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1 Introduction

In this paper we consider the so-called equilibrium problem with nonsmooth

data in a finite-dimensional setting, following its mathematical format as given

in [1,2]. This format was shaped on the well-known Ky Fan’s minimax in-

equality [3] and has attracted increasing attention ever since its introduction.

Indeed, it provides a rather general model that includes scalar and vector

optimization, inverse optimization, variational inequalities, fixed point, com-

plementarity, saddle points and noncooperative games as particular cases.

Many classes of methods for solving the equilibrium problem have been

developed: fixed point and extragradient methods, descent methods, proximal

point and Tikhonov-Browder regularization methods (see, for instance, the

survey paper [4]). In this paper we focus on algorithms that are based on

descent procedures.

Descent techniques exploit the reformulation of the equilibrium problem as

an optimization problem through suitable merit functions (see, for instance,

[4,5]), which are generally referred to as gap functions. Many descent type

algorithms have been developed supposing that the equilibrium bifunction is

continuously differentiable [6–16]. This assumption guarantees the differentia-

bility of the gap function; moreover, convergence results require some kind of
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monotonicity assumption on the gradients of the equilibrium bifunction. En-

tering nonsmoothness brings in some difficulties: the differentiability of the gap

function is generally lost and monotonicity conditions have to be addressed

through generalized derivatives.

When the nonsmooth equilibrium problem takes the shape of a variational

inequality, i.e., the equilibrium bifunction is affine in the second argument, with

a Lipschitz operator, the analysis of nonsmooth gap functions leads to error

bounds [17–19] and to devise solution methods under the strong monotonicity

of the operator [20–22]. The algorithms require the explicit knowledge of the

modulus of strong monotonicity [21,22] or the Lipschitz constant [20].

In the general case, some algorithms have been developed just for those

particular problems in which the nonsmooth terms of the bifunction are addi-

tively separable [23,24]. Anyhow, the connections between directional deriva-

tives, monotonicity and descent properties given in [25] pave the way to a

general framework for descent type methods. In this paper we deepen the

analysis of [25] using the generalized directional derivatives of the equilibrium

bifunction and we exploit them to devise descent algorithms for the general

case.

The paper is structured in the following way. Section 2 recalls the gap func-

tion approach, analyses how the local Lipschitz continuity of the equilibrium

bifunction is inherited by the gap function and provides an upper estimate of

its generalized directional derivative. Section 3 introduces monotonicity condi-

tions on f through generalized directional derivatives and explores their con-
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nections with stationarity and descent properties of the gap function. Section

4 exploits the results of the previous sections to devise two different solution

methods and to prove their convergence. Finally, Section 5 reports the results

of some preliminary numerical tests.

2 Equilibria and Gap Functions

Given a bifunction f : Rn × Rn → R and a closed convex set C ⊆ Rn, the

format of the equilibrium problem reads

find x∗ ∈ C s.t. f(x∗, y) ≥ 0, ∀ y ∈ C. (EP )

Throughout the paper, we suppose the function f(x, ·) to be convex and

f(x, x) = 0 for any x ∈ Rn. Moreover, if C is bounded and f(·, y) is up-

per semicontinuous, then the solution set is nonempty, closed and bounded

(see, for instance [4, Section 2] for further existence results relaxing the two

above assumptions).

A function ϕ : C → R is said to be a gap function for (EP ) if it is non-

negative on C, and x∗ solves (EP ) if and only if x∗ ∈ C and ϕ(x∗) = 0.

Thus, gap functions allow reformulating an equilibrium problem as a global

optimization problem, whose optimal value is known a priori. In order to build

gap functions with good properties, it is helpful to consider a continuously

differentiable auxiliary bifunction h : Rn × Rn → R satisfying the conditions:

– h(x, y) ≥ 0 for all x, y ∈ C and h(z, z) = 0 for all z ∈ C,

– h(x, ·) is strongly convex for all x ∈ C,
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– ∇yh(z, z) = 0 for all z ∈ C,

– 〈∇xh(x, y) +∇yh(x, y), y − x〉 ≥ 0 for all x, y ∈ C.

A bifunction with the above properties can be obtained taking h(x, y) =

g(y − x) for some continuously differentiable and strongly convex function

g : Rn → R+ with g(0) = 0.

Given any α > 0, the auxiliary problem principle (see, for instance, [26])

guarantees that the solution set of (EP ) coincides with the solution set of the

following problem:

find x∗ ∈ C s.t. f(x∗, y) + αh(x∗, y) ≥ 0, ∀ y ∈ C. (EPα)

Therefore, the value function

ϕα(x) := max {−f(x, y)− αh(x, y) : y ∈ C} (1)

is a gap function for (EP ). The optimization problem in (1) has a strongly

concave objective function, hence it admits a unique solution yα(x); moreover,

x∗ solves (EP) if and only if yα(x∗) = x∗ (see [6]). Indeed, the inequality

α τx
2
‖x− yα(x)‖2 ≤ ϕα(x)

hold for any x ∈ C, and it follows from [27, Theorem 6.1.2] applied to the

strongly convex function f(x, ·) + αh(x, ·), with τx > 0 being the modulus of

strong convexity of h(x, ·).

