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Abstract This paper presents a study of analysis of minimum time trajec-

tories for a differential drive robot equipped with a fixed and limited Field-

Of-View (FOV) camera, which must keep a given landmark in view during

maneuvers. Previous works have considered the same physical problem and

provided a complete analysis/synthesis for the problem of determining the

shortest paths. The main difference in the two cost functions (length vs. time)

lays on the rotation on the spot. Indeed, this maneuver has zero cost in terms

of length and hence leads to a 2D shortest path synthesis. On the other hand,

in case of minimum time, the synthesis depends also on the orientations of

the vehicle. In other words, the not zero cost of the rotation on the spot ma-

neuvers leads to a 3D minimum time synthesis. Moreover, the shortest paths

have been obtained by exploiting the geometric properties of the extremal

arcs, i.e. straight lines, rotations on the spot, logarithmic spirals and invo-

lute of circles. Conversely, in terms of time, even if the extremal arcs of the

minimum-time control problem are exactly the same, the geometric properties

of these arcs change, leading to a completely different analysis and character-

ization of optimal paths. In this paper, after proving the existence of optimal

trajectories and showing the extremal arcs of the problem at hand, we provide

the control laws that steer the vehicle along these arcs and the time-cost along

each of them. Moreover, this being a crucial step toward numerical implemen-

tation, optimal trajectories are proved to be characterized by a finite number

of switching points between different extremal arcs, i.e. the concatenations of
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extremal arcs with infinitely many junction times are shown to violate the

optimality conditions.

Keywords Time optimal paths · Nonholonomic dynamical systems · Bearing

constraints · Differential-drive vehicles

Mathematics Subject Classification (2000) 34H05 · 37J60 · 49J15 ·

93C85

1 Introduction

The interest of both academic and industrial communities in topics related

to autonomous mobile robots has remarkably increased in the last decade,

these being very suitable to be used in conditions and environments that are

barely accessible for humans [1]. The most important issues in mobile robotics,

which deeply influence the accomplishing of assigned tasks and hence the con-

trol laws, concern the directionality of motion (i.e. nonholonomic constraints)

and limitation of sensory constraints (i.e. Field-Of-View (FOV)). Localiza-

tion tasks, formation control and maintain visibility of some objects in the

environment imply that some landmarks must be kept in sight and involve

several interesting mathematical problems to be addressed [2–6]. Optimiza-

tion problems are typically incorporated in the motion planning framework,

i.e. the analysis and synthesis of prescribed trajectories to be followed by the

robot [7–11]. Time optimal trajectories for a bounded velocity Differential

Drive Robot (DDR), which moves on a unobstructed plane, have been derived

in [12]. In particular, authors provided a proof of the existence and an analysis
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of the structure of the time optimal trajectories. Moreover, they furnished an

algorithm to determine all optimal trajectories with the associated time cost.

If, in addition to the nonholonomic constraints, the robot is supposed to carry

a fixed on-board camera with limited FOV, the problem becomes even more

interesting and complex as the vision constraints further limit feasible maneu-

vers. This research aims at deriving the time optimal trajectories for a DDR

from any starting configuration of the vehicle to a desired one, while keeping

a given landmark in sight during maneuvers. We consider a pinhole camera

model [13] with a limited horizontal and vertical angle of view (see Figure 1),

whose principal axis forms and angle Γ w.r.t. the robot forward direction.

The FOV problem has been successfully solved for nonholonomic vehicle,

e.g. in [14–16] where the resultant path is not optimal. An optimal solution

for a nonholonomic vehicle with FOV constraints has been furnished in [17]

and [18]. In particular, [17] provides the shortest paths synthesis in case of a

camera modeled as a frontal and symmetric (w.r.t. the forward direction of

motion), planar cone, i.e. only horizontal limits of the sensor are taken into

account. In [18] shortest paths to generic FOVs, including side and lateral

sensors (the forward direction of motion in not necessarily included inside the

FOV) has been obtained. Moreover, in [19] and [20] authors also introduced

the vertical constraint limits imposed by the camera: it is worth to note that

in this case, the optimal solution may not exist for some particular initial/final

robot configurations.
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On the other hand, optimal trajectories for DDRs without FOV constraints

are also derived in [21] where the total amount of wheel rotation is optimized,

while in [22] time optimal trajectories are obtained for an omnidirectional vehi-

cle. The methodology used in [12] is an extension of optimal control techniques

developed in [11, 23, 24] for steered vehicles. Moreover, in [25] a geometric al-

gorithm to derive time optimal trajectories for a bidirectional steered robot

is developed. The study of optimal controls for such vehicles started with [26]

and [10].

In the case of time-optimal paths for a DDR with limited FOV, some pre-

liminary results are available in [27], where a characterization of the extremal

paths for the system is derived and moreover a comparison of some concatena-

tions of extremals is provided in order to reduce the complexity of the problem

toward the definition of a sufficient set of optimal maneuvers.

As a major novel contribution to the problem, in this paper the existence of

time optimal trajectories for a DDR with limited FOV is formally addressed,

the expression of optimal controls is given and optimal paths are proved to

consist of a finite number of maneuvers. As already mentioned, the existence

of optimal solutions to control problems in the presence of nonholonomic and

state/input constraints is a major problem and it needs to be carefully ad-

dressed [28–30]. Moreover, the demonstration that optimal trajectories are

composed by a finite number of extremal concatenations is a non trivial result,

important both from a theoretical perspective and for numerical approxima-

tions of optimal solutions.
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The paper is structured as follows. The basic setup is given in Section 2,

while Section 3 focuses on the Hamiltonian formulation for the constrained

optimization problem. Section 4 addresses controllability and existence of op-

timal paths, and the characterization of time costs associated to extremal arcs

is described in Section 5. Finally, the analysis of the junction times set, i.e. the

set of time instants corresponding to switching between different externals, is

carried out in Section 6. Some conclusions and a resume of future perspectives

and open problems close the paper.

2 Problem Definition

In this section the kinematic model of a Differential Drive Robot (DDR) [12]

will be introduced for reader convenience. The robot has an on-board camera

with a limited Field-Of-View (FOV). The camera is represented as a rectangu-

lar right pyramid, which is a typical shape in case of pinhole camera model [31].

Finally, the constraints on the robot motion imposed by the camera in order

to maintain a fixed landmark in the environment inside the limited FOV will

be also introduced.

2.1 The Robot and the Camera Models

Let us consider a DDR moving on a plane where a right–handed reference

frame 〈W 〉 is defined with origin in Ow and axes Xw, Zw. The configuration

of the vehicle is described by ξ(t) = (x(t), z(t), θ(t)), where (x(t), z(t)) is the

position in 〈W 〉 of a reference point in the vehicle, and θ(t) is the heading angle,
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i.e. the vehicle heading with respect to the Xw axis (see Figure 1(a)). The

vehicle velocities are subject to the nonholonomic constraint that, in Pfaffian

form assumes the following form:

A(ξ)ξ̇ =

[
sin θ − cos θ 0

]

ẋ

ż

θ̇

 = 0

It is important to note that without this nonholonomic constraint, the problem

tackled in this paper becomes trivial even in case of FOV constraints that will

be introduced in the next subsection. Indeed, this constraint limits instanta-

neous movements that are orthogonal to the heading direction as it occurs for

cars and bicycle. However, the vehicle can reach any point on the motion plane

by manoeuvring – the controllability property holds for the DDR. Feasible ve-

locities for the DDR are hence contained in the null space of the constraint

matrix A(ξ)

N (AT (ξ)) =




cos θ

sin θ

0

 ,


0

0

1




.

