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Abstract

This paper deals with linear systems containing finitely many weak and/or
strict inequalities whose solution sets are referred to as evenly convex polyhedral
sets. The classical Motzkin Theorem states that every (closed convex) polyhe-
dron is the Minkowski sum of a convex hull of finitely many points and a finitely
generated cone. In this sense, similar representations for evenly convex polyhedra
have been recently given by using the standard version for classical polyhedra. In
this work, we provide a new dual tool that completely characterizes finite linear
systems containing strict inequalities and it constitutes the key for obtaining a
generalization of Motzkin Theorem for evenly convex polyhedra.
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1 Introduction

The solution sets of linear systems containing finitely many weak inequalities, the so-
called polyhedra, are one of the cornerstones of linear and quadratic programming and
because of this, they have been extensively studied last century (see, for instance,
[14, 15, 17, 22, 24] and references therein). Furthermore, polyhedra enjoy important
applications in formal methods [2, 3], combinatorial optimization [23], decision making
theory [20], and in other areas where linear programming play a central role. Thus,
the celebrated Farkas lemma [6], the most well-known theorem of the alternative which
characterizes the consequence relations of a finite homogeneous system by means of
the convex cone generated by the coefficient vectors of the system, is the fundamental
principle of the theory of linear inequality systems. The later extension of Farkas lemma
to nonhomogeneous linear systems is called Farkas-Minkowski theorem (see [25]).

Regarding solvability of finite linear inequality systems, Fourier proposed in 1897
a method (known as the Fourier-Motzkin elimination method) consisting of successive
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elimination of variables. A complete description of this method can be found in [16]
where systems are assumed to contain both weak and strict inequalities. A dual form of
the Fourier-Motzkin elimination method was used in [18] to show that every polyhedral
cone (the solution set of a finite homogeneous linear inequality system) is finitely
generated, that is, its elements are the nonnegative linear combinations of a finite set
of vectors. On the other hand, with the simpler version of that elimination method
for systems containing just weak inequalities, in [27] was proved that every finitely
generated cone is polyhedral. By using the same technique, it is also shown that
every polytope (the convex hull of a finite set of points) and every Minkowski sum of a
polytope and a finitely generated cone are also polyhedra.

Motzkin [19] proved that any polyhedron can be expressed as the Minkowski sum of
a polytope and a polyhedral cone. This result together with Minkowski and Weyl the-
orems provide the characterization of polyhedra as those sets which can be expressed
as the sum of a polytope and a finitely generated cone. Thus, a polyhedron can be
described by using either a finite linear system of weak inequalities (external represen-
tation) or by using a system of generating points and rays (internal representation)
in which any point of the polyhedron is obtained as the sum of a convex combination
of the generating points and a nonnegative combination of the generating rays. These
two ways of representing a polyhedron are dual in the sense that each representation
can be computed starting from the other one, and the conversion procedure is called
the double description method. That double representation is very useful in order to
establish the main basic operations on the family of polyhedra. Thus, to obtain the in-
tersection of two polyhedron, the best representation is the external one while internal
representations are more suitable for computing the sum of two polyhedra.

Zhu [30] provided a characterization of the consistency for a linear system containing
an arbitrary number (possibly infinite) of weak inequalities in terms of the so-called
characteristic cone. In the particular case of finite systems, the characteristic cone is
a finitely generated cone depending on the coefficient vectors of the system and it can
be considered as a dual representation for the solution set of that system. Moreover,
this cone allowed to reformulate Farkas-Minkowski theorem, to simplify the procedure
for obtaining an internal representation of a polyhedron from an external one (see [9]),
and to characterize the set containment of polyhedra (see [8]).

In this work we deal with finite linear systems containing strict inequalities. These
kind of systems were already considered by Fourier and Motzkin in their elimination
method. Some results, presented as alternative theorems, were obtained in the late 19th
and early 20th centuries. Regarding their solution sets, [7] introduced the concept
of evenly convex set to refer to a set which is the intersection of a family (possibly
infinite) of open halfspaces and, since any closed halfspace is an intersection of infinitely
many open halfspaces, evenly convex sets can be considered as the solution sets of
linear systems containing an arbitrary number of either weak or strict inequalities (see
[10, 12]). Inspired by this definition, we will say that a set is an evenly convex polyhedral
set (e-polyhedron, in brief) if it is the intersection of finitely many closed and/or open
halfspaces. Clearly, the family of e-polyhedra contains the family of (closed convex)
polyhedra, and it is contained in the family of evenly convex sets.

The notion of e-polyhedra has appeared in the literature with other names. Thus,
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this family was introduced as wholefaced polyhedra in [26], copolyhedra in [13], not
necessarily closed (NNC, in brief) convex polyhedra in [1], G-polyhedra in [29] and
semiclosed polyhedra in [28]. In all those papers, e-polyhedra were defined by means
of their external representations, that is, as the solution sets of finite linear systems
possibly containing strict inequalities. The family of e-polyhedra play an important
role, for instance, in the study of piecewise linear programs: [28] proved that the Pareto
solution set of a piecewise linear multiobjective optimization problem is the union of
finitely many e-polyhedra. By exploiting the fact that an e-polyhedron is obtained
by removing some faces from a polyhedron, [5] obtained an internal representation for
e-polyhedra which was applied to show that the image of an e-polyhedron under a
continuous function is always an e-polyhedron, and to study sensitivity in a piecewise
linear program with possible discontinuity [4].

A different internal representation for e-polyhedra was recently given by [1] related
to the field of automatic analysis and verification of hardware and software systems
(see [2] for a survey of applications of polyhedral computations in this area). In par-
ticular, [3] began to develop a library of polyhedral algorithms for the manipulation
of both polyhedra and e-polyhedra using the double description method, the so-called
Parma Polyhedra Library. The significance of having an internal representation relies
on the fact that the ability to switch from one to another representation can be usefully
exploited to provide simple implementations for the basic operations on e-polyhedra.
The internal representation for e-polyhedra provided in [1] was obtained by using an
indirect proof based on the standard version of Motzkin theorem. Thus, both repre-
sentations for e-polyhedra obtained in [1] and [5] were shown by using the well-know
internal representation for the subfamily of (closed convex) polyhedra.

Our key contributions are outlined as follows. We first introduce in Section 3 a
new dual cone, called extended characteristic cone, for analyzing finite linear systems
containing strict inequalities. By using this cone, we shall obtain extensions of Zhu
and Farkas-Minkowski theorems. Moreover, we recover some well-known Farkas-type
results and we study the role of this cone in the containment problem of e-polyhedra.
In Section 4, we use the properties of the extended characteristic cone in order to prove
extended versions of Weyl and Motzkin theorems recovering the internal representa-
tion for e-polyhedra given in [1]. Thus, as every polyhedron is an e-polyhedron, the
classical representation for polyhedra follows as a particular case. The given proofs
provide a direct method to obtain an internal representation of an e-polyhedron from
an external one, and vice versa. We conclude the paper by showing a minimal internal
representation of an e-polyhedron.

2 Preliminaries

We start by introducing the necessary notation and basic results to be used later.
Throughout the paper, the standard inner product of two vectors u, v ∈ Rn will be
denoted by 〈u, v〉. We also denote by 0n, Rn

+ and Rn
++, the zero vector, the nonnegative

orthant and the positive orthant in Rn, respectively. Given a nonempty set X ⊂ Rn,
we denote by spanX, clX, rintX, convX and coneX the linear subspace of Rn
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spanned by X, the closure of X, the relative interior of X, the convex hull of X
and the convex cone generated by X and the origin, respectively. Moreover, we define
span ∅ = cone ∅ = {0n}. If X is a nonempty finite set, then it is said that convX is a
polytope and coneX is a finitely generated cone. Recall that a polyhedron is the solution
set of a linear inequality system containing a finite number of weak inequalities, and so
every polyhedron is a closed convex set. Thus, a set is a polytope if and only if it is a
bounded polyhedron. Polyhedra that are also cones are referred to as polyhedral cones
and they are intersections of finite families of closed halfspaces containing the origin in
their boundaries. The following result is the classical Minkowski-Weyl Theorem.

Lemma 2.1 A cone is polyhedral if and only if it is finitely generated.

The Minkowski sum of X, Y ⊂ Rn is the set X + Y := {x + y : x ∈ X, y ∈ Y },
whereas the recession cone of a nonempty convex set X ⊂ Rn is

rec(X) := {d ∈ Rn : x+ td ∈ X for all t ≥ 0 and for all x ∈ X}.

The (negative) polar cone of a nonempty convex cone X ⊂ Rn is defined to be the set

X◦ := {v ∈ Rn : 〈v, x〉 ≤ 0 for all x ∈ X}.