If f is continuously differentiable, then ϕα is continuously differentiable as

well (see [6]), while if f is nonsmooth and continuous, the differentiability of

the gap function is generally lost and only continuity is preserved (see [28]).
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However, stronger conditions such as the local Lipschitz continuity of ϕα are

needed to develop descent methods for (EP). The following assumption on f

provides the right tool.

Assumption (A1) Given any bounded set D ⊆ C, the function f(·, y) is

locally Lipschitz continuous on C uniformly in y ∈ D.

Indeed, in this framework local Lipschitz continuity is preserved.

Theorem 2.1 If assumption (A1) holds, then ϕα is locally Lipschitz contin-

uous on C.

Proof Let x ∈ C, ε > 0 and D the intersection of C with the closed ball

B(yα(x), ε). Assumption (A1) and the convexity of f(x, ·) guarantee the con-

tinuity of f on C × C, hence the mapping yα is continuous [28]. Thus, there

exists δ > 0 such that yα(u) ∈ D for any u ∈ B(x, δ). Since h is continuously

differentiable and (A1) holds, there exists a constant L > 0 such that

ϕα(u)− ϕα(v) = −f(u, yα(u))− αh(u, yα(u))− ϕα(v)

≤ f(v, yα(u))− f(u, yα(u)) + αh(v, yα(u))− αh(u, yα(u))

≤ L ‖u− v‖

holds for any u, v ∈ B(x, δ). ut

Remark 2.1 Assumption (A1) is clearly satisfied if f is continuously differen-

tiable. More generally, it is satisfied whenever f is locally Lipschitz continu-

ous. For instance, if (EP) is a variational inequality problem, i.e., f(x, y) =
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〈F (x), y − x〉, with the operator F : Rn → Rn being locally Lipschitz contin-

uous, then f is locally Lipschitz continuous.

When the gap function ϕα is locally Lipschitz continuous near x ∈ C, its

generalized directional derivative

ϕ◦α(x; d) := lim sup
z→x
t↓0

[ϕα(z + t d)− ϕα(z)] /t

at x in any direction d ∈ Rn is finite [29]. In the following, f◦x((x, y); d) denotes

the generalized direction derivative of the function f(·, y) at x in the direction

d and ∂xf(x, y) the generalized gradient of f(·, y) at x, i.e.,

∂xf(x, y) := {ξ ∈ Rn : f◦x((x, y); d) ≥ 〈ξ, d〉, ∀ d ∈ Rn},

while f ′y((x, y); d) the directional derivative of the convex function f(x, ·) at y

in the direction d. Accordingly, ∇xh(x, y) denotes the gradient of the function

h(·, y) at x.

An upper estimate of ϕ◦α(x; d), which is based on the generalized directional

derivative of f and the gradient of h, can be achieved relying on the following

additional assumption.

Assumption (A2) The graph of the set-valued map (x, y) 7→ ∂x(−f)(x, y),

i.e., the set

{(x, y, ξ) ∈ C × C × Rn : ξ ∈ ∂x(−f)(x, y)},

is closed.
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Theorem 2.2 If (A1) and (A2) hold, then the generalized directional deriva-

tive of the gap function ϕα satisfies the inequality

ϕ◦α(x; d) ≤ f◦x((x, yα(x));−d) + α 〈∇xh(x, yα(x)),−d〉 (2)

for any x ∈ C, any direction d ∈ Rn and any α > 0.

Proof By definition, there exist two sequences zk → x and tk ↓ 0 such that

ϕ◦α(x; d) = lim
k→∞

(ϕα(zk + tk d)− ϕα(zk))/tk.

Let uk = zk + tk d. The mean value theorem [29, Theorem 2.3.7] guarantees

(ϕα(uk)− ϕα(zk))/tk ≤ [−f(uk, yα(uk)) + f(zk, yα(uk))+

−αh(uk, yα(uk)) + αh(zk, yα(uk))]/tk

= 〈ξk, uk − zk〉/tk

−α 〈∇xh(zk + ηk d, yα(uk)), uk − zk〉/tk

= 〈ξk, d〉 − α 〈∇xh(zk + ηk d, yα(uk)), d〉,

(3)

where ξk ∈ ∂x(−f)(zk + θk d, yα(uk)) and θk, ηk ∈ (0, tk). Assumption (A1)

and the continuity of yα guarantee the existence of one index k̄ and a constant

L > 0 such that the function (−f)(·, yα(uk)) is locally Lipschitz continuous at

zk + θk d with constant L for any k ≥ k̄. Therefore, ‖ξk‖ ≤ L holds for any

k ≥ k̄ (see [29, Proposition 2.1.2]). Without loss of generality, we can suppose

ξk → ξ, hence assumption (A2) implies ξ ∈ ∂x(−f)(x, yα(x)). Taking the limit
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in (3), the chain of inequalities and equalities

ϕ◦α(x; d) ≤ 〈ξ, d〉+ α 〈∇xh(x, yα(x)),−d〉

≤ (−f)◦x((x, yα(x)); d) + α 〈∇xh(x, yα(x)),−d〉

= f◦x((x, yα(x));−d) + α 〈∇xh(x, yα(x)),−d〉.

follows. ut

Assumption (A2) is satisfied when f is continuously differentiable or con-

cave with respect to the first argument and in the particular case of a varia-

tional inequality with a locally Lipschitz operator.