Hence the kinematic model of the DDR in cartesian coordinates is given as

ξ̇ =


cos θ

sin θ

0

 v(t) +


0

0

1

ω(t) , (1)

where v(t) and ω(t), also known as pseudovelocities, are the driving (or for-

ward) and the steering (or angular) velocities.
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To simplify the analysis of the problem, referring to Figure 1(a) we choose

polar coordinates instead of cartesian ones to represent the kinematic model

of the DDR: q(t) = [ρ(t) ψ(t) β(t)]T with ρ =
√
x2 + z2, ψ = arctan

(
z
x

)
and

β = arctan
(
z
x

)
− θ + π. The kinematic model of the DDR becomes

q̇ = g1(q)v + g2(q)ω. (2)

where

g1(q) =

[
− cosβ

sinβ

ρ

sinβ

ρ

]T
, g2(q) = [0 0 − 1]T . (3)

From a practical point of view, usually a DDR has two wheels, one on the

right and one on the left, actuated by two motors whose control inputs are

assumed to be their angular velocities. Denoting by wR and wL the angular

velocities of the right and left wheel, respectively, we have

v =
wR + wL

2
, ω =

wR − wL
2b

(4)

(a) Cartesian and polar coordinates of the

robot and H-FOV constraints.

(b) V-FOV constraints. h is the height of

the landmark w.r.t. the plane Xc × Zc.

Fig. 1 Mobile robot and systems coordinates. The robot’s task is to reach point P from

any initial position Q on the motion plane while keeping the landmark within a limited FOV

(dashed lines).
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where b is half of the wheels axle length. In the following, we will refer to v,

ω or wR and wL as the pair of control inputs of the DDR. Referring to the

equivalent input representation (4) we assume, without loss of generality, the

bounds wi ∈ [−1, 1], i = L, R.

The vehicle carries an on-board rigidly fixed pinhole camera with a refer-

ence frame 〈C〉 = {Oc, Xc, Yc, Zc} such that the optical center Oc corresponds

to the robot’s center [x(t), z(t)]T and the optical axis Zc forms an angle Γ

with the robot’s forward direction (see Figure 1). Without loss of generality,

we will assume 0 ≤ Γ ≤ π
2 , so that, when Γ = 0 the Zc axis is aligned with

the robot’s forward direction, whereas, when Γ = π
2 , the Zc axis is perpendic-

ular to the robot’s forward direction. The camera has a limited Field-Of-View

(FOV) represented as a rectangular right pyramid where φ̂ and φ are the half

of the vertical and horizontal angular aperture of the camera, i.e. half of the

apex angles which are the dihedral angles between the opposite side faces of

the pyramid. We will refer to those angles as the vertical and horizontal an-

gular aperture of the sensor, respectively. In the following, we consider the

most interesting case in which φ̂ and φ are less than π/2. Let φ1 = Γ − φ and

φ2 = Γ + φ be the angles between the robot’s forward direction and the right

and left sensor’s border w.r.t. Zc axis, respectively (see Figure 1(a)). Notice

that, the known parameters φ, φ̂, Γ define a range of different possible camera

FOVs and configurations between the robot and the camera. However, they

are assumed to be fixed and do not change during the robot motion.
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We assume that the feature to be kept within the on-board limited FOV

sensor is placed on the axis through the origin Ow, perpendicular to the plane

of motion, so that its projection on the motion plane coincides with the center

Ow (see figure 1). The feature has height h from the plane Xc × Zc.

Referring to Figure 1(a), the horizontal FOV (H-FOV), with characteristic

angle 2φ, generates the following constraints:

−β + φ1 ≤ 0, β − φ2 ≤ 0 . (5)

while the vertical FOV (V-FOV), with characteristic angle 2φ̂, generates the

following one

ρ cos(β − Γ ) ≥ h

tan φ̂
=: Rb (6)

where Rb is a constant and represents the minimum distance from Ow that the

vehicle can reach without violating the V-FOV constraints. Let Cb denote the

circumference centered in the origin of radius Rb. The expression of constraint

(6) is not straightforward; indeed we need to use the pinhole camera model to

get it (see [20] for a detailed proof on how this constraint is obtained).

2.2 Optimal Control Problem Statement

The optimal control problem consists in determining, for any initial position

of the system Q = (ρQ, ψQ) ∈ R2 on the plane Xw × Zw with βQ such that

(5) and (6) are verified, the minimum time trajectory from Q to the robot

target position P = (ρP , ψP ) ∈ R2, P 6= Q and with βP subjects to the same
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constraints of βQ. In the following, without loss of generality, we will assume

P to lay on the Xw axis, with ψP = 0 (see Figure 1).

For given and fixed parameters φ, φ̂, Γ and hence Rb, the state constraints

(5)-(6) are imposed on the state variable of the system along the whole tra-

jectory. This gives rise to the inclusion q(t) ∈ S where

S := {(ρ(t), ψ(t), β(t)) ∈ R3 : |β(t)− Γ | ≤ φ, ρ(t) cos(β(t)− Γ ) ≥ Rb}. (7)

At the same time, limits on the pair (wR, wL)gives rise to the control

domain U 3 (v, ω) which turns out to be a diamond (see [25]), i.e.

U = {(v, ω) ∈ R2 : 0 ≤ |v|+ b|ω| ≤ 1}. (8)

Summarising, the optimal control problem to be solved is

Problem 2.1 (Optimal control problem with pure state constraints)

Let q(t) = [ρ(t), ψ(t), β(t)]T be the state of the nonlinear control-affine system

whose dynamics are q̇(t) = g1(q(t))v(t) + g2(q(t))ω(t) with g1(q), g2(q) given

by (3) and control inputs (v(t), ω(t)). The optimal control problem is

min
v, ω

T∫
0

L(q(t), v(t), ω(t), t) dt := min
v, ω

T∫
0

1 dt

subject to:

(v, ω) ∈ U

Q = (ρ(0) cos(ψ(0)), ρ(0) sin(ψ(0)))

P = (ρ(T ) cos(ψ(T )), ρ(T ) sin(ψ(T ))) := (ρP , 0)

q(t) ∈ S ∀t ∈ [0, T ]
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where Q is the initial position of the system, P is the target position of the

system, v, ω are the inputs of the system, U is the set of admissible inputs

given by (8) and S is the set of admissible states given by (7).

Before using the Pontryagin Maximum Principle (PMP) to characterize

extremal arcs of the proposed optimal control problem, we first briefly report

some useful geometric properties, obtained in [32], that can be exploited to

simplify the analysis.

Remark 2.1. The H-FOV and the V-FOV constraints (5) and (6) can be simul-

taneously active only along a 1-dimensional curve CS , which is a circumference

centered in Ow with radius ρS = Rb

cosφ .

The above remark allows to consider separately the horizontal and vertical

constraints; in particular, we can subdivide the motion plane in three distinct

regions (see Figure 2)

Z0 := {(ρ, ψ) : ρ < Rb}

Z1 := {(ρ, ψ) : Rb ≤ ρ ≤ ρS}

Z2 := {(ρ, ψ) : ρ ≥ ρS} .

