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Abstract

We prove that the bundle method for nonsmooth optimizatitmexes solution
accuracye in at most¢(In(1/¢)/¢) iterations, if the function is strongly convex.
The result is true for the versions of the method with mudtiplits and with cut
aggregation.

1 Introduction

The objective of this note is to provide a worst-case bountherrate of convergence
of the bundle method for solving convex optimization praoiéeof the following form:

minF(x), 1)
whereF : R" — R is a convex function. The only additional assumption abbet t
function needed to bound the rate is strong convexity of timetion about the mini-
mum point.

The bundle methods were developediin[l, 2]. First rigorausergence analysis
and versions with cut aggregation were provided in [3, 4} &oomprehensive treat-
ment of bundle and trust region methods, se¢l[6, 5]. Althahghbundle method is a
method of choice for nonsmooth optimization, no genera odtconvergence results
are available. This is due to the complicated structure @htiethod, in which succes-
sive iterations carry out different operations, dependinghe outcome of a sufficient
descent test.

Some results on the rate of convergence are available faetated bundle level
method [[7], which achieve®(1/£?) iteration complexity for general nonsmooth con-
vex programming problems. Similar results have been obthiar modified versions
in [8] and [9].

Our contribution is to prove at most(In(1/¢)/¢) iteration complexity of the clas-
sical bundle method, under the condition of strong conyatibut the minimum point.
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This is achieved by bounding the numbers of null steps betveeecessive descent
steps, and integrating these bounds across the entire rthe ghethod. The result
holds true for two versions of the method: with multiple catsl with cut aggregation.

In sectior 2, we present both versions of the bundle methddeaall its conver-
gence properties. Sectibh 3 contains several auxilianyltsesA worst-case bound on
the convergence rate of the method is derived in seCtion 4.

We use(-,-) and|| - || to denote the usual scalar product and the Euclidean norm in
a finite dimensional space.

2 TheBundle Method

The bundle method is related to the fundamental idea optbrimal point method
which uses th&loreau—Yosida regularizatioof F(-),

Fp(Y)ZmXin{F(x)Jrng—yHZ}, p >0, 2)

to construct theproximal stefor (),
proxe (y) :argmin{F(x)—i—ng_yHZ}. (3)
X

The proximal point method carries out the iterati6h® = prox- (x¥), k= 1,2, ... and
is known to converge to a minimum Bf(-), if a minimum exists[[10].

The main idea of the bundle method is to replace problém (i) aisequence of
approximate problems of the following form:
I”

— p k
minF (x)+5||x—x (4)
Herek = 1,2,... is the iteration numbeX is the current best approximation to the
solution, andFX(-) is a piecewise linear convex lower approximation of the fiorc
F(-). Two versions of the method differ in the way this approxiiorais constructed.

2.1 TheVersion with Multiple Cuts

In the version with multiple cuts, the approximatid?f%(-) are constructed as follows:

FK(x) = rjggg{F(sz (@' x—2)},

with some previously generated poimtsand subgradienty € dF (2)), j € J, where
J C {1,...,k}. The pointsz are solutions of problemEl(4) at earlier iterations of the
method.

Thus, problem(4) differs fronil]2) by the fact that the funatF(-) is replaced by a
cutting plane approximation. The other difference betwiberbundle method and the
proximal point method is that the solutiaf™ of problem [@) is subject to a sufficient
improvement test, which decides whether the next proxireaterx** should be set



to Z1 or remain unchanged.

Bundle Method with Multiple Cuts

Step 0: Setk =1, J; = {1}, 22 = x}, and selecg' € dF(z}). Choose parameter
B € (0,1), and a stopping precisian> 0.

Step 1: Find the solutior?t1 of subproblem[{}).

Step 2: If
F(X)—FY 27 <e, (5)
then stop; otherwise, continue.
Step 3: If
F(29Y) < F(X) - B(F(X) —F*(Zh), (6)

then sekt1 = Z+1 (descent stepotherwise sext1 = x (null step).
Step 4: Select a sel, 1 so that

JU{k+1} D Jy1 2 {k+1}U{j e k:F(@)+(g, 2 —2) = F*z) L.

Increasek by 1 and go to Step 1.