Proposition 2.1 Assumption (A2) is satisfied if any of the following condi-

tions holds:

a) f is continuously differentiable on C × C;

b) f(x, y) = 〈F (x), y − x〉, with F locally Lipschitz continuous on C;

c) f(·, y) is concave on an open convex set D with C ⊆ D for any y ∈ C.

Proof a) By definition, the continuity of ∇xf coincides with assumption (A2).

b) Let y ∈ C be given. Lemma 3.1 in [20] guarantees

∂x(−f)(x, y) = ∂F (x)T (x− y) + F (x), (4)

where ∂F (x) is the generalized Jacobian of F at x (see [29, Definition 2.6.1]).

Suppose (xk, yk) → (x, y), ξk → ξ and ξk ∈ ∂x(−f)(xk, yk). Hence, (4) im-

plies ξk = ATk (xk − yk) + F (xk) for some Ak ∈ ∂F (xk). Since ∂F is upper

semicontinuous at x [29, Proposition 2.6.2c], there exists M > 0 such that
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‖Ak‖ ≤ M for any k ∈ N. Thus, we can suppose Ak → A without any loss

of generality. Since the graph of ∂F is closed [29, Proposition 2.6.2b], then

A ∈ ∂F (x). Therefore ξk → ξ = AT (x − y) + F (x) ∈ ∂x(−f)(x, y), showing

that assumption (A2) holds.

c) It follows immediately from Theorems 23.4 and 24.5 in [30]. ut

3 Stationarity and Descent

Though (EP) can be equivalently formulated as the optimization problem

min {ϕα(x) : x ∈ C} , (5)

there are still some difficulties to overcome in order to exploit descent meth-

ods. In fact, (5) is a nonconvex problem since the gap function ϕα is generally

nonconvex: descent algorithms provide just local minima while the required

solutions are actually the global minima of (5). A standard way to overcome

this issue relies on monotonicity conditions that guarantee all the stationary

points of (5) to be global minima (see, for instance, [6,7,11]). When the bi-

function f is continuously differentiable, these conditions can be addressed

through the gradient of f . Precisely, if f is strictly ∇-monotone on C, i.e.,

〈∇xf(x, y) +∇yf(x, y), x− y〉 < 0 ∀ x, y ∈ C, x 6= y,

the stationary points of (5) coincide with its global minima [6, Theorem 2.1]

though the convexity of ϕα may be still missing. When f is just locally Lips-

chitz, this kind of monotonicity condition can be addressed through its gener-

alized directional derivatives in the following way.
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Definition 3.1 f is called strictly generalized ∇-monotone on C if

f◦x((x, y);x− y) + f ′y((x, y);x− y) < 0, ∀ x, y ∈ C, x 6= y. (6)

Proposition 3.1 f is strictly generalized ∇-monotone on C if any of the

following conditions holds:

a) f is continuously differentiable on C × C and strictly ∇-monotone on C;

b) f(x, y) = 〈F (x), y − x〉, with F locally Lipschitz continuous on C and any

matrix A ∈ Rn×n in the generalized Jacobian ∂F (x) is positive definite for

any x ∈ C;

c) f(·, y) is strictly concave on an open set D with C ⊆ D for any y ∈ C;

d) f(·, y) is concave and f(x, ·) strictly convex on an open convex set D with

C ⊆ D for any x, y ∈ C.

Proof a) By definition, strict and strict generalized ∇-monotonicity coincide.

b) Since f ′y((x, y);x− y) = 〈F (x), x− y〉 and

f◦x((x, y);x− y) = max
A∈∂F (x)

〈AT (y − x)− F (x), x− y〉, (7)

strictly generalized ∇-monotonicity follows from the positive definiteness of A.

c) The strict concavity of f(·, y) implies

f◦x((x, y);x− y) = (−f)◦x((x, y); y − x)

= (−f)′x((x, y); y − x)

= −f ′x((x, y); y − x)

< f(x, y),

(8)

while the convexity of f(x, ·) guarantees

f ′y((x, y);x− y) ≤ −f(x, y). (9)
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Hence, (6) follows just summing the inequalities in (8) and (9).

d) The same as c) just switching the strict inequality from (8) to (9). ut

Under condition (6) the equivalence between stationarity and global opti-

mality is preserved also in the nonsmooth case.

Theorem 3.1 Suppose (A1) and (A2) hold. If f is strictly generalized ∇-

monotone on C, then the following statements hold:

a) If x ∈ C does not solve (EP), then ϕ◦α(x; yα(x)− x) < 0;

b) If x∗ is a stationary point of ϕα on C, i.e.,

ϕ◦α(x∗; y − x∗) ≥ 0, ∀ y ∈ C,

then x∗ solves (EP).

Proof a) The assumption guarantees yα(x) 6= x. Then, yα(x)− x satisfies

ϕ◦α(x; yα(x)− x) ≤ f◦x((x, yα(x));x− yα(x))

+α 〈∇xh(x, yα(x)), x− yα(x)〉

< −f ′y((x, yα(x));x− yα(x))

+α 〈∇xh(x, yα(x)), x− yα(x)〉

≤ −f ′y((x, yα(x));x− yα(x))

−α 〈∇yh(x, yα(x)), x− yα(x)〉

≤ 0,

(10)

where the first inequality is guaranteed by Theorem 2.2, the second by as-

sumption (6), the third by the assumptions on h and the last by the first order

optimality condition for yα(x).
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b) Suppose x∗ does not solve (EP). Hence, a) implies ϕ◦α(x∗; yα(x∗)− x∗) < 0

in contradiction with the stationarity of x∗. ut

The above theorem provides a descent direction at non stationary points

as well: a basic descent procedure can be therefore easily devised (see Algo-

rithm 1 in the next section). When f takes the shape of a mixed variational

inequality, the descent property given in Theorem 3.1 a) was already shown

in [22, Corollary 4.1].