Namely, if X is a nonempty finitely generated cone, say X = cone{d1, . . . , dm}, then
X◦ = {v ∈ Rn : 〈v, di〉 ≤ 0 for all i = 1, . . . ,m}, which is a polyhedral cone. Moreover,
as a consequence of the Farkas Lemma for cones, one has X◦◦ = X.

Given a nonempty convex set X ⊂ Rn, a subset C ⊂ X is said to be an exposed
face of X if there exists a ∈ Rn such that C = arg max{〈a, x〉 : x ∈ X}. Thus, the
exposed faces of X (except X itself and possibly the empty set) are the sets of the form
X ∩ H, where H is a nontrivial supporting hyperplane to X. If X ⊂ Rn is a convex
set such that its closure is a polyhedron, then all the faces of X are exposed. A face C
of a convex set X is minimal if there is no nonempty face D of X such that D ( C.

According to [7], a set is said to be evenly convex if it is the intersection of a family
(possibly infinite) of open halfspaces. Since any closed halfspace is the intersection of
infinitely many open halfspaces, a set is evenly convex if and only if it is the solution
set of a certain linear system containing an arbitrary number (possibly infinite) of both
weak and strict inequalities. From the geometric point of view, a nonempty convex set
X ⊂ Rn is evenly convex if and only if for every x ∈ Rn\X there exists a hyperplane
H such that x ∈ H and H ∩ X = ∅. Moreover, evenly convex sets can also be
characterized as those sets which are the result of eliminating from their closures the
union of a certain family of exposed faces. See [10] and [12] for a comprehensive review
on evenly convex sets. On the other hand, a convex set X is said to be wholefaced [19]
if for any x ∈ X and y ∈ clX one has [x, y[⊂ X. It is well-known (cf. [7]) that every
evenly convex set is wholefaced.

Dual cones for characterizing closed convex and evenly convex sets have been widely
studied in [8]. Thus, the weak dual cone of X ⊂ Rn is defined to be K≤ := {(a, b) ∈
Rn×R : 〈a, x〉 ≤ b, ∀x ∈ X}. Hence, if X is a nonempty closed convex set, the standard
hyperplane separation arguments yields X = {x ∈ Rn : 〈a, x〉 ≤ b, ∀(a, b) ∈ K≤}.
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Moreover, if Y ⊂ Rn is another nonempty closed convex set with associated weak dual
cone M≤, one has X ⊂ Y if and only if M≤ ⊂ K≤. Analogously, the strict dual cone
of X ⊂ Rn is defined to be K< := {(a, b) ∈ Rn × R : 〈a, x〉 < b, ∀x ∈ X}. Thus, if X
is a nonempty evenly convex set, its symmetric expression is now a direct consequence
of the characterization of the evenly convex sets by means of the strong separation
property from external points and so X = {x ∈ Rn : 〈a, x〉 < b, ∀(a, b) ∈ K<}.
Moreover, if Y ⊂ Rn is another nonempty evenly convex set with associated strict dual
cone M<, one has X ⊂ Y if and only if M< ⊂ K<.

3 Duality for finite linear inequality systems

We begin this section by introducing the notion of evenly convex polyhedral set which
is inspired by the definition of evenly convex set. As summarized in Section 1, this
notion has been differently referred to in the literature.

Definition 3.1 An evenly convex polyhedral set (e-polyhedron, in brief) in Rn is the
solution set of a linear inequality system containing a finite number of either weak or
strict inequalities. We shall denote by P the solution set of

σ := {〈at, x〉 ≤ bt, t ∈ W ; 〈at, x〉 < bt, t ∈ S}, (1)

where (at, bt) ∈ Rn × R for all t ∈ T := S ∪W , S ∩W = ∅ and |T | <∞.

Clearly, every (closed convex) polyhedron (whenever S = ∅) is an e-polyhedron,
and every open convex polyhedron (whenever W = ∅) is also an e-polyhedron. Fur-
thermore, every e-polyhedron is obviously an evenly convex set. We shall denote by P
the polyhedron which is the solution set of σ, the relaxed system associated to σ,

σ := {〈at, x〉 ≤ bt, t ∈ T}.

According to [10, Proposition 1.1], if P 6= ∅ then clP = P . The so-called characteristic
cone associated to σ is defined to be the finitely generated cone

K := cone{(at, bt), t ∈ T ; (0n, 1)},

which indeed coincides with the weak dual cone of P . The polar cone of K is denoted
by Fn+1 and it is given by

Fn+1 =

{
(x, y) ∈ Rn × R :

〈at, x〉+ bty ≤ 0, t ∈ T,
y ≤ 0

}
.

According to [10, Proposition 3.3], one has that if P 6= ∅, then

rec(P ) = rec(P ) = {d ∈ Rn : 〈at, d〉 ≤ 0, t ∈ T}

which is a polyhedral cone. As a consequence of Lemma 2.1, it is a finitely gener-
ated cone and so, rec(P ) = cone{d1, . . . , dr} for some extreme rays d1, . . . , dr ∈ Rn.
Moreover, if P 6= ∅, then P is bounded if and only if rec(P ) = {0n}.

Next we introduce a new dual cone for analyzing finite linear inequality systems.
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Definition 3.2 The extended characteristic cone associated to the system σ in (1) is
the finitely generated cone

K := cone {(at, bt, 0), t ∈ W ; (at, bt,−1), t ∈ S; (0n, 1,−1); (0n, 0, 1)} .

The polar cone of K is denoted by Fn+2 and it is given by

Fn+2 =

(x, y, z) ∈ Rn × R× R :

〈at, x〉+ bty ≤ 0, t ∈ W,
〈at, x〉+ bty − z ≤ 0, t ∈ S,

y − z ≤ 0,
z ≤ 0

 .

Next result establishes some relations between the extended characteristic cone of
a finite linear inequality system and the characteristic cone of its associated relaxed
system. For that purpose, we shall denote by π the projection into Rn+1 defined by
π(x, y, z) := (x, y) for every (x, y, z) ∈ Rn × R× R.

Lemma 3.3 The following statements hold:

(i) K × R+ ( K.

(ii) K ⊂ K × R.

(iii) K = π(K).

(iv) Fn+1 = π(Fn+2).

Proof. (i) Let (a, b, c) ∈ K × R+. As (a, b) ∈ K, there exist λt ≥ 0 for all t ∈ W ∪ S
and α ≥ 0 such that

(a, b) =
∑

t∈W∪S

λt(at, bt) + α(0n, 1).

By letting β := c+
∑

t∈S λt + α ≥ 0, one has

(a, b, c) =
∑
t∈W

λt(at, bt, 0) +
∑
t∈S

λt(at, bt,−1) + α(0n, 1,−1) + β(0n, 0, 1)

and so (a, b, c) ∈ K. Moreover, the inclusion is always strict since (0n, 1,−1) ∈ K but
(0n, 1,−1) /∈ K × R+.

Statement (ii) easily follows from the definitions of K and K.

(iii) Let (a, b) ∈ K. Statement (i) yields (a, b, c) ∈ K for all c ≥ 0, and so
(a, b) = π(a, b, c). Thus, K ⊂ π(K). The reverse inclusion easily follows from (ii).

(iv) If (x, y) ∈ Fn+1, then (x, y, 0) ∈ Fn+2. Conversely, if (x, y, z) ∈ Fn+2, one has
〈at, x〉 + bty ≤ 0 for all t ∈ W , 〈at, x〉 + bty ≤ 〈at, x〉 + bty − z ≤ 0 for all t ∈ S (as
z ≤ 0) and y ≤ z ≤ 0, and so (x, y) ∈ Fn+1. �

A straightforward consequence of the above lemma is that (a, b, 0) ∈ K if and only
if (a, b) ∈ K, which collapses to π(K) = π(K∩ (Rn+1×{0})). The inclusion in (ii) can
be strict as we can see in the following example:
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Example 3.4 Let consider the system σ = {−x1− x2 ≤ −2,−x1 + x2 < 0} in R2. By
solving the linear system

(−2,−1,−3,−1) = α(−1,−1,−2, 0) + β(−1, 1, 0,−1) + γ(0, 0, 1,−1) + µ(0, 0, 0, 1),

one has α = 3
2
, β = 1

2
, γ = 0 and µ = −1

2
< 0. This shows that (−2,−1,−3,−1) /∈ K.

However, one has (−2,−1,−3) ∈ K and so (−2,−1,−3,−1) ∈ K × R.

3.1 Existence of solutions

This section is devoted to characterize the consistency of finite linear systems containing
strict inequalities.

Lemma 3.5 Let P ⊂ Rn be the solution set of the system σ in (1). The following
statements hold:

(i) If P 6= ∅, then x ∈ P if and only if (x,−1, ε) ∈ Fn+2 for some ε ∈ [−1, 0[.

