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1 Introduction

The turnpike phenomenon is a property of trajectories of optimally controlled systems that
has long been observed in optimal control, even back to early work by von Neumann [13].
The turnpike property describes the fact that an optimal trajectory “most of the time”
stays close to an equilibrium point, as illustrated in Figure 3.1, below, for finite horizon
optimal trajectories. This property attracted significant interest, particularly in the field of
mathematical economics [10], because it directly leads to the concept of optimal economic
equilibria and thus provides a natural economic interpretation of optimality. The name
“turnpike property” was coined in 1958 in the book by Dorfman, Samuelson and Solow
[4], who compared the phenomenon to the optimal way of driving by car from a point A
to a point B using a turnpike or highway, which consists of three phases: driving to the
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highway (i.e., approaching the equilibrium), driving on the highway (i.e., staying near the
equilibrium) and leaving the highway (i.e., moving away from the equilibrium).

Recently, the turnpike property has also attracted interest in areas different from mathe-
matical economics, see, e.g., [5, 14, 12, 8]. This interest stems from the fact that it was
realized that this property considerably simplifies the computation of (approximately) op-
timal trajectories in all areas of optimal control, either directly by constructive synthesis
techniques as in [1] or indirectly via a receding horizon approach as in economic model pre-
dictive control [6, 7].1 Moreover, the turnpike property can also be rigorously established
in control systems governed by partial differential equations [11], significantly enlarging
the classes of systems for which these methods are applicable. In the context of economic
model predictive control, strict dissipativity can be used as an alternative to assuming the
turnpike property [2]. However, as [8] shows, these two properties are almost equivalent, in
the sense that under a controllability and a reachability condition, strict dissipativity holds
if and only if a robust version of the turnpike property holds. “Robust” here refers to the
fact that not only optimal but also approximately optimal trajectories exhibit the turnpike
phenomenon, though in a relaxed form. This robust version of the turnpike property has
additional structure, making it more suitable for rigorous mathematical proofs, which is
why we also use it in this paper. We will, however, use neither strict dissipativity nor
controllability assumptions in this paper.

Many of the papers and books discussed above provide sufficient (and sometimes also
necessary) conditions for the occurrence of turnpike behavior. However, all results we
are aware of apply to either finite horizon or infinite horizon optimal control problems.
In contrast to this, in this paper we study the relation between turnpike properties for
these two classes of optimal control problems. More precisely, we show that under suitable
regularity conditions, the turnpike phenomenon occurs in the finite horizon problem if and
only if it occurs in the infinite horizon problem with the same stage cost. The study is
carried out for discrete time systems, mainly because this somewhat reduces the analytic
overhead and simplifies some arguments. However, we expect that a similar reasoning is
also possible in the continuous time setting.

The paper is organized as follows. In Section 2 we describe the optimal control problem we
are considering. In Section 3 we show the relation between the finite and the infinite hori-
zon property for undiscounted problems. In Section 4 we repeat the analysis for discounted
problems since these problems require significantly different assumptions and proof tech-
niques. In Section 5 we discuss turnpike properties which also include quantitative bounds
on the convergence rate of the trajectories to the equilibrium. Section 6 concludes the
paper.

2 Setting and preliminaries

We consider possibly discounted discrete time optimal control problems

minimize
u∈UN (x0)

JN (x0, u) (2.1)

1Despite its name, economic model predictive control was developed in control engineering rather than
in mathematical economics.
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where

JN (x0, u) :=

N−1∑
k=0

βk`(x(k), u(k)),

x(n+ 1) = f(x(n), u(n)), x(0) = x0, (2.2)

N ∈ N or N =∞, β ∈ (0, 1], f : X × U → X for metric spaces X and U , state and input
constraints X ⊆ X, U ⊆ U and admissible control sets UN (x0) := {u(·) ∈ UN |x(n) ∈
X ∀n = 0, . . . , N and u(n) ∈ U ∀n = 0, . . . , N − 1}. In what follows, for simplicity of
exposition we assume UN (x0) 6= ∅ for all x0 ∈ X and all N ∈ N (which implies U∞(x0) 6= ∅).
If this is not the case, all results remain true if we restrict ourselves to initial conditions x0

for which U∞(x0) 6= ∅ and to control functions from U∞(x0). We define the optimal value
function

VN (x0) := inf
u∈UN (x0)

JN (x0, u).

As we will see, both the proofs and the assumptions on the problem differ considerably
between the undiscounted case β = 1 and the discounted case β ∈ (0, 1). We therefore
treat these two cases in two separate sections and start with the undiscounted case. In
what follows, we denote the cardinality of a set S ⊂ N by #S.

3 The undiscounted case

In this section we consider the undiscounted case, i.e., the case β = 1. We first define the
precise meaning of the turnpike properties under consideration.

