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Abstract

The purpose of this paper is to study the dynamical behavior of
the sequence produced by a forward-backward algorithm, involving two
randommaximal monotone operators and a sequence of decreasing step
sizes. Defining a mean monotone operator as an Aumann integral,
and assuming that the sum of the two mean operators is maximal
(sufficient maximality conditions are provided), it is shown that with
probability one, the interpolated process obtained from the iterates is
an asymptotic pseudo trajectory in the sense of Benäım and Hirsch of
the differential inclusion involving the sum of the mean operators. The
convergence of the empirical means of the iterates towards a zero of the
sum of the mean operators is shown, as well as the convergence of the
sequence itself to such a zero under a demipositivity assumption. These
results find applications in a wide range of optimization problems or
variational inequalities in random environments.

Keywords : Dynamical systems, Random maximal monotone operators,
Stochastic forward-backward algorithm, Stochastic proximal point algorithm.

AMS subject classification : 47H05, 47N10, 62L20, 34A60.

1 Introduction

In the fields of convex analysis and monotone operator theory, the forward-
backward splitting algorithm [1, 2] is one of the most often studied tech-
niques for iteratively finding a zero of a sum of two maximal monotone
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operators. This problem finds applications in convex minimization prob-
lems. Indeed, when each of the two maximal monotone operators coincides
with the subdifferential of a proper and lower semicontinuous convex func-
tion, the forward-backward algorithm converges to a minimizer of the sum
of the two functions, provided some conditions are met. Other applications
include saddle point problems and variational inequalities. Each iteration
of the algorithm involves a forward step, where one of the operators is used
explicitly, followed a backward step that consists in applying the resolvent

of the second operator to the output of the forward step.
The purpose of this paper is to study a version of the forward-backward

algorithm, where at each iteration, each of the two operators is replaced
with an operator that has been randomly chosen amongst a collection of
maximal monotone operators. The sequence of random monotone operators
is assumed to be independent and identically distributed (in a sense that
will be made clear below), and the step size of the algorithm is supposed
to approach zero as the number of iterations goes to infinity, in order to
alleviate the noise effect due to the randomness.

The aim is to study the dynamical behavior of the stochastic sequence
generated by the above algorithm. Our main result states that the piece-
wise linear interpolation of the output sequence is an asymptotic pseudo-

trajectory (APT) [3, 4] of a certain semiflow, which we shall characterize
below. Loosely speaking, it means that the iterates of our stochastic forward-
backward algorithm asymptotically “shadow” the trajectory of a continuous
time dynamical system, hence inheriting its convergence properties. In our
case, the latter dynamical system is taken as a differential inclusion involv-
ing the sum of the Aumann expectations of the randomly chosen maximal
monotone operators [5, 6], as also introduced in the recent paper [7].

The convergence of the algorithm towards an element of the set of zeros
of the sum of the Aumann expectations is of obvious interest. In this regard,
the above APT property yields two important corollaries. Using a result of
[8], we show that the sequence of empirical means of the iterates converges
almost surely (a.s.) to a (random) element of the set of zeros. Moreover,
when the sum of the Aumann expectations is assumed demipositive [9], we
prove that the sequence of iterates converges a.s. to a zero. Verifiable
conditions for demipositivity can be easily devised.

This paper is organized as follows. Section 2 provides the theoretical
background. Section 3 introduces the main algorithm and states the main
results. Section 4 reviews some applications to convex minimization prob-
lems. Related works are discussed in Section 5. Proofs are provided in
Section 6. Perspectives and conclusions are addressed in Sections 7 and 8
respectively.
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2 Preliminaries

2.1 Monotone Operators

A set-valued operator A : RN
⇒ R

N , where N is some positive integer, is
said to be monotone if ∀(x, y) ∈ gr(A), ∀(x′, y′) ∈ gr(A), 〈y− y′, x−x′〉 ≥ 0,
where gr(A) stands for the graph of A. A non-empty monotone operator
is said to be maximal if its graph is a maximal element in the inclusion
ordering. A typical maximal monotone operator is the subdifferential of a
function belonging to Γ0, the family of proper and lower semicontinuous
convex functions on R

N . We use M to represent the set of maximal mono-
tone operators on R

N , and let dom(A) := {x ∈ R
N : A(x) 6= ∅} be the

domain of the operator A.
Given that A,B ∈ M, where B is assumed to be single-valued and where

dom(B) = R
N , the forward-backward algorithm reads

xn+1 = (I + γA)−1(xn − γB(xn)), (1)

where I is the identity operator, γ is a real positive step, and (·)−1 is the
inverse operator defined by the fact that (x, y) ∈ gr(A−1) ⇔ (y, x) ∈ gr(A)
for an operator A. The operator (I + γA)−1, called the resolvent, is single
valued with the domain R

N since A ∈ M [10, 11]. In the special case where
A is equal to the subdifferential ∂f of a function f ∈ Γ0, the resolvent is also
refered to as the proximity operator, and we note proxf (x) = (I+∂f)−1(x).

We denote the set of zeros of A as Z(A) := {x ∈ R
N : 0 ∈ A(x)}.

Assuming that B is so-called cocoercive, and that γ satisfies a certain con-
dition, the forward-backward algorithm is known to converge to an element
of Z(A+ B), provided the latter set is not empty [11].

2.2 Set-Valued Functions and Set-Valued Integrals

Let (Ξ,T , µ) be a probability space, where T is µ-complete. Consider the
space R

N equipped with its Borel field B(RN), and let F : Ξ ⇒ R
N be

a set-valued function such that F (ξ) is a closed set for any ξ ∈ Ξ. The
set-valued function F is said to be measurable if {ξ : F (ξ) ∩H 6= ∅} ∈ T

for any set H ∈ B(RN ). This is known to be equivalent to asserting that
the domain dom(F ) := {ξ ∈ Ξ : F (ξ) 6= ∅} of F belongs to T , and that
there exists a sequence of measurable functions ϕn : dom(F ) → R

N such
that F (ξ) = cl({ϕn(ξ)}) for all ξ ∈ dom(F ) [12, Chap. 3] [13]. Assume
now that F is measurable and that µ(dom(F )) = 1. For 1 ≤ p < ∞, let
Lp(Ξ,T , µ;RN ) be the Banach space of measurable functions ϕ : Ξ → R

N

with
∫

‖ϕ‖pdµ <∞, and let

Sp
F := {ϕ ∈ Lp(Ξ,T , µ;RN ) : ϕ(ξ) ∈ F (ξ) µ− a.e.} . (2)
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If S1
F 6= ∅, then the function F is said to be integrable. The Aumann integral

[5, 6] of F is the set
∫

Fdµ :=

{
∫

Ξ
ϕdµ : ϕ ∈ S1

F

}

.

2.3 Random Maximal Monotone Operators

Consider the function A : Ξ → M. Note that the graph gr(A(ξ, ·)) of any
element A(ξ, ·) is a closed subset of RN × R

N by the maximality of A(ξ, ·)
[10, Prop. 2.5]. Assume that the function ξ 7→ gr(A(ξ, ·)) is measurable as a
closed set-valued Ξ ⇒ R

N ×R
N function. It is shown in [14, Ch. 2] that this

is equivalent to saying that the function ξ 7→ (I+γA(ξ, ·))−1x is measurable
from Ξ to R

N for any γ > 0 and any x ∈ R
N . If the domain of A(ξ, ·) is

represented by D(ξ), the measurability of ξ 7→ gr(A(ξ, ·)) implies that the
set-valued function ξ 7→ cl(D(ξ)) is measurable. Moreover, recalling that
A(ξ, x) is the image of a given x ∈ R

N under the operator A(ξ, ·), the set-
valued function ξ 7→ A(ξ, x) is measurable [14, Ch. 2]. Given x ∈ D(ξ),
the element of least norm in A(ξ, x) is denoted as A0(ξ, x). In other words,
A0(ξ, x) = projA(ξ,x)(0). It is known that the function ξ 7→ A0(ξ, x) is
measurable [14, Ch. 2].

For any γ > 0, the resolvent of A(ξ, ·) is represented by

Jγ(ξ, x) := (I + γA(ξ, ·))−1(x).

As we know, Jγ(ξ, ·) is a non-expansive function on R
N . Since Jγ(ξ, x) is

measurable in ξ and continuous in x, Carathéodory’s theorem shows that the
function Jγ : Ξ × R

N → R
N is T ⊗ B(RN) measurable. We also introduce

the Yosida approximation Aγ(ξ, ·) of A(ξ, ·), which is defined for any γ > 0
as the T ⊗ B(RN) measurable function

Aγ(ξ, x) :=
x− Jγ(ξ, x)

γ
.

The function Aγ(ξ, ·) is a γ−1-Lipschitz continuous function that satisfies
‖Aγ(ξ, x)‖ ↑ ‖A0(ξ, x)‖ and Aγ(ξ, x) → A0(ξ, x) for any x ∈ D(ξ) when
γ ↓ 0. Moreover, the inclusion Aγ(ξ, x) ∈ A(ξ, Jγ(ξ, x)) holds true for all
x ∈ R

N [10, 11].
The essential intersection D of the domains D(ξ) is [15]

D :=
⋃

E∈T :µ(E)=0

⋂

ξ∈Ξ\E

D(ξ) ,

in other words, x ∈ D ⇔ µ({ξ : x ∈ D(ξ)}) = 1. Let us assume that
D 6= ∅ and that this function is integrable for each x ∈ D. On D, we define
A as the Aumann integral

A(x) :=

∫

Ξ
A(ξ, x)µ(dξ) .
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One can immediately see that the operator A : D ⇒ R
N so defined is a

monotone operator.