(ii) P = ∅ if and only if z = 0 for all (x, y, z) ∈ Fn+2.

Proof. (i) Assume that P 6= ∅ and let x ∈ P . This means that 〈at, x〉 − bt ≤ 0 for all
t ∈ W and 〈at, x〉− bt < 0 for all t ∈ S. If S = ∅, then it is clear that (x,−1, ε) ∈ Fn+2

for any ε ∈ [−1, 0[. Otherwise, if S 6= ∅, let rt := 〈at, x〉 − bt < 0 for every t ∈ S. Since
S is finite, then r := maxt∈S{rt} < 0. By choosing ε such that max{−1, r} ≤ ε < 0,
one has that

〈at, x〉 − bt − ε ≤ 〈at, x〉 − bt − r ≤ 〈at, x〉 − bt − rt = 0

for all t ∈ S, and so (x,−1, ε) ∈ Fn+2. The converse statement follows easily.

(ii) Now assume that z < 0 for some (x, y, z) ∈ Fn+2. As Fn+2 is a cone and y ≤
z < 0, then −y > 0 and so 1

−y (x, y, z) =
(
x
−y ,−1, z

−y

)
∈ Fn+2 with z

−y ∈ [−1, 0[. Then,

in virtue of (i), x
−y ∈ P and so P 6= ∅. The converse statement is a straightforward

consequence of (i). �

As a particular case, the above lemma holds true whenever S = ∅ in (1). Thus, we
recover the following result for finite linear systems containing only weak inequalities
(see [9, Lemma 3.2]).

Corollary 3.6 Let P ⊂ Rn be the solution set of system σ in (1) and assume that
S = ∅. The following statements hold:

(i) If P 6= ∅, then x ∈ P if and only if (x,−1) ∈ Fn+1.

(ii) P = ∅ if and only if y = 0 for all (x, y) ∈ Fn+1.
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Proof. (i) Assume that P 6= ∅ and let x ∈ P . Then, (x,−1) ∈ Fn+1 follows from
Lemma 3.5 (i) and Lemma 3.3 (iv). Conversely, if (x,−1) ∈ Fn+1, one has (x,−1, ε) ∈
Fn+2 for any ε ∈ [−1, 0[ as there are no strict inequalities, and so, by applying again
Lemma 3.5 (i), x ∈ P .

(ii) It is a straightforward consequence of (i). �

The main result in this section is a characterization of the consistency of a finite
linear system containing strict inequalities in terms of its associated extended charac-
teristic cone K introduced in Definition 3.2.

Theorem 3.7 Let σ be the system in (1). Then, σ is consistent if and only if (0n, 0,−1) /∈
K.

Proof. Firstly, assume that σ is consistent and let x ∈ P . By Lemma 3.5 (i), there
exists ε ∈ [−1, 0[ such that (x,−1, ε) ∈ Fn+2. If (0n, 0,−1) ∈ K = K◦◦ = F ◦n+2,
then 〈(0n, 0,−1), (x,−1, ε)〉 ≤ 0 which implies ε ≥ 0, and so, a contradiction. Thus,
(0n, 0,−1) /∈ K.

Conversely, if σ is inconsistent, that is, P = ∅, then z = 0 for all (x, y, z) ∈ Fn+2

according to Lemma 3.5 (ii). As 〈(0n, 0,−1), (x, y, z)〉 = 0 for all (x, y, z) ∈ Fn+2, one
has (0n, 0,−1) ∈ F ◦n+2 = K. �

Corollary 3.8 ([30, Theorem 1]) Let σ be the system in (1) and assume that S = ∅.
Then, σ is consistent if and only if (0n,−1) /∈ K.

Proof. According to Theorem 3.7, it will be enough to prove that (0n, 0,−1) ∈ K if
and only if (0n,−1) ∈ K.

On the one hand, if (0n,−1) ∈ K, then (0n,−1) =
∑

t∈W λt(at, bt) + α(0n, 1) for
some λt ≥ 0 for all t ∈ W and α ≥ 0. Hence, one has

(0n, 0,−1) =
∑
t∈W

λt(at, bt, 0) + (1 + α)(0n, 1,−1) + α(0n, 0, 1)

and so (0n, 0,−1) ∈ K. Conversely, if (0n, 0,−1) ∈ K, then one has

(0n, 0,−1) =
∑
t∈W

λt(at, bt, 0) + α(0n, 1,−1) + β(0n, 0, 1)

for some λt ≥ 0 for all t ∈ W , α ≥ 0 and β ≥ 0. As α = β + 1, one may write
(0n,−1) =

∑
t∈W λt(at, bt) + β(0n, 1) and so (0n,−1) ∈ K. �

The following result characterizing the consistency of finite linear inequality systems
is a reformulation of the characterization given in [10, Proposition 2.1] (in the finite
case) where conditions (3) and (4) there are summarized here in condition (2) below.

Corollary 3.9 Let σ be the system in (1). Then, σ is consistent if and only if

0n+1 /∈ conv{(at, bt), t ∈ S; (0n, 1)}+ cone{(at, bt), t ∈ W}. (2)
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Proof. According to Theorem 3.7, it will be enough to prove that (0n, 0,−1) ∈ K if
and only if (2) does not hold.

On the one hand, if (2) does not hold, then

(0n, 0) =
∑
t∈W

λt(at, bt) +
∑
t∈S

µt(at, bt) + α(0n, 1)

for some λt ≥ 0 for all t ∈ W , µt ≥ 0 for all t ∈ S, α ≥ 0 and
∑

t∈S µt + α = 1. Hence,
one has

(0n, 0,−1) =
∑
t∈W

λt(at, bt, 0) +
∑
t∈S

µt(at, bt,−1) + α(0n, 1,−1) + β(0n, 0, 1) (3)

with β = 0, and so (0n, 0,−1) ∈ K.
Conversely, if (0n, 0,−1) ∈ K, one has (3) for some λt ≥ 0 for all t ∈ W , µt ≥ 0

for all t ∈ S, α ≥ 0 and β ≥ 0. Then, it easily follows that
∑

t∈S µt + α = 1 + β ≥ 1.
Hence, we may write

(0n, 0,−1) =
∑
t∈W

λt
1 + β

(at, bt, 0) +
∑
t∈S

µt
1 + β

(at, bt,−1) +
α

1 + β
(0n, 1,−1)

which implies 0n+1 ∈ conv{(at, bt), t ∈ S; (0n, 1)}+ cone{(at, bt), t ∈ W}. �

The above corollary has important implications. Firstly, one has that, whenever
S = ∅, σ is consistent if and only if (0n,−1) /∈ cone{(at, bt), t ∈ W}, and this is indeed
equivalent to (0n,−1) /∈ K according to Corollary 3.8 (cf. [11, Lemma 4.1]). Secondly,
from this result it is easy to prove Motzkin transposition theorem [19]. And finally, we
recover in Corollary 3.10 Motzkin theorem for the consistency of homogeneous linear
systems containing strict inequalities (cf. [11, Theorem 3.5]).

Corollary 3.10 Let σ0 be the homogeneous system associated to σ in (1) obtained by
letting bt = 0 for all t ∈ T . Then, σ0 is consistent if and only if

0n /∈ conv{at, t ∈ S}+ cone{at, t ∈ W}. (4)

Proof. According to Corollary 3.9, σ0 is consistent if and only if

0n+1 /∈ conv{(at, 0), t ∈ S; (0n, 1)}+ cone{(at, 0), t ∈ W}. (5)

We just need to show that (4) and (5) are equivalent. If (4) holds, then clearly (5) also
holds. Conversely, if (4) fails, then 0n =

∑
t∈S µtat +

∑
t∈W λtat for certain µt ≥ 0 (for

all t ∈ S) and λt ≥ 0 (for all t ∈ W ) such that
∑

t∈S µt = 1. Thus, by letting α = 0
one has 0n+1 =

∑
t∈S µt(at, bt) + α(0n, 1) +

∑
t∈W λt(at, bt) and so, (5) also fails. �

3.2 Consequence relations

In this section we provide dual characterizations of linear inequalities which are con-
sequence of a consistent finite linear system containing strict inequalities in terms of
its associated extended characteristic cone. Thence, hereafter we shall assume that
(a, b) ∈ Rn × R and that σ in (1) is consistent.
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Proposition 3.11 Let σ be the system in (1). Then, 〈a, x〉 ≤ b is a consequence of σ
if and only if (a, b, 0) ∈ K.

Proof. Assume that (a, b, 0) ∈ K = F ◦n+2. Then, 〈(a, b, 0), (x, y, z)〉 ≤ 0 for all
(x, y, z) ∈ Fn+2. According to Lemma 3.5, for every x ∈ P there exists ε ∈ [−1, 0[ such
that (x,−1, ε) ∈ Fn+2. Hence, 〈(a, b, 0), (x,−1, ε)〉 ≤ 0 and so 〈a, x〉 ≤ b for all x ∈ P .