The disk Z0 is the set of points in R2 that violates V–FOV constraint (6) for

any value of β and hence is inaccessible. The annulus Z1 is instead the set

where the V–FOV constraint determines the optimal path behavior: in fact,

as long as q ∈ Z1 and the V–FOV constraint holds true, one has necessarily

|β − Γ | ≤ φ where the equality holds only on the boundary CS . Finally,

the unbounded region Z2 does correspond to the set where the optimal path

behavior is ruled by H–FOV constraints: indeed, as long as q ∈ Z2 and both
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the H–FOV holds true, one has necessary ρ cos(β − Γ ) ≥ Rb, where again the

equality holds only on the boundary CS .

(a) Subdivision of the mo-

tion plane with both H-FOV

and V-FOV constraints

(b) Motion plane in the case

of V-FOV constraints only,

as in [19]

(c) Motion plane in the case

of H-FOV constraints only,

as in [17]

Fig. 2 Subdivision of the motion plane according to Remark 2.1.

3 Adjoint Equations and Extremal Arcs

In order to characterize the extremal arcs and the associated control inputs, we

now study the Hamiltonian function associated to the optimal control problem

2.1. The goal is to determine the necessary conditions for optimality by using

the PMP. Both H-FOV and V-FOV constraints depend on the states q(t) and

not (explicitly) on the control variables (v(t), ω(t)). There are two possibility

to deal with pure state constraints (see [33] and references therein). In the

first one, also known as direct adjoint approach, the pure state constraints are

directly adjoined to the Hamiltonian pre-multiplied by suitable multipliers. In

the second one, also known as indirect adjoint approach, the pure state con-

straints is derived w.r.t. the time along the trajectory of the dynamic system
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until the control inputs appear (this is suggested by [34,35] for the first order

state constraints, i.e. the control inputs appear after the first derivative of the

constraints and then in [36, 37] for higher order state constraints). We decide

to adopt the indirect adjoint approach in this paper. Hence, given the pure

state constraints (7), these can be easily rearranged as s(q) ≤ (0, 0, 0)T . The

first order derivative s(1)(q, v, ω), which is sufficient to reveal the inputs, is

s(1)(q, v, ω) =


sin β
ρ v − ω

− sin β
ρ v + ω

cosΓv − ρ sin(β − Γ )ω

 . (9)

The constrained Hamiltonian of the system is hence given by

H(ρ, ψ, β, v, ω) = 1− λ1 cosβv + λ2
sinβ

ρ
v+

+ (λ3 − µ1 + µ2)

(
sinβ

ρ
v − ω

)
+

+ µ3(cosΓ v − ρ sin(β − Γ )ω),

(10)

with adjoints dynamics λ̇ = −∂H∂q and where the first derivative of the pure

state constraints are added to the Hamiltonian pre-multiplied by nonneg-

ative and nondecreasing multipliers on the boundary intervals of s(q), i.e.

µ1, µ2, µ3 ≥ 0 and µ̇1, µ̇2, µ̇3 ≤ 0. Moreover, when si(q) = 0, it holds s
(1)
i (q, v, ω) =

0 while µi = 0 when si(q) < 0 for i = 1, 2, 3. To determine the necessary

conditions of optimality [35, 37] we study constrained and unconstrained arcs

separately.
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3.1 Unconstrained Arcs

Let us suppose that the initial condition q(0) is such that (ρ(0), ψ(0)) ∈ Z1∪Z2

and

φ1 < β(0) < φ2, ρ(0) cos(β(0)− Γ ) > Rb .

As a consequence, there always exists t1 > 0 such that the constraints are not

active for the interval I1 = [0, t1[. The adjoint equations reduce to

λ̇1 = (λ2 + λ3)
sinβ

ρ
v

λ̇2 = 0

λ̇3 = λ1 sinβv + (λ2 + λ3)
cosβ

ρ
v.

The unconstrained Hamiltonian reads as

H(ρ, ψ, β, v, ω) = 1− λ1 cosβv + λ2
sinβ

ρ
v + λ3

(
sinβ

ρ
v − ω

)
,

and the minimum Hmin over U is therefore achieved taking −λ3ω ≤ 0 and

v = −sign

(
−λ1 cosβ + λ2

sinβ

ρ
+ λ3

sinβ

ρ

)
(1− b|ω|).

The optimal controls are thus determined by the switching functions ξ1 :=

b
∣∣∣−λ1 cosβ + λ2

sin β
ρ + λ3

sin β
ρ

∣∣∣ and ξ2 = |λ3|, i.e.

Hmin = 1− ξ1 + |ω∗|(ξ1 − ξ2),

with

|ω∗| =


0 if ξ1 ≥ ξ2

1
b if ξ1 < ξ2.

Consistently with the optimal solutions proposed in [12], the unconstrained ex-

tremals are rotations on the spot (denoted by ∗) covered at maximum angular
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velocity and the straight lines (denoted by S) covered at maximum speed. For

reader convenience, we explicitly report controls v and ω along such extremals
v = 0

ω = ± 1
b

or


v = ±1

ω = 0.

3.2 Constrained Arcs

Let us assume now that in the interval [t1, t2] with t2 > t1 one of the FOV

constraints is active, i.e. one of the conditions (5) and (6) is verified with the

equality sign. For the H-FOV, given q = (ρ, ψ, β) with (ρ, ψ) ∈ Z2, we have

β ≡ φi and hence tanβ = tanφi with i = 1 or i = 2. Given the kinematic

model (2), ψ̇ = − tanφi
ρ̇
ρ = − tanφi

d
dt (ln ρ). By integration, we obtain the

equation of a logarithmic spiral (see [17] for details)

ψ = − tanφi ln

(
ρ

ρ0

)
+ ψ0, or ρ = ρ0e

−(ψ−ψ0) cotφi , (11)

where (ρ0, ψ0) is a point on the logarithmic spiral.

On the orther hand, the V-FOV constraint is activated for those configu-

rations q = (ρ, ψ, β) with (ρ, ψ) ∈ Z1 and

ρ cos(β − Γ ) = Rb. (12)

Given the kinematic model (2), the relationship between the control inputs v

and ω required to follow a path along which (12) holds is given by

ρ̇ cos(β − Γ )− ρ sin(β − Γ )β̇ = 0⇒ ρ sin(β − Γ )ω = v cosΓ.

From (2), the trajectory followed with such inputs satisfies

ψ̇ = − tanβ tan(β − Γ ) β̇
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that by integration gives the following relation between ψ and β,

ψ = ψb + β − Γ −
log
(
cos2 Γ (1 + tanβ tanΓ )

)
tanΓ

, (13)

where ψb depends on the initial conditions. It is worth noting that the above

expression is finite, and hence well-defined, also for Γ → 0 and for Γ → π/2.

In particular, for Γ = 0 the equation corresponds to an involute of a circle1

with polar coordinates expressed by:
ρ cosβ = Rb

ψ = ψb − tanβ + β .

(14)

For the involute of circle, when on Cb (i.e. ρ = Rb) the vehicle may only be

directed toward the landmark in the origin, i.e. β = 0. On the other hand,

for the general case Γ 6= 0 while on Cb the vehicle has β = Γ . Even if (12)

and (13) do not correspond to an involute of circle, with an abuse of notation,

in the following, we will still refer to this curve as an involute of circle.