2.4 Evolution Equations and Almost Sure APT

Given that A ∈ M, consider the differential inclusion

ż(t) ∈ −A(z(t)) a.e. on R+, z(0) = z0, (3)

for a given z0 in dom(A). It is known from [10, 16] that for any z0 ∈
dom(A), there exists a unique absolutely continuous function z : R+ → R

N

satisfying (3) - referred to as the solution to (3). Consider the map

Ψ : dom(A)× R+ → dom(A), (z0, t) 7→ z(t),

where z(t) is the solution to (3) with the initial value z0. Then, for any t ≥ 0,
Ψ(·, t) is a non-expansive map from dom(A) to dom(A) who can be extended
by continuity to a non-expansive map from cl(dom(A)) to cl(dom(A)) that we
still denote as Ψ(·, t) [10, 16]. The function Ψ so defined is a semiflow on the
set cl(dom(A))×R+, being a continuous function from cl(dom(A))×R+ to
cl(dom(A)), satisfying Ψ(·, 0) = I and Ψ(z0, t+ s) = Ψ(Ψ(z0, s), t) for every
z0 ∈ cl(dom(A)), t, s ≥ 0. The set γ(x) := {Ψ(x, t) : t ≥ 0} is the orbit of x.
Although orbits of Ψ are not necessarily convergent in general, any solution
to (3) converges to a zero of A (which is assumed to exist) whenever A is
demipositive [9]. By demipositive, we mean that there exists w ∈ Z(A) such
that for every sequence ((un, vn) ∈ A) such that (un) converges to u and
{vn} is bounded,

〈un − w, vn〉 −−−→
n→∞

0 ⇒ u ∈ Z(A) .

We now need to introduce some important notions associated with the
semiflow Ψ. A comprehensive treatment of the subject can be found in [3,
17]. A set S ⊂ cl(dom(A)) is said to be invariant for the semiflow Ψ if
Ψ(S, t) = S for all t ≥ 0. Given that ε > 0 and T > 0, a (ε, T )-pseudo orbit

from a point a to a point b in R
N is a n-uple of partial orbits ({Ψ(yi, s) :

s ∈ [0, ti]})i=0,...,n−1 such that ti ≥ T for i = 0, . . . , n − 1, and

‖y0 − a‖ < ε,

‖Ψ(yi, ti)− yi+1‖ < ε, i = 0, . . . , n − 1,

yn = b.

Let S be a compact and invariant set S for Ψ. If for every ε > 0, T > 0 and
every a, b ∈ S, there is an (ε, T )-pseudo orbit from a to b, then the set S is
said to be Internally Chain Transitive (ICT). We shall say that a random
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process v(t) on R+, who is valued in R
N , is an almost sure asymptotic

pseudo trajectory [3, 4] for the differential inclusion (3) if

sup
s∈[0,T ]

‖v(t+ s)−Ψ(projcl(dom(A))(v(t)), s)‖ −−−→
t→∞

0 a.s.

for any T > 0. We note that in the APT definition provided in [3, 4], no
projection is considered because the flow is defined in these references on the
whole space. Projecting on cl(dom(A)) here does not alter the conclusions.
Let L(v) :=

⋂

t≥0 cl(v([t,∞[)) be the limit set of the trajectory v(t), i.e.,
the set of the limits of the convergent subsequences v(tk) as tk → ∞. It is
important to note that if {v(t)}t∈R+ is bounded a.s., and if v is an almost
sure APT for (3), then with probability one, the compact set L(v) is ICT
for the semiflow Ψ [3].

The authors of [8] establish a useful property of asymptotic pseudo tra-
jectories pertaining to the asymptotic behavior of their empirical measures.
We now consider that v : Ω × R+ → R

N is a random process on the prob-
ability space (Ω,F ,P) equipped with a filtration (Ft)t∈R+ . As we know,
v is said to be progressively measurable if for each t ≥ 0, the restriction to
Ω× [0, t] of v is Ft ⊗B([0, t])-measurable, where B([0, t]) is the Borel field
over [0, t]. For t ≥ 0, the empirical measure νt(ω, ·) of v is then the random
probability measure, defined by the identity

∫

f(x) νt(ω, dx) =
1

t

∫ t

0
f(v(ω, s)) ds,

for any measurable function f : RN → R+. We also note that a probability
measure ν on R

N is said to be invariant for the semiflow Ψ if
∫

f(x) ν(dx) =

∫

f(Φ(x, t)) ν(dx)

for any t ≥ 0 and any measurable function f : RN → R+.
Now, if v is progressively measurable and if it is an almost sure APT for

the semiflow Ψ, then on a probability one set, all of the accumulation points
of the set {νt(ω, ·)}t≥0 for the weak convergence of probability measures are
invariant measures for Ψ [8, Th. 1]. 1

3 Results

3.1 Algorithm Description and Main Results

Let B : Ξ → M be a mapping such that, similarly to the mapping A intro-
duced in Section 2.3, the function ξ 7→ gr(B(ξ, ·)) is measurable. Moreover,

1The result is stated in [8] when v is a so-called weak APT. It turns out that any almost
sure APT is a weak APT by Lévy’s conditional form of Borel-Cantelli’s lemma.
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we assume throughout the paper that dom(B(ξ, ·)) = R
N for almost every

ξ ∈ Ξ. We also assume that for every x ∈ R
N , B(·, x) is integrable, and

we set B(x) :=
∫

B(ξ, x)µ(dξ). Note that domB = R
N . Let (un)n∈N∗ be

an iid sequence of random variables from a probability space (Ω,F ,P) to
(Ξ,T ) having the distribution µ. Starting with some arbitrary x0 ∈ R

N ,
our purpose is to study the behavior of the iterates

xn+1 = Jγn+1(un+1, xn − γn+1b(un+1, xn)), (n ∈ N), (4)

where the positive sequence (γn)n∈N∗ belongs to ℓ2 \ ℓ1, and where b is a
measurable map on (Ξ × R

N ,T ⊗ B(RN)) → (RN ,B(RN)) such that for
every x ∈ R

N , b( . , x) ∈ S1
B( . ,x) (2). A possible choice for b is b(ξ, x) =

B0(ξ, x), which is T ⊗B(RN)–measurable, as the limit as γ ↓ 0 of Bγ(ξ, x).
We define the affine interpolated process as

x(t) := xn +
xn+1 − xn
γn+1

(t− τn) (5)

for every t ∈ [τn, τn+1[, where τn =
∑n

1 γk. Consider the differential inclusion

{

ż(t) ∈ −(A+ B)(z(t)), ∀t ∈ R+ a.e.,
z(0) = z0 .

(6)

If A+B is maximal, then for any z0 ∈ D, (6) has a unique solution, in which
case, Φ : cl(D)× R+ → cl(D) will represent the semiflow associated to (6).

Before stating our main result, we need to make a preliminary remark. A
point x⋆ is an element of Z = Z(A+B) if and only if there exists ϕ ∈ S1

A(·,x⋆)

and ψ ∈ S1
B(·,x⋆)

such that
∫

ϕdµ+
∫

ψdµ = 0. We will refer to a couple (ϕ,ψ)
of this type as a representation of the zero x⋆. Moreover, in Theorem 3.1
below, we shall assume that there exists such a zero x⋆ for which the above
functions ϕ and ψ can be chosen in L2p(Ξ,T , µ;RN ), where p ≥ 1 is some
integer possibly strictly larger than one. We thus introduce the set of 2p-
integrable representations

R2p(x⋆) =

{

(ϕ,ψ) ∈ S2p
A(·,x⋆)

× S2p
B(·,x⋆)

:

∫

ϕdµ+

∫

ψdµ = 0

}

.

We let Π(ξ, .) be the projection operator onto cl(D(ξ)), and d(ξ, ·) (respec-
tively d(·)) be the distance function to D(ξ) (respectively to D).

Theorem 3.1. Assume the following facts:

1. The monotone operator A is maximal.

2. There exists an integer p ≥ 1 and a point x⋆ ∈ Z such that R2p(x⋆) 6=
∅.

7



3. For any compact set K of RN , there exists ε ∈]0, 1] such that

sup
x∈K∩D

∫

‖A0(ξ, x)‖
1+ε µ(dξ) <∞.

Moreover, there exists y0 ∈ D such that

∫

‖A0(ξ, y0)‖
1+1/ε µ(dξ) <∞ .

4. There exists C > 0 such that for all x ∈ R
N ,

∫

d(ξ, x)2µ(dξ) ≥ Cd(x)2 ,

and furthermore, γn+1/γn → 1.

5. There exists C > 0 such that for any x ∈ R
N and any γ > 0,

1

γ4

∫

‖Jγ(ξ, x)−Π(ξ, x)‖4µ(dξ) ≤ C(1 + ‖x‖2p) ,

where the integer p is specified in 2.

6. There exists M : Ξ → R+ such that M2p is µ-integrable, and for all

x ∈ R
N , ‖b(ξ, x)‖ ≤M(ξ)(1 + ‖x‖). Moreover, there exists a constant

C > 0 such that
∫

‖b(ξ, x)‖4µ(dξ) ≤ C(1 + ‖x‖2p).

Then, the monotone operator A+B is maximal. Moreover, with probability

one, the continuous time process x(t) defined by (5) is bounded and is an

APT of the differential inclusion (6).

Let us now discuss our assumptions. Sufficient conditions for the max-
imality of A are provided below in Sections 3.2 and 4.1. Assumption 2 is
relatively weak and easy to check. If we set ε = 1, then Assumption 3 can
be replaced with the stronger condition stating that for any compact set K
of RN ,

sup
x∈K∩D

∫

‖A0(ξ, x)‖
2 µ(dξ) <∞ .

For more insight on the above assumption, let us compare it with the stan-
dard Robbins-Monro algorithm yn+1 = yn + γn+1H(yn, ξn+1), where H is
some measurable function. In order to ensure the almost-sure boundedness
of (yn), it is standard to assume that ‖H(y, ξ)‖ ≤ M(ξ)(1 + ‖y‖) for every
(y, ξ) and for some square-integrable r.v. M(ξ) [18]. As far as our algorithm
is concerned, a similar assumption is needed on the operator B, but on the
other hand, no such assumption is needed on the operator A. Assumption 3
is weaker. Otherwise stated, when a random operator is used through its
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resolvent, there is no need to require the “linear growth” condition often
assumed in the stochastic approximation literature.