Definition 3.1: (finite horizon turnpike property) The optimal control problem (2.1)
has the finite horizon robust turnpike property at an equilibrium xe ∈ X, if for each δ > 0,
each ε > 0 and each bounded set Xb ⊂ X there is a constant Cfinδ,ε,Xb ∈ N such that all

trajectories (x(k), u(k)) with x0 ∈ Xb, u(·) ∈ UN (x0) and arbitrary N ∈ N satisfying
JN (x0, u) ≤ VN (x0) + δ satisfy

#
{
k ∈ {0, . . . , N}

∣∣∣ d(x(k), xe) ≥ ε
}
≤ Cfinδ,ε,Xb . (3.1)

In words, this definition demands that given ε > 0 and δ > 0, for every δ-optimal trajectory
starting in Xb, all but at most Cfinδ,ε,Xb points on the trajectory lie in an ε-neighborhood

of xe. The important property of the constant Cfinδ,ε,Xb is that it does not depend on N ,
i.e., the bound on the number of points outside of the ε-neighborhood of xe is independent
of N . Figure 3.1 shows finite horizon optimal trajectories on different horizons N which
exhibit the turnpike property. For the details of the optimal control problems behind these
figures we refer to [7].

Definition 3.2: (infinite horizon turnpike property) The optimal control problem
(2.1) has the infinite horizon robust turnpike property at an equilibrium xe ∈ X, if for each
δ > 0, each ε > 0 and each bounded set Xb ⊂ X there is a constant C∞δ,ε,Xb ∈ N such that
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Figure 3.1: Finite horizon optimal trajectories x(·) (dashed) for different optimization
horizons N = 2, 4, . . . , 30 (left) and N = 2, 4, . . . , 20 (right) for two examples from [7]

all trajectories (x(k), u(k)) with x0 ∈ Xb, u(·) ∈ U∞(x0) satisfying J∞(x0, u) ≤ V∞(x0) + δ
satisfy

#
{
k ∈ N

∣∣∣ d(x(k), xe) ≥ ε
}
≤ C∞δ,ε,Xb . (3.2)

Note that Definition 3.2 implies limk→∞ d(x(k), xe) = 0, because if this convergence does
not hold, then there exists ε > 0 and a sequence kj → ∞ with d(x(kj), x

e) ≥ ε for all

j ∈ N. This however, implies #
{
k ∈ N

∣∣∣ d(x(k), xe) ≥ ε
}

= ∞, and hence the property

from Definition 3.2 cannot hold. Therefore, the infinite horizon turnpike property implies
convergence of the respective trajectories to the equilibrium xe. However, the rate of
convergence can be arbitrarily slow, since we do not make any assumption about the size

of the time instant k in #
{
k ∈ N

∣∣∣ d(x(k), xe) ≥ ε
}

. We will address this issue in Section

5.

In order to establish a relation between Definitions 3.1 and 3.2, we make the following
regularity assumptions on the problem.

Assumption 3.3: We assume the following for optimal control problem (2.1).

(i) For each bounded subset Xb ⊆ X there exists C > 0 such that |VN (x)| ≤ C holds for
all x ∈ Xb and all N ∈ N ∪ {∞}.

(ii) for each Θ > 0 there is a bounded set XΘ ⊆ X such that for each N ∈ N ∪ {∞} the
inequality JN (x0, u) ≤ Θ implies x(k) ∈ XΘ for all k = 0, . . . , N .

Part (i) of Assumption 3.3 is a boundedness condition which demands that the optimal
value functions are uniformly (w.r.t. N and including N =∞) bounded on bounded sets,
both from above and from below. It is needed to rule out degenerate behavior caused by
unbounded accumulated cost.

Part (ii) effectively states that trajectories with bounded values stay in bounded sets.
There are (at least) two easy ways to ensure that this condition holds: on the one hand,
we may assume that X itself is bounded, in which case we can always choose XΘ = X.
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Alternatively, we may assume the existence of constants C1, C2, C3 ∈ R with C2 > 0 and
a point x̂ ∈ X such that `(x, u) ≥ C1 + C2d(x, x̂) and VN (x) ≥ C3 holds for all x ∈ X,
all u ∈ U and all N ∈ N ∪ {∞}. In this case, the existence of k ∈ N with k ≤ N with
d(x(k), x̂) > ∆ implies

JN (x, u) = Jk(x, u) + `(x(k), u(k)) +JN−k−1(x(k+ 1), u(·+ k+ 1)) > C3 +C1 +C2∆ +C3,

hence JN (x, u) ≤ Θ implies ∆ ≤ (Θ − C1 − 2C3)/C2, and thus XΘ can be chosen as the
closed ball with radius (Θ− C1 − 2C3)/C2 around x̂.

The following theorem now gives the main result of this section.

Theorem 3.4: Consider the optimal control problem (2.1) satisfying Assumption 3.3.
Then the finite horizon turnpike property from Definition 3.1 holds if and only if the
infinite horizon turnpike property from Definition 3.2 holds.