Concluding, in Z2 extremal arcs are logarithmic spirals with characteristic

angle φ1 and φ2, respectively, rotating around the landmark located in Ow.

Logarithmic spirals with characteristic angle φi < 0 rotate clockwise around

Ow (referred to as Left and denoted by symbol TLi ), whereas with φi > 0

they rotate counterclockwise around Ow (referred to as Right and denoted by

symbol TRi ). Note that, for φ2 = π/2 the left sensor border is perpendicular

to the forward direction and by equation (11) (with i = 2) we have ρ = ρ0,

1 The involute of a circle is the path traced out by a point on a straight line r that rolls

around a circle without slipping.
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and hence, the extremal arc is a circle centered in Ow and radius ρ0 (denoted

by COw
). For φ1 = 0 the right sensor border is aligned with the direction of

motion, and hence when the corresponding constraint is active we have β = 0.

In this case, the extremal arc is an half–line through Ow (denoted by SOw).

In other words, when φ2 = π/2 spiral TR2 degenerates in a circle centered in

Ow, whereas when φ1 = 0 spirals TR1 and TL1 degenerate in the same half–line

through Ow.

In Z1 extremal arcs are involutes of circle evolving clockwise and counter-

clockwise. Hence, similarly to the logarithmic spiral, we denote such extremals

by IR and IL, respectively. Notice that, in case of Γ = π/2, (12) becomes

ρ sinβ = Rb. To maintain the vehicle on a path along which previous equality

holds, its first derivative has to be zero, i.e. ωρ cosβ = 0. This holds either

if ω = 0, that is the vehicle moves along a straight line tangent to the cir-

cumference Cb (denoted by Sb), or β = π/2, that is the vehicle moves along a

circumference with radius ρ = Rb, i.e. circumference Cb.

It is worth noting that all extremal arcs can be executed by the vehicle

in either forward (v > 0) or backward (v < 0) direction: we will hence use

superscripts + and − to make this explicit (e.g. TR− stands for a right spiral

line executed backward).

To conclude, the optimal trajectories are concatenations of extremal paths

E ∈ E , with

E = {∗, S, T+
1 , T

−
1 , T

+
2 , T

−
2 , I

R+, IR−, IL+, IL−} , (15)
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where the value and the sign of φi determine if T±i is a left spiral, a right

spiral, COw
or SOw

, and for this reason the symbols R,L in the expression of

spirals in (15) have been omitted to keep the framework as much general as

possible.

From a robotic point of view, it is also important to characterize the op-

timal controls wR and wL which are the real inputs of the dynamic system.

The Hamiltonian function (10) in terms of inputs wL and wR, is

H = 1 +
wR
2
s+ +

wL
2
s− +

wR
2
m+ +

wL
2
m−,

where

s+ = −λ1 cosβ + λ2
sin β
ρ + λ3

sin β
ρ −

λ3

b , s− = s+ + 2λ3

b ,

m+ = (µ1 − µ2)
(
− sin β
ρ + 1

b

)
+ µ3

(
cosΓ − ρ sin(β−Γ )

b

)
,

m− = m+ − 2(µ1 − µ2) 1
b + 2µ3

ρ sin(β−Γ )
b ,

with µ1, µ2, µ3 ≥ 0. From Remark 2.1, one has necessarily µ1µ2 = 0 and

(µ1 +µ2)µ3 = 0, that is the three constraints cannot be active simultaneously

pairwise except than on CS . Hence we can focus on the derivatives of the

constraints activated in [t1, t2], as function of wR, wL, for the H-FOV and the

V-FOV cases separately.

3.2.1 Optimal Controls Along Spiral Arcs

In case of equality verification of the H–FOV constraints we have

β̇ =
sinβ(wR + wL)

2ρ
− wR − wL

2b
= 0. (16)
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Hence for β = φi i = 1, 2, from (16), the two wheels velocities must satisfy

wR (ρ− b sinφi) = wL (ρ+ b sinφi) . (17)

Since the H–FOV constraint is active the V–FOV one is verified as a strict

inequalities in zone Z2, i.e. µ3 = 0, and hence, from (17), the Hamiltonian can

be rewritten in terms of wR as

H = 1 + wRr+, where r+ = (λ2 sinφi − λ1ρ cosφi)
1

ρ+ b sinφi
(18)

or equivalently in terms of wL

H = 1 + wLr−, where r− = (λ2 sinφi − λ1ρ cosφi)
1

ρ− b sinφi
(19)

The Hamiltonian in (18) is minimized selecting wR = −sign r+. In this case

|wR| = 1 and from (17) |wL| ≤ 1 only if sinφi ≥ 0. On the other hand,

the Hamiltonian in (19) is minimized selecting wL = −sign r−. In this case

|wL| = 1 and from (17) |wR| ≤ 1 only if sinφi < 0.

Concluding, the spiral arc, represented by (16), is followed by the vehicle

with the outer wheel having maximum velocity while the inner wheel velocity

is given by (17). In other words, the controls that ensure the optimality of the

spiral arc TL±i are wL = ±1 and wR = ± ρ+bATi

ρ−bATi
with ATi

= sinφi < 0. For

the spiral arc TR±i the optimal controls are wR = ±1 and wL = ±ρ−bATi

ρ+bATi
with

ATi
= sinφi > 0.
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3.2.2 Optimal Controls Along Involute Arcs

Consider now the case in which the V–FOV constraint is activated. From (13),

we have

d

dt

[
ψ − ψb − β + Γ +

log
(
cos2 Γ (1 + tanβ tanΓ )

)
tanΓ

]

= ψ̇ − β̇ +
cosΓ

cosβ cos(β − Γ )
β̇ = 0.

(20)

From (2) and (20), the wheels velocities must satisfy the following relation:

wR (ρ sin(β − Γ )− b cosΓ ) = wL (ρ sin(β − Γ ) + b cosΓ ) . (21)

From Remark 2.1 and the successive discussion, the H–FOV constraint is ver-

ified as a strict inequality in the interior part of Z1 and hence µ1 = µ2 = 0.

Thus, from (21), the Hamiltonian can be rewritten in the two equivalent forms

in terms of wR and wL respectively

H = 1 + wRt+ (22)

H = 1 + wLt−, (23)

where

t+ =
λ3 cosβ cos(β − Γ ) + (λ1ρ cosβ − λ2 sinβ) sin(β − Γ )

b cosΓ + ρ sin(β − Γ )

t− =
λ3 cosβ cos(β − Γ ) + (λ1ρ cosβ − λ2 sinβ) sin(β − Γ )

b cosΓ − ρ sin(β − Γ )
.

The Hamiltonian in (22) is minimized selecting wR = −sign t+. In this case

|wR| = 1 and from (21) |wL| ≤ 1 only if β ∈ [0, π/2] and hence sinβ ≥ 0. On

the other hand, the Hamiltonian in (23) is minimized selecting wL = −sign t−.
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Arc type wR wL

S± ± 1
2

± 1
2

∗ ±1 ∓1

I± ±min
{

1, ρ+bAI
ρ−bAI

}
±min

{
1, ρ−bAI
ρ+bAI

}

T±
i ±min

{
1,
ρ+bATi
ρ−bATi

}
±min

{
1,
ρ−bATi
ρ+bATi

}
Table 1 Optimal controls wR and wL along extremals, ATi

= sinφi and AI = cosΓ
sin(β−Γ )

.