Assumption 4 is quite weak, and is easy to illustrate in the case where
µ is a finite sum of Dirac measures. Following [19], we say that a finite
collection of closed and convex subsets (C1, . . . , Cm) over some Euclidean
space is linearly regular if there exists κ > 0 such that for every x,

max
i=1...m

d(x, Ci) ≥ κd(x, C), where C =

m
⋂

i=1

Ci ,

and where implicitely C 6= ∅. Sufficient conditions for a collection of sets to
satisfy the above condition can be found in [19] and the references therein.
Note that this condition implies the so-called strong conical hull intersection
property NC(x) =

∑m
i=1NCi(x) for every x ∈ C, where NC(x) is, as we recall,

the normal cone to C at the point x.
Let us finally discuss Assumption 5. As γ → 0, it is known that Jγ(ξ, x)

converges to Π(ξ, x) for every (ξ, x). Moreover, Assumption 5 provides a
control on the convergence rate. The fourth moment of ‖Jγ(ξ, x)−Π(ξ, x)‖
is assumed to vanish at the rate γ4 with a multiplicative factor of the order
‖x‖2p. The integer p can potentially be as large as needed, provided that one
is able to find a zero x⋆ satisfying Assumption 2. In the special case where
A(ξ, . ) coincides with the subdifferential of the convex function f(ξ, . ),
Assumption 5 holds under the sufficient condition that for almost every ξ
and for every x ∈ D(ξ),

‖∂xf0(ξ, x)‖ ≤M ′(ξ)(1 + ‖x‖p/2) , (7)

where ∂xf0(ξ, x) is the smallest norm element of the subdifferential of f(ξ, . )
at point x, and where M ′(ξ) is a positive r.v. with a finite fourth moment.
Indeed, in this case, the resolvent Jγ(ξ, x) coincides with proxγf(ξ, . )(x), and
by [7],

1

γ
‖Jγ(ξ, x) −Π(ξ, x)‖ ≤ 2‖∂f0(ξ,Π(ξ, x))‖ .

As a consequence, Assumption 5 stems from (7) and the non-expansiveness
of Π(ξ, . ).

The results of Theorem 3.1 can first be used to study the convergence of
the sequence (x̄n) of empirical means, defined by

x̄n :=

∑n
k=1 γkxk
∑n

k=1 γk
.

Corollary 3.1. Let the assumptions in the statement of Theorem 3.1 hold

true. Assume that for any x⋆ ∈ Z, the set R2(x⋆) is not empty. Then, for

any initial value x0, the sequence (x̄n) of empirical means converges almost

surely as n→ ∞ to a random variable U , whose support lies in Z.
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Let us now consider the issue of the convergence of the sequence (xn) to a
point of Z. Note that the conditions of Theorem 3.1 are generally insufficient
to ensure that xn converges. A counterexample is obtained by setting N = 2
and taking A as a π/2-rotation matrix, B = 0 [20, Sec. 6]. However, the
statement will be proved valid when A + B is assumed demipositive. We
start by listing some known verifiable conditions ensuring that the maximal
monotone operator A+ B is demipositive:

1. A+ B = ∂G, where G ∈ Γ0 has a minimum.

2. A + B = I − T , where T is a non-expansive mapping having a fixed
point.

3. The interior of Z is not empty.

4. Z 6= ∅ and A+ B is 3-monotone, i.e., for every triple (xi, yi) ∈ A+ B
for i = 1, 2, 3, it holds that

∑3
i=1〈yi, xi−xi−1〉 ≥ 0 by setting x0 = x3.

5. A+ B is strongly monotone, i.e., 〈x1 − x2, y1 − y2〉 ≥ α‖x1 − x2‖
2 for

some α > 0 and for all (x1, y1) and (x2, y2) in A+ B.

6. Z 6= ∅ and A + B is cocoercive, i.e., 〈x1 − x2, y1 − y2〉 ≥ α‖y1 − y2‖
2

for some α > 0 and for all (x1, y1) and (x2, y2) in A+ B.

The above conditions can be found in [20]. Specifically, conditions 1–3 can
be found in [9], while Condition 4 can be found in [21]. Conditions 5 and 6
can be easily verified to lead to the demipositivity of A + B. Condition 1
is further discussed in Section 4.1 below. Condition 2 is satisfied if Z 6= ∅
and if for any ξ, the operator I − (A+B)(ξ, ·) is a non-expansive mapping.
Condition 4 is satisfied if Z 6= ∅ and if all the operators (A + B)(ξ, ·) are
3-monotone. The last two conditions are most often easily verifiable.
We now have:

Corollary 3.2. Let the assumptions in the statement of Theorem 3.1 hold

true. Assume in addition that the operator A+ B is demipositive, and that

for any x⋆ ∈ Z, the set R2(x⋆) is not empty. Then, for any initial value x0,
there exists a random variable U , supported by Z, such that xn → U almost

surely as n→ ∞.

We now address the important problem of the maximality of A.

3.2 Maximality of A

By extending a well-known result on the maximality of the sum of two
maximal monotone operators, it is obvious that A is maximal in the case
where µ is a finite sum of Dirac measures and where the interior of D is not
empty [10, 11]. For more general measures µ, we have the following result.
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Proposition 3.1. Assume the following:

1. The interior of D is not empty, and there exists a closed ball in D such

that ‖A0(ξ, x)‖ ≤ M(ξ) for any x in this ball, and such that M(ξ) is

µ-integrable.

2. For any compact set K of RN , there exists ε > 0 such that

sup
x∈K∩D

∫

‖A0(ξ, x)‖
1+ε µ(dξ) <∞.

Moreover, there exists y0 ∈ D such that

∫

‖A0(ξ, y0)‖
1+1/ε µ(dξ) <∞ .

3. There exists C > 0 such that for any x ∈ R
N ,

∫

d(ξ, x)µ(dξ) ≥ Cd(x).

4.

∫

‖Jγ(ξ, x)−Π(ξ, x)‖µ(dξ) ≤ γC(x), where C(x) is bounded on com-

pact sets of RN .

Then, the monotone operator A is maximal.

4 Application to Convex Optimization

We start this section by briefly reproducing some known results related to
the case where A(ξ, ·) is the subdifferential of a proper, closed and convex
function g(ξ, ·).

4.1 Known Facts About the Aumann Integral of Subdiffer-

entials

A function g : Ξ × R
N →] −∞,∞] is called a normal integrand [22] if the

set-valued mapping ξ 7→ epi g(ξ, ·) is closed-valued and measurable. Let us
assume in addition that g(ξ, ·) is convex and proper for every ξ.

Consider the case where A(ξ, ·) = ∂g(ξ, ·). The mean operator A is given
by2 A(x) =

∫

∂g(ξ, x)µ(dξ). Under some general conditions stated in [24],
the integral and the subdifferential can be exchanged in this expression. In

2By [14, 23], the mapping A : Ξ → M, defined as A(ξ, ·) = ∂g(ξ, ·), is measurable in
the sense of Section 2.3.
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this case, A(x) = ∂G(x), where G(x) =
∫

g(ξ, x)µ(dξ). This integral is
defined as the sum

∫

{ξ : g(ξ,x)∈R+}
g(ξ, x)µ(dξ) +

∫

{ξ : g(ξ,x)∈]−∞,0[}
g(ξ, x)µ(dξ) + I(x) ,

where

I(x) =

{

+∞, if µ({ξ : g(ξ, x) = ∞}) > 0,
0, otherwise ,

and where the convention (+∞) + (−∞) = +∞ is used. The function G is
a lower semi continuous and convex function if G(x) > −∞ for all x [24].
Assuming in addition that G is proper, the identity A = ∂G ensures that
the operator A is monotone, maximal, and demipositive, and that the zeros
of A are the minimizers of G.

4.2 A Constrained Optimization Problem

Let (X,X , ν) be a probability space. Let the functions f : X × R
N →

] −∞,∞[ and g : X × R
N →] −∞,∞[ be normal convex integrands. Here

we assume that g is finite everywhere to simplify the presentation. However
we note that the results can be extended to the case where g is allowed to
take the value +∞. Recall the optimization problem

min
x∈C

F (x) +G(x), C =
m
⋂

i=1

Ci, (8)

where F (x) =
∫

f(η, x)ν(dη), G(x) =
∫

g(η, x)ν(dη) and C1, . . . , Cm are
closed and convex sets. Consider a measurable function ∇̃f : X × R

N → R

such that for every η ∈ X and x ∈ R
N , ∇̃f(η, x) is a subgradient of f(η, . )

at x. Let (vn)n be an iid sequence on X with probability distribution ν.
Finally, let (In) be an iid sequence on {0, 1, . . . ,m} with distribution αi =
P(I1 = i) > 0 for every i. We consider the iterates

xn+1 =

{

proxα−1
0 γn+1g(vn+1,·)

(xn − γn+1∇̃f(vn+1, xn)), if In+1 = 0,

projCIn+1
(xn − γn+1∇̃f(vn+1, xn)), otherwise.

(9)
We recall that ∂g0(η, x) is the least norm element of the subdifferential of
g(η, . ) at x. Given H ⊂ R

N , we use the notation |H| = sup{‖v‖ : v ∈ H}.

Corollary 4.1. We assume the following. Let p ≥ 1 be an integer.

1. For every x ∈ R
N ,
∫

|f(η, x)|ν(dη) +
∫

|g(η, x)|ν(dη) <∞.

2. For any solution x⋆ to Problem (8), there exists a measurable function

M⋆ : X → R+ such that
∫

M⋆(η)
2ν(dη) <∞, and for all η ∈ X,

|∂f(η, x⋆)|+ |∂g(η, x⋆)| ≤M⋆(η) .

Moreover, there exists a solution x⋆ for which
∫

M⋆(η)
2pν(dη) <∞.

12



3. For any compact set K of RN , there exists ε ∈]0, 1] such that

sup
x∈K

E‖∂g0(Θ, x)‖
1+ε <∞ .

Moreover, there exists y0 ∈ C such that E‖∂g0(Θ, y0)‖
1+1/ε <∞.

4. The closed and convex sets C1, . . . , Cm are linearly regular, i.e.,

∃κ > 0,∀x ∈ R
N , max

i=1,...,m
dist(x, Ci) ≥ κ dist(x, C) ,

where dist(x, S) denotes the distance of the point x to the set S. More-

over, γn/γn+1 → 1.

5. There exists M : X → R such that
∫

M(η)2pν(dη) <∞, and

∀(η, x) ∈ X× R
N , ‖∇̃f(η, x)‖ ≤M(η)(1 + ‖x‖) .