2.2 TheVersion with Cut Aggregation

In the version with cut aggregation, as describedlin [3] ddd $ec. 7.4.4], the approx-
imationsFX(-) have only two pieces:

F¥(x) = max{F¥(x), F (&) + (g",x— Z)},

with the last generated poidt and the corresponding subgradighte oF (Z). The
function F¥(x) is a convex combination of affine minorari$z ) + (g!,x— ), con-
structed at previously generated poiatsvith subgradientgl € dF (2/), where 1<

j < k. This function is updated at each iteration, as specifiedép 8 of the algorithm
below.

Bundle Method with Cut Aggregation

Step 0: Setk=1, 7' =x!, F1(\) = —o, and selecy® € dF (7). Choose parameter
B € (0,1), and a stopping precisian> 0.

Step 1: Find the solutior?t1 of subproblem[{}).
Step 2: If _
F(X) - FYZ4Y <,
then stop; otherwise, continue.
Step 3: If N
F(ZM <F)—B(FOX) —FX M),

then setkt1 = Z+1 (descent stepotherwise sex“1 = x (null step).



Step 4. Define
FEH(x) = B6F¥ () + (1 80 [F (29 + (g x— 29], @
where6 € [0,1] is such that the gradient 8*1(.) is equal to the subgradient B¥(-)

at Z+1 that satisfies the optimality conditions for probldrh (4)cremsek by 1 and go
to Step 1.

2.3 Convergence

Convergence of the bundle method (in both versions) for esrfunctions is well-
known.

Theorem 1. SupposédrgminF = 0 and e = 0. Then a point X € ArgminF exists,
such that:
lim X< = lim 2 = x*.

k—00 k—00
Proof. The proof of this result (in slightly different versionsyche found in numerous
references, such &s [4, Thm. 4.9], [5, Thm. XV.3.2.4][ o [TAm. 7.16]. O

3 Auxiliary results

In this section, we collect several auxiliary results on pueperties of the bundle
method in the general case. They are either refined versiodsext quotations of
results presented ih 11, sec. 7.4]. We consider both vessibthe method in parallel,
with the corresponding versions of the functidf-). All the results hold true for
both versions, because the analysis of the method with pleiltuts uses the version
with cut aggregation anyway; in the proofs we explain theantifferences between
the methods.

We first prove that if a null step occurs at iteratiknthen the optimal objective
function values of consecutive subproblems are increasind the gap is bounded
below by a quantity dependent on

vie = F(x) = FX(2Y). (8)
We define the optimal objective function values of subprob(d) at iteratiork as:

R ©

Note thatt1 = xK at a null step.
Since the poinZ*1 is the optimal solution of{4) at iteratidg the vector

M= —p (). (10)

is the subgradient d?k(-) at Z*1 that features in the optimality conditions. Conse-
quently, the poinZ“t1 is also the unique minimum of the problem

mxin{lfk(i+1)+<sk“,x—zk”>+ng—kaz}, (11)
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and the values of {9) an@{111) coincide. In the method withagigregation, by the
definition of ¢ in (@) and by[(ID), we have

F*L(x) = FR(ZH) 4 (8L x— 21,

The addition of a new cut &** and possible deletion of inactive cuts (in the method
without cut aggregation), creates a functfef1(-), which satisfies the inequality

FRPL(x) > max(FX(Z4h) 4 (¢ x— 290 F (2 + (g x—Z11). (12)

In the method with cut aggregation, exact equality(in (12yue, but we use the in-
equality “>" in further considerations. Since the test for a descemtistaot satisfied,

we have
l’fk+l(zk+1) — F(Zk+l) > I’fk(ZkJrl)'

The solutior?t1 of problem[[T1) is unique, due to the strong convexity of tivection
being minimized there. Therefore, the optimal valud_of (hiist increase after replac-
ing FK(Z+1) 4 (s¢t1 x— 1) with the right hand side of{12). The optimal valgk'!
of (d) at iteratiork + 1 is at least as large, due fo{12).

The key issue is to bound the actual increment frghto nk+1 from below.