Weakening strict generalized ∇-monotonicity by replacing the strict in-

equality in (6) with an inequality, Theorem 3.1 is no longer true even if f is

continuously differentiable (see the counterexample in [14]). Indeed, no strict

inequality would appear in the chain of inequalities (10).

When f is continuously differentiable, a descent approach not relying on

strict ∇-monotonicity has been proposed in [13]: the key assumption on f is

the so-called c-monotonicity, i.e.,

f(x, y) ≥ 〈∇xf(x, y), x− y〉 ∀ x, y ∈ C.

When f is just locally Lipschitz, this kind of monotonicity condition can be

addressed through its generalized directional derivatives in the following way.

Definition 3.2 f is called generalized c-monotone on C if

f(x, y) ≥ f◦x((x, y);x− y), ∀ x, y ∈ C. (11)

Proposition 3.2 f is generalized c-monotone on C if any of the following

conditions holds:
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a) f is continuously differentiable on C × C and c-monotone on C.

b) f(x, y) = 〈F (x), y − x〉, with F locally Lipschitz continuous on C, and any

matrix A ∈ Rn×n in the generalized Jacobian ∂F (x) is positive semidefinite

for any x ∈ C.

c) f(·, y) is concave on an open convex set D with C ⊆ D for any y ∈ C.

Proof a) By definition, c-monotonicity and generalized c-monotonicity coin-

cide for continuously differentiable bifunctions.

b) The positive semidefiniteness of A and (7) imply

f◦x((x, y);x− y) = f(x, y) + max
A∈∂F (x)

〈AT (y − x), x− y〉 ≤ f(x, y).

c) The same argument of Proposition 3.1 c) (see (8)) with an inequality rather

than a strict inequality. ut

Notice that generalized c-monotonicity is neither stronger nor weaker than

strict generalized ∇-monotonicity (see the counterexamples in [31] for the con-

tinuously differentiable case).

Under generalized c-monotonicity the equivalence between stationarity and

global optimality is generally lost. Anyhow, descent techniques can be ex-

ploited all the same relying on the following inequalities and adjusting the

parameter α accordingly.

Theorem 3.2 Suppose (A1) and (A2) hold. If f is generalized c-monotone

on C, then the following statements hold:
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a) The inequality

ϕ◦α(x; yα(x)− x) ≤ −ϕα(x)− α [h(x, yα(x))+

+ 〈∇xh(x, yα(x)), yα(x)− x〉]
(12)

holds for any x ∈ C;

b) Let η ∈]0, 1[. If C is bounded and x ∈ C does not solve (EP), then there

exists ᾱ > 0 such that

−ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ≤ −η ϕα(x) (13)

holds for any α ∈]0, ᾱ[.

Proof a) The thesis follows from the chain of inequalities and equalities

ϕ◦α(x; yα(x)− x) ≤ f◦x((x, yα(x));x− yα(x)) + α 〈∇xh(x, yα(x)), x− yα(x)〉

≤ f(x, yα(x)) + α 〈∇xh(x, yα(x)), x− yα(x)〉

= −ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ,

where the first inequality is guaranteed by Theorem 2.2, the second by as-

sumption (11), and the equality by the definition of ϕα itself.

b) By contradiction, suppose there exists a sequence αk ↓ 0 such that

−ϕαk
(x)− αk [h(x, yαk

(x)) + 〈∇xh(x, yαk
(x)), yαk

(x)− x〉] > −η ϕαk
(x).

Then any large enough k satisfies αk < 1 and

0 < ϕ1(x)

≤ ϕαk
(x)

< −αk [h(x, yαk
(x)) + 〈∇xh(x, yαk

(x)), yαk
(x)− x〉] /(1− η)

that is not possible because αk goes to 0 and C is bounded. ut
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As a consequence of (12) and (13), yα(x)− x is a descent direction for ϕα

at x whenever x does not solve (EP), and therefore ϕα(x) > 0, provided that

the parameter α is small enough. Therefore, a procedure based on descent

directions can be devised updating α whenever necessary (see Algorithm 2 in

the next section).

Remark 3.1 As already mentioned, the monotonicity conditions (6) and (11)

are not related even when f is continuously differentiable. In our locally Lips-

chitz framework, (6) coincides with condition (2) of [25] and (11) with condi-

tion (8) of [25] if f(·, y) is concave on an open convex set D with C ⊆ D for

any y ∈ C.

Remark 3.2 When f takes the shape of a mixed variational inequality, inequal-

ity (12) extends the upper estimate of the directional derivative given by (4.7)

in [22] under the strong monotonicity of the operator F, which implies that any

matrix in the generalized Jacobian ∂F (x) is positive definite for any x ∈ C.

Indeed, (12) requires generalized c-monotonicity that amounts to the positive

semidefiniteness of Jacobian matrices (see Proposition 3.2 b)) which in turn is

equivalent to the monotonicity of F (see, for instance [22, Lemma 2.4]).