6. There exists c > 0 such that ∀x ∈ R
N ,
∫

‖∇̃f(η, x)‖4ν(dη) ≤ c(1 +
‖x‖2p).

Then, the sequence (xn) given by (9) converges almost surely to a solution

to Problem (8).

5 Related Works

The problem of minimizing an objective function in a noisy environment
has brought forth a very rich body of literature in the field of stochastic ap-
proximation [17, 25]. In the framework of this paper, most of this literature
examines the evolution of the projected stochastic gradient or subgradient
algorithm, where the projection is made on a fixed constraining set.

In the case where the constraining set has a complicated structure, an
incremental minimization algorithm with random constraint updates has
been proposed in [26], where a deterministic convex function f is mini-
mized on a finite intersection of closed and convex constraining sets. The
algorithm developed in [26] consists of a subgradient step over the objec-
tive f followed by an update step towards a randomly chosen constraining
set. Using the same principle, a distributed algorithm involving an addi-
tional consensus step has been proposed in [27]. Random iterations involv-
ing proximal and subgradient operators were considered in [28] and in [29].
In [29], the functions g(ξ, . ) are supposed to have a full domain, to satisfy
‖g(ξ, x) − g(ξ, y)‖ ≤ L(‖x − y‖ + 1) for some constant L which does not
depend on ξ and, finally, are such that

∫

‖g(ξ, x)‖2µ(dξ) ≤ L(1 + ‖x‖2). In
the present paper, such conditions are not needed.

The algorithm (4) can also be used to solve a variational inequality
problem. Let C = ∩m

i=1Ci where C1, . . . , Cm are closed and convex sets in
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R
N . Consider the problem of finding x⋆ ∈ C that solves the variational

inequality
∀x ∈ C, 〈F (x⋆), x− x⋆〉 ≥ 0 ,

where F : RN → R
N is a monotone single-valued operator on R

N [30, 31].
Since the projection on C is difficult, one can use the simple stochastic al-
gorithm xn+1 = projCun+1

(xn − γn+1F (xn)), where the random variables un

are distributed on the set {1, . . . ,m}. The variant where F is itself an ex-
pectation can also be considered i.e., F (x) =

∫

f(ξ, x)µ(dξ). The work [30]
addresses this context. In [30], it is assumed that F is strongly monotone and
that the stochastic Lipschitz property

∫

‖f(ξ, x)−f(ξ, y)‖2µ(dξ) ≤ C‖x−y‖2

holds, where C is a positive constant. In our work, the strong monotonicity
of F is not needed, and the Lipschitz property is essentially replaced with
the condition ‖∇̃f(ξ, x)‖ ≤ M(ξ)(1 + ‖x‖), where ∇̃f(ξ, x) is a subgradi-
ent of f(ξ, ·) at x (for instance, the least norm one), and M(ξ) satisfies a
moment condition.

In the same vein as our paper, [32] considered a collection {A(i, ·)}Ni=1 of
N maximal monotone operators, and studied the iterations

yn+1 ∈ A(σn+1(1), xn) , xn+1 =
N
∏

i=2

(I+γn+1A(σn+1(i), ·))
−1(xn−γn+1yn+1) ,

where (γn) ∈ ℓ2 \ ℓ1, and where (σn) is a sequence of permutations of the
set {1, . . . , N}. The convergence of (x̄n) to a zero of

∑

A(i, ·) is established
in [32]. In the recent paper [33], a relaxed version of Algorithm (1) is con-
sidered, where B is cocoercive and where its output, as well as the output of
the resolvent of A, are subjected to random errors. The convergence of the
iterates to a zero of A+B is established under summability assumptions on
these errors.

Regarding the convergence rate analysis, let us mention [34, 35] which in-
vestigate the performance of the algorithm xn+1 = proxγn+1g(xn−γn+1Hn+1),
where Hn+1 is a noisy estimate of the gradient ∇f(xn). The same algorithm
is addressed in [36], where the proximity operator is replaced by the resol-
vent of a fixed maximal monotone operator, and Hn+1 is replaced by a noisy
version of a (single-valued) cocoercive operator evaluated at xn. The paper
[37] addresses the statistical analysis of the empirical means of the estimates
obtained from the random proximal point algorithm.

This paper follows the line of thought of the recent paper [7], who studies
the behavior of the random iterates xn+1 = Jn+1(un+1, xn) in a Hilbert
space, and establishes the convergence of the empirical means x̄n towards
a zero of the mean operator A(x) =

∫

A(ξ, x)µ(dξ). In the present paper,
the proximal point algorithm is replaced with the more general forward-
backward algorithm. Thanks to the dynamic approach developed here, the
convergences of both (x̄n) and (xn) are studied.
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Finally, it is worth noting that apart from the APT of Benäım and
Hirsch [3], many authors have introduced alternative concepts to analyze
the asymptotic behavior of perturbed solutions to evolution systems. An
important one is the notion of almost-orbit of [38, 39], and [40], which has
been shown to be useful to analyze certain perturbed solution to differential
inclusions of the form (3). The almost-orbit property is however more de-
manding than the APT property, and is in general harder to verify, although
it can lead to finer convergence results. Fortunately, the concept of APT
has been proven sufficient here to guarantee that the interpolated process
x(t) almost surely inherits both the ergodic and non-ergodic convergence
properties of the orbits of Φ.

6 Proofs

Let us start with the proof of Proposition 3.1 because it contains many
elements of the proof of the main theorem.

6.1 Proof of Proposition 3.1

We recall that for any ξ ∈ Ξ and any γ > 0, the Yosida approxima-
tion Aγ(ξ, ·) is a single-valued γ−1-Lipschitz monotone operator defined on
R
N . As a consequence, the operator Aγ : RN → R

N , given by Aγ(x) =
∫

Aγ(ξ, x)µ(dξ), is a single-valued, continuous, and monotone operator de-
fined on R

N . As such, Aγ is maximal [10, Prop. 2.4]. Thus, given any
y ∈ R

N , there exists xγ ∈ R
N such that y = xγ + Aγ(xγ). We shall find a

sequence γn → 0 such that xγn → x⋆ ∈ D with y − x⋆ ∈ Ax⋆. The maxi-
mality of A then follows by Minty’s theorem [10].
Let z0 and ρ be respectively the centre and the radius of the ball referred to
in Assumption 1, and set

u(ξ) = z0 + ρ
Aγ(ξ, x

γ)

‖Aγ(ξ, xγ)‖
∈ D ,

where the convention 0/0 = 0 is used. By the monotonicity of Aγ(ξ, ·),

0 ≤

∫

〈xγ − u(ξ), Aγ(ξ, x
γ)−Aγ(ξ, u(ξ))〉µ(dξ).
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Writing C =
∫

M(ξ)µ(dξ) <∞ (see Assumption 1), we obtain

∫

〈xγ , Aγ(ξ, x
γ)〉µ(dξ) = 〈xγ , y〉 − ‖xγ‖2,

∫

〈−u(ξ), Aγ(ξ, x
γ)〉µ(dξ) = 〈z0, x

γ − y〉 − ρ

∫

‖Aγ(ξ, x
γ)‖µ(dξ),

∫

|〈xγ , Aγ(ξ, u(ξ))〉|µ(dξ) ≤ ‖xγ‖

∫

‖A0(ξ, u(ξ)‖µ(dξ) ≤ C‖xγ‖,
∫

|〈u(ξ), Aγ(ξ, u(ξ))〉|µ(dξ) ≤ C(‖z0‖+ ρ).

Therefore,

ρ

∫

‖Aγ(ξ, x
γ)‖µ(dξ)+‖xγ‖2 ≤ ‖xγ‖(‖y‖+‖z0‖+C)+C(‖z0‖+ρ)+‖z0‖ ‖y‖ .

This shows that the sets {‖xγ‖} and {
∫

‖Aγ(ξ, x
γ)‖µ(dξ)} are both bounded.

Writing Aγ(ξ, x
γ) = γ−1(Π(ξ, xγ)− Jγ(ξ, x

γ)) + γ−1(xγ −Π(ξ, xγ)), and us-
ing Assumption 4, we obtain that the set {γ−1

∫

‖xγ − Π(ξ, xγ)‖µ(dξ)} is
bounded. By Assumption 3, {d(xγ)/γ} is bounded. Given xγ , let us choose
x̃γ ∈ D such that ‖xγ − x̃γ‖ ≤ 2d(xγ). By the boundedness of {‖xγ‖}, there
exists a compact set K ⊂ R

N such that x̃γ ∈ K. Associating a positive
number ε to K as in Assumption 2, we obtain

∫

‖Aγ(ξ,x
γ)‖1+ε µ(dξ)

≤ 2ε
∫

(

‖Aγ(ξ, x̃
γ)‖1+ε + ‖Aγ(ξ, x

γ)−Aγ(ξ, x̃
γ)‖1+ε

)

µ(dξ)

≤ 2ε
∫

‖A0(ξ, x̃
γ)‖1+ε µ(dξ) + 21+2ε

∣

∣

∣

d(xγ)

γ

∣

∣

∣

1+ε
,

which is bounded by a constant independent of γ thanks to Assumption 2.
Thus, the family of Ξ → R

N functions {Aγ(ξ, x
γ)} is bounded in the Banach

space L1+ε(Ξ,T , µ;RN ).
Let us take a sequence (γn, x

γn) converging to (0, x⋆). Let us extract a
subsequence (still denoted as (n)) from the sequence of indices (n), in such
a way that (Aγn(ξ, x

γn))n converges weakly in L1+ε towards a function f(ξ).
By Mazur’s theorem, there exists a function J : N → N and a sequence of

sets of weights ({αk,n, k = n . . . , J(n) : αk,n ≥ 0,
∑J(n)

k=n αk,n = 1})n such

that the sequence of functions (gn(ξ) =
∑J(n)

k=n αk,nAγk(ξ, x
γk)) converges

strongly to f in L1+ε. Taking a further subsequence, we obtain the µ-
almost everywhere convergence of (gn) to f .
Observe that x⋆ ∈ cl(D) since d(xγn) → 0. Choose a sequence (zn) in D
that converges to x⋆, and for each n, let Tn = {ξ ∈ Ξ : zn ∈ D(ξ)}. Then,
on the probability one set T = ∩nTn, it holds that x⋆ ∈ cl(D(ξ)). On the
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intersection of T and the set where gn → f , set ηn(ξ) = Jγn(ξ, x
γn) − x⋆,

and write

‖ηn(ξ)‖ ≤ ‖Jγn(ξ, x
γn)− Jγn(ξ, x

⋆)‖+ ‖Jγn(ξ, x
⋆)− x⋆‖.