Lemma 2. If a null step is made at iteration k, then

. B v, (13)

Nkt > nky

where

(1-B)pw } (14)

L = min {1, —
||sk+1_gk+1H2

Proof. Using [12), we can bound the optimal value of the subprob@na{ iteration
k+ 1 as follows:

nktt> mXin{ max(ﬁk(i‘+l) +(HL x— 2Ly,
F (2 + <gk+1,x—zk+1>) 4 gHX_XkHZ}
> mXin{(l— n (ﬁk(zk+1) (L x— zk+1>)
—H.l(F(Zk“) (g x— Zk+1>) +%HX_XKHZ}’

with any value of the parametgre [0, 1]. Define

(15)

Qu(k) = min{ (1 p) (FHZH) + (&1 x - 21))
+u (F(i“l) + (g x— 2”1)) + g |x— kaZ}. (16)

Due to [11) Q«(0) = n*. It follows from (IB) that the difference betwegfi** andn*
can be bounded from below by the increase in the optimal v@lig), whenu moves
away from zero. That is,

N+t — k> max Qu(u) — Qk(0).
uel0,1]



By direct calculation and with a view tb_(IL0), the minimizer the right hand side of
@@s)is
K(u) = £<+1+ % (sk+1 _ gk+1).

To obtain the derivative o@k(~), we calculate the partial derivative of the right-hand
side of [18) with respect tp and then substitute= X(u1). We obtain
Qi) = F(ZF) = F¥ZH) + (g — T () — 277
— F () — BR () - %HskJrl . gk+1HZ_

Thus, for any value ofi € [0,1],

Nt —n* > Qulk) — Qk(0) = ' (;uk Ql(u) du

e (F(ZkJrl) Ry - é‘_; |8t gk+1H2) .

Define

U = min {1, p(FE) —F ) }

||sk+1_ gk+1H2
Clearly, ug € [0,1]. Substitution into the last displayed relation implies ithequality
niHl k> % (F (1) — ER(2+1)), (17)
If a null step occurs at iteratiok, then the update step rulel (6) is violated. Thus,
F(Z+1) — FK(Z+1) > (1— B)vi. Using this in[Z¥), we obtain
1-B

n*tt—nk> 5 HkV
Sincepy > Uy, the postulated bound{113) follows. O
We recall a useful bound of the changes frgfto nk+1 at descent steps.

Lemma 3. If a descent step occurs at iteration k, then

kL k> |t x> %(F(XkJrl) —F(X)). (18)

Proof. Seel[11, (7.68)-(7.69)]. O

The following lemma relates the values of the optimal valté, nk, and the
valueF (Z*1) at the solution of[{4).

Lemma 4. At every iteration we have the inequality:

F(X)—nk> % [F(X) — FX(Z)].



Proof. Consider the function
O(1) = (1— T)F(X) + TFX(ZH ) + gH (1— 1)+ 124 K2
By construction®(1) = n¥, and, due to the convexity 6(-),

@(1) > FR((1— 1) 1291 + %H(l— X2 K| Te0,l. (19)

By the definition ofZ<1, the right hand side of {19) is minimized at= 1. Therefore,
@'(1) < 0. Differentiating, we obtain the inequality

—F(X) + FRZh) 4 p||2 =X 2 < 0.

This implies that

nk=F*Z"1)+ g |24 —X||? < FX(2 1) + % [F(xX) — F*(z)]
1 ~
=3 [F(X) -+ FX(Z)].
This is equivalent to the postulated inequality. O

Finally, we recall the following bound of the Moreau-Yosidgularization.

Lemma5. For any point x¢ R" we have

y F(x) —F(x*

P < F(9 - [x-x g (ER=E)), (20)

=]

where
t? if t€0,1],
t =
40 {—1+2t if t>1

Proof. Seel[11, Lem. 7.12]. O

4 Rate of Convergence

Our objective in this section is to derive a worst-case baumthe rate of convergence
of the method. To this end, we assume that 0 at Step 2 (inequality{5)) and we
bound the number of iterations needed to achieve this acgura

We make a key assumption about strong convexity of the fanét{-).

Assumption 6. The function K-) has a unique minimum point and a constandr >0
exists, such that
F(x)—F(x*) > aHx—x*Hz,

for all x € R" with F(x) < F(x}).



We first show that stopping test of Step 2 guarantees thetdlgdanction accuracy
of ordere.

Lemma 7. Suppose Assumptibh 6 is satisfied. Then at every iteratianhawe

Fo&) —F(x) < L=

~ min(a,l) (21)

Proof. SinceFX(-) < F(.), we have

Fp(X€) = mxin{F(x) +ng—ka2} > mXin{ﬁk(x) +g||x—xk||2} =n* (22
Consider two cases.
Case Lif F(x) — F(x*) < || —x*||%, then [20) withx = x* yields

2

ky *
Fa () < F X — —(F(}Txi_;(sz)) .