4 Algorithms

Both assumption (A1) and (A2) are fundamental in our nonsmooth setting.

Therefore, throughout all the section we suppose that they both hold. Notice
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that they provide properties that are always met by a continuously differen-

tiable bifunction f (see Propositions 3.1 and 3.2), so that there is no need to

underline them in smooth settings.

As briefly anticipated, Theorems 3.1 and 3.2 provide the tools to devise

descent type methods under different assumptions, i.e., strict generalized ∇-

monotonicity and generalized c-monotonicity.

Given any α > 0, strict generalized∇-monotonicity guarantees that yα(x)−

x is a descent direction unless x solves (EP), that is yα(x) = x. Therefore, a

line search along yα(x)− x can be performed to choose the next iterate until

a solution of (EP) is found. This basic idea is detailed in Algorithm 1.

Algorithm 1

0. Choose α > 0, β, γ ∈]0, 1[, x0 ∈ C and set k = 0.

1. Compute yk = arg min{f(xk, y) + αh(xk, y) : y ∈ C}.

2. If dk := yk − xk = 0, then STOP.

3. Compute the smallest non-negative integer s such that

ϕα(xk + γs dk)− ϕα(xk) ≤ −β γ2s ϕα(xk),

set tk = γs, xk+1 = xk + tk d
k, k = k + 1 and goto Step 1.

Theorem 4.1 Suppose C is bounded and f is strictly generalized ∇-monotone

on C. Then, either Algorithm 1 stops at a solution of (EP) after a finite

number of iterations, or it produces a bounded sequence {xk} such that any of

its cluster points solves (EP).
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Proof The line search procedure at Step 3 is always finite. By contradiction,

suppose there exists an iteration k such that

ϕα(xk + γs dk)− ϕα(xk) > −β γ2s ϕα(xk)

holds for all s ∈ N. Then, taking the maximum limit as s→ +∞ yields

ϕ◦α(xk; dk) ≥ lim sup
s→∞

[
ϕα(xk + γs dk)− ϕα(xk)

]
/γs ≥ 0

that contradicts Theorem 3.1 since it guarantees ϕ◦α(xk; dk) < 0.

If the algorithm stops at xk after a finite number of iterations, then the

stopping criterion guarantees that xk solves (EP ).

Now, suppose the algorithm generates an infinite sequence {xk}: the se-

quence is bounded since xk is a convex combination of xk−1 and yα(xk), which

both belong to C. Consider any cluster point x∗ of the sequence. Taking the

appropriate subsequence {x`}, x` → x∗ holds. Moreover, the continuity of

the map yα and the function ϕα guarantees d` → d∗ = yα(x∗) − x∗ and

ϕα(x`)→ ϕα(x∗). Proving that x∗ solves (EP ) is equivalent to proving d∗ = 0

or ϕα(x∗) = 0. By contradiction, suppose d∗ 6= 0 and ϕα(x∗) > 0. Since the

sequence {ϕα(xk)} is monotone, decreasing and bounded below, it has a limit

and hence

lim
`→∞

[
ϕα(x`)− ϕα(x`+1)

]
= 0

holds as well. Moreover, the step size rule guarantees

ϕα(x`)− ϕα(x`+1) ≥ β t2` ϕα(x`) > 0.

Therefore, t` → 0 as `→ +∞ since ϕα(x∗) > 0. Moreover, the inequality

ϕα
(
x` + t` γ

−1 d`
)
− ϕα(x`) > −β (t` γ

−1)2 ϕα(x`) (14)
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holds for all ` ∈ N. Since ϕα is locally Lipschitz continuous by Theorem 2.1,

the mean value theorem guarantees

ϕα
(
x` + t` γ

−1 d`
)
− ϕα(x`) = 〈ξ`, t` γ−1 d`〉, (15)

where ξ` is a generalized gradient of ϕα at x` + θ` t` γ
−1 d`, holds for some

θ` ∈ (0, 1). Hence, (14) and (15) imply

〈ξ`, d`〉 > −β t` γ−1 ϕα(x`).

On the other hand, by definition ξ` satisfies

ϕ◦α
(
x` + θ` t` γ

−1 d`; d`
)
≥ 〈ξ`, d`〉,

and thus

ϕ◦α
(
x` + θ` t` γ

−1 d`; d`
)
> −β t` γ−1 ϕα(x`)

holds. Since x` → x∗, d` → d∗, and t` → 0, we get x` + θ` t` γ
−1 d` → x∗.

Since ϕ◦α is upper semicontinuous as function of (x; d) [29, Proposition 2.1.1],

taking the limit as `→ +∞ yields

ϕ◦α(x∗; d∗) ≥ lim sup
`→∞

ϕ◦α
(
x` + θ` t` γ

−1 d`; d`
)
≥ 0. (16)

On the other hand, Theorem 3.1 ensures ϕ◦α(x∗; d∗) < 0 in contradiction

with (16). Therefore, x∗ solves (EP ). ut

When f is generalized c-monotone, the choice of a unique parameter α may

not be enough. In fact, yα(x)−x is not necessarily a descent direction unless α

is sufficiently small and the magnitude of smallness depends upon x. Therefore,
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the basic idea of Algorithm 1 has to be enhanced: the direction yα(x) − x is

exploited to perform the line search as long as the sufficient decrease condition

(13) is satisfied, otherwise α is reduced according to some given scheme. This

idea is detailed in Algorithm 2.