In this case |wL| = 1 and from (21) |wR| ≤ 1 only if β ∈ [−π/2, 0] and hence

sinβ < 0.

Concluding, the involute is followed by the vehicle when the outer wheel

has maximum angular velocity while the inner wheel velocity is given by (21).

The controls that ensure the optimality of the involute arc IL± are wL = ±1

and wR = ± ρ+bAI

ρ−bAI
where AI = cosΓ

sin(β−Γ ) . While, for the involute arc IR±, we

have wR = ±1 and wL = ±ρ−bAI

ρ+bAI
.

For the sake of clarity, in tables 1 and 2, the state feedback expressions of

optimal controls along the extremal arcs in E are reported.

Remark 3.1. It is worth to note that the motion along the differentiable path

I−T− or T+I+ requires non–smooth control inputs (v, ω). Let us denote by

G the intersection point (on CS) between two curves I and T when the robot

reaches the position G, a jump discontinuity appears in the control laws (17)-



Title Suppressed Due to Excessive Length 23

Arc type v ω

S± ±1 0

∗ 0 ± 1
b

I± ±min
{

ρ
ρ+bAI

, ρ
ρ−bAI

}
±min

{
AI

ρ+bAI
, AI
ρ−bAI

}

T±
i ±min

{
ρ

ρ+bATi
, ρ
ρ−bATi

}
±min

{
ATi

ρ+bATi
,

ATi
ρ−bATi

}
Table 2 Optimal controls v and ω along extremals, ATi

= sinφi and AI = cosΓ
sin(β−Γ )

.

(21). Indeed, the curvature along extremals TL± and IL± is given by ω
v = ±Aρ

with A = ATi and AI respectively. In G ∈ CS it holds ρS = Rb

cosφ and

β = φ = Γ − φ1 = φ2 − Γ . Hence

ω

v
=

sinφi cos(φi − Γ )

Rb
in G as point of Ti

ω

v
=

cosΓ

Rb tan(φi − Γ )
in G as point of I

4 Controllability and Existence of Optimal Trajectories

The necessary conditions, obtained from the PMP and described in previous

section, allow us to restrict to the set of extremal paths E as basic components

for the construction of optimal trajectories. The study of time-optimal paths

will be carried out addressing the following two main points: controllability

of the system and existence of optimal solutions. Regarding controllability it

holds the following
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Proposition 4.1 Given two arbitrary positions Q and P outside Z0, there

always exists a trajectory from Q to P for the system (2) with constraints (5)

and (6).

Proof. Consider the families of extremal paths of type T±1 , T
±
2 , I

R±, IL±. As-

sume Q,P ∈ Z2 first. Given the initial point Q, there exists a unique T1 curve

containing such point, say T1,Q; on the other hand, there exists a unique T2

curve, say T2,P , passing through the final position P . The curves T1,Q and T2,P

do always have intersection points: let us select and denote by Y one of such

points. Moving from Q along the curve T1,Q until reaching Y , rotating towards

the origin, and hence towards the feature, and then moving along T2,P until

the final position P , the vehicle can reach the target point without violating

the H–FOV constraints. The same it’s true if one changes the roles of T1 and

T2.

Now, by construction, the radius ρ always evolves monotonically along the

curves T1, T2; moreover, one can adopt one of the proposed schemes T1,Q◦T2,P

or T2,Q ◦ T1,P in such a way that the radius is increasing along the first curve.

Consequently, whenever Q,P ∈ Z2, a feasible trajectory exists.

On the other hand if P lies inside the region Z1, this can be connected to a

point Q′ on CS by a curve of type IR (or IL): thus, using the previous argu-

ment, a feasible trajectory is given by one of the combinations IRQ ◦T1,Q′ ◦T2,P ,

IRQ ◦ T2,Q′ ◦ T1,P . By symmetry, a similar strategy can be defined in the case

Q ∈ Z2 and P ∈ Z1: denoting by P ′ the intersection point between CS and

the involute curve of type IL (or IR) from P , a feasible path is then given by
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T1,Q ◦ T2,P ′ ◦ ILP or T2,Q ◦ T1,P ′ ◦ ILP .

In the last case with both Q,P ∈ Z1, a feasible path is obtained by combining

the previous schemes, this leading to a general abstract structure for admissible

trajectories: I ◦T ◦T ◦I. Taking into account initial and final orientations also,

rotations on the spot ∗ can be used for aligning the heading to, respectively,

the first and the last curve of the combination: ∗ ◦ I ◦ T ◦ T ◦ I ◦ ∗.

The existence of time-optimal trajectories will now be proved.

Theorem 4.1 For any given positions P,Q /∈ Z0 there exists a solution

(vopt, ωopt) ∈ U to the optimal control problem 2.1.

Proof. Due to controllability, convexity of the control space U and closedness

of the state constraint set S, the existence of optimal controls can be deduced

from the well known Filippov Theorem [38–40].

5 Time Costs Along Extremal Arcs

Given a path γ from Q1 to Q2, we denote by T ?(γ, βQ1 , βQ2) the time cost

associated to γ with prescribed initial and final orientations βQ1
, βQ2

. We,

thus, denote by Tγ = minβQ1
,βQ2
T ?(γ, βQ1

, βQ2
).

We are now interested in computing the time costs TE associated to ex-

tremal arcs E ∈ E defined in (15). Recalling that |v| ≤ 1 and b|ω| ≤ 1 − |v|,

the case of unconstrained arcs is trivial but reported for completeness.
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Proposition 5.1 The time cost TS(Q1, Q2) of a straight arc S from Q1 to

Q2, is equal to the distance between the two points:

TS(Q1, Q2) = dist(Q1, Q2) = Q1Q2. (24)

Proposition 5.2 The time cost T∗(β) of a rotation on the spot of an angle

β, is given by

T∗(β) = b|β|.

The proofs of the following propositions on involutes and spirals costs can

be found in [27]. The statements are reported for reader convenience.

Proposition 5.3 Given an arc of logarithmic spiral Ti, with characteristic

angle φi, from Q1 = (ρQ1
, ψQ1

) to Q2 = (ρQ2
, ψQ2

), the time cost TT (Q1, Q2)

is

TT (Q1, Q2) =
|ρQ1

− ρQ2
|

cosφi
+ b|ψQ1

− ψQ2
|.

The time TT (Q1, Q2) is hence given by the sum of the length of the spiral

between Q1 and Q2 and the time equivalent to a rotation on the spot of an

angle |ψQ1
− ψQ2

|.