Now assume that 〈a, x〉 ≤ b is a consequence of σ. We shall prove that (a, b, 0) ∈
F ◦n+2. For that purpose, given (x, y, z) ∈ Fn+2, we distinguish two cases:

Case 1: y ≤ z < 0. It is easy to see that
(
x
−y ,−1, z

−y

)
∈ Fn+2 with −1 ≤ z

−y < 0,

and so x∗ := x
−y ∈ P . By hypothesis, one has 〈a, x∗〉 ≤ b, that is, 〈a, x〉+ by ≤ 0.

Case 2: y ≤ z = 0. Let x ∈ P and ε ∈ [−1, 0[ such that (x,−1, ε) ∈ Fn+2. Then,

(xλ, yλ, zλ) := (1− λ)(x, y, 0) + λ(x,−1, ε) ∈ Fn+2

for all λ ∈]0, 1[ since Fn+2 is convex. As yλ ≤ zλ < 0, the vector (xλ, yλ, zλ) ∈ Fn+2

corresponds to Case 1. Thus,

(1− λ)(〈a, x〉+ by) + λ(〈a, x〉 − b) = 〈a, xλ〉+ byλ ≤ 0

for all λ ∈]0, 1[. By taking limits when λ→ 0, one has 〈a, x〉+ by ≤ 0. �

Corollary 3.12 (Farkas-Minkowski Theorem) Let σ be the relaxed system of σ.
Then, 〈a, x〉 ≤ b is a consequence of σ if and only if (a, b) ∈ K.

Proof. It easily follows from the fact that 〈a, x〉 ≤ b is a consequence of σ if only if it
is a consequence of σ, and by applying Proposition 3.11 and Lemma 3.3 (iii). �

If we denote by K≤ the weak dual cone of P (the solution set of σ), then the above
results guarantee the identities

K≤ = {(a, b) ∈ Rn × R : (a, b, 0) ∈ K} = π(K ∩ (Rn+1 × {0})) = π(K) = K. (6)

Similarly to Proposition 3.11, next result characterizes the strict inequalities which
are consequence of the linear system σ.

Proposition 3.13 Let σ be the system in (1). Then, 〈a, x〉 < b is a consequence of σ
if and only if (a, b, c) ∈ K for some c < 0.

Proof. Assume that (a, b, c) ∈ K = F ◦n+2 for some c < 0. Then, 〈(a, b, c), (x, y, z)〉 ≤ 0
for all (x, y, z) ∈ Fn+2. Given x ∈ P , according to Lemma 3.5 there exists ε ∈ [−1, 0[
such that (x,−1, ε) ∈ Fn+2. Hence, 〈(a, b, c), (x,−1, ε)〉 ≤ 0 and so 〈a, x〉 − b+ cε ≤ 0.
As cε > 0, one has 〈a, x〉 − b < 0. Thus, 〈a, x〉 < b holds for all x ∈ P .

Now assume that 〈a, x〉 < b is a consequence of σ. This means that the linear
system σ ∪ {〈−a, x〉 ≤ −b} is inconsistent and so, by Theorem 3.7, (0n, 0,−1) belongs
to its associated extended characteristic cone, that is,

(0n, 0,−1) =
∑
t∈W

λt(at, bt, 0)+α(−a,−b, 0)+
∑
t∈S

µt(at, bt,−1)+β(0n, 1,−1)+γ(0n, 0, 1)
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for some λt ≥ 0 for all t ∈ W , µt ≥ 0 for all t ∈ S and α, β, γ ≥ 0. Since α > 0
(otherwise σ would be inconsistent), we may write

(a, b, −1
α

) =
∑
t∈W

λt
α

(at, bt, 0) +
∑
t∈S

µt
α

(at, bt,−1) + β
α

(0n, 1,−1) + γ
α

(0n, 0, 1)

Hence, (a, b, c) ∈ K with c := −1
α
< 0. �

Observe that, as stated in the proof of the above proposition, an inequality 〈a, x〉 < b
is a consequence of σ if and only if the system σ∪{〈−a, x〉 ≤ −b} is inconsistent. Thus,
by applying Corollary 3.9, one has that 〈a, x〉 < b is a consequence of σ if and only if

0n+1 ∈ conv{(at, bt), t ∈ S; (0n, 1)}+ cone{(at, bt), t ∈ W ;−(a, b)}.

If we denote by K< the strict dual cone of P , then Proposition 3.13 establishes

K< = {(a, b) ∈ Rn × R : (a, b, c) ∈ K for some c < 0} = π(K ∩ (Rn+1 × R−−)) (7)

where R−− stands for the set of negative real numbers.

The negative value c in Proposition 3.13 depends on each strict inequality and it is
not unique as (0n, 0, 1) ∈ rec(K). Thus, it follows that if (a, b,−1) ∈ K then 〈a, x〉 < b
is a consequence of σ, but the converse statement is not true in general as it is shown
in the following example.

Example 3.14 Let σ be the system in Example 3.4. The strict inequality −2x1−x2 <
−3 is a consequence of σ, but (−2,−1,−3,−1) /∈ K. Nevertheless, (−2,−1,−3,−1

2
) ∈

K and so the characterization in Proposition 3.13 holds.

Inspired by [16], a strict inequality 〈a, x〉 < b is said to be a legal linear combination
of σ if one can write

(a, b) =
∑
t∈W

λt(at, bt) +
∑
t∈S

µt(at, bt)

with λt ≥ 0 for all t ∈ W and µt ≥ 0 for all t ∈ S such that
∑

t∈S µt > 0.

Corollary 3.15 Let σ be the system in (1). Then, 〈a, x〉 < b is a consequence of σ if
and only if 〈a, x〉 < b is a legal linear combination of σ ∪ {〈0n, x〉 < 1}.

Proof. According to Proposition 3.13, it will be enough to prove that (a, b, c) ∈ K for
some c < 0 if and only if 〈a, x〉 < b is a legal linear combination of σ ∪ {〈0n, x〉 < 1}.

On the one hand, if (a, b, c) ∈ K for some c < 0, then

(a, b, c) =
∑
t∈W

λt(at, bt, 0) +
∑
t∈S

µt(at, bt,−1) + γ(0n, 1,−1) + α(0n, 0, 1)

with λt ≥ 0 for all t ∈ W , µt ≥ 0 for all t ∈ S, γ ≥ 0 and α ≥ 0. Hence, one has

(a, b) =
∑
t∈W

λt(at, bt) +
∑
t∈S

µt(at, bt) + γ(0n, 1)

11



with
∑

t∈S µt + γ ≥
∑

t∈S µt + γ − α = −c > 0 which means that 〈a, x〉 < b is a legal
linear combination of σ ∪ {〈0n, x〉 < 1}.

On the other hand, if 〈a, x〉 < b is a legal linear combination of σ ∪ {〈0n, x〉 < 1},
then one has

(a, b) =
∑
t∈W

λt(at, bt) +
∑
t∈S

µt(at, bt) + γ(0n, 1)

with λt ≥ 0 for all t ∈ W , µt ≥ 0 for all t ∈ S and γ ≥ 0 such that β :=
∑

t∈S µt+γ > 0.
Hence, one can write

(a, b, −β
2

) =
∑
t∈W

λt(at, bt, 0) +
∑
t∈S

µt(at, bt,−1) + γ(0n, 1,−1) + β
2
(0n, 0, 1).

Thus, (a, b, c) ∈ K with c := −β
2
< 0, and the conclusion follows. �

As a consequence of Proposition 3.13 we obtain the classical characterization of a
strict inequality which is a consequence of a consistent finite system containing only
weak inequalities (cf. [12, Proposition 1.2]).

Corollary 3.16 Let σ be the system in (1) and assume that S = ∅. Then, 〈a, x〉 < b
is a consequence of σ if and only if (a, b) ∈ K and (0n,−1) ∈ K + span{(a, b)}.

Proof. According to Proposition 3.13, it will be enough to prove that (a, b, c) ∈ K for
some c < 0 if and only if (a, b) ∈ K and (0n,−1) ∈ K + span{(a, b)}.