Proof. “Definition 3.1 ⇒ Definition 3.2”: Assume that the problem has the finite horizon
turnpike property from Definition 3.1. We show that the problem then also has the infi-
nite horizon turnpike property from Definition 3.2. To this end, we consider a trajectory
satisfying the conditions from Definition 3.2. That is, we pick δ > 0, ε > 0, a bounded
subset Xb ⊆ X and an infinite trajectory with x0 ∈ Xb satisfying J∞(x0, u) ≤ V∞(x0) + δ.

Next we verify that the trajectory also satisfies the conditions from Definition 3.1. For this
purpose, let C denote the bound from Assumption 3.3(i), which implies |VN (x)−V∞(x)| ≤
K = 2C for x ∈ Xb. Then Assumption 3.3(ii) implies that x(k) ∈ XΘ for all k ∈ N and a
bounded set XΘ with Θ = K+δ, which by Assumption 3.3(i) yields the existence of K̃ > 0
with V∞(x(k)) ≥ −K̃ for all k ∈ N. For all N ∈ N we have

V∞(x0) + δ ≥ J∞(x0, u) = JN (x0, u) + βNJ∞(x(N), u(N + ·)) ≥ JN (x0, u)− βNK̃

implying
JN (x0, u) ≤ V∞(x0) + δ + βNK̃ ≤ VN (x0) +K + δ + K̃.

Thus, the conditions from Definition 3.1 are satisfied, and since by assumption the problem
has the finite horizon robust turnpike property, from (3.1) we obtain

#
{
k ∈ {0, . . . , N}

∣∣∣ d(x(k), xe) ≥ ε
}
≤ Cfin

δ+K+K̃,ε,Xb

for all N ∈ N, which implies (3.2) with

C∞δ,ε,Xb = Cfin
δ+K+K̃,ε,Xb

,

and thus the infinite horizon robust turnpike property according to Definition 3.2.

“Definition 3.2⇒ Definition 3.1”: We proceed similarly as above for the converse direction
and consider a trajectory satisfying the conditions from Definition 3.1. To this end, fix
δ > 0, ε > 0, N ∈ N a bounded subset Xb ⊆ X and a trajectory of length N with x0 ∈ Xb
satisfying JN (x0, u) ≤ VN (x0) + δ.

Now we construct an extended trajectory which satisfies the conditions from Definition
3.1: letting K = 2C denote the bound on the difference |VN (x)−V∞(x)| from Assumption
3.3(i), by Assumption 3.3(ii) we can conclude the existence of a bounded set XΘ with
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x(N) ∈ XΘ and, hence, again by Assumption 3.3(i) of a constant K̃ with V∞(x(N)) ≤ K̃.
Picking a control function ũ satisfying J∞(x(N), ũ) ≤ K̃ + δ and defining

û(k) :=

{
u(k), k = 0, . . . , N − 1
ũ(k −N), k = N,N + 1, . . .

,

we thus obtain

J∞(x0, û) = JN (x0, u) + βNJ∞(x(N), ũ) ≤ VN (x0) + δ + K̃ + δ ≤ V∞(x0) +K + K̃ + 2δ.

Hence, by (3.2) the extended trajectory satisfies

#
{
k ∈ N

∣∣∣ d(x(k), xe) ≥ ε
}
≤ C∞

2δ+K+K̃,ε,Xb
.

which implies the finite horizon turnpike property (3.1) with Cfinδ,ε,Xb = C∞
2δ+K+K̃,ε,Xb

.

4 The discounted case

We now turn our attention to the discounted case with β ∈ (0, 1). For our analysis, the
decisive difference in the discounted case is that the discount factor βk tends to 0 as k tends
to infinity. This means that if a trajectory has a large deviation from the optimal trajectory,
then this large deviation may nevertheless be barely visible in the cost functional, provided
it happens sufficiently late. For this reason, it is unreasonable to expect that one can see
the turnpike behavior for trajectories satisfying JN (x, u) ≤ VN (x) + δ. In order to fix this
problem, we need make two changes to the robust turnpike Definitions 3.1 and 3.2. First,
we need to restrict the time interval on which we can expect to see the turnpike phenomenon
and second, we need to limit the difference δ between the value of the trajectory under
consideration and the optimal value. In the following definitions, the first will be taken
care of by introducing the discrete time interval {0, . . . ,M} and the second by defining the

bound δfinε,M,Xb .

Definition 4.1: (finite horizon turnpike property) The optimal control problem (2.1)
has the finite horizon near optimal approximate turnpike property, if for each ε > 0 and
each bounded set Xb ⊂ X there is a constant Cfinε,Xb > 0 such that for each M ∈ N there is a

constant δ = δfinε,M,Xb > 0 such that for all N ∈ N with N ≥M , all trajectories (x(k), u(k))

with x0 ∈ Xb, u(·) ∈ UN (x0) and JN (x0, u) ≤ VN (x0) + δ satisfy

#
{
k ∈ {0, . . . ,M}

∣∣∣ d(x(k), xe) ≥ ε
}
≤ Cfinε,Xb . (4.1)