Algorithm 2

0. Choose γ, η ∈]0, 1[, β ∈]0, η[, a sequence {αk} ↓ 0, x0 ∈ C and set k = 1.

1. Set z0 = xk−1 and j = 0.

2. Compute yj = arg min{f(zj , y) + αk h(zj , y) : y ∈ C}.

3. If dj := yj − zj = 0, then STOP.

4. If −ϕαk
(zj)− αk

[
h(zj , yj)− 〈∇xh(zj , yj), zj − yj〉

]
< −η ϕαk

(zj),

then compute the smallest non-negative integer s such that

ϕαk
(zj + γs dj)− ϕαk

(zj) ≤ −β γs ϕαk
(zj),

set tj = γs, zj+1 = zj + tj d
j , j = j + 1 and goto Step 2.

else set xk = zj , k = k + 1 and goto Step 1.

Theorem 4.2 Suppose C is bounded and f is generalized c-monotone on C.

Then, either Algorithm 2 stops at a solution of (EP) after a finite number

of iterations, or it produces either an infinite sequence {xk} or an infinite

sequence {zj} such that any of its cluster points solves (EP).

Proof The line search procedure at Step 4 is always finite. By contradiction,

suppose there exist k and j such that

ϕαk
(zj + γs dj)− ϕαk

(zj) > −β γs ϕαk
(zj)
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holds for all s ∈ N. Therefore, taking the maximum limit as s→ +∞ yields

ϕ◦αk
(zj ; dj) ≥ lim sup

s→∞
γ−s(ϕαk

(zj + γs dj)− ϕαk
(zj)) ≥ −β ϕαk

(zj),

that is not possibile since Theorem 3.2 and η > β guarantee the inequalities

ϕ◦αk
(zj ; dj) ≤ −η ϕαk

(zj) < −β ϕαk
(zj).

If the algorithm stops at zj after a finite number of iterations, then the

stopping criterion guarantees that zj solves (EP).

Now, suppose that the algorithm generates an infinite sequence {xk}. Let

x∗ be a cluster point of {xk}: taking the appropriate subsequence {x`}, then

x` → x∗ holds. Since α` ↓ 0, we can suppose α` ≤ 1 for any ` without any loss

of generality. Since the rule at Step 4 fails at zj = x`, the inequalities

0 < ϕ1(x`) ≤ ϕα`
(x`) < −α`

[
h(x`, y`) + 〈∇xh(x`, y`), y` − x`〉

]
/(1− η)

hold. Since x` and y` belong to the bounded set C, the continuity of h and ∇xh

guarantee that the sequence {h(x`, y`) + 〈∇xh(x`, y`), y` − x`〉} is bounded

from above. Thus, taking the limit as ` → +∞, the continuity of ϕ1 implies

that ϕ1(x∗) = 0, and therefore x∗ solves (EP).

Now, suppose the algorithm generates an infinite sequence {zj} for some

fixed k. Therefore, we can set α = αk as this value does not change anymore,

and let z∗ be a cluster point of {zj}: taking the appropriate subsequence {z`},

then z` → z∗ holds. The continuity of yα implies d` → d∗ = yα(z∗)− z∗.

By contradiction, suppose that z∗ does not solve (EP), or equivalently

ϕα(z∗) > 0. The step size rule implies

ϕα(z`)− ϕα(z`+1) ≥ β t` ϕα(z`) > 0.
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Taking the limit as ` → +∞ yields t` → 0 since ϕα(z∗) > 0. Moreover, the

inequality

ϕα
(
z` + t` γ

−1 d`
)
− ϕα(z`) > −β t` γ−1 ϕα(z`)

holds for all ` ∈ N large enough. Since ϕα is locally Lipschitz continuous, the

mean value theorem guarantees that there exists θ` ∈ (0, 1) such that

ϕα
(
z` + t` γ

−1 d`
)
− ϕα(z`) ≤ (t` γ

−1)ϕ◦α
(
z` + θ` t` γ

−1 d`; d`
)
.

Since ϕ◦α is upper semicontinuous as function of (z; d), the chain of inequalities

ϕ◦α(z∗; d∗) ≥ lim sup
`→+∞

ϕ◦α
(
z` + θ` t` γ

−1 d`; d`
)
≥ −β ϕα(z∗) (17)

follows. On the other hand, the condition at Step 4 is satisfied for all `, hence

−ϕα(z`)− α
[
h(z`, y`) + 〈∇xh(z`, y`), y` − z`〉

]
≤ −η ϕα(z`).

