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Abstract

We suggest an adaptive version of a partial linearization method for composite

optimization problems. The goal function is the sum of a smooth function and a

non necessary smooth convex separable function, whereas the feasible set is the

corresponding Cartesian product. The method consists in selective component-

wise steps together with a special control of a tolerance sequence. This technique

is destined to reduce the computational expenses per iteration and maintain the

basic convergence properties. We also establish its convergence rates and describe

some examples of applications. Preliminary results of computations illustrate

usefulness of the new method.
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1 Introduction

It has been designed a great number of iterative methods for solving various optimiza-
tion problems. The custom optimization problem consists in finding an element in a
feasible set X ⊆ R

N that yields the minimal value of some goal function µ : RN → R

on X . For brevity, we write this problem as

min
x∈X

→ µ(x). (1)

It is well known that problems with the convex smooth goal function and convex feasible
set constitute one of the most investigated classes in optimization; see e.g. [1, 2]. The
conditional gradient method is one of the oldest methods in this field. It was first
suggested in [3] for the case when the goal function is quadratic and the feasible set
is polyhedral and further was developed by many authors; see e.g. [4, 1, 5, 6, 2]. We
recall that the main idea of this method consists in linearization of the goal function.
That is, given the current iterate xk ∈ X , one finds some solution yk of the problem

min
y∈X

→ 〈µ′(xk),y〉 (2)

and defines pk = yk − xk as a descent direction at xk. Taking a suitable stepsize
λk ∈ (0, 1], one sets xk+1 = xk + λkp

k and so on.
During rather long time, this method was not considered as very efficient due to its

relatively slow convergence in comparison with Newton and projection type methods.
However, it has gained a great amount of attention very recently due to several features
significant for many applications, where huge dimensionality and inexact data create
certain drawbacks for more rapid methods. Moreover, in the case of a polyhedral
feasible set its auxiliary problem (2) appears simpler than those in the other methods,
and its solution yields usually so-called sparse approximations; see e.g. [7, 8, 9] and
the references therein. It should be noted that a great number of applications reduce
to problem (1), where

µ(x) = f(x) + h(x), (3)

f : RN → R is a smooth, but not necessary convex function, and h : RN → R is not
necessary smooth, but rather simple and convex function. The appearance of the non-
smooth term is caused by regularization or exact penalty techniques; see e.g. [2, 10].
In this case one can apply the partial linearization (PL for short) method from [11] (see
[12, 13] for further development), where problem (2) is replaced with the following:

min
y∈X

→ 〈µ′(xk),y〉+ h(y). (4)

The usefulness of this approach becomes clear if problem (1), (3) is (partially) decom-
posable, which is typical for very large dimensional problems. For instance, let

h(x) =
∑

i

hi(xi) and X =
∏

i

Xi
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where xi ∈ Xi. Then (4) becomes equivalent to several independent problems of the
form

min
yi∈Xi

→

{〈

yi,
∂f(xk)

∂xi

〉

+ hi(yi)

}

. (5)

In case h ≡ 0, this decomposition method was considered in [14]. However, even solu-
tion of all the partial problems of form (5) may appear too expensive. A randomized
block-coordinate variant of the conditional gradient method was rather recently pro-
posed in [15]. A general scheme of block-descent methods for such problems was given
in [16].

We recall for instance that various engineering problems based on the so-called
group LASSO regression method have this format (see [17, 18]), as well as many prob-
lems of network resource allocation in wireless multi-user interfering systems (see [19]).
We give several additional examples of such decomposable applied problems in Section
6.

The main goal of this paper is to suggest a modification of PL methods for decom-
posable composite optimization problems of form (1), (3), which maintains the basic
convergence properties, but enables one to reduce the computational expenses per iter-
ation. We follow the approach suggested in [20] for regularized splitting methods. The
main difference of this method consists in utilizing PL technique without any regular-
ization in order to simplify the auxiliary problem, but this implies the dis-continuity
of the descent mapping and requires new substantiation schemes. We take the inexact
Armijo type linesearch rule, which makes our method different from those in [11, 13]
even in the non-decomposable case.

In what follows, we denote by R
s the real s-dimensional Euclidean space, all ele-

ments of such spaces being column vectors represented by a lower case Roman alphabet
in boldface, e.g. x. We use superscripts to denote different vectors, and subscripts to
denote different scalars or components of vectors. For any vectors x and y of Rs, we
denote by 〈x,y〉 their scalar product, i.e.,

〈x,y〉 = x⊤y =
s

∑

i=1

xiyi,

and by ‖x‖ the Euclidean norm of x, i.e., ‖x‖ =
√

〈x,x〉. We denote by R
s
+ the

non-negative orthant in R
s, i.e. R

s
+ = {u ∈ R

s | ui ≥ 0 i = 1, . . . , s}. We also set
R = R

⋃

{−∞,+∞}. Given a function f : Rs → R, we can define its domain

domf = {x ∈ R
s | f(x) > −∞}.

For any set X , Π(X) denotes the family of all nonempty subsets of X .
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2 Problem formulation and preliminary properties

We first formulate a partitionable optimization problem of form (1), (3). We set N =
{1, . . . , N} and suppose that there exists a partition

N =
n
⋃

i=1

Ni

with |Ni| = Ni, N =
n
∑

i=1

Ni, and Ni

⋂

Nj = ∅ if i 6= j such that

X = X1 × . . .×Xn =

n
∏

i=1

Xi, (6)

where Xi is a non-empty, convex, and compact set in R
Ni for i = 1, . . . , n. Then,

any point x = (x1, . . . , xN)
⊤ ∈ R

N is represented by x = (x1, . . . ,xn)
⊤ where xi =

(xj)j∈Ni
∈ R

Ni for i = 1, . . . , n. Also, we suppose that

h(x) =
n

∑

i=1

hi(xi), (7)

where hi : R
Ni → R is convex, proper, lower semi-continuous, and domhi ⊇ Xi for

i = 1, . . . , n. Then the function h is also convex, proper, and lower semi-continuous
and we can define its subdifferential

∂h(x) = ∂h1(x1)× . . .× ∂hn(xn), ∀x ∈ X.