Combining this inequality witH{22), we conclude that

ky ) 2
0

Substitution of the denominator by the upper bodR@) — F (x*))/a implies [21).
Case 2: X)) —F(x*) > ka—x*Hz. Then [20) yields

Fo () < F(X) — 2(F () — F(x)) + X — x|

With a view to [22), we obtain
2(F(X) —F(x")) — ¥ = x| < F (<) — X,
which implies thafF (xX) — F (x*) < F(xX) — n¥in this case. O

Corollary 8. Suppose Assumptidh 6 is satisfied. If the stoping(®st satisfied at
iteration k, then

FO&) —F(X) < —

= min(a. 1) =

To bound the number of iterations of the method needed teaelihe prescribed
accuracy we consider two issues. First, we prove linearabt®nvergence between
descent steps. Then, we bound the numbers of null steps drtemsecutive descent
steps.

By employing the bound of Lemnfid 7, we can address the firstissu

Lemma9. Suppose Assumptibh 6 is satisfied. Then at every descehkt\wepave
F(2%) —F(x') < (1- ap) (F(x) - F(x)), (24)

wherea = min(a, 1).



Proof. It follows from the update rulé {6) that
F(Z) < (1-B)F () + BFH(ZTH).

SinceFK(Z+1) < nk, LemmdY yields

F(X)—F(x) <

Ql

(F(X) — FXZ).
Combining these inequalities and simplifying, we concltic

F(2%) < (1- B)F(X) + B(aF (x') — aF () + F(x))
=F(X)—aB(F(xX)—F(x)).

Subtraction of (x*) from both sides yields the linear rafe24). O

We now pass to the second issue of deriving an upper boundearutinber of null
steps between two consecutive descent steps. To this erahailyze the evolution of
the gapF (xXX) — nk.

It follows from [11, (7.64)] that for alk

2(1-p)
Bp

Thus, a uniform upper bound exists on the norm of the subgnésicollected at poins.
Therefore, a uniform upper bound exists on the distafjg€s — x¥||. Consequently,
the subgradients collected at the poidts! are uniformly bounded as well, and the
bound depends on the starting point only. ConsequentlynstantM exists such that

k

=X [F < x| [F(x) = F(x)].

I

Hsk+1_ gk+1H2 <pM
at all null steps. With no loss of generality, we assume ¢h&atM.

Lemma 10. If a null step occurs at iteration k, then

F(X) — "1 < y(F(x) —n%), (25)
where a B)2
—B)%¢e

Proof. By Lemmd2, we have

1-6—
FOd) 0t < FO) 1P (27)

On the other hand,

Vie= F () — EX(Z1) = F (x¢) — nuguiﬂl—xkuz SFO—nk  (28)



Combining the last two inequalities, we conclude that

e AR

— <1— 1_2B;Tk> (F(X)—n").

F(Xk) _ nk+l < F(Xk) _ nk_
(29)

Consider the definition (14) @f in Lemmd2. Ifu, = 1, then(1— #Ek) is no greater
than the bound(26), becausel M. Otherwise L is given by the second case In(14).
Since the algorithm does not stop, we haye- €, and thus

— (1-B)pv (1-P)e
“k:Hsk+1_gk+1H22 M

Substitution to[(29) yield$ (26). O

Let x(~ D x(©) x(t+1) pe three consecutive proximal centers for 2 in the algo-
rithm. We want to bound the number of iterations made withxjmnal centerx(). To
this end, we bound two quantitie (x(*)) — nX"), wherek(¢) is thefirst step with
proximal centex(‘), andF (x()) — n¥(©) whereK (¢) is thelast step with proximal
centenxt).

In the following we discuss each issue separately.