On the one hand, if (a, b, c) ∈ K for some c < 0, then

(a, b, c) =
∑
t∈W

λt(at, bt, 0) + α(0n, 1,−1) + β(0n, 0, 1)

for some λt ≥ 0 for all t ∈ W , α ≥ 0 and β ≥ 0. Clearly, one has (a, b) ∈ K and
c = −α + β < 0, which implies 0 ≤ β < α. Hence, we may write

(0n,−1, 0) =
∑
t∈W

λt
α

(at, bt, 0)− 1

α
(a, b, 0)

and so, (0n,−1) ∈ K + span{(a, b)}.
On the other hand, if (a, b) ∈ K and (0n,−1) ∈ K + span{(a, b)}, then one has

(0n,−1) =
∑
t∈W

λt(at, bt) + α(0n, 1) + β(a, b)

for some λt ≥ 0 for all t ∈ W , α ≥ 0 and β ∈ R. If β = 0 then (0n,−1) ∈ K and σ
would be inconsistent. If β > 0, as (a, b) ∈ K, we obtain (0n,−1) ∈ K again. Hence,
β < 0 and, by letting c := 1+α

β
< 0 and γ := 0, one has

(a, b, c) =
∑
t∈W

λt
−β

(at, bt, 0) +
1 + α

−β
(0n, 1,−1) + γ(0n, 0, 1)

and the conclusion follows. �
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3.3 Set containments

As every e-polyhedron is an evenly convex set, one may apply the dual characterization
stated in [8] to the set containment of e-polyhedra by means of their strict dual cones.
Furthermore, if an external representation of an e-polyhedron is known, its strict dual
cone can be obtained through its extended characteristic cone in virtue of (7).

Proposition 3.17 Let Pi ⊂ Rn be the solution set of the consistent finite system

σi = {〈ait, x〉 ≤ bit, t ∈ Wi; 〈ait, x〉 < bit, t ∈ Si} (8)

whose extended characteristic cone is Ki, for i = 1, 2. Then, P1 ⊂ P2 if and only if
K<

2 ⊂ K<
1 , where K<

i = π(Ki ∩ (Rn+1 × R−−)).

The above characterization fails if the strict dual cone is replaced by the weak dual
cone as e-polyhedra are not necessarily closed. Indeed, if K≤i is the weak dual cone
of Pi, i = 1, 2, then K≤2 ⊂ K≤1 is a necessary (but not sufficient) condition for the set
containment P1 ⊂ P2.

Since the external representation of an e-polyhedron contains a finite number of
both weak and strict inequalities, one wonders whether the extended characteristic
cone associated to such a representation, which contains full information of both weak
and strict dual cones, characterizes the containment of e-polyhedra.

Proposition 3.18 (Sufficient condition) Let Pi ⊂ Rn be the solution set of the
consistent finite system σi in (8) whose extended characteristic cone is Ki, i = 1, 2. If
K2 ⊂ K1, then P1 ⊂ P2.

Proof. Let x ∈ P1. By Lemma 3.5, one has (x,−1, ε) ∈ K◦1 for some ε ∈ [−1, 0[. As
K2 ⊂ K1, then K◦1 ⊂ K◦2. Hence, (x,−1, ε) ∈ K◦2 and so x ∈ P2 by applying again
Lemma 3.5. �

The converse statement does not hold in general as we illustrate in the next example.

Example 3.19 Let consider the systems σ1 = {−x1 − x2 ≤ −2,−x1 + x2 < 0}
and σ2 = {−2x1 − x2 < −3} in R2. One has that P1 ⊂ P2, however K2 * K1 as
(−2,−1,−3,−1) ∈ K2\K1 (see Example 3.14).

The fact that the extended characteristic cone does not characterize the set contain-
ment of e-polyhedra relies on its definition. In contrast with the characteristic cone of
a polyhedron, which does not depend on its external representation, the extended char-
acteristic cone depends on the finite linear inequality system defining an e-polyhedron.
Hence, a given e-polyhedron can be written as the solution set of two different finite
linear inequality systems and their associated extended characteristic cones may not
coincide. Thus, if σ in (1) is an external representation of an e-polyhedron P , we
observe that if we replace a weak inequality 〈a, x〉 ≤ b in σ by the equivalent one
〈αa, x〉 ≤ αb (with α > 0), then the extended characteristic cone does not change as
(a, b, 0) ∈ K if and only if (αa, αb, 0) ∈ K. However, if we replace a strict inequality
〈a, x〉 < b in σ by the equivalent one 〈αa, x〉 < αb (with α > 0), then the extended
characteristic cone may change as (αa, αb,−1) does not necessarily belong to K. Next
result provides more details on the extended characteristic cones of equivalent systems.
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Lemma 3.20 Let σ be the system in (1). Let σ? be the system σ where the strict
inequalities of indices in S? ⊂ S have been equivalently replaced by 〈αtat, x〉 < αtbt
for certain αt > 0 for all t ∈ S?. Let K and K? be the extended characteristic cones
associated to σ and σ?, respectively. The following statements hold:

(i) If αt > 1 for all t ∈ S?, then K? ⊂ K.

(ii) If αt < 1 for all t ∈ S?, then K ⊂ K?.

Proof. (i) One has that K? is the cone finitely generated by

{(at, bt, 0), t ∈ W ; (at, bt,−1), t ∈ S\S?; (αtat, αtbt,−1), t ∈ S?; (0n, 1,−1); (0n, 0, 1)}.

Hence, it will be enough to prove that (αtat, αtbt,−1) ∈ K for all t ∈ S?. Given t ∈ S?,
as αt > 1, one may write

(αtat, αtbt,−1) = αt(at, bt,
−1

αt
) = αt(at, bt,−1) + (αt − 1)(0n, 0, 1)

and so (αtat, αtbt,−1) ∈ K.

(ii) It is a straightforward consequence of (i) by interchanging the role of systems
σ and σ?. �

Thus, given a finite linear system, we may obtain easily an equivalent system such
that its extended characteristic cone is either a contraction or an enlargement of the
one associated to the original system. Nevertheless, all the properties of e-polyhedra
studied in this section, as equations (6) and (7), for instance, hold for any external
representation chosen.

Next we provide two necessary conditions for the containment of e-polyhedra in
terms of our new dual cone.

Proposition 3.21 (Necessary conditions) Let Pi ⊂ Rn be the solution set of the
consistent finite system σi in (8) whose extended characteristic cone is Ki, for i = 1, 2.
If P1 ⊂ P2, then the following statements hold:

(i) K?2 ⊂ K1 for some external representation σ?2 of P2 with extended characteristic
cone K?2. Moreover, one has K?2 ⊂ K2.

(ii) K2 ⊂ K?1 where K?1 is the extended characteristic cone associated to the external
representation of P1 given by σ?1 := σ1 ∪ σ2.

Proof. (i) If P1 ⊂ P2, then every inequality in σ2 is consequence of σ1.
On the one hand, given t ∈ W2, as 〈a2t , x〉 ≤ b2t is a consequence of σ1 then

(a2t , b
2
t , 0) ∈ K1 in virtue of Proposition 3.11. On the other hand, given t ∈ S2, as

〈a2t , x〉 < b2t is a consequence of σ1 then (a2t , b
2
t , ct) ∈ K1 for some ct < 0 in virtue of

Proposition 3.13. Let S?2 be the set of indices t ∈ S2 such that (a2t , b
2
t , ct) ∈ K1 for some

−1 < ct < 0. We now distinguish two cases.
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• If t ∈ S2\S?2 , then (a2t , b
2
t , ct) ∈ K1 for some ct ≤ −1. As (0n, 0, 1) ∈ rec(K1), one

has (a2t , b
2
t ,−1) ∈ K1.

• If t ∈ S?2 , as K1 is a cone and 1
−ct > 0, then

( a2t
−ct ,

b2t
−ct ,−1

)
∈ K1.

Hence, one has K?2 ⊂ K1 being K?2 the associated extended characteristic cone associ-
ated to the following external representation of P2,

σ?2 = {〈a2t , x〉 ≤ b2t , t ∈ W2; 〈a2t , x〉 < b2t , t ∈ S2\S?2 ; 〈 a
2
t

−ct , x〉 <
b2t
−ct , t ∈ S

?
2}.

Last statement follows from Lemma 3.20 as 1
−ct > 1 for all t ∈ S?2 .

(ii) If P1 ⊂ P2, then σ?1 := σ1 ∪ σ2 is an external representation of P1 and so, every
inequality in σ2 is consequence of σ?1. As any generator of K2 is also a generator of K?1,
it easily follows that K2 ⊂ K?1. �

Proposition 3.22 Let P =
⋂m
i=1 Pi 6= ∅, where Pi ⊂ Rn is the solution set of the

system σi in (8) whose extended characteristic cone is Ki, for i = 1, . . . ,m. If K is the
extended characteristic cone of σ := ∪mi=1σi (an external representation of P ), then

K = cl conv
( m⋃
i=1

Ki
)
.

Proof. As P ⊂ Pi for all i = 1, . . . ,m, Proposition 3.21 yields Ki ⊂ K for all
i = 1, . . . ,m, and so cl conv

(⋃m
i=1Ki

)
⊂ K.