Definition 4.2: (infinite horizon turnpike property) The optimal control problem
(2.1) has the infinite horizon near optimal approximate turnpike property, if for each ε > 0
and each bounded set Xb ⊂ X there is a constant C∞ε,Xb > 0 such that for each M ∈ N
there is a constant δ = δ∞ε,M,Xb > 0 such that all trajectories (x(k), u(k)) with x0 ∈ Xb,
u(·) ∈ U∞(x0) and J∞(x0, u) ≤ V∞(x0) + δ satisfy

#
{
k ∈ {0, . . . ,M}

∣∣∣ d(x(k), xe) ≥ ε
}
≤ C∞ε,Xb . (4.2)
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We note that in both definitions the level δ which measures the deviation from optimality
depends on M . In both definitions, δ → 0 may be required if M → ∞. It is, however,
easily seen that the definitions imply (3.2) for the optimal trajectories (i.e., for δ = 0),
provided they exist. We also note that Definition 4.2 implies limk→∞ d(x∗(k), xe) = 0 for
the optimal trajectory, again provided it exists.

Similar to the definitions of the turnpike property, we also need to adapt Assumption 3.3
to the discounted case.

Assumption 4.3: We assume the following for optimal control problem (2.1).

(i) VN → V∞ as N →∞ uniformly on bounded subsets of X.

(ii) For each ε̃ > 0 and each bounded set Xb ⊆ X there is N0 ∈ N with the following
property: for each N ′ ≥ N0 there is δ̃ > 0 such that for all x0 ∈ Xb, all N ∈ N∪{∞}
with N ≥ N ′ and all u ∈ UN (x0) satisfying the inequality JN (x0, u) ≤ VN (x0) + δ̃,
the inequality βN

′ |VN ′′(x(N ′))| ≤ ε̃ holds for all N ′′ ∈ N ∪ {∞}.

Assumption 4.3(i) states that the two operations “taking the infimum of JN (x, u) w.r.t.
u” and “passing to the limit for N → ∞” can be interchanged without changing the
value. While this would be a rather strong assumption for undiscounted problems, for
discounted problems it is always satisfied if, e.g., the stage cost is bounded along the
optimal trajectories. In this case, due to the exponential decay of βk, the value of a tail
of an optimal trajectory becomes arbitrarily small, and hence also the difference between
minimizing JN and J∞ becomes arbitrarily small. Therefore, Assumption 4.3(i) is always
satisfied if, e.g., ` is bounded on X or at least on a set containing the optimal trajectories
starting in a bounded set.

Assumption 4.3(ii) is relatively technical, but, again, since βk → 0 as k → ∞, if we know
that the modulus of the optimal value functions |VN |, N ∈ N ∪ {∞} is bounded along the
trajectories x(·), say by a constant C, then it suffices to choose N ′ so large that βN

′
C ≤ ε̃

holds. Again, this boundedness holds, e.g., if the |VN | are uniformly bounded on the whole
set X or if they are bounded on bounded sets and the near optimal trajectories x(·) stay in
bounded sets up to the time N ′. Since the last two properties are implied by Assumption
3.3(i) and (ii), Part (ii) of Assumption 4.3 can be seen as a relaxation of Assumption 3.3.

The counterpart of Theorem 3.4 for the discounted case now reads as follows.

Theorem 4.4: Consider the optimal control problem (2.1) satisfying Assumption 4.3.
Then the finite horizon turnpike property from Definition 4.1 holds if and only if the
infinite horizon turnpike property from Definition 4.2 holds.

Proof. “Definition 4.1 ⇒ Definition 4.2”: Similar to the first part of the proof of Theorem
3.4 we consider a trajectory satisfying the conditions of Definition 4.2 and show that it
also satisfies the conditions of Definition 4.1, from which we then conclude (4.2). However,
now we need some preliminary considerations in order to determine the bound on δ in
Definition 4.2. To this end, fix ε > 0, a bounded set Xb ⊆ X and M ∈ N and let
δfin = δfinε,M,Xb > 0 be the level of accuracy needed in Definition 4.1. We set δ̃ := δfin/4, pick
N0 ∈ N from Assumption 4.3(ii) and from Assumption 4.3(i) we choose N ≥ max{N0,M}
so large that |VN (x0) − V∞(x0)| ≤ δ̃ for all x0 ∈ Xb. For this N , we take ε̃ > 0 from
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Assumption 4.3(ii) and set δ := min{ε̃, δfin/2}. Now we consider a trajectory satisfying
J∞(x0, u) ≤ V∞(x0) + δ.

Then, using Assumption 4.3(ii) with N = N ′ and N ′′ =∞ we obtain

VN (x0) + δ + δ̃ ≥ V∞(x0) + δ ≥ J∞(x0, u) = JN (x0, u) + βNJ∞(x(N), u(N + ·))
≥ JN (x0, u) + βNV∞(x(N)) ≥ JN (x0, u)− δ̃,

i.e.,
JN (x0, u) ≤ VN (x0) + δ + 2δ̃ ≤ VN (x0) + δfin.

