖+ ‖f(p, x) + T (x)‖

̺(f(p̄, ·))(x̄)− clmT (x̄)

≤
(1 + η)[(clm f(·, x)(p̄) + η)d(p, p̄) + ‖f(p, x) + T (x)‖]

̺(f(p̄, ·))(x̄)− clmT (x̄)

for every x ∈ B(x̄, r̃) and p ∈ B(p̄, ζ). Thus, if taking x ∈ B(x̄, r̃) ∩ Sf,T (p),
one finds

‖x− x̄‖ ≤
(1 + η)(clm f(·, x)(p̄) + η)

̺(f(p̄, ·))(x̄)− clmT (x̄)
d(p, p̄), ∀p ∈ B(p̄, ζ).

The last inequality shows that Sf,T fulfils the isolated calmness property at
(p̄, x̄) and, by arbitrariness of η, it allows one to achieve the asserted modulus
estimation. �

6 Conclusions

The appraoch of analysis proposed in this paper shows that several techniques
for detecting strong metric subregularity of nonsmooth mappings can be de-
rived from a unique elementary criterion, based on the notion of steepest
displacement rate, which can be formulated already in a metric space setting.
This criterion, besides providing a unifying scheme of analysis with transpar-
ent proofs, emphasizes the variational nature of the property under study.
Optimization (especially, nondifferentiable optimization) is well recognized as
a field where many results and constructions of set-valued analysis are fruit-
fully applied. The findings of the present study should contribue to the make it
evident that, simmetrically, nondifferentiable optimization can provide useful
insights and methods for investigating properties of multifunctions, some of
them not necessarily related to extremum problems. This seems to agree with
the very spirit of the Euler’s variational faith.
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