Remark 5.1. As mentioned in Section 3.2, for φ2 = π/2 the extremal arc

becomes a circle, denoted by C, centered in Ow and radius ρo. The time-cost

from Q1 = (ρo, ψQ1
) to Q2 = (ρo, ψQ2

) on C is TC = (ρo + b)|ψQ1
−ψQ2

|. On

the other hand, for φ1 = 0 the extremal arc becomes a straight line, denoted

by H, through Ow. The time-cost TH from Q1 to Q2 on H is given by (24).
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Proposition 5.4 Given an arc of involute I from Q1 = (ρQ1 , ψQ1) to

Q2 = (ρQ2
, ψQ2

), the time cost TI(Q1, Q2) is

TI(Q1, Q2) = Rb(ζv(βQ2
, Γ )− ζv(βQ1

, Γ )) + b(ζω(βQ2
, Γ )− ζω(βQ1

, Γ )),

where βQi = arccos(Rb/ρQi) + Γ, i = 1, 2 and

ζv(β, Γ ) =

(
cotΓ

sinΓ
log

(
cos(β − Γ )

cosβ

)
− 2 sinβ

sin 2Γ cos(β − Γ )

)

ζω(β, Γ ) = cotΓ
(

log
(

cos(β−Γ )
cos β

))
.

Remark 5.2. In the symmetric case Γ = 0 the expression of the time cost

TI(Q1, Q2) is

TI(Q1, Q2) =
Rb
2

(tan2 βQ2
− tan2 βQ1

) + b(tanβQ2
− tanβQ1

). (25)

The time TI(Q1, Q2) is hence given by the sum of the length of the involute

between Q1 and Q2 and the time equivalent to a rotation on the spot of an

angle | tanβQ1
− tanβQ2

|.

Remark 5.3. As shown in Section 3.2, for Γ = π/2, involutes of circle de-

generate in straight line Hb tangent to the circumference Cb and the circum-

ference Cb itself. In the first case the time-cost THb
from Q1 to Q2 on Hb is

given by (24), while in the second case the time-cost from Q1 to Q2 on Cb is

TCb
= Rbb| tanβQ1 − tanβQ2 |.

6 Analysis of the Junction Times Set

In Section 3 it has been shown that optimal trajectories can be regarded as

combinations of extremal arcs E ∈ E ; with the aim of giving a characterization
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of such concatenations, the following question arise.

Question. May time-optimal trajectories obtained as combinations of in-

finitely many extremal arcs exist for some particular choices of initial/final

configurations?

The question arises since optimal paths with an infinite number of ex-

tremals exist in the minimum length control problem described in [18] and [20].

In this section we will focus on addressing formally this problem for the mini-

mum time case. In particular, it will be proved that time optimal trajectories

cannot have infinitely many switching points between different extremal arcs.

Hence infinite sequences of symbols T, I or S are never included in the “lan-

guage” describing optimal paths that is hence finite. To this end, the following

definition will be helpful [33].

Definition 6.1 Let be s(x(t)) ≤ 0 an arbitrary unilateral state-space con-

straint for the system.

– If s(x(t)) < 0 for any t ∈ ]t1 − δ, t1[
⋃

]t1, t1 + δ[ for some δ > 0, while

s(x(t1)) = 0, then t1 is called touch time.

– If s(x(t)) < 0 for any t ∈]t2 − ε, t2[
⋃

]t3, t3 + η[ for some ε, η > 0 and

s(x(t)) = 0 for any t ∈ [t2, t3], then t2 is called entry time and t3 is called

exit time.
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– The family constituted by touch times and entry/exit times is called the

set of junction times.

– The set of all times t such that s(x(t)) = 0 is called contact times set.

According to the previous definition, we will call touch/junction/contact

points the vehicle configurations corresponding to touch/junction/contact times.

The main contribution of this paper is the proof that in any optimal tra-

jectory the set of junction times is finite. In other words:

Theorem 6.1 Optimal trajectories are composed of a finite number of ex-

tremal concatenations.

The proof of this theorem will follow from the results described next. For

the sake of simplicity we will consider the symmetric case only, i.e. Γ = 0.

However, the case Γ 6= 0 can be analyzed with the same approach.

As a first result we have that infinite switches may occur only on the

circumference Cb. Indeed, it holds

Proposition 6.1 Any optimal path with an infinite junction time set has only

a finite number of junction points outside Cb.

Proof. The time cost of involutes and spirals is given by sum of the length

of the arc and an angular contribution: using this fact, together with some

elementary geometry, it can be inherited from the synthesis results obtained

in [17, 20, 32] for minimal length paths that the only types of arcs that are

allowed to be repeated several times in a feasible time-optimal path away from

the circle Cb are spirals and involutes. In particular, following the arguments
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(a) Construction of paths γI(∆ψ) = IR−∗

IL+ and γS(∆ψ) = IR− ∗ S+ from V1 to

V2 on Cb.

(b) Construction of paths γS(β̄2) =

IR− ∗ S+ from V1 to R and γS(β̃2) =

IR− ∗ S+ from R to V2.

Fig. 3 Graphical construction for the proof of: (a) Proposition 6.2, (b) Proposition 6.3.

of [17, Proposition 10] and [20, Proposition 3] and observing that the time

cost of a straight line equals its length, the concatenation of more than two

extremals of type S± is proved to be never optimal. On the other hand, from

Proposition 5.2, the junction points between spirals Ti, Tj are associated to a

fixed angular time cost T (∗|φi−φj |) = b|φi−φj | > 0 and hence, for any feasible

trajectory, these can be at most finitely many. A similar condition holds true

for the case of switching between involutes IR, IL in a point Q = (ρQ, ψQ) with

βQ > 0. Hence, it has been proved that infinite junction points may occur only

for βQ = 0, i.e. on the circumference Cb.
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As a consequence, we can restrict the analysis to the case of vertical con-

straints, focusing on touch points placed on the circle Cb, i.e. where β = 0.

Hence, we now consider the possible extremals concatenations between any

two points on Cb and we analyze the time cost of such paths. For this purpose,

and without loss of generality, consider two touch points V1 = (Rb, 0) and

V2 = (Rb, ∆ψ) on Cb, with ∆ψ < 0, see Fig. 3(a). Consider now two paths

from V1 to V2 composed by two extremals. The first is γI(∆ψ) = IR− ∗ IL+,

i.e. a pair of symmetric involute arcs with intersection point H1 = (ρ1, ψ1).

At the end of extremal IR−, i.e. in H1, the vehicle bearing angle is β1 > 0.

The second paths is γS(∆ψ) = IR− ∗ S+, i.e. an involute arc and a straight

line intersecting in H2 = (ρ2, ψ2). At the end of extremal IR−, i.e. in H2, the

vehicle bearing angle is β2 > 0. It is worth noting that, since V2 ∈ Cb, it holds

βV2 = 0 and hence the point V2 can be reached with a straight line, without

violating the vertical constraints, only if the line is directed toward the origin.

As a consequence it holds ψ2 = ∆ψ = 2ψ1 and hence, since H1 and H2 lays

on the same involute, the bearing angle β1 and β2 must satisfy: β1 < β2 and

(from the second equation of the involute (14))

2(β1 − tanβ1) = β2 − tanβ2. (26)

With an abuse of notation we consider the paths γI and γS as dependent on

variables β1 and β2 respectively. Indeed β1 and β2 can be obtained solving

equations β1 − tanβ1 = ∆ψ
2 and β2 − tanβ2 = ∆ψ.