This implies the condition for the finite horizon near optimal approximate turnpike property
in Definition 4.1 and thus (4.1) yields the inequality

#
{
k ∈ {0, . . . ,M}

∣∣∣ d(x(k), xe) ≥ ε
}
≤ Cfinε,Xb

for all sufficiently large N ∈ N. From this we obtain the infinite horizon near optimal
approximate turnpike property (4.2) with C∞ε,Xb = Cfinε,Xb and δ∞ε,M,Xb = δ.

“Definition 4.2 ⇒ Definition 4.1”: Similar to the second part of the proof of Theorem 3.4,
we consider a trajectory satisfying the conditions of Definition 4.1 from which we construct
an extended trajectory satisfying the conditions of Definition 4.2. As in the first part of
the proof, we need to take care of the bounds of δ in these definitions.

Fix again ε > 0, a bounded set Xb ⊆ X and M ∈ N and let δ∞ = δ∞ε,M,Xb > 0 be the level
of accuracy needed in Definition 4.2. We set δ := δ∞/8 and pick N0 ∈ N from Assumption
4.3(ii). From Assumption 4.3(i) we can find N1 ≥ N0 such that |VN ′(x0)−VN (x0)| ≤ δ and
|VN ′(x0)− V∞(x0)| ≤ δ for all x0 ∈ Xb and all N,N ′ ≥ N1. Moreover, we may pick N1 so
large that ε̃ from Assumption 4.3(ii) satisfies ε̃ < δ∞/4. Finally, we set N ′ = max{M,N1}.
Then, for arbitrary N ≥ N ′ we pick a control sequence satisfying the conditions of Defini-
tion 4.1, i.e., with JN (x0, u) ≤ VN (x0) + δ. This implies

VN ′(x0) + 2δ ≥ VN (x0) + δ ≥ JN (x0, u) = JN ′(x0, u) + βN
′
JN−N ′(x(N ′), u(N ′ + ·))

≥ JN ′(x0, u) + βN
′
VN−N ′(x(N ′)) ≥ JN ′(x0, u)− ε̃,

and thus JN ′(x0, u) ≤ VN ′(x0) + 2δ + ε̃. Picking another control sequence ũ satisfying
J∞(x(N ′), ũ) ≤ V∞(x(N ′)) + δ and defining

û(k) :=

{
u(k), k = 0, . . . , N ′ − 1
ũ(k −N ′), k = N ′, N ′ + 1, . . .

we thus obtain

J∞(x0, û) = JN ′(x0, u) + βN
′
J∞(x(N ′), ũ) ≤ VN ′(x0) + 2δ + ε̃+ βN

′
V∞(x(N ′)) + δ

≤ V∞(x0) + 4δ + 2ε̃ = V∞(x0) + δ∞.

Hence, the extended trajectory satisfies the condition of Definition 4.2 and thus (4.2) yields

#
{
k ∈ {0, . . . ,M}

∣∣∣ d(x(k), xe) ≥ ε
}
≤ C∞ε,Xb .

This implies (4.1) and thus the finite horizon near optimal approximate turnpike property

from Definition 4.2 for N ≥ N ′ with Cfinε,Xb = C∞ε,Xb and δfinε,M,Xb = δ. For arbitrary N we

thus obtain (4.1) with Cfinε,Xb = max{N ′, C∞ε,Xb}.
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5 Turnpike with transient estimates

As already mentioned, the turnpike definitions so far do not allow for estimating how fast
the trajectories approach the equilibrium xe. They also do not allow for bounds on the
trajectories during the time in which they are not close to xe. In this section, we propose
definitions for finite and infinite horizon turnpike properties that provide this information.
Here, the infinite horizon definition was inspired by the usual notion of asymptotic stability
(in its formulation via KL-functions which has become standard in nonlinear control, see
[9]), while the finite horizon definition can be seen as an extension of the exponential
turnpike property established in [3] under a strict dissipativity condition. Like in the
previous sections, we will then be able to show that these two conditions are equivalent
under suitable regularity conditions on the optimal control problem (2.1). In order to
streamline the presentation, we limit ourselves to a set of assumptions suitable for the
undiscounted setting from Section 3, i.e., to β = 1.

For the following definitions, we recall that K is the space of functions α : R+
0 → R+

0 which
are continuous and strictly increasing with α(0) = 0 and that KL is the space of functions
φ : R+

0 × R+
0 → R+

0 which are continuous, r 7→ φ(r, t) is a K-function for each t ≥ 0 and
t 7→ φ(r, t) is strictly decreasing to 0 for each r > 0. The space LN0 denotes all functions
γ : N0 → R+

0 which are strictly decreasing to 0.