Assume that there exists (x, y, z) ∈ K\ cl conv
(⋃m

i=1Ki
)
. Then, there exists (a, b, c) ∈

Rn+2 such that 〈(a, b, c), (x, y, z)〉 ≤ 0 < 〈(a, b, c), (x, y, z)〉 for all (x, y, z) ∈
⋃m
i=1Ki,

which implies that (a, b, c) ∈ K◦. In that case, one has 〈(a, b, c), (x, y, z)〉 ≤ 0 which
entails a contradiction. �

4 Representation of e-polyhedra

In this section we shall obtain an internal representation of an e-polyhedron by using
the extended characteristic cone associated to an external representation of such an
e-polyhedron. Thus, we prove a generalization of Motzkin theorem for a larger family
of polyhedral sets. We start by extending the notion of polytope.

Definition 4.1 A subset Q ⊂ Rn is said to be an evenly convex polytope (e-polytope,
in brief) if there are two finite sets U := {u1, . . . , um} and V := {v1, . . . , vq} in Rn

such that

Q =

{
m∑
i=1

λiui +

q∑
j=1

µjvj : λ ∈ Rm
+ , µ ∈ Rq

+,

m∑
i=1

λi +

q∑
j=1

µj = 1,
m∑
i=1

λi > 0

}
(9)

In short, we shall denote Q = conv(U |V ).
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Each point of Q can be thought as a kind of legal convex combination, that is, a
convex combination of finitely many points in U ∪ V with a positive weight associated
to at least one point in U . It easily follows from the definition that Q contains the set
U , but it does not contain V necessarily. Moreover, one has conv(U |V ) 6= conv(V |U),
in general, although conv(U | ∅) = conv(∅ |U) = conv(U). Thus, if either U or V are
empty, then Q becomes a polytope in the classical sense.

Next result shows that the closure of an e-polytope is, in fact, a polytope which
contains the set U ∪ V .

Lemma 4.2 Let Q = conv(U |V ) be an e-polytope as in (9). Then,

(i) clQ = conv(U ∪ V ).

(ii) Q is wholefaced.

(iii) Q is a bounded e-polyhedron.

Proof. (i) Observe that Q ⊂ conv(U ∪ V ) and conv(U ∪ V ) is a closed convex set.
Thus, clQ ⊂ conv(U ∪V ). Conversely, if x ∈ conv(U ∪V ), there exist λ ∈ Rm

+ , µ ∈ Rq
+

such that x =
∑m

i=1 λiui +
∑q

j=1 µjvj and
∑m

i=1 λi +
∑q

j=1 µj = 1. If
∑m

i=1 λi > 0,
then there is nothing to prove. Otherwise, one can write x = µj0vj0 +

∑
j 6=j0 µjvj

for some j0 ∈ {1, . . . , q} such that µj0 > 0. By letting 0 < δ < µj0 and defining
xδ := (µj0 − δ)vj0 +

∑
j 6=j0 µjvj + δui0 for some i0 ∈ {1, . . . ,m}, one has xδ ∈ Q and

x = limδ→0 x
δ ∈ clQ. Thus, clQ = conv(U ∪ V ).

(ii) Let x1 ∈ Q and x2 ∈ clQ. By (i), one can write xk =
∑m

i=1 λ
k
i ui +

∑q
j=1 µ

k
jvj

for certain λk ∈ Rm
+ , µk ∈ Rq

+ such that
∑m

i=1 λ
k
i +

∑q
j=1 µ

k
j = 1 (for k = 1, 2) and∑m

i=1 λ
1
i > 0. It is easy to see that (1− γ)x1 + γx2 ∈ Q for any γ ∈ [0, 1[ and so, Q is

wholefaced.

(iii) Observe that clQ is a polytope, and so a bounded polyhedron. It is well-
known (cf. [7]) that a wholefaced set whose closure is a polyhedron is an evenly convex
polyhedral set. Hence, Q is a bounded e-polyhedron. �

Consequently, Q is the result of eliminating from the polytope clQ the union of a
certain family of its faces. Next we characterize the two main particular cases, whenever
Q is closed and relatively open.

Proposition 4.3 Let Q = conv(U |V ) be an e-polytope as in (9). Then,

(i) Q is closed if and only if V ⊂ Q.

(ii) Q is relatively open if and only if U ⊂ rintQ.

Proof. (i) If Q is closed, then Q = clQ = conv(U ∪ V ) ⊃ V .

Assume now that V ⊂ Q. We just need to show clQ ⊂ Q. Thus, if x ∈ clQ, there
exist λ ∈ Rm

+ , µ ∈ Rq
+ such that x =

∑m
i=1 λiui+

∑q
j=1 µjvj and

∑m
i=1 λi+

∑q
j=1 µj = 1.

If
∑m

i=1 λi > 0, then x ∈ Q. Otherwise, one has x =
∑q

j=1 µjvj with
∑q

j=1 µj = 1. As
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V ⊂ Q, for every j = 1, . . . , q, there exist ρj ∈ Rm
+ , ωj ∈ Rq

+ with
∑m

k=1 ρ
j
k+
∑q

l=1 ω
j
l = 1

and
∑m

k=1 ρ
j
k > 0 such that vj =

∑m
k=1 ρ

j
kuk +

∑q
l=1 ω

j
l vl. Then,

x =

q∑
j=1

µj
( m∑
k=1

ρjkuk +

q∑
l=1

ωlvl
)

=
m∑
k=1

( q∑
j=1

µjρ
j
k

)
uk +

q∑
l=1

( q∑
j=1

µjω
j
l

)
vl

with
∑m

k=1

∑q
j=1 µjρ

j
k > 0 as µj > 0 for at least one index j. Consequently, x ∈ Q.

(ii) If Q is relatively open, then rintQ = Q ⊃ U .

Assume now that U ⊂ rintQ. We just need to show Q ⊂ rintQ. Observe that

rintQ = rint(clQ) = {
m∑
i=1

λiui +

q∑
j=1

µjvj : λ ∈ Rm
++, µ ∈ Rq

++,
m∑
i=1

λi +

q∑
j=1

µj = 1},

in virtue of [21, Theorem 6.3] and [5, Lemma 2.3]. Thus, if x ∈ Q, there exist λ ∈
Rm

+ , µ ∈ Rq
+ such that x =

∑m
i=1 λiui +

∑q
j=1 µjvj with

∑m
i=1 λi +

∑q
j=1 µj = 1 and∑m

i=1 λi > 0. As U ⊂ rintQ, for every i = 1, . . . ,m, there exist ρi ∈ Rm
++, ωi ∈ Rq

++

with
∑m

k=1 ρ
i
k +

∑q
l=1 ω

i
l = 1 such that ui =

∑m
k=1 ρ

i
kuk +

∑q
l=1 ω

i
lvl. Then,

x =
m∑
i=1

λi
( m∑
k=1

ρikuk +

q∑
l=1

ωilvl
)

+

q∑
j=1

µjvj =
m∑
k=1

( m∑
i=1

λiρ
i
k

)
uk +

q∑
l=1

(
µl +

m∑
i=1

λiω
i
l

)
vl

with
∑m

i=1 λiρ
i
k > 0 for every k = 1, . . . ,m and µl +

∑m
i=1 λiω

i
l for every l = 1, . . . , q,

as λi > 0 for at least one index i. Consequently, x ∈ rintQ. �

Next result is a generalization of the well-known Weyl Theorem.

Theorem 4.4 (Extended Weyl Theorem) Let U, V,D ⊂ Rn finite sets such that
U ∪ V 6= ∅.

(i) The e-polytope conv(U |V ) is a bounded e-polyhedron.

(ii) The Minkowski sum conv(U |V ) + cone(D) is an e-polyhedron.

Proof. Let U = {u1, . . . , um}, V = {v1, . . . , vq} and D = {d1, . . . , dr}.
(i) Given x ∈ Rn, x ∈ conv(U |V ) if and only if the linear system with unknowns

λi (i = 1, . . . ,m) and µj (j = 1, . . . , q){
x =

m∑
i=1

λiui +

q∑
j=1

µjvj,

m∑
i=1

λi +

q∑
j=1

µj = 1,
m∑
i=1

λi > 0, λi ≥ 0, µj ≥ 0

}

is consistent. Hence, conv(U |V ) is the set of solutions of the outcome system from
removing the unknowns λi and µj in the system with unknowns λi, µj and xk (k =
1, . . . , n){

xk =
m∑
i=1

λiuik +

q∑
j=1

µjvjk,
m∑
i=1

λi +

q∑
j=1

µj = 1,
m∑
i=1

λi > 0, λi ≥ 0, µj ≥ 0

}
.
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By applying the Gauss-Fourier elimination methodm+q times, one has that conv(U |V )
is an e-polyhedron. Furthermore, it is bounded as ‖x‖ ≤

∑m
i=1 ‖ui‖+

∑q
j=1 ‖vj‖ for all

x ∈ conv(U |V ).