Since Jγn(ξ, ·) is non-expansive and since x⋆ ∈ cl(D(ξ)), we have ηn(ξ) →n 0.
Considering Assumption 2, we also have

‖ηn(ξ)‖ ≤ ‖x⋆‖+ ‖Jγn(ξ, x
γn)− Jγn(ξ, y0)‖+ ‖Jγn(ξ, y0)− y0‖+ ‖y0‖

≤ ‖x⋆‖+ sup
γ

‖xγ‖+ 2‖y0‖+ ‖A0(ξ, y0)‖ ,

when γn ≤ 1. By Assumption 2 and the dominated convergence theorem,
we obtain that ηn → 0 in L1+1/ε. With this in mind,

∫

|〈ηn(ξ), Aγn(ξ, x
γn)〉|µ(dξ)

≤

(
∫

‖ηn(ξ)‖
1+1/εµ(dξ)

)ε/(1+ε)(∫

‖Aγn(ξ, x
γn)‖1+εµ(dξ)

)1/(1+ε)

,

and the left-hand side converges to zero. Consequently, the random variable

en =

J(n)
∑

k=n

αk,n〈Jγk(ξ, x
γk)− x⋆, Aγk(ξ, x

γk )〉

converges to zero in probability, hence in the µ-almost sure sense along a
subsequence. Fix ξ in this new probability one set, choose arbitrarily a
couple (u, v) ∈ A(ξ, ·), and write

Xn =

J(n)
∑

k=n

〈u− Jγk(ξ, x
γk), αk,nv − αk,nAγk(ξ, x

γk)〉.

It holds by the monotonicity of A(ξ, ·) that Xn ≥ 0. Writing

Xn = 〈u− x⋆, v − gn(ξ)〉+ en −

J(n)
∑

k=n

αk,n〈ηk, v〉 ,

and making n→ ∞, we obtain that 〈u−x⋆, v−f(ξ)〉 ≥ 0. By the maximality
of A(ξ, ·), it holds that (x⋆, f(ξ)) ∈ A(ξ, ·).
To conclude, we have

y =

J(n)
∑

k=n

αk,nx
γk +

∫

gn(ξ)µ(dξ),

∑J(n)
k=n αk,nx

γk →n x
⋆ ∈ D, and gn

L1(µ)
−−−→ f ∈ S1

A(·,x⋆). Making n → ∞, we

obtain y − x⋆ =
∫

f(ξ)µ(dξ) ∈ A(x⋆), which is the desired result.
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6.2 Proof of Theorem 3.1

Noting that domB = R
N and using Assumption 6 of Theorem 3.1, one can

check that the assumptions of Proposition 3.1 are satisfied for B. The result
is that B is maximal. Because B has a full domain and A is maximal, A+B is
maximal by [11, Corollary 24.4]. Thus, the first assertion of Theorem 3.1 is
shown, and moreover, the differential inclusion (6) admits a unique solution,
and the associated semiflow Φ is well defined.

Defining Yγ(ξ, x) := Aγ(ξ, x− γb(ξ, x)), the iterates xn can be rewritten
as

xn+1 = xn − γn+1b(un+1, xn)− γn+1Yγn+1(un+1, xn)

= xn − γn+1hγn+1(xn) + γn+1ηn+1,

where we define

hγ(x) :=

∫

(Yγ(ξ, x) + b(ξ, x))µ(dξ) ,

and

ηn+1 := −Yγn+1(un+1, xn)+EnYγn+1(un+1, xn)−b(un+1, xn)+Enb(un+1, xn) ,

where En denotes the expectation conditionally to the sub σ-field σ(u1, . . . , un)
of F (we also write E0 = E). Consider the martingale

Mn :=

n
∑

k=1

γkηk ,

and let M(t) be the affine interpolated process, defined for any n ∈ N and
any t ∈ [τn, τn+1[ as

M(t) := Mn + ηn+1(t− τn) =Mn +
Mn+1 −Mn

γn+1
(t− τn).

For any t ≥ 0, let
r(t) := max{k ≥ 0 : τk ≤ t}.

Then, for any t ≥ 0, we obtain

x(τn + t)− x(τn) = −

∫ t

0
hγr(τn+s)+1

(xr(τn+s)) ds +M(τn + t)−M(τn)

= H(τn + t)−H(τn) +M(τn + t)−M(τn) , (10)

where H(t) :=
∫ t
0 hγr(s)+1

(xr(s)) ds. The idea of the proof is to establish that
on a P-probability one set, the sequence (x(τn + ·))n∈N of continuous time
processes is equicontinuous and bounded. The accumulation points for the
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uniform convergence on a compact interval [0, T ] (who are guaranteed to
exist by the Arzelà-Ascoli theorem) will be shown to have the form

z(t)− z(0) = − lim
n→∞

∫ t

0
ds

∫

Ξ
µ(dξ) (Yγr(τn+s)+1

(ξ, xr(τn+s)) + b(ξ, xr(τn+s))) ,

(11)
where the limit is taken over a subsequence. We then show that the sequence
of Ξ×[0, T ] → R

2N functions ((ξ, s) 7→ Yγr(τn+s)+1
(ξ, xr(τn+s)), b(ξ, xr(τn+s)))n

is bounded in the Banach space L1+ε(Ξ × [0, T ], µ ⊗ λ), where λ is the
Lebesgue measure on [0, T ]. Analyzing the accumulation points and follow-
ing an approach similar to the one used in the proof of Proposition 3.1, we
prove that the limit in the right-hand side of (11) coincides with

z(t)− z(0) = − lim
n→∞

∫ t

0
ds

(
∫

Ξ
f (a)(ξ, s)µ(dξ) +

∫

Ξ
f (b)(ξ, s)µ(dξ)

)

,

where for almost every s ∈ [0, T ], f (a)(·, s) and f (b)(·, s) are integrable se-
lections of A(·, s) and B(·, s), respectively. This shows that z satisfies the
differential inclusion (6). Hence, almost surely, the accumulation points of
the sequence of processes (x(τn + ·))n∈N are solutions to (6). Recalling that
the latter defines a semiflow Φ : cl(D) × R+ → cl(D), it follows that the
process x(t) is a.s. an APT of (6).

Throughout the proof, C refers to a positive constant, that can change
from line to line, but that remains independent of n. We use c, c1, etc. to
denote random variables on Ω → R+ that do not depend on n. For a fixed
event ω ∈ Ω, these will act as constants.

Proposition 6.1. Let Assumptions 2 and 6 of Theorem 3.1 hold true.

Then,

1. The sequence (xn) is bounded almost surely and in L2(Ω,F ,P;RN ).

2. E[
∑

n γ
2
n

∫

‖Yγn(ξ, xn)‖
2µ(dξ)] <∞.

3. The sequence (‖xn − x⋆‖)n converges almost surely.

Proof. Writing ‖xn+1−x⋆‖
2 = ‖xn−x⋆‖

2+2〈xn+1−xn, xn−x⋆〉+‖xn+1−
xn‖

2, we obtain

‖xn+1 − x⋆‖
2 = ‖xn − x⋆‖

2 − 2γn+1〈Yγn+1(un+1, xn), xn − x⋆〉

− 2γn+1〈b(un+1, xn), xn − x⋆〉+ γ2n+1‖b(un+1, xn) + Yγn+1(un+1, xn)‖
2.

Thanks to Assumption 2, we can choose ϕ ∈ S2
A(·,x⋆)

and ψ ∈ S1
B(·,x⋆)

such

that 0 =
∫

(ϕ + ψ)dµ. Writing u = un+1, γ = γn+1, Yγ = Yγn+1(un+1, xn),
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Jγ = Jγn+1(un+1, xn−γn+1b(un+1, xn)), and b = b(un+1, xn) for conciseness,
and recalling that Yγ = (x− γb− Jγ)/γ, we write

〈Yγ , xn − x⋆〉 = 〈Yγ − ϕ(u), Jγ − x⋆〉+ γ〈Yγ − ϕ(u), Yγ〉+ γ〈Yγ − ϕ(u), b〉

+ 〈ϕ(u), xn − x⋆〉

≥ γ‖Yγ‖
2 − γ〈ϕ(u), Yγ 〉+ γ〈Yγ − ϕ(u), b〉 + 〈ϕ(u), xn − x⋆〉,

since Yγ ∈ A(u, Jγ) and A(ξ, ·) is monotone. By the monotonicity of B(ξ, ·),
we also have 〈b, xn − x⋆〉 ≥ 〈ψ(u), xn − x⋆〉. By expanding γ2‖b+ Yγ‖

2, we
obtain altogether

‖xn+1 − x⋆‖
2 ≤ ‖xn − x⋆‖

2 − γ2‖Yγ‖
2 + 2γ2〈ϕ(u), Yγ 〉+ 2γ2〈ϕ(u), b〉

+ γ2‖b‖2 − 2γ〈ϕ(u) + ψ(u), xn − x⋆〉

≤ ‖xn − x⋆‖
2 − γ2(1− β−1)‖Yγ‖

2 + γ2(1 + β−1)‖b‖2

+ 2γ2β‖ϕ(u)‖2 − 2γ〈ϕ(u) + ψ(u), xn − x⋆〉 , (12)

where we used the inequality |〈a, b〉| ≤ (β/2)‖a‖2 + ‖b‖2/(2β), where β > 0
is arbitrary. By Assumption 6,

En‖b‖
2 ≤ C(1 + ‖xn‖

2) ≤ 2C(1 + ‖x⋆‖
2 + ‖xn − x⋆‖

2)

for some (other) constant C. Moreover En〈ϕ(u)+ψ(u), xn −x⋆〉 = 0. Thus,

En‖xn+1 − x⋆‖
2 ≤ (1 + Cγ2n+1)‖xn − x⋆‖

2

− γ2n+1(1− β−1)

∫

‖Yγn+1(ξ, xn)‖
2µ(dξ) + Cγ2n+1.