Definition 5.1: (finite horizon) The optimal control problem (2.1) has the finite horizon
robust KL-turnpike property at an equilibrium xe ∈ X, if for each bounded set Xb ⊂ X there
are φ ∈ KL, ω ∈ K and γ ∈ LN0 such that for each δ > 0, N ∈ N and all trajectories
(x(k), u(k)) with x0 ∈ Xb, u(·) ∈ UN (x0) and satisfying JN (x0, u) ≤ VN (x0) + δ the
inequality

d(x(k), xe) ≤ φ(d(x0, x
e), k) + ω

(
δ + γ(N) + γ(N − j)

)
(5.1)

holds for all j = 0, . . . , N and all k = 0, . . . , j.

Definition 5.2: (infinite horizon) The optimal control problem (2.1) has the infinite
horizon robust KL-turnpike property at an equilibrium xe ∈ X, if for each bounded set
Xb ⊂ X there are φ ∈ KL and ω ∈ K such that for each δ > 0 and all trajectories
(x(k), u(k)) with x0 ∈ Xb, u(·) ∈ U∞(x0) and satisfying J∞(x0, u) ≤ V∞(x0) + δ the
inequality

d(x(k), xe) ≤ φ(d(x0, x
e), k) + ω(δ) (5.2)

holds.

We note that the second inequality implies that optimal trajectories x?(k) starting at
x = xe satisfy x?(k) = xe. Hence, in order to ensure that V∞(xe) is finite, we need that
minu∈U,f(xe,u)=xe `(x

e, u) = 0, which implies V∞(xe) = 0. We may thus assume V∞(xe) = 0
without loss of generality in the remainder of this section. We note that this assumption
does not imply VN (xe) ≈ 0, even for large N .

In order to show equivalence of Definitions 5.1 and 5.2, in addition to Assumption 3.3 we
need the following assumption.

Assumption 5.3: For the optimal control problem (2.1) we assume that there is K ∈ R
such that for any bounded set Xb ⊆ X there is ρ ∈ LN0 such that for all x ∈ Xb the
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inequality

|V∞(x)− VN (x) +K| ≤ ρ(N)

holds

The intuition behind Assumption 5.3 is the following: assume the infinite horizon problem
has an optimal equilibrium (xe, ue) with `(xe, ue) = 0. Then we have V∞(xe) = 0, but
since on finite horizons (xe, ue) will typically not be an optimal equilibrium, in general
limN→∞ VN (xe) = 0 will not hold. In this case, this limit value is the candidate for the
value K for which Assumption 5.3 holds. The following lemma shows that this reasoning
can be made precise under rather mild conditions if the turnpike property holds.

Lemma 5.4: Consider the optimal control problem (2.1) and assume that the problem
exhibits the turnpike property according to Definitions 3.1 and 3.2 and V∞(xe) = 0. As-
sume moreover that the limit limN→∞ VN (xe) exists and that the optimal value functions
VN are continuous at xe uniformly in N ∈ N∪{∞} in the following way: there exists σ ∈ K
and ν ∈ LN0 such that the inequality

|VN (x)− VN (xe)| ≤ σ(d(x, xe)) + ν(N)

holds for all x ∈ X and N ∈ N ∪ {∞}, with the convention ν(∞) = 0. Then Assumption
5.3 is satisfied.

Proof. We show that the assertion follows for K = limN→∞ VN (xe). We choose η ∈ LN0

such that |VN (xe) −K| ≤ η(N) for all N ∈ N and fix a bounded set Xb ⊆ X. Moreover,
we note that it is sufficient to prove the assertion for sufficiently large N , because the
continuity assumption implies boundedness of VN and V∞ on bounded sets, which ensures
existence of ρ(N) for finitely many N .

We first show that there exists ρ1 ∈ LN0 such that V∞(x) ≤ VN (xe)−K + ρ1(N) holds for
all x ∈ Xb. To this end, fix δ0 > 0, let δ ∈ (0, δ0), x ∈ Xb and consider a control uδ with

JN (x, uδ) ≤ VN (x) + δ. Then, for sufficiently large N ∈ N and ε > 0 the constant Cfinδ0,ε,Xb
from Definition 3.1 satisfies Cfinδ0,ε,Xb ≥ N/2. We define ε = ε(N) > 0 minimal such that

this inequality holds. Then, since for each ε > 0 there is N ∈ N such that Cfinδ0,ε,Xb ≥ N/2
holds, it follows that ε(N)→ 0 as N →∞. Hence, there is ε̃(·) ∈ LN0 with ε(N) ≤ ε̃(N),
e.g., ε̃(N) = supK≥N ε(K) + 2−N . For each N we now pick the minimal k∗ ∈ {0, . . . , N}
satisfying d(xuδ(k

∗), xe) < ε(N), which because of Cfinδ0,ε,Xb ≥ N/2 satisfies N−k∗ ≥ bN/2c.
We pick a control ûδ satisfying J∞(xuδ(k

∗), ûδ) ≤ V∞(xuδ(k
∗)) + δ and set u(k) = uδ(k),

k = 0, . . . , k∗ − 1 and u(k) = ûδ(k + k∗), k ≥ k∗. Then we can estimate

V∞(x) ≤ J∞(x, u) = Jk∗(x, u
δ) + J∞(xuδ(k

∗), ûδ)

≤ JN (x, uδ)− JN−k∗(xuδ(k∗), uδ(k∗ + ·)) + V∞(xuδ(k
∗)) + δ

≤ VN (x) + δ − VN−k∗(xuδ(k∗)) + V∞(xuδ(k
∗)) + δ

≤ VN (x)−K + V∞(xe) + 2σ(ε(N)) + ν(N − k∗) + η(N) + 2δ.