Thus, taking the limit as ` → +∞, the upper estimate of Theorem 3.2 and

ϕα(z∗) > 0 give

ϕ◦α(z∗; d∗) ≤ −ϕα(z∗)− α [h(z∗, yα(z∗)) + 〈∇xh(z∗, yα(z∗)), d∗〉]

≤ −η ϕα(z∗)

< −β ϕα(z∗),

which contradicts (17). Therefore, z∗ solves (EP). ut

Notice that the two algorithms employ slightly different procedures for the

line search. Indeed, Theorem 3.2 provides an estimate of the generalized direc-

tional derivative of ϕα that can be exploited to further control the decrease,

while Theorem 3.1 guarantees just that yα(x)− x is a descent direction.
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5 Numerical Tests

To the best of our knowledge, benchmarks of test problems for (EP) are not

yet available for the nonsmooth case. Therefore, we decided to test the two

algorithms on a set of mathematical examples with box constraints and bi-

functions given by the sum of multiplicatively separable nonsmooth terms with

quadratic and bilinear ones. Precisely, we considered (EP ) with the constraint

C = [0, b1]× · · · × [0, bn] and the bifunction

f(x, y) = 〈P x+Qy + r, y − x〉+ g1(x) g2(y)− g1(y) g2(x),

where P,Q ∈ Rn×n are positive definite matrices, r ∈ Rn and

g1(x) = min{〈c1, x〉, 〈d1, x〉}, g2(x) = max{〈c2, x〉, 〈d2, x〉}

for some c1, c2, d1, d2 ∈ Rn+. Notice that the key assumptions (6) and (11) of

both algorithms are satisfied since f(·, y) is strongly concave for any y ∈ C

(indeed, the functions g1 and g2 are both non-negative on C, g1 is concave

while g2 is convex, and the term −〈Px, x〉 is strongly concave).

Instances have been produced relying on uniformly distributed pseudoran-

dom numbers for the data of the bifunction f and the size of the box constraint

C. Moreover, the formulas P = aAAT +b I and Q = a′BBT +b′ I with pseu-

dorandom entries for the matrices A and B allow producing also uniformly

distributed pseudorandom minimum and maximum eigenvalues of P and Q

by exploiting the coefficients a, a′, b, b′. The choice of the ranges for the data

and the eigenvalues are summarized in Table 1.
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Table 1 Ranges for uniform distributions.

data range

Aij , Bij [0,50]

bi [10,15]

c1, d1 [0,1]

c2, d2 [0.5,2]

r [-5,5]

eigenvalue range

λmin(P ) ]0,10]

λmax(P ) [λmin(P ), 5 + λmin(P )]

λmin(Q) [0.5,1]

λmax(Q) [λmin(Q), 1 + λmin(Q)]

The algorithms have been implemented in MATLAB 7.10.0, choosing the

auxiliary bifunction h(x, y) = ‖y − x‖22/2. Since the evaluation of the gap

function ϕα and the computation of yα(x) amount to solving a nonsmooth

optimization problem, derivative-free methods are an appropriate tool. Specif-

ically, direct search methods have been used relying on the built-in func-

tion patternsearch from the Optimization Toolbox together with its pattern

GSSPositiveBasis2N. Finally, the value 10−3 was used as the threshold for

the stopping criterion at step 2 of both algorithms: more precisely, the algo-

rithms stopped whenever ‖dk‖∞ in Algorithm 1 or ‖dj‖∞ in Algorithm 2 was

less or equal to 10−3.

Computational tests have been carried out with n = 10 to analyse the sen-

sitivity of the two algorithms with respect to their parameters and to compare

their behaviour.

First, we ran Algorithm 1 for different choices of the parameters α, β and

γ on a set of 100 random instances with random starting points. Results are

given in Tables 2 and 3: each row reports the average and the minimum and

maximum number of iterations, evaluations of the gap function (i.e., opti-
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mization problem solved) and evaluations of the bifunction that have been

performed. The results suggest that a value of α close to 1 and a large value

of β are good choices. The choices γ = 0.5 and γ = 0.7 produce comparable

performances while γ = 0.9 seems too large.

Table 2 Algorithm 1 with α = 1: sensitivity with respect to β and γ.

iterations opt. problems function evaluations

β γ min avg max min avg max min avg max

0.1 0.5 3 18.07 78 3 18.37 78 2714 25008.43 103568

0.1 0.7 3 18.09 78 3 19.01 78 2714 25992.64 103568

0.1 0.9 3 21.07 78 3 24.40 96 2714 33309.90 143393

0.3 0.5 3 14.12 42 3 14.69 42 2714 20238.07 58614

0.3 0.7 3 13.95 42 3 15.41 42 2714 21239.42 58614

0.3 0.9 3 17.41 43 3 22.29 89 2714 30548.21 132419

0.5 0.5 3 11.13 25 3 12.08 25 2714 16967.44 33605

0.5 0.7 3 11.08 25 3 13.16 25 2714 18318.07 38236

0.5 0.9 3 14.25 27 3 20.78 68 2714 28534.42 103033

0.7 0.5 3 9.06 15 3 10.96 16 2714 15512.88 23588

0.7 0.7 3 9.06 15 3 11.85 24 2714 16533.97 38236

0.7 0.9 3 12.30 24 3 20.87 68 2714 28597.91 103033

0.9 0.5 3 8.08 10 3 12.64 19 2714 17797.70 27899

0.9 0.7 3 6.99 13 3 10.46 24 2714 14591.36 38236

0.9 0.9 3 10.35 19 3 21.38 57 2714 29015.21 87819

Afterwards, similar tests have been performed on Algorithm 2 for different

choices of the parameters β, η and γ relying of the sequence αk = 1/2k. Tables
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Table 3 Algorithm 1 with β = 0.9 and γ = 0.7: sensitivity with respect to α.

iterations opt. problems function evaluations

α min avg max min avg max min avg max

0.01 2 9.45 26 2 17.48 59 1785 24668.08 87660

0.1 2 9.20 27 2 16.74 52 1758 23556.82 73221

1 3 7.81 26 3 12.60 50 2575 17724.08 78488

10 3 12.13 37 3 21.13 97 3398 26980.33 122493

4 and 5 report the results of the tests and they suggest that close and large

values for β and η and γ = 0.5 or γ = 0.6 are good choices.