Choose β > 1. Using the Robbins-Siegmund Lemma [41] along with (γn) ∈
ℓ2, the conclusion follows.

Remark 1. This proposition calls for some comments. In the standard
forward-backward algorithm described in the introduction of this paper, the
operators A and B are both deterministic, and B is a single-valued operator
satisfying a so-called cocoercivity property. In these conditions, the itera-
tion (1) belongs to the class of the so-called Krasnosel’skĭı-Mann iterations,
provided the fixed step size γ is chosen small enough [11]. A well known
property of these iterations is that the sequence (xn) is Fejér monotone with
respect to Z(A + B). Specifically, for all x⋆ ∈ Z(A + B), (‖xn − x⋆‖) is de-
creasing. In our situation, the forward operators B(ξ, ·) are not required to
be single-valued. On the other hand, Assumptions 2 and 6 are needed along
with the fact that (γn) ∈ ℓ2. Instead of the Fejér monotonicity, we obtain
the weaker result given by Proposition 6.1-3.

The following lemma provides a moment control over the iterates xn.

20



Lemma 6.1. Let Assumptions 2 and 6 in the statement of Theorem 3.1
hold true. Then, supn E‖xn‖

2p <∞.

Proof. We shall establish the result by recurrence over p. Proposition 6.1
shows that it holds for p = 1. Assume that it holds for p − 1. Using
Assumption 2, choose ϕ ∈ S2p

A( . ,x⋆)
and ψ ∈ S2p

B( . ,x⋆)
such that 0 =

∫

(ϕ +

ψ)dµ. Inequality (12) shows that for some constant C > 0,

‖xn+1 − x⋆‖
2 ≤ ‖xn − x⋆‖

2 − 2γn+1〈ϕ(un+1) + ψ(un+1), xn − x⋆〉

+Cγ2n+1(‖ϕ(un+1)‖
2 + ‖b(un+1, xn)‖

2) .

Raising both sides to the power p then taking their expectations, we obtain

E‖xn+1 − x⋆‖
2p ≤

∑

k1+k2+k3=p

p!

k1!k2!k3!
Ck2(−2)k3γ2k2+k3

n+1 T (k1,k2,k3)
n , (13)

where we set for every ~k = (k1, k2, k3),

T
~k
n = E

[

‖xn − x⋆‖
2k1 × (‖ϕ(un+1)‖

2 + ‖b(un+1, xn)‖
2)k2

× 〈ϕ(un+1) + ψ(un+1), xn − x⋆〉
k3
]

.

We can make the following observations:

• By choosing k2 = k3 = 0, we observe that E‖xn+1−x⋆‖
2p is no greater

than E‖xn − x⋆‖
2p plus some additional terms involving only smaller

powers of ‖xn − x⋆‖.

• The term corresponding to (k1, k2, k3) = (p−1, 0, 1) is zero since un+1

and σ(u1, . . . , un) are independent and En〈ϕ(un+1) + ψ(un+1), xn −
x⋆〉 = 0. This implies that any term in the sum except E‖xn − x⋆‖

2p

is multiplied by γn+1, raised to a power greater than 2.

• Consider the case (k1, k2, k3) 6= (p− 1, 0, 1) and (k1, k2, k3) 6= (p, 0, 0).
Using Jensen’s inequality and the inequality xkyℓ ≤ xk+ℓ + yk+ℓ for
non-negative x, y, k and ℓ, we get

|T
~k
n | ≤ E

[

‖xn − x⋆‖
2k1+k3 × (‖ϕ(un+1)‖

2 + ‖b(un+1, xn)‖
2)k2

× ‖ϕ(un+1) + ψ(un+1)‖
k3
]

≤ CE

[

‖xn − x⋆‖
2k1+k3 × (‖ϕ(un+1)‖

2k2 + ‖b(un+1, xn)‖
2k2)

× (‖ϕ(un+1)‖
k3 + ‖ψ(un+1)‖

k3)
]

≤ CE

[

‖xn − x⋆‖
2k1+k3‖b(un+1, xn)‖

2k2+k3
]

+ CE

[

‖xn − x⋆‖
2k1+k3

]

E

[

‖ϕ(un+1)‖
2k2+k3 + ‖ψ(un+1)‖

2k2+k3
]

.
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By conditioning on σ(u1, . . . , un) and by using Assumption 6, we get

E

[

‖xn − x⋆‖
2k1+k3‖b(un+1, xn)‖

2k2+k3
]

≤ CE

[

‖xn − x⋆‖
2k1+k3(1 + ‖xn‖

2k2+k3)
]

≤ C(E‖xn − x⋆‖
2p + 1).

Noting that 2k1 + k3 ≤ 2(p− 1), we get that E‖xn−x⋆‖
2k1+k3 < C by

the induction hypothesis. Since 2k2 + k3 ≤ 2p and since ϕ and ψ are

2p-integrable selections, it follows that |T
~k
n | ≤ C(1 + E‖xn − x⋆‖

2p).
Note also that in the considered case, one has 2k2 + k3 ≥ 2, which

implies that all terms T
~k
n are multiplied by γ2n+1.

In conclusion, we obtain that

E‖xn+1 − x⋆‖
2p ≤ E(1 + Cγ2n+1)‖xn − x⋆‖

2p + Cγ2n+1

for some constant C > 0. Starting from n = 0 and iterating, we obtain that
supn E‖xn − x⋆‖

2p <∞.

We now need to control the distances to D of the iterates xn. Let us
start with an easy technical result, whose proof is left to the reader.

Lemma 6.2. For any ε > 0, there exist C(ε) > 0 and C ′(ε) > 0 such that

for any vectors x, y ∈ R
N ,

‖x+y‖2 ≤ (1+ε)‖x‖2+C(ε)‖y‖2, and ‖x+y‖4 ≤ (1+ε)‖x‖4+C ′(ε)‖y‖4.

Proposition 6.2. Let Assumptions 2, 4, 5, and 6 of Theorem 3.1 hold

true. Then, d(xn) tends a.s. to zero. Moreover, for every ω in a probability

one set, there exists c(ω) > 0 and a positive sequence (cm(ω))m∈N converging

to zero such that for every integer n and every integer m such that n ≥ m,

n
∑

k=m

d(xk)
2

γk
≤ cm(ω) + c(ω)

n
∑

k=m

γk .

Proof. We start by writing xn+1 = Π(un+1, xn) + γn+1δn+1, where

δn+1 =
Jγn+1(un+1, xn − γn+1b(un+1, xn))−Π(un+1, xn)

γn+1
.

Upon noting that Jγ(ξ, . ) is non-expansive for every ξ,

‖δn+1‖ ≤ ‖b(un+1, xn)‖+
‖Jγn+1(un+1, xn)−Π(un+1, xn)‖

γn+1
.

Using Assumptions 5 and 6, we have

En‖δn+1‖
4 = 4

∫

‖b(ξ, xn)‖
4µ(dξ) + 4γ−4

n+1

∫

‖Jγn+1(ξ, xn)−Π(ξ, xn)‖
4µ(dξ)

≤ C(1 + ‖xn‖
2p).
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Therefore, by Proposition 6.1-1., there exists a non-negative c1(ω), which is
a.s. finite and satisfies En‖δn+1‖

4 ≤ c1(ω) almost surely. By Lemma 6.1, it
also holds that supn E‖δn‖

4 <∞.
Consider an arbitrary point u ∈ cl(D). For any ε > 0, by Lemma 6.2, we
have

‖xn+1 − u‖2 ≤ (1 + ε)‖Π(un+1, xn)− u‖2 + γ2n+1C‖δn+1‖
2.

Since Π(un+1, ·) is firmly non-expansive as the projector onto a closed and
convex set, we have

‖Π(un+1, xn)− u‖2 ≤ ‖xn − u‖2 − ‖Π(un+1, xn)− xn‖
2.

Taking u = Π(xn), we obtain

d(xn+1)
2 ≤ ‖xn+1 −Π(xn)‖

2

≤ (1 + ε)(d(xn)
2 − d(un+1, xn)

2) + Cγ2n+1‖δn+1‖
2.

Taking the conditional expectation En at both sides of this inequality, us-
ing Assumption 4 and choosing ε small enough, we obtain the inequality
End

2(xn+1) ≤ ρd2(xn) + γ2n+1CEn‖δn+1‖
2, where ρ ∈ [0, 1[. It implies that

d
2(xn) tends to zero by the Robbins-Siegmund Theorem [41]. Moreover,

setting ∆n = d(xn)
2/γn and using the fact that γn/γn+1 → 1, we obtain

that
En∆n+1 ≤ ρ∆n + γn+1CEn‖δn+1‖

2

for n larger than some n0.
By Lemma 6.2 and the firm non-expansiveness of Π(un+1, ·), we also have

‖xn+1 − u‖4 ≤ (1 + ε)‖Π(un+1, xn)− u‖4 + γ4n+1C‖δn+1‖
4

≤ (1 + ε)(‖xn − u‖2 − ‖Π(un+1, xn)− xn‖
2)2 + γ4n+1C‖δn+1‖

4.
(14)

We also set u = Π(xn) and apply the operator En at both sides of this
inequality. By Assumption 4, we have
∫

(d(x)2 − d(ξ, x)2)2µ(dξ) = d(x)4 +

∫

d(ξ, x)4µ(dξ)− 2d(x)2
∫

d(ξ, x)2µ(dξ)

≤ d(x)4 − d(x)2
∫

d(ξ, x)2µ(dξ) ≤ (1− C)d(x)4

since d(ξ, x) ≤ d(x). Integrating (14), we obtain

End
4(xn+1) ≤ ρd4(xn) + γ4n+1CEn‖δn+1‖

4 ,

where ρ ∈ [0, 1[, hence En∆
2
n+1 ≤ ρ∆2

n + γ2nCEn‖δn+1‖
4 for n larger than

some n0. Taking the expectation at each side, iterating, and using the
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boundedness of (E‖δn‖
4), we obtain that E∆2

n ≤ C(ρn +
∑n

k=1 γ
2
kρ

n−k).
Therefore,

∞
∑

n=0

E∆2
n ≤ C

(

1 +
∞
∑

n=0

γ2n

)

<∞.