Recall that according to the algorithxd?) is the optimal solution of the last sub-
problem with proximal cented!~1. Let nX)~1 be the optimal objective value of the
subproblem, that is,

_ ~K(0)— P 12
nkO-1 _ EKO) 1(X(e))+EHX(z>_X(z 1>H .
Lemma 11. If a descent step is made at iteratioffk— 1, then

F(x®) = pk® (F(X(éfl)) _ F(x“))). (30)

<3
=28
Proof. The left inequality in[(ZB) yields
nk([) 2 nk([)71 — pHXw) — X([71)||2.
SinceF (x()) < F(x\!~1)), we obtain
F(x) = nk0) < F(x(-D)y - nk(é)flerHx(f) _ XM*DHZ_
As iterationk(¢) — 1 is a descent step, the update rlile (6) holds. Thus

F(x(D) = pkO-1 = | F(x=D) _ FKO-L(x0) | _ ngm — X2

< 5 (FOY) =R ) = B -,

|~
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Combining the last two inequalities we obtain
1
S —
B

The right inequality in[{(IB) can be now used to substif{s¢ — x(‘- ||2 on the right
hand side to obtaii_(30). O

F(X9) - n0 < 2 (F(XD) —F(x)) + g X — x|,

We can now integrate our results.
Applying LemmdY, we obtain the following inequalityeterynull step with prox
centerx(¥):

F(XO) —n*= a(F(x9) —F(x)) = a(F () - F(x*1). (31)

From Lemmd Il we know that for 2 ¢ < L, whereL is the last proximal center,
the initial value of the left hand side (immediately aftee fhrevious descent step) is
bounded from above by the expression on the right hand sid8®)f Lemmd 1D
established a linear rate of decrease of the left hand si@pf Therefore, the number
n, of null steps with proximal cented?), if it is positive, satisfies the inequality:

% (FOD) —FxdN)y > a(F(x\Y) — F(xH)y),
Consequently, for X ¢ < L we obtain the following upper bound on the number of
null steps:
1 2Ba F(x9)) — F(x("+)
n<1 In . 32
() < 3 F D)= F(x0) (32)
If the numbem, of null steps is zero, inequaliti (24) yields
F(x() — F(x(F1)) - F(xD) —F(x*) o1
FOXD) —F(x) = F(x(*1) =F(x) = (F(X0) =F(x)) = =5 -1

Elementary calculations then prove that both logarithmtherright hand side of (32)
are negative, and thus inequality(32) is satisfied in thie @ well.

Suppose there are proximal centers appearing throughout the algorith!,
x@, ..., xY), They divide the progress of the algorithm itseries of null steps. For
the first series, similar to the analysis above, we usk (3d)Lammd 1D to obtain the

bound
1 _F(xM) —F(x®?)
< :
m<1l+ n(y) In (a FxD) i

For the last series, we use Lemia 4 to derive the inequalitf)) — nk > /2, which
must hold at every iteration at which the stopping test issatisfied. We use it instead
of 37) in our analysis, and we obtain

B €
n <1+ nty) In <§ FxD) F(x('-))) .

11



We aggregate the total number of null steps for differenxjpnal centers and we obtain
the following bound:

S 1 In(a)+In <£35) +In <g> + I_illn <F(x1)£—nl>} +L. (33)

n <L;
2"y

Let us recall the definition of in (26), and denote
(1-B)?
2M

so thaty =1— ¢C. Since If1— eC) < —&C, we derive the following inequality for the
number of null steps:

C:

;lnz < L_;gé {In(o_’)Jrln (£35> +1In (g) + I_illn (F(xl)g—nl)] +L. (34)

Let us now derive an upper bound on the numbef descent steps. By virtue dfl(5)
and [6), descent steps are made only if

F(X) — F(x") > Be;

otherwise, the method must stop. To explain it more spetifida F (x¢) — F(x*) <

Be, thenF (xXX) — F(21) < Be. If a descent step is madg(Z+1) < F(X) — Bv.
ThenBv < B, w < €. Thus we can’t make a descent step because the algorithm has
already stopped, which contradicts our assumption. lo¥edl from Lemma&Db, that

(1—-ap)-H(F(xh) —F(x)) > Be.

Therefore,

In(Be) —In (F(x}) — F(x"))
In(1—apB) '

As aresult, we have the final bound for the total number of eleisand null steps:

L
L—l—lz ny
(=1

< £Cln(11— ) In (F(Xl)ﬁ_:(x*)) [In(5)+ln <£35> +In <g>] (36)

1 (FOH—nt\  InBe)—In(F(x')—F(x))
+—In< : >+2 n(1—aB)

eC
Therefore in order to achieve precisienthe number of steps needed is of order

LS n~o( ()

This is almost equivalent to saying that given the numbetarationsk, the precision
of the solution is approximatelg’(1/Kk).

L<1+ (35)

+2.
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