Table 4 Algorithm 2 with γ = 0.6: sensitivity with respect to β and η.

iterations opt. problems function evaluations

β η min avg max min avg max min avg max

0.1 0.3 2 14.94 57 2 15.61 57 1927 21761.03 76493

0.1 0.5 2 14.94 57 2 15.61 57 1927 21761.03 76493

0.1 0.7 2 14.94 57 2 15.61 57 1927 21761.03 76493

0.1 0.9 3 19.58 100 3 20.86 100 2598 29323.04 146863

0.3 0.5 2 13.35 45 2 14.14 45 1927 19809.19 62235

0.3 0.7 2 13.35 45 2 14.14 45 1927 19809.19 62235

0.3 0.9 3 14.70 40 3 16.20 40 2598 23073.93 60288

0.5 0.7 2 10.94 26 2 12.06 26 1927 17128.34 36013

0.5 0.9 3 11.87 24 3 13.81 36 2598 20010.51 53968

0.7 0.9 3 9.83 20 3 12.76 36 2598 18590.27 53968

Finally, Table 6 reports the results of a comparison between Algorithms 1

and 2. According to the previous tests, we set α = 1, β = 0.9 and γ = 0.7 for
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Table 5 Algorithm 2 with β = 0.5 and η = 0.7: sensitivity with respect to γ.

iterations opt. problems function evaluations

γ min avg max min avg max min avg max

0.5 2 9.31 23 2 10.49 23 1860 14290.57 30437

0.6 2 8.91 23 2 10.53 23 1860 14233.29 30437

0.7 2 10.06 23 2 12.90 38 1860 17431.60 51727

0.8 2 11.40 33 2 16.09 64 1860 21791.92 83276

0.9 2 13.29 28 2 23.37 96 1860 31672.35 136625

Algorithm 1 and αk = 1/2k, β = 0.5, η = 0.7 and γ = 0.6 for Algorithm 2. We

chose to focus the comparison on the minimum eigenvalue λmin(P ) of P since

it plays a relevant role in the convergence of the algorithms: indeed, Algorithm

2 converges if λmin(P ) ≥ 0, while Algorithm 1 if λmin(P ) > 0. We ran each

algorithm on a set of 100 random instances for given ranges to draw λmin(P )

from. Each row corresponds to the choice of a range and it reports the average

number of iterations, optimization problems and evaluations of the bifunctions

required by a single instance. As expected, the results show that Algorithm 2

performs better and better than Algorithm 1 as λmin(P ) gets closer and closer

to 0, while their performances become at least comparable as it grows.

6 Conclusions

The paper studies gap functions and descent type methods for nonsmooth

equilibrium problems. The gap function inherits local Lipschitz continuity from

the equilibrium bifunction f ; stationarity and descent properties are achieved
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Table 6 Comparison between Algorithm 1 and Algorithm 2.

iterations opt. problems function evaluations

λmin(P ) Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

]0, 0.1] 18.40 12.98 39.20 15.97 47219.51 17034.09

[0.1, 0.5] 15.80 12.06 30.89 14.17 40503.23 15534.95

[0.5, 1] 12.85 12.24 23.36 16.09 34692.60 17769.72

[1, 5] 11.26 14.80 20.59 25.00 25375.46 25947.82

under new generalized monotonicity conditions on f , which involve general-

ized derivatives. This analysis leads to devise two globally convergent solution

methods. Further work can be carried out trying to improve the results in a

few directions.

The evaluation of the gap function is the most demanding task of the algo-

rithms, since it amounts to solving a nonsmooth convex optimization problem.

The numerical tests of Section 5 have been performed exploiting derivative-

free direct search methods. Different nonsmooth optimization algorithms, such

as bundle and dual methods, could be exploited as well, while ad hoc methods

might be developed relying on the particular properties of the convex program

at hand. Moreover, the algorithms rely on the exact evaluation of the gap func-

tion: inexact evaluations together with non-monotone line searches could be

considered to make each iteration computationally less expensive (see [15]).

Linear approximations of nonlinear constraints could be exploited to intro-

duce new classes of gap functions, which require to minimize a convex function

just over a polyhedron. A combination of descent and penalization techniques

could lead to alternative solution algorithms (see [14,16]).
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The difference of a pair of gap functions, that is the so-called D-gap func-

tions, could be analysed hopefully leading to solution methods based on uncon-

strained optimization techniques. Indeed, some interesting results have been

developed in the smooth case (see, for instance, [4, Section 3.1.3]). Anyhow,

the difference of functions is likely to bring in some additional difficulties in

the development of nonsmooth stationarity and descent properties based on

generalized monotonicity.

Finally, it would be very interesting to apply the approach of this paper

to quasi-equilibria, that is equilibrium problems in which the feasible region

changes together with the considered point. Indeed, they are much more chal-

lenging problems that have not received much attention up to now (see [32]).
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