Consequently, ∆n → 0 almost surely. Moreover, the martingale

Yn =

n
∑

k=1

(∆k − Ek−1∆k)

converges almost surely and in L2(Ω,F ,P;R). Letting Dn
m =

∑n
k=m+1∆k,

where m and n are any two integers such that 0 < m < n, we can write

Dn
m =

n
∑

k=m+1

Ek−1∆k + Yn − Ym

≤ ρ
n−1
∑

k=m

(∆k + Cγk+1Ek‖δk+1‖
2) + Yn − Ym

≤ ρ∆m + ρDn
m + ρC

√

c1(ω)
n
∑

k=m+1

γk + Yn − Ym.

To conclude, we have

Dn
m ≤

ρ

1− ρ
∆m +

Yn − Ym
1− ρ

+
ρC
√

c1(ω)

1− ρ

n
∑

k=m+1

γk .

Since ∆m → 0, and since (Yn(ω))n∈N is almost surely a Cauchy sequence,
we obtain the desired result.

Lemma 6.3. Let Assumptions 3 and 6 hold true. For any compact set K,

there exists a constant C > 0 and ε ∈]0, 1] such that for all x ∈ K and all

γ > 0,

‖hγ(x)‖ ≤ C + 2
d(x)

γ
,

and moreover,

∫

(‖Yγ(ξ, x)‖
2 + ‖b(ξ, x)‖2)

1+ε

2 µ(dξ) ≤ C

[

1 +

(

d(x)

γ

)1+ε
]

.

Proof. Set x ∈ K, and introduce some x̃ ∈ D such that ‖x − x̃‖ ≤ 2d(x).
Relying on the fact that Aγ(ξ, . ) is

1
γ -Lipschitz continuous,

‖Yγ(ξ, x)‖ ≤ ‖Aγ(ξ, x̃)‖+
1

γ
‖x− γb(ξ, x) − x̃‖

≤ ‖A0(ξ, x̃)‖+ ‖b(ξ, x)‖ + 2
d(x)

γ
.
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Therefore,

‖hγ(x)‖ ≤

∫

‖A0(ξ, x̃)‖µ(dξ) + 2

∫

‖b(ξ, x)‖µ(dξ) + 2
d(x)

γ
.

The first two terms are independent of γ and, by Assumptions 3 and 6, are
bounded functions of x on the compact K. This proves the first statement
of the Lemma. Let ε = ε(K) be the exponent defined in Assumption 3.
There exists a constant C such that

(‖Yγ(ξ, x)‖
2 + ‖b(ξ, x)‖2)

1+ε

2

≤ C(‖Yγ(ξ, x)‖
1+ε + ‖b(ξ, x)‖1+ε)

≤ C
((

‖A0(ξ, x̃)‖+ ‖b(ξ, x)‖ + 2
d(x)

γ

)1+ε
+ ‖b(ξ, x)‖1+ε

)

≤ C ′
(

2ε‖A0(ξ, x̃)‖
1+ε + 21+2ε‖b(ξ, x)‖1+ε + 21+3ε

(

d(x)

γ

)1+ε)

.

By Assumption 6 and since
∫

‖b(ξ, x)‖1+εµ(dξ) ≤ 1+
∫

‖b(ξ, x)‖2µ(dξ), there
exists some (other) constant C such that

∫

(‖Yγ(ξ, x)‖
2 + ‖b(ξ, x)‖2)

1+ε

2 µ(dξ)

≤ C
(

∫

‖A0(ξ, x̃)‖
1+εµ(dξ) + 1 + ‖x‖2 +

(

d(x)

γ

)1+ε)

.

The proof is concluded using Assumption 3.

End of the Proof of Theorem 3.1

Recall (10). Given an arbitrary real number T > 0, we shall study the
asymptotic behavior of the family of functions {x(τn+·)}n∈N on the compact
interval [0, T ].

Given δ > 0, we have ‖H(t + δ) −H(t)‖ ≤
∫ t+δ
t ‖hγr(s)+1

(xr(s))‖ds. By
Proposition 6.1-1, the sequence (xn) is bounded a.s. Thus, by Lemma 6.3,
there exists a constant c1 = c1(ω) such that for almost every ω,

‖H(t+ δ) −H(t)‖ ≤ c1δ + 2

∫ t+δ

t

d(xr(s))

γr(s)+1
ds

≤ c1δ +

∫ t+δ

t

(

1 +
d(xr(s))

2

γ2r(s)+1

)

ds

= (c1 + 1)δ +

∫ t+δ

t

d(xr(s))
2

γ2r(s)+1

ds

≤ (c1 + c2 + 1)δ + e(t)
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for some e(t) →t→∞ 0, where the last inequality is due to Proposition 6.2.
We also observe from Proposition 6.1 and Assumption 6 that Mn is a mar-
tingale in L2(Ω,F ,P;RN ), that

E‖Mn‖
2 ≤ E

[

2

∞
∑

k=1

γ2k

∫

‖Yγk(ξ, xk)‖
2µ(dξ) + 2

∞
∑

k=1

γ2k

∫

‖b(ξ, xk)‖
2µ(dξ)

]

,

and that the right-hand side is finite. Hence, Mn converges almost surely.
Therefore, on a probability one set, the family of continuous time processes
(M(τn+·)−M(τn))n∈N converges to zero uniformly on R+. The consequence
of these observations is that on a probability one set, the family of processes
{zn( . )}n∈N, where zn(t) = x(τn+t), is equicontinuous. Specifically, for each
ε > 0, there exists δ > 0 such that

lim sup
n

sup
0≤t,s≤T,|t−s|≤δ

‖zn(t)− zn(s)‖ ≤ ε.

This family is moreover bounded by Proposition 6.1-1. By the Arzelà-Ascoli
theorem, it has an accumulation point for the uniform convergence on [0, T ],
for an arbitrary T > 0. From any sequence of integers, we can extract a
subsequence (which we still denote as (zn) with slight abuse), and a con-
tinuous function z(·) on [0, T ], such that (zn) converges to z uniformly on
[0, T ]. Hence, for t ∈ [0, T ],

z(t)− z(0) = − lim
n→∞

∫ t

0
hγr(τn+s)+1

(xr(τn+s)) ds

= − lim
n→∞

∫ t

0
ds

∫

Ξ
µ(dξ) (g(a)n (ξ, s) + g(b)n (ξ, s)) ,

where we set g
(a)
n (ξ, t) := Yγr(τn+s)+1

(ξ, xr(τn+s)) and g
(b)
n (ξ, t) := b(ξ, xr(τn+s)).

Define the mapping gn := (g
(a)
n , g

(b)
n ) on Ξ×[0, T ] → R

2N . Recalling that the
sequence (x̃n) belongs to a compact set, say K, let ε ∈]0, 1] be the exponent
defined in Lemma 6.3. By the same Lemma,

∫ T

0
ds

∫

Ξ
µ(dξ) ‖gn(ξ, s)‖

1+ε ≤ c
[

T +

∫ T

0

(d(xr(τn+s))

γr(τn+s)+1

)1+ε
ds
]

≤ c
[

T + T
1−ε

2

(

∫ T

0

d(xr(τn+s))
2

γ2r(τn+s)+1

ds
)

1+ε

2
]

≤ c1

for some constants c and c1. Therefore, the sequence of functions (gn)
is bounded in L1+ε(Ξ × [0, T ],T ⊗ B([0, T ]), µ ⊗ λ;R2N ), where λ is the
Lebesgue measure on [0, T ]. The statement extends to the sequence of func-
tions

(

Gn(ξ, t) = (gn(ξ, t), ‖g
(a)
n (ξ, t)‖, ‖g(b)n (ξ, t)‖)

)

n
,
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which is uniformly bounded in L1+ε(Ξ× [0, T ],T ⊗B([0, T ]), µ⊗λ;R2N+2).
We can extract from this sequence a subsequence that converges weakly in
this Banach space to a function F : Ξ × [0, T ] → R

2N+2. We decompose F
as F (ξ, t) = (f(ξ, t), κ(ξ, t), υ(ξ, t)), where κ, υ are real-valued, and where
f(ξ, t) = (f (a)(ξ, t), f (b)(ξ, t)) with f (a), f (b) : Ξ × [0, T ] → R

N . Using the

weak convergence (g
(a)
n , g

(b)
n )⇀ (f (a), f (b)), we obtain

z(t)− z(0) = −

∫ t

0
ds

(
∫

Ξ
f (a)(ξ, s)µ(dξ) +

∫

Ξ
f (b)(ξ, s)µ(dξ)

)

.

It remains to prove that for almost every t ∈ [0, T ], f (a)( . , t) ∈ A( . , z(t))
and f (b)( . , t) ∈ B( . , z(t)) µ-almost everywhere, along with z(0) ∈ cl(D).
This shows that indeed z(t) = Φ(z(0), t) for every t ∈ [0, T ], and it follows
that x(t) is a.s. an APT of the differential inclusion (6).

By Mazur’s theorem, there exists a function J : N → N and a sequence

of sets of weights ({αk,n, k = n . . . , J(n) : αk,n ≥ 0,
∑J(n)

k=n αk,n = 1})n such
that the sequence of functions defined by

Ḡn(ξ, s) =

J(n)
∑

k=n

αk,nGk(ξ, s)

converges strongly to F . In the same way, we define ḡn(ξ, s) :=
∑

k αk,n gk(ξ, s),

and similarly for ḡ
(a)
n , ḡ

(b)
n . Extracting a further subsequence, we obtain the

µ⊗ λ-almost everywhere convergence of Ḡn to F . By Fubini’s theorem, for
almost every t ∈ [0, T ], there exists a µ-negligible set such that for every ξ
outside this set, Ḡn(ξ, t) → F (ξ, t). From now on to the end of this proof,
we fix such a t ∈ [0, T ].

As d(xn) → 0, z(t) ∈ cl(D) (this holds in particular when t = 0, hence
z(0) ∈ cl(D)). Following the same arguments as in the proof of Proposi-
tion 3.1, it holds that z(t) ∈ cl(D(ξ)) for all ξ outside a µ-negligible set.