(ii) By following the same reasoning as above, conv(U |V ) + cone(D) is an e-
polyhedron too, since x ∈ conv(U |V ) + cone(D) if and only if

x =
m∑
i=1

λiui +

q∑
j=1

µjvj +
r∑
l=1

αldl

for some λ ∈ Rm
+ , µ ∈ Rq

+, α ∈ Rr
+,
∑m

i=1 λi +
∑q

j=1 µj = 1 and
∑m

i=1 λi > 0. �

The first statement in the above theorem has already been proved in Lemma 4.2.
However, the proof of Theorem 4.4 provides a method for obtaining an external repre-
sentation of an e-polytope, and this method also applies for e-polyhedra.

Example 4.5 Consider the e-polytope Q = conv(U |V ) in R2 described by the sets
U = {(1, 0), (3

2
, 1)} and V = {(0, 0), (2, 0), (1, 2)}. Then, a given vector (x1, x2) ∈ R2

belongs to Q if and only if the system

λ1 +3
2
λ2 +2µ2 +µ3 = x1

λ2 +2µ3 = x2
λ1 +λ2 +µ1 +µ2 +µ3 = 1
λ1 +λ2 > 0

λi ≥ 0 ∀ i = 1, 2.
µi ≥ 0 ∀ i = 1, 2, 3.

has a solution for λ ∈ R2, µ ∈ R3. By applying the Gauss-Fourier method in order to
eliminate the variables λ, µ, one gets an external representation of Q,

Q = {(x1, x2) ∈ R2 : 2x1 + x2 − 4 ≤ 0,−x2 ≤ 0, 2x1 − x2 − 4 < 0,−2x1 + x2 < 0}.

Next theorem establishes an internal representation for e-polyhedra. It is the main
result in this section and it generalizes the classical Motzkin theorem.

Theorem 4.6 (Decomposition of e-polyhedra) Let P ⊂ Rn be a nonempty e-
polyhedron. Then, P is the Minkowski sum of an e-polytope and a polyhedral cone.

Proof. Let P be the e-polyhedron given in Definition 3.1 and let K and Fn+2 be the
polyhedral cones introduced in Definition 3.2.

K is a finitely generated cone, and so it is a polyhedral cone as a consequence of
Lemma 2.1. Thus, K is the solution set of certain finite linear homogeneous system,
say

K = {(x, y, z) ∈ Rn × R× R : 〈(χp, ψp, ωp), (x, y, z)〉 ≤ 0, p = 1, . . . , s}.

This means that K = [cone{(χp, ψp, ωp), p = 1, . . . , s}]◦, and so, by taking polars,

K◦ = Fn+2 = cone{(χp, ψp, ωp), p = 1, . . . , s}.

18



We may assume without loss of generality that Fn+2 has just three kind of generators
such that

Fn+2 = cone{(ui,−1, εi), i = 1, . . . ,m; (vj,−1, 0), j = 1, . . . , q; (dl, 0, 0), l = 1, . . . , r}

with −1 ≤ εi < 0 for all i = 1, . . . ,m and m+ q+ r = s. Observe that there is at least
one generator of the form (ui,−1, εi), otherwise Fn+2 ⊂ {(x, y, z) ∈ Rn+2 : z = 0} and
so P would be empty according to Lemma 3.5 (ii), which contradicts the assumption.

Let x ∈ P . By Lemma 3.5 (i), there exists ε ∈ [−1, 0[ such that (x,−1, ε) ∈ Fn+2.
Therefore, there exist λ ∈ Rm

+ , µ ∈ Rq
+ and α ∈ Rr

+ such that

(x,−1, ε) =
m∑
i=1

λi(ui,−1, εi) +

q∑
j=1

µj(vj,−1, 0) +
r∑
l=1

αl(dl, 0, 0).

Thus, one has

x =
m∑
i=1

λiui +

q∑
j=1

µjvj +
r∑
l=1

αldl

with
∑m

i=1 λi +
∑q

j=1 µj = 1 and
∑m

i=1 λi ≥
∑m

i=1−εiλi = −ε > 0. Hence, by letting
U := {u1, . . . , um}, V := {v1, . . . , vq} and D := {d1, . . . , dr}, one has

P = conv(U |V ) + cone(D)

and the conclusion follows. �

The above decomposition theorem holds true for any e-polyhedron, and so, for
any (closed convex) polyhedron in particular. However, the classical decomposition of
polyhedra is given by means of a polytope and a polyhedral cone. Hence, we should
obtain such a decomposition as a consequence of Theorem 4.6.

Corollary 4.7 (Motzkin Theorem) Let P ⊂ Rn be a nonempty polyhedron. Then,
P is the sum of a polytope and a polyhedral cone.

Proof. By applying Theorem 4.6, there exist finite sets U, V,D ⊂ Rn such that
P = conv(U |V ) + cone(D). As P is closed, P = clP . On the other hand,

cl
(

conv(U |V ) + cone(D)
)

= cl conv(U |V ) + cone(D) = conv(U ∪ V ) + cone(D).

Hence, P = conv(U ∪ V ) + cone(D) and the conclusion follows. �

The internal representation for e-polyhedra obtained in Theorem 4.6 coincides with
the one given in [1, Theorem 4.4]. Our proof, instead, does not use the standard version
of Motzkin theorem but a generalization of the technique employed by Motzkin. On the
other hand, the given proof of Theorem 4.6 provides a method for obtaining an internal
representation of an e-polyhedron. Let P be the e-polyhedron introduced in Definition
3.1 and K its associated extended characteristic cone. By applying the Gauss-Fourier
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method we shall obtain an external representation of K. It can be assumed without
loss of generality that such a representation has the form

K =

(x, y, z) ∈ Rn+2 :
〈(ui,−1, εi), (x, y, z)〉 ≤ 0, i = 1, . . . ,m
〈(vj,−1, 0), (x, y, z)〉 ≤ 0, j = 1, . . . , q
〈(dl, 0, 0), (x, y, z)〉 ≤ 0, l = 1, . . . , r


where −1 ≤ εi < 0 for all i = 1, . . . ,m. Then, one has

P = conv({u1, . . . , um} | {v1, . . . , vq}) + cone(d1, . . . , dr).

Next example illustrates how this method works.

Example 4.8 Consider the e-polyhedron P in R2 (see [5, Example 2.1]) defined by

P := {(x1, x2) ∈ R2 : −x1 − 3x2 ≤ −2,−x1 ≤ 0,−3x1 − x2 < −2,−x2 < 0}.

The extended characteristic cone K associated to P is the cone finitely generated by
(−1,−3,−2, 0), (−1, 0, 0, 0), (−3,−1,−2,−1), (0,−1, 0,−1), (0, 0, 1,−1) and (0, 0, 0, 1).
Hence, a given vector (x1, x2, y, z) ∈ R4 belongs to K if and only if the linear system

−λ1 −λ2 −3λ3 = x1
−3λ1 −λ3 −λ4 = x2
−2λ1 −2λ3 +λ5 = y

−λ3 −λ4 −λ5 +λ6 = z
λi ≥ 0 ∀ i = 1, . . . , 6.

has a solution for λ ∈ R6. By applying the Gauss-Fourier method in order to eliminate
the variables λ, one gets the following external representation of K:

2
3
x1 + 4

9
x2 − y − 4

9
z ≤ 0, 3x2 − y − z ≤ 0, 2

3
x1 + 2

3
x2 − y − 2

3
z ≤ 0,

2
3
x1 + x2 − y − z ≤ 0, 8

3
x2 − y − 2

3
z ≤ 0, 1

2
x1 + 1

2
x2 − y ≤ 0,

2x1 − y ≤ 0, 2x2 − y ≤ 0, 4
9
x1 + 2

3
x2 − y ≤ 0,

x1 ≤ 0, x2 ≤ 0.

Thus, according to the above method, an internal representation of P is given by
conv(U |V ) + cone(D) where

U = {(2
3
, 4
9
), (0, 3), (2

3
, 2
3
), (2

3
, 1), (0, 8

3
)},

V = {(1
2
, 1
2
), (2, 0), (0, 2), (4

9
, 2
3
)},

D = {(1, 0), (0, 1)}.

Next result is a straightforward consequence of Theorems 4.4 and 4.6.

Corollary 4.9 (Characterization of e-polyhedra) Let P ⊂ Rn. One has:

(i) P is an e-polyhedron if and only if it is the Minkowski sum of an e-polytope and
a polyhedral cone.
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(ii) P is an e-polytope if and only if it is a bounded e-polyhedron.