Since δ > 0 was arbitrary, N − k∗ ≥ bN/2c and V∞(xe) = 0, this shows the claim with
ρ1(N) = 2σ(ε̃(N)) + ν(bN/2c) + η(N).
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The converse inequality VN (x) ≤ V∞(xe)+K+ρ2(N) is obtained similarly, starting from a
δ-optimal trajectory for the∞-horizon problem and extending it after the “turnpike time”
k∗ by a δ-optimal trajectory for the problem with horizon N −k∗. Together this yields the
assertion with ρ = max{ρ1, ρ2}.

The first equivalence theorem for Definitions 5.1 and 5.2 now uses Assumption 5.3.

Theorem 5.5: Consider the optimal control problem (2.1) and assume that

(i) |V∞| is bounded on bounded subsets of X

(ii) Assumption 5.3 holds

(iii) for each Θ > 0 there is a bounded set XΘ ⊆ X such that for each N ∈ N ∪ {∞} the
inequality JN (x0, u) ≤ Θ implies x(k) ∈ XΘ for all k = 0, . . . , N .

Then Definition 5.1 holds if and only if Definition 5.2 holds.

Proof. “Definition 5.1 ⇒ Definition 5.2”: Consider a trajectory x(·) with control u(·) and
initial value x0 satisfying the conditions of Definition 5.2. Then for all j ∈ N we obtain

Jj(x0, u) + V∞(x(j)) ≤ J∞(x0, u) ≤ V∞(x0) + δ.

Then from (ii) with Xb = XΘ from (iii), for arbitrary N ∈ N with j ≤ N we obtain

Jj(x0, u) ≤ V∞(x0)− V∞(x(j)) + δ ≤ VN (x0)− VN−j(x(j)) + δ + ρ(N) + ρ(N − j).

Now taking the control u(k) for k = 0, . . . , j−1 and extending it with an ε-optimal control
for horizon N − k, arbitrary ε > 0 and initial value x(j) yields a control ũ satisfying

JN (x0, ũ) ≤ Jj(x0, u) + VN−j(x(j)) + ε ≤ VN (x0) + δ + ρ(N) + ρ(N − j) + ε.

Hence, Definition 5.1 with δ + ρ(N) + ρ(N + j) + ε in place of δ implies the estimate

d(x(k), xe) ≤ φ(d(x0, x
e), k) + ω

(
δ + ρ(N) + γ(N) + ρ(N − j) + γ(N − j) + ε

)
for all k = 0, . . . , j. Fixing k and letting ε→ 0, N →∞ and j := bN/2c → ∞, continuity
of φ and ω and the fact that ρ ∈ LN0 and γ ∈ LN0 yield the desired inequality

d(x(k), xe) ≤ φ(d(x0, x
e), k) + ω(δ).

“Definition 5.2 ⇒ Definition 5.1”: Consider a trajectory x(·) of length N with control u(·)
and initial value x0 satisfying the conditions of Definition 5.1. Then for all j = 0, . . . , N
we obtain

Jj(x0, u) + VN−j(x(j)) ≤ JN (x0, u) ≤ VN (x0) + δ.

Then from (ii) with Xb = XΘ from (iii) we obtain

Jj(x0, u) ≤ VN (x0)− VN−j(x(j)) + δ ≤ V∞(x0)− V∞(x(j)) + δ + ρ(N) + ρ(N − j).
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Now taking the control u(k) for k = 0, . . . , j−1 and extending it with an ε-optimal control
for infinite horizon for arbitrary ε > 0 and initial value x(j) yields a control ũ satisfying

J∞(x0, ũ) ≤ Jj(x0, u) + V∞(x(j)) + ε ≤ V∞(x0) + δ + ρ(N) + ρ(N − j) + ε.

Hence, using Definition 5.2 with δ + ρ(N) + ρ(N + j) + ε in place of δ yields the estimate

d(x(k), xe) ≤ φ(d(x0, x
e), k) + ω

(
δ + ρ(N) + ρ(N − j) + ε

)
for all k = 0, . . . , j. For ε → 0, continuity of ω yields the desired inequality for γ = ρ ∈
LN0 .

Using Lemma 5.4 we can obtain a variant of Theorem 5.5 avoiding the use of Assumption
5.3.

Corollary 5.6: Consider the optimal control problem (2.1) and assume that

(i) V∞(xe) = 0 and limN→∞ VN (xe) exists

(ii) the optimal value functions VN are continuous at xe uniformly in N ∈ N ∪ {∞} in
the following way: there exists γ ∈ K and ν ∈ LN0 such that the inequality

|VN (x)− VN (xe)| ≤ γ(d(x, xe)) + ν(N)

holds for all x ∈ X and N ∈ N ∪ {∞} with the convention ν(∞) = 0.