For symmetry in the path, the time cost for travelling along γI(β1) doubles

the time of path I from V1 to H1. Hence, from (25), considering Q1 = V1 ∈ Cb
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and Q2 = H1 we have βQ2 = β1 and βQ1 = 0 and hence the time cost for

travelling along γI(β1) is

T (γI(β1)) = Rb tan2 β1 + 2b tanβ1 + 2bβ1, (27)

On the other hand, the time cost of path γS(β2) is given by the sum of the time

costs of I from V1 to H2 and S from H2 to V2. Hence, from (25), considering

Q1 = V1 ∈ Cb and Q2 = H2 we have βQ2
= β2, βQ1

= 0. The time cost for

travelling along γS(β2) is

T (γS(β2)) =
Rb
2

tan2 β2 + b tanβ2 + bβ2 +Rb

(
1

cosβ2
− 1

)
, (28)

where the linear terms 2bβ1 and bβ2, in (27) and (28), are the time cost of

rotations on the spot in the points H1 and H2, respectively. In the rest of the

Section we will prove that, for sufficiently small values of angle βi, the path

γS(β2) is the one covered with smallest time with respect to all other possible

paths from V1 to V2. We start proving that for small values of angles β1 and

β2, a curve of type γS is more convenient than a curve γI . In other words

Proposition 6.2 There exists ζ0 > 0 such that

T (γS(β2)) < T (γI(β1)) ∀β1 < β2 < ζ0 (29)

Proof. In order to compare time costs (27) and (28), let us define the function

Ψ(x) := tan(x)− x. (30)

For 0 ≤ x ≤ 1, from the Taylor expansion of Ψ(x), it holds

1

3
x3 ≤ Ψ(x) ≤ c1x3, (31)
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where c1 = tan(1) − 1. From (26) and the inequalities (31) for β1 and β2,

assuming β1 < β2 < 1, one can infer that

3

√
2

3c1
β1 ≤ β2 ≤ 3

√
6c1β1,

with `0 := 3
√

6c1 < 2. From the first order Taylor expansion of time costs (27)

and (28) we have T (γI(β1)) ≈ 4bβ1 and T (γS(β2)) ≈ 2bβ2 ≤ 2b`0β1 < 4bβ1,

hence the thesis with ζ0 = 1.

We can now proceed considering more complex paths from V1 to V2. In

order to study the existence of path with infinite junction times we continue

to consider paths with junction points on Cb. All such paths from V1 to V2

consist in concatenations of paths of type IR− ∗ IL+ and IR− ∗ S+. We will

prove that γS(β2) has time cost less than any of those paths for sufficiently

small values of β2.

From Proposition 6.2 for sufficiently small angles β we only need to compare

the time cost of a single path IL− ∗ S+ with the ones of multiple sequences

of paths of the same type. For this purpose, referring to Fig. 3(b), let us now

consider a point R ∈ Cb between V1 and V2 and two paths γS(β̄2) = IR− ∗S+

from V1 to R and γS(β̃2) = IR− ∗ S+ from R to V2 such that β̄2, β̃2 < β2 and

β̄2 − tan β̄2 + β̃2 − tan β̃2 = −Ψ(β̄2)− Ψ(β̃2) = −Ψ(β2) = ∆Ψ. (32)

The physical meaning of (32) is that the concatenation of γS(β̄2) with γS(β̃2)

provides a path from V1 to V2 as γS(β2) does. The equation is written in terms

of the variation of angles ψ along the paths.
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In order to compare T (γS(β2)) with T (γS(β̄2)) + T (γS(β̃2)) we will use

the following inequality proved in Appendix 8.1.

Lemma 6.1 Let Ψ(x) be the function defined in (30); then, for any x, y > 0

one has

Ψ−1(Ψ(x) + Ψ(y)) < 3
√
x3 + y3.

Proposition 6.3 There exists ζ1 > 0 such that, if β2 < ζ1,one has

T (γS(β2)) < T (γS(β̄2)) + T (γS(β̃2)). (33)

for any β̄2, β̃2 < β verifying (32).

Proof. From (28), the time-cost associated to a curve γS(β) between points

on Cb is:

f(β) := T (γS(β)) =
Rb
2

(
1

cos2 β
− 1

)
+Rb

(
1

cosβ
− 1

)
+ b tanβ + bβ.

From (32) we have β2 = Ψ−1(Ψ(β̄2) + Ψ(β̃2)), and since f(·) is an increasing

function, by Lemma 6.1 it follows

f(β2) < f

(
3

√
β̄3
2 + β̃3

2

)
.

In order to prove the thesis we now need to prove the following inequality

f

(
3

√
β̄3
2 + β̃3

2

)
< f(β̄2) + f(β̃2).

This will be proved for each addendum in f(·). For the linear addendum bβ,

from the properties of subadditivity of concave functions we have b 3

√
β3
2 + β̃3

2 <
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b(β2 + β̃2).

The inequality for term b tanβ2 is equivalent to the positiveness of function

h0(x) = tanx+ tan y − tan 3
√
x3 + y3,

for fixed y > 0. We have h0(0) = 0 and

h′0(x) = x2

(
1

x2 cos2 x
− 1

(x3 + y3)
2
3 cos2 3

√
x3 + y3

)
> 0, for 3

√
x3 + y3 <

√
2/3.

Indeed function p0(s) = s cos s is strictly increasing for s ∈
[
0,
√

2/3
[

since

p′0(s) = cos s− s sin s > 1− 3
2s

2.

The other terms in f(β2) depending on
1

cosβ
and

1

cos2 β
will be treated

in a similar way. For fixed y > 0 we set

hi(x) =
1

cosi x
+

1

cosi y
− 1

cosi 3
√
x3 + y3

, i = 1, 2.

We have that hi(0) = 0 and

h′i(x) = ix2

(
sinx

x2 cosi+1 x
− sin 3

√
x3 + y3

(x3 + y3)
2
3 cosi+1 3

√
x3 + y3

)
.

Consider now the functions pi(s) =
sin s

s2 cosi+1 s
, i = 1, 2 that are the strictly

decreasing for small s > 0. Indeed,

p′i(s) =
s cos2 s− 2 cos s sin s+ (i+ 1)s sin2 s

s3 cosi+2 s

and p′2(s) <
s(−1+ 11

3 s
2)

s3 cos3 s while p′3(s) <
s(−1+ 14

3 s
2)

s3 cos4 s .

Hence p′2(s) < 0 for s ∈
]
0,
√

3/11
[

and p′3(s) < 0 for s ∈
]
0,
√

3/14
[
.

Since pi are strictly decreasing, the functions hi(x) are positive and hence

the inequality holds for both terms
1

cosi β
.
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Summarizing, it has been shown that

f(β2) < f(β̄2) + f(β̃2)

for any β̄2, β̃2 6= 0 with 3

√
β̄3
2 + β̃3

2 <
√

3/14; the statement of the proposition

then follows with ζ1 = 1
2

√
3
14 and hence the thesis.

Remark 6.1. A straightforward consequence of Propositions 6.2 and 6.3 is

that the trajectory γS has time cost strictly smaller than any concatenation

of trajectories of type γI for sufficiently small angles.

We can finally prove Theorem 6.1. The proof is based on the idea that

for any optimal trajectory with infinite junction points there always exist

another trajectory with the same time cost in which there are three consecutive

junction points that are sufficiently close to each other so that hypothesis of

Proposition 6.3 are verified. Hence, a smaller time trajectory is found violating

the assumption of optimality of the trajectory with infinite junction points.

of Theorem 6.1. Thanks to Proposition 6.1, we can restrict our focus on touch

point lying on the circumference Cb. Let us denote by J ⊂ Cb the set of touch

points of the trajectory q(t) on the set Cb, and by Z ⊂ [0,∞[ the corresponding

set of times, i.e.

q(t) = [Rb ψ(t) 0] ∈ Cb ⇒ t ∈ Z.