Now, by employing the notion of minimal face, we can prove a refinement of The-
orem 4.6.

Theorem 4.10 (Minimal decomposition of e-polyhedra) Let P ⊂ Rn be a nonempty
e-polyhedron. Then,

P = conv(U |V ) + rec(P ) (10)

where U := {u1, . . . , um}, ui ∈ Ci with Ci a minimal face of P , for every i = 1, . . . ,m,
and V := {v1, . . . , vq}, vj ∈ Dj with Dj a minimal face of P not intersecting P , for
every j = 1, . . . , q.

Proof. Assume that P is the solution set of the consistent system σ in (1) and recall
that clP = P := {x ∈ Rn : 〈at, x〉 ≤ bt, t ∈ W ∪ S}. We shall denote by G the term in
the right-hand side of (10).

Let x ∈ conv(U |V ). Then, there exist λ ∈ Rm
+ and µ ∈ Rq

+ with
∑m

i=1 λi +∑q
j=1 µj = 1 and

∑m
i=1 λi > 0 such that

x =
m∑
i=1

λiui +

q∑
j=1

µjvj.

As ui ∈ P for any i = 1, . . . ,m, vj ∈ P for any j = 1, . . . , q, and
∑m

i=1 λi > 0, it is
easy to check that 〈at, x〉 ≤ bt for all t ∈ W and 〈at, x〉 < bt for all t ∈ S, which means
x ∈ P . Thus, conv(U |V ) ⊂ P and so, G := conv(U |V ) + rec(P ) ⊂ P .

To obtain the identity in (10), we assume that there exists x ∈ P\G and we shall
get a contradiction. For that purpose we observe that, in virtue of Theorem 4.4, G is
an e-polyhedron and so, it is the solution set of certain finite linear system, say

G = {x ∈ Rn : 〈ct, x〉 ≤ et, t ∈ W ; 〈ct, x〉 < et, t ∈ S}

for certain (ct, et) ∈ Rn×R for all t ∈ W ∪S with |W ∪S| <∞, and as G is nonempty,
one also has clG = G := {x ∈ Rn : 〈ct, x〉 ≤ et, t ∈ W ∪ S}. Recall that U ⊂ G and
U ∪ V ⊂ clG = conv(U ∪ V ) + rec(P ). Hence, if x /∈ G, either 〈ct1 , x〉 > et1 for some
t1 ∈ W ∪S, or 〈ct2 , x〉 = et2 for some t2 ∈ S. Next we study these two cases separately.

Case 1: There exists t1 ∈ W ∪ S such that 〈ct1 , x〉 > et1 . Then, as x ∈ P , one has

α1 := max
x∈G
〈ct1 , x〉 = sup

x∈G
〈ct1 , x〉 ≤ et1 < 〈ct1 , x〉 ≤ sup

x∈P
〈ct1 , x〉 = max

x∈P
〈ct1 , x〉 =: β1.

We first observe that β1 ∈ R, otherwise, if β1 = +∞ there would be d ∈ rec(P )
such that 〈ct1 , d〉 > 0 which entails α1 = +∞, since rec(P ) = rec(Q), and thus a
contradiction. Thence, F := {x ∈ P : 〈ct1 , x〉 = β1} is a nonempty face of P , and let
F := F ∩ P .

If F 6= ∅, then F = {x ∈ P : 〈ct1 , x〉 = β1} is a nonempty face of P . Let ui ∈ Ci with
Ci being a minimal face of F and so, a minimal face of P . Then, 〈ct1 , ui〉 = β1 > et1
which contradicts the fact that ui ∈ G.
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Otherwise, if F = ∅, let vj ∈ Dj with Dj being a minimal face of F and so, a
minimal face of P , which clearly does not intersect P . Then, 〈ct1 , vj〉 = β1 > et1 which
contradicts the fact that vj ∈ clG.

Case 2: There exists t2 ∈ S such that 〈ct2 , x〉 = et2 . Then, as x ∈ P , one has

max
x∈G
〈ct2 , x〉 = sup

x∈G
〈ct2 , x〉 ≤ et2 = 〈ct2 , x〉 ≤ sup

x∈P
〈ct2 , x〉 = max

x∈P
〈ct2 , x〉 =: β2.

Reasoning as in the Case 1, one has β2 ∈ R and so F := {x ∈ P : 〈ct2 , x〉 = β2} is a
nonempty face of P . Let F := F ∩ P .

If F 6= ∅, then F = {x ∈ P : 〈ct2 , x〉 = β2} is a nonempty face of P . Let ui ∈ Ci with
Ci being a minimal face of F and so, a minimal face of P . Then, 〈ct2 , ui〉 = β2 ≥ et2
which contradicts the fact that ui ∈ G.

Otherwise, if F = ∅, let vj ∈ Dj with Dj being a minimal face of F and so, a
minimal face of P , which clearly does not intersect P . Then, 〈ct2 , vj〉 = β2 ≥ et2 .
Observe that if β2 = et2 then x ∈ F ∩ P and the assumption F = ∅ would fail. Hence,
one has 〈ct2 , vj〉 = β2 > et2 which contradicts the fact that vj ∈ clG. �

Example 4.11 Let consider again the e-polyhedron P defined in Example 4.8. The
minimal faces of P are C1 = {(x1, x2) ∈ R2 : 3x2 = −x1 + 2, 1 < 2x1 < 4} and
C2 = {(x1, x2) ∈ R2 : x1 = 0, x2 ≥ 2}, whereas the minimal faces of P not intersecting
P are D1 = {(1

2
, 1
2
)}, D2 = {(2, 0)} and D3 = {(0, 2)}. The extreme rays of P are

d1 = (1, 0) and d2 = (0, 1), and so rec(P ) = cone(d1, d2). Then, by choosing any
u1 ∈ C1 and u2 ∈ C2, Theorem 4.10 guarantees that an internal representation of P is

P = conv({u1, u2} | {(12 ,
1
2
), (2, 0), (0, 2)}) + cone(d1, d2).

In particular, as (2
3
, 4
9
) ∈ C1 and (0, 3) ∈ C2, then (10) holds with

U = {(2
3
, 4
9
), (0, 3)},

V = {(1
2
, 1
2
), (2, 0), (0, 2)}.

Thus, we observe that the representation given in Example 4.8 was not minimal in the
sense that the sets of generators there can be simplified as shown.

As a straightforward consequence of Theorem 4.10 we obtain the following internal
representations for e-polyhedra which are either closed or relatively open.

Corollary 4.12 Let P ⊂ Rn be a nonempty e-polyhedron.

(i) If P is closed, then P = conv(u1, . . . , um)+rec(P ) with ui ∈ Ci and Ci a minimal
face of P , for every i = 1, . . . ,m.

(ii) If P is relatively open, then P = conv(u | v1, . . . , vq)+rec(P ) with u ∈ P , vj ∈ Dj

and Dj a minimal face of P not intersecting P , for every j = 1, . . . , q.

Thus, if a (closed convex) polyhedron contains no line, it is the sum of its recession
cone and the convex hull of its extreme points. The above internal representation for
relatively open polyhedral sets differs from the one given in [5, Lemma 2.3]. Just as
an illustration, the e-polyhedron P = {x ∈ R2 : x1 > 1, x2 > 1} can be represented as
stated in Corollary 4.12 by conv(u | v) + R2

+ where v = (1, 1) and u is any point in P .
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5 Conclusions

The current study is concerned with the study of solution sets of finite linear systems
possibly containing strict inequalities, the so-called e-polyhedra. Our starting point
is Motzkin theorem, which states that every polyhedron can be represented as the
Minkowski sum of a polytope and a polyhedral cone. The technique used for obtaining
this representation consists in building a polyhedral cone into a one higher dimension
space. We adapt this technique in order to obtain the representation of an e-polyhedron
as the Minkowki sum of an e-polytope and a polyhedral cone. For that purpose, we
build a polyhedral cone into a two higher dimension space, referred to as extended
characteristic cone. Intuitively, if the given e-polyhedron is the solution set of certain
finite linear system in Rn, then the n+1 first components of that cone are associated to
the data of the system whereas the last component is associated to the kind of inequality
(either weak or strict). As every (closed convex) polyhedron is an e-polyhedron, we thus
obtain a generalization of Motzkin theorem. In addition to that, we provide consistency
and Farkas-type results in terms of this new dual cone, and a generalization of Weyl
theorem. In this way, our results achieve the claims in [1] and possibly let study, in a
further research, a new and more direct encoding of e-polyhedra as requested in [2].
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[10] Goberna MA, Jornet V, Rodŕıguez MML (2003) On linear systems containing
strict inequalities. Linear Algebra and its Applications 360:151–171.
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