(iii) for each Θ > 0 there is a bounded set XΘ ⊆ X such that for each N ∈ N ∪ {∞} the
inequality JN (x0, u) ≤ Θ implies x(k) ∈ XΘ for all k = 0, . . . , N .

Then Definition 5.1 holds if and only if Definition 5.2 holds.

Proof. We note that (i) and (ii) imply boundedness of V∞ and VN on bounded sets. More-
over we note that the turnpike property from Definition 5.1 implies that of Definition 3.1
and that the property from Definition 5.2 implies that of Definition 3.2. Since by The-
orem 3.4 the properties from Definitions 3.1 and 3.2 are equivalent under the conditions
of the corollary, we obtain that if either Definition 5.1 or Definition 5.2 holds, then both
Definitions 3.1 and 3.2 follow. Hence we can apply Lemma 5.4 in order to conclude that
Assumption 5.3 holds. The assertion then follows from Theorem 5.5.

We illustrate the use of Theorem 5.5 by the following well known class of optimal control
problems.

Example 5.7: Consider an undiscounted linear quadratic optimal control problem with

f(x, u) = Ax+Bu and `(x, u) = (xT , uT )G

(
x
u

)
,

where (A,B) is stabilizable and the matrix G is symmetric and positive definite. It is well
known that for such a problem the optimal trajectories converge to the origin exponentially
fast and that the infinite horizon optimal value function is of the form V∞(x) = xTQ∞x for
a symmetric and positive definite matrix Q∞. Moreover, the optimal control is available
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in linear feedback form, i.e., u∗ = Fx and V∞ is a quadratic Lyapunov function. More
precisely the inequality

V (Ax+BFx) ≤ V (x)− `(x, Fx)

holds for all x ∈ Rn. For all trajectories (x(k), u(k)) satisfying J∞(x0, u) ≤ V∞(x0)+δ and
all k ∈ N it holds that J∞(x(k), u(k + ·)) ≤ V∞(x(k)) + δ which implies

V∞(x(k + 1)) ≤ J∞(x(k + 1), u(k + 1 + ·)) = J∞(x(k), u(k + ·))− `(x(k), u(k))

≤ V∞(x(k))− `(x(k), u(k)) + δ.

From this inequality a standard Lyapunov argument yields the existence of C1, C2 > 0 and
a ∈ (0, 1) such that

V∞(x(k)) ≤ max{C1a
kV∞(x(0)), C2δ}

for all k ∈ N, which implies

‖x(k)‖ ≤ φ(‖x(0)‖, k) + ω(δ)

with φ(r, k) = C
√
a
k
r and ω(r) = C

√
δ for an appropriate constant C > 0. This im-

plies that the problem has the infinite horizon robust KL-turnpike property according to
Definition 5.2.

In order to show that the problem also has the finite horizon robust KL-turnpike property
according to Definition 5.1, we now check that the problem satisfies the conditions of The-
orem 5.5. Condition (i) is obviously satisfied, since V∞ is a quadratic function. Condition
(ii) follows with K = 0 from the fact that VN (x) = xTQNx and the matrices QN are defined
via the Riccati difference equation and converge exponentially fast towards Q∞, which is
the solution of the discrete time algebraic Riccati equation. The exponential convergence
moreover implies that ρ can be chosen to be of the form ρ(N) = DbN with D > 0 and
b ∈ (0, 1). Condition (iii) follows immediately from the fact that G is positive definite,
implying the existence of CΘ > 0 such that `(x, u) > Θ whenever ‖x‖ ≥ CΘ. From this
condition (iii) follows with XΘ = {x ∈ Rn | ‖x‖ ≤ CΘ}.
Thus, all conditions of Theorem 5.5 hold and we can conclude the finite horizon KL-
turnpike property with φ(r, k) = C

√
a
k
r, ω(r) = C

√
(r) and ρ(N) = DbN , i.e., both φ and

ρ are exponentially decaying in time k or in the horizon N , respectively.

6 Conclusions

In this paper, we have investigated the relationship between turnpike properties for finite
and infinite horizon optimal control problems with the same stage cost. Specifically, we
have shown that under mild technical assumptions, these properties are equivalent. Fur-
thermore, this relationship has been demonstrated for optimal control problems involving
both undiscounted and discounted stage costs, making the results applicable to commonly
studied problems in both engineering and mathematical economics.

Furthermore, we have proposed a definition of a turnpike property that incorporates in-
formation about rate of convergence for optimal trajectories approaching an optimal equi-
libria, as well as a bound on how far such trajectories can be from this equilibria during
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the time when they are not close. This robust KL-turnpike property provides a potential
route to better quantitative results in problems involving turnpikes, similar to the modern
use of comparison functions in stability theory.
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