Now, if q∗(t) is an optimal trajectory, the set Z does not contain any inter-

val. In fact, suppose that t1, t2 exist with q∗(t) ∈ Cb ∀t ∈ [t1, t2]; then, since

any absolute continuous function being constant on a non-degenerate interval

has zero derivative a.e. in such interval, one has necessarily ρ̇∗(t) = 0 for a.e.
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t ∈ [t1, t2] and this implies v = ω = 0 a.e. in [t1, t2]. As a consequence, the

state q∗(t) is forced to be constant over the whole interval [t1, t2] and this ob-

viously contradicts the optimality of the trajectory. Let us prove now that the

set J , or equivalently the set Z, must have finite cardinality. By contradiction,

assume that t′, t′′ ∈ Z with t′ < t′′ can be found such that the intersection

[t′, t′′] ∩ Z contains infinitely many times.

Now by construction, the set Z0 := [t′, t′′] ∩ Z is closed and hence its com-

plementary Z1 = R \ Z0, which is open, can be represented as the union of

a countable family of open intervals. Among such family, a subfamily of open

intervals
{

]t−k , t
+
k [
}
k∈N can be found such that

[t′, t′′] = Z0 ∪
⋃
k∈N

]
t−k , t

+
k

[
.

Select any two intervals, say I1 =
]
t−k1 , t

+
k1

[
and I2 =

]
t−k2 , t

+
k2

[
. Since the tra-

jectories of the system admit left and right derivatives in the junction points,

the portion of optimal trajectory q∗(t) for t ∈
]
t−k1 , t

+
k2

[
can be decomposed

as the union of curves of type γI or γS having extrema, respectively, in the

pair of points (q∗(t−k1), q∗(t+k1)) and (q∗(t−k2), q∗(t+k2)) together with a path X

connecting the point q∗(t+k1) to the point q∗(t−k2). The time cost is expressed

as

T (q∗(t))|
t∈[t−

k1
,t

+
k2

]
= T (γ?1(β?1)) + T (χ) + T (γ?2(β?2)),

with

β?i =


Ψ−1

(
|ψ∗(t+ki

)−ψ∗(t−ki
)|

2

)
if ?i = I

Ψ−1
(
|ψ∗(t+ki)− ψ

∗(t−ki)|
)

if ?i = S

i = 1, 2.
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A time equivalent path q∗∗(t) on [t−k1 , t
+
k2

] with the same initial/final conditions

can be constructed by switching the curves γ?2 and χ, namely

q∗∗(t) :=


q∗(t) t ∈ [t−k1 , t

+
k1

]

q∗(t+ t−k2 − t
+
k1

) t ∈
]
t+k1 , t

+
k1

+ t+k2 − t
−
k2

]
q∗(t+ t−k2 − t

+
k2

) t ∈
]
t+k1 + t+k2 − t

−
k2
, t+k2

]
where the chain of equalities q∗(t−k1) = q∗(t+k1) = q∗(t−k2) = q∗(t+k2) = 0 have

been used. The time cost of q∗∗(t) is then given by

T (q∗∗(t))|
t∈[t−

k1
,t

+
k2

]
= T (γ?1(β?1)) + T (γ?2(β?2)) + T (χ]),

where χ] is the shifted version of the path χ. Now, due to the assumption on the

infinite number of touch points in J , the length of intervals
]
t−ki , t

+
ki

[
, i = 1, 2

can be chosen arbitrarily small and hence, without loss of generality, one can

assume that β?1 , β?2 < min{ζ0, ζ1, ζ2}. In force of Propositions 6.2 and 6.3,

setting β̂ = Ψ−1(Ψ(β?1) + Ψ(β?2)), one has

T (γS(β̂)) < T (γ?1(β?1)) + T (γ?2(β?2)).

In this way, we have provided an extremal curve with a strictly minor time cost,

this showing that the trajectory q∗∗(t), and therefore also the very original one

q∗(t), cannot be optimal. In particular, it has been proved that the open set Z1

can always be decomposed as the union of a finite number of open intervals:

as consequence the set Z0, which has been shown to contain no intervals, is

necessarily formed by isolated elements, i.e. limit points are not admitted.

In conclusion, the touch points set J contains, at most, a finite number of

points.
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7 Perspectives and Open Problems

Several issues remain to be further investigated. The final objective of the

research study is a complete characterization of optimal trajectories for motion

planning and visual–servoing purposes, as well as the development of control

algorithms for efficiently steering the vehicle along the optimal path. In this

regard, the following challenges are still open:

– Existence of an upper bound for the number of extremal arcs composing

optimal trajectories.

– Decomposition of the state-space into regions corresponding to different

concatenations of extremals, i.e. time optimal synthesis.

– Representation of optimal inputs as state-feedback controllers.

– Construction of numerical approximations of optimal paths and optimal

control laws.

Since several other kinematic models are available besides the differential-drive

one, it is certainly interesting, both from a theoretical and practical perspec-

tive, to investigate the extension of the optimality results to different types of

non holonomic robots, such as car-like vehicles [24].

Moreover, it is also worth assessing the generalization of optimal path synthe-

sis to higher order robotic systems, as suggested by the application-oriented

papers [41,42] where aerial and underwater robots with limited Field-of-View

are considered.
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8 Conclusions

In this paper the problem of time-optimal control of a non-holonomic vehicle

subject to vision constraints has been considered. The existence of optimal

trajectories has been proved for any possible choice of initial/final configura-

tions; moreover, thanks to Pontryagin maximum principle, optimal paths can

be represented as the concatenation of four possible types of extremal arcs:

straight lines, rotations on the spot, logarithmic spirals and involutes of a cir-

cle. The main result of the paper is the proof that, for initial/final pose of

the robot, the optimal trajectory has finitely many switching points between

extremals.
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Appendix

8.1 Proof of Lemma 6.1

Lemma 8.1 Let Ψ(x) be the function defined in (30); then, for any x, y > 0

one has

Ψ−1(Ψ(x) + Ψ(y)) < 3
√
x3 + y3.

Proof. Since Ψ(·) is an increasing function, we can consider the equivalent

inequality

Ψ(x) + Ψ(y) < Ψ( 3
√
x3 + y3).

Let us fix y > 0; we will prove that the function

h(x) = Ψ(x) + Ψ(y)− Ψ( 3
√
x3 + y3)

is negative for any x > 0. We have h(0) = Ψ(y)− Ψ( 3
√
y3) = 0 and

h′(x) = Ψ ′(x)− Ψ ′
(

3
√
x3 + y3

) x2

(x3 + y3)
2
3

.

Now, by Taylor expansion, one has

Ψ(x) =

∞∑
k=1

ckx
2k+1, ck > 0 ∀k ∈ N

and as a consequence

Ψ ′(x) =

∞∑
k=1

dkx
2k, dk = (2k + 1)ck > 0 ∀k ∈ N.

Using the latter equality in the expression of h′(x) one gets

h′(x) =

∞∑
k=1

dkx
2(x2k−2 − (x3 + y3)

2k−2
3 ) < 0

and the conclusion follows.