Define ηn(ξ) := Jγm+1(ξ, xm − γm+1b(ξ, xm))− z(t) + γm+1b(ξ, xm) with
m = r(τn + t). Using the same approach as in the proof of Proposition 3.1,
it can be shown that, as n → ∞, ηn( . ) tends to zero almost surely along
a subsequence. We now consider an arbitrary ξ outside a µ-negligible set,
such that ηn(ξ) → 0 and z(t) ∈ cl(D(ξ)).

Let (u, v) be an arbitrary element of A(ξ, ·). By the monotonicity of
A(ξ, ·),

〈v − Yγ(ξ, x), u− Jγ(ξ, x− γb(ξ, x))〉 ≥ 0 (∀x ∈ R
N , γ > 0) ,
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and we obtain

〈v − ḡ(a)n (ξ, t), u− z(t)〉 =

J(n)
∑

k=n

αk,n 〈v − g
(a)
k (ξ, t), u− z(t)〉

≥

J(n)
∑

k=n

αk,n 〈v − g
(a)
k (ξ, t), ηk(ξ, t)− γr(τk+t)+1b(ξ, xr(τk+t))〉

≥ −
(

‖v‖ +

J(n)
∑

k=n

αk,n ‖g
(a)
k (ξ, t)‖

)

sup
k≥n

(

‖ηk(ξ, t)‖+γr(τk+t)+1‖b(ξ, xr(τk+t))‖
)

.

The term enclosed in the first parenthesis of the above right-hand side con-
verges to ‖v‖+κ(ξ, t), while the supremum converges to zero using Assump-

tion 6. As ḡ
(a)
n (ξ, t) → f (a)(ξ, t), it follows that

〈v − f (a)(ξ, t), u− z(t)〉 ≥ 0 ,

and by the maximality of A(ξ, ·), it holds that f (a)(ξ, t) ∈ A(ξ, z(t)). The
proof that f (b)(ξ, t) ∈ B(ξ, z(t)) follows the same lines.

6.3 Proof of Corollary 3.1

The proof is based on the study of the family of empirical measures of a
process close to x(t). Using [8], we show that any accumulation point of this
family is an invariant measure for the flow Φ. The corollary is then obtained
by showing that the mean of such an invariant measure belongs to Z.

Let xn = Π(xn) be the projection of xn on cl(D), and write

x̄n =

∑n
k=1 γkxk
∑n

k=1 γk
.

Let x(ω, t) be the Ω × R+ → R
N process obtained from the piecewise

constant interpolation of the sequence (xn), namely x(ω, t) = xn for t ∈
[τn, τn+1[. On (Ω,F ,P), let (Ft) be the filtration generated by the process
obtained from the similar piecewise constant interpolation of (un). With re-
gard to this filtration, x is progressively measurable. It is moreover obvious
that x(ω, ·) is an APT for (6) for almost all values of ω. Let {νt(ω, ·)}t≥0

be the family of empirical measures of x(ω, ·). Observe from Theorem 3.1
that for almost all ω, there is a compact set K(ω) such that the support
supp(νt(ω, ·)) is included in K(ω) for all t ≥ 0, which shows that the family
{νt(ω, ·)}t≥0 is tight. Hence this family has accumulation points. Let ν be
the weak limit of (νtn) along some sequence (tn) of times. By [8, Th. 1], ν
is invariant for the flow Φ. Clearly, supp(ν) is a compact subset of cl(D).
Moreover, for any x ∈ supp(ν) and any t ≥ 0, Φ(x, t) ∈ supp(ν). Indeed,
suppose for the sake of contradiction that there exists t0 > 0 such that
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Φ(x, t0) 6∈ supp(ν). Then, Φ(B(x, ε) ∩ cl(D), t0) ⊂ supp(ν)c for some ε > 0
by the continuity of Φ and the closedness of supp(ν), where B(x, ε) is the
closed ball with centre x and radius ε. Since ν(Φ(B(x, ε)∩cl(D), 0)) > 0, we
obtain a contradiction. We also know from [42] or [20, Th. 5.3] that there
exists ϕ : cl(D) → Z such that

∀x ∈ cl(D),
1

t

∫ t

0
Φ(x, s) ds −−−→

t→∞
ϕ(x).

By the dominated convergence and Fubini’s theorems, we now have
∫

ϕ(x) ν(dx) =

∫

ν(dx) lim
t→∞

1

t

∫ t

0
dsΦ(x, s) = lim

t→∞

1

t

∫ t

0
ds

∫

ν(dx)Φ(x, s)

=

∫

x ν(dx) ,

which shows that
∫

x ν(dx) ∈ Z by the convexity of this set. Since we have
∫

x dνtn →
∫

x dν as n → ∞, we conclude that all the accumulation points
of (x̄n) belong to Z. On the other hand, since R2p(x⋆) 6= ∅ for each x⋆ ∈ Z,
a straightforward inspection of the proof of Proposition 6.1-3. shows that
(‖xn − x⋆‖) converges almost surely for each x⋆ ∈ Z. From these two facts,
we obtain by [32] or [20, Lm 4.2] that (x̄n) converges a.s. to a point of Z.
Since xn − xn → 0 a.s., the convergence of (x̄n) to the same point follows.

6.4 Proof of Corollary 3.2

Let us start with a preliminary lemma.

Lemma 6.4. Let A ∈ M be demipositive. Assume that the set zer(A) of

zeros of A is not empty. Let Ψ : cl(dom(A)) × R+ → cl(dom(A)) be the

semiflow associated to the differential inclusion ż(t) ∈ −A(z(t)). Then, any

ICT set of Ψ is included in zer(A).

Proof. Let K be an ICT set and let U be an arbitrary, bounded and open
set of RN such that K ∩U 6= ∅. Define Gt :=

⋃

s≥tΨ(U, s) for all t ≥ 0. For
any x∗ ∈ zer(A) and any x ∈ U ,

‖Ψ(x, t)‖ ≤ ‖Ψ(x, t) −Ψ(x∗, t)‖+ ‖x∗‖ ≤ ‖x− x∗‖+ ‖x∗‖ .

Therefore, G0 is a bounded set. By [4, Prop. 3.10], the set G =
⋂

t≥0 cl(Gt)
is an attractor for Ψ with a fundamental neighbourhood U . As K ∩ U 6=
∅, it follows that K ⊂ G by [17, Corollary 5.4]. We finally check that
G ⊂ zer(A). Let y ∈ G, that is, y = limk→∞Ψ(xk, tk) for some sequence
(xk, tk) such that xk ∈ U and tk → ∞. By compactness of cl(U), the
sequence xk can be chosen such that xk → x̄ for some x̄ ∈ cl(U). Therefore,
y = limk→∞Ψ(x̄, tk), which by demipositivity of A, implies y ∈ zer(A)
[9, 20].
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By Theorem 3.1 and the discussion of Section 2.4, L(x) is an ICT set.
Using Lemma 6.4 and the standing hypotheses, L(x) ⊂ Z. On the other
hand, since R2(x⋆) 6= ∅ for all x∗ ∈ Z, a straightforward inspection of the
proof of Proposition 6.1-3. shows that ‖xn−x∗‖ converges almost surely for
any of those x∗. By Opial’s lemma [20, Lm 4.1], we obtain the almost sure
convergence of (xn) to a point of Z.

6.5 Proof of Corollary 4.1

Define the probability distribution ζ :=
∑m

i=0 αiδi on {0, 1, . . . ,m}.
On the space X × {0, . . . ,m} equipped with the probability µ = ν ⊗ ζ,

let ξ = (η, i), and define the random operators A and B by

A(ξ, ·) :=

{

α−1
0 ∂xg(η, ·), if i = 0,
NCi , otherwise,

and B(ξ, ·) := ∂xf(η, ·).

The Aumann integral B(x) =
∫

∂f(η, x)dπ(η) coincides with ∂F (x) by [43]
(see also the discussion in Section 4.1). Similarly, A(x) = ∂(G(x) + ιC)(x).
The operator A is thus maximal. It holds that A+B = ∂(F +G+ιC), which
is maximal, demipositive, and whose zeros coincide with the minimizers of
F +G over C. The end of the proof consists in checking the assumptions of
Corollary 3.2. It follows the same line as [7] and is left to the reader.

7 Perspectives

Beyond the forward-backward algorithm, the concept of random maximal
monotone operators can be used to study stochastic versions of other popular
optimization algorithms that rely on the monotone operator theory. Our
next research direction is therefore to extend our approach to other kinds of
algorithms, such as the Douglas-Rachford algorithm, as a way to construct
new families of stochastic approximation algorithms. In this perspective,
the present paper may contain useful ingredients.

It would also be interesting to weaken the assumption that the “inno-
vation” (un) is an iid sequence. More involved random models are often
useful. Among those are the ones where the innovation is a Markov chain
controlled by the iterates. Such models are popular in the classical stochastic
approximation literature.

Another research direction includes the case where the step size of the
algorithm is constant. In this context, the APT property does not hold and
the iterates are no longer expected to converge a.s., due to the persistence
of the random effects. Tools from the weak convergence theory of stochastic
processes can be useful to address this setting.

Finally, we believe that our algorithm can be shown to be useful to
address several specific applications in the field of convex optimization and
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variational inequalities. An important aspect is to instanciate the algorithm
in practical scenarios related to machine learning, signal processing, or game
theory.

8 Conclusions

The question of providing stochastic versions of well-known deterministic
algorithms relying on maximal monotone operators has become increasingly
popular. In particular, several authors have studied the effects of additive
random errors on the behavior of the iterates, showing that the errors have
no effect on the limiting points, provided some adequate vanishing condition
of the former. The approach taken by this paper is conceptually different
in the sense that the operators themselves are assumed to be random. This
situation involves two key-ingredients. The first one is the Aumann expec-
tation of the random operators. The second one is the notion of asymptotic
pseudotrajectory, borrowed from Benäım and Hirsch, which is used to relate
the iterates to a continuous-time dynamical system.
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[10] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de con-
tractions dans les espaces de Hilbert. North-Holland mathematics stud-
ies. Elsevier Science, Burlington, MA (1973)

[11] Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone op-
erator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages
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