So, our problem (1), (3), (6)–(7) is rewritten as

min
x∈X1×...×Xn

→ µ(x) =

{

f(x) +

n
∑

i=1

hi(xi)

}

. (8)

Its solution set will be denoted by X∗ and the optimal value of the function by µ∗, i.e.

µ∗ = inf
x∈X

µ(x).

We suppose that the function f : RN → R is smooth, but not necessary convex. Set
g(x) = f ′(x), then

g(x) = (g1(x), . . . , gn(x))
⊤, where gi(x) =

(

∂f(x)

∂xj

)

j∈Ni

∈ R
Ni , i = 1, . . . , n.
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From the assumptions above it follows that the function µ is directionally differentiable
at each point x ∈ X , that is, its directional derivative with respect to any vector d is
defined by the formula:

µ′(x;d) = 〈g(x),d〉+ h′(x;d), with h′(x;d) =

n
∑

i=1

max
bi∈∂hi(xi)

〈bi,di〉; (9)

see e.g. [21].
We need the optimality condition for problem (8).

Proposition 1 [20, Proposition 2.1]
(a) Each solution of problem (8) is a solution of the mixed variational inequality

(MVI for short): Find a point x∗ ∈ X = X1 × . . .×Xn such that

n
∑

i=1

[〈gi(x
∗),yi − x∗

i 〉+ hi(yi)− hi(x
∗
i )] ≥ 0

∀yi ∈ Xi, for i = 1, . . . , n.

(10)

(b) If f is convex, then each solution of MVI (10) solves problem (8).

In what follows, we denote by X0 the solution set of MVI (10) and call it the set
of stationary points of problem (8).

For each point x ∈ X we can define a point y(x) = (y1(x), . . . ,yn(x))
⊤ ∈ X such

that
n

∑

i=1

[〈gi(x),yi − yi(x)〉+ hi(yi)− hi(yi(x))] ≥ 0

∀yi ∈ Xi, for i = 1, . . . , n.

(11)

This MVI gives a necessary and sufficient optimality condition for the optimization
problem:

min
y∈X1×...×Xn

→
n

∑

i=1

Φi(x,yi), (12)

where
Φi(x,yi) = 〈gi(x),yi〉+ hi(yi) (13)

for i = 1, . . . , n; cf. (4). Under the above assumptions the point y(x) exists, but is not
defined uniquely in general, hence we can define the set Y (x) of these points at x, thus
defining the set-valued mapping x 7→ Y (x). Observe that all the components of y(x)
can be found independently, i.e. (12)–(13) is equivalent to n independent optimization
problems of the form

min
yi∈Xi

→ Φi(x,yi), (14)

for i = 1, . . . , n and yi(x) just solves (14). Therefore,

Y (x) = Y1(x)× . . .× Yn(x),
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where each set Yi(x) is non-empty, convex, and compact. Moreover, if we set

σi(x,yi) = Φi(x,xi)− Φi(x,yi) = 〈gi(x),xi − yi〉+ hi(xi)− hi(yi)

and

ϕ(x) =

n
∑

i=1

ϕi(x), ϕi(x) = max
yi∈Xi

σi(x,yi) for i = 1, . . . , n;

then
ϕi(x) = σi(x,yi(x)), i = 1, . . . , n;

for any y(x) = (y1(x), . . . ,yn(x))
⊤ ∈ Y (x). We can choose the most suitable format

for the definition of a point of Y (x).
We recall that given a set V ⊆ R

s, a set-valued mapping Q : V → Π(Rs) is said to
be closed on a set W ⊆ V , if for each pair of sequences {uk} → u, {qk} → q such that
uk ∈ W and qk ∈ Q(uk), we have q ∈ Q(u).

We also need continuity type properties of the marginal functions.

Lemma 1 (a) The function ϕ : RN → R is lower semi-continuous on X;
(b) The mapping x 7→ Y (x) is closed on X.

Proof. Assertion (a) has been proved in [13, Lemma 4]. To obtain (b), take sequences
{xk} → x̄, {yk} → ȳ with yk ∈ Y (xk). Then from (8) we have

n
∑

i=1

[

〈gi(x
k),ui − yk

i 〉+ hi(ui)− hi(y
k
i )
]

≥ 0

∀ui ∈ Xi, for i = 1, . . . , n.

Since g is continuous and h is lower semi-continuous, taking the limit k → ∞ gives

n
∑

i=1

[〈gi(x̄),ui − ȳ〉+ hi(ui)− hi(ȳ)] ≥ 0

∀ui ∈ Xi, for i = 1, . . . , n;

hence ȳ ∈ Y (x̄) and x 7→ Y (x) is closed. �

We now show that ϕ can serve as a gap function for problem (8).

Proposition 2 (a) For any point x ∈ X it holds that ϕ(x) ≥ 0, or, equivalently,
ϕi(x) ≥ 0 for i = 1, . . . , n;

(b) x ∈ X0 ⇐⇒ x ∈ Y (x) ⇐⇒ ϕ(x) = 0 ⇐⇒ ϕi(x) = 0, i = 1, . . . , n;

Proof. Since σi(x,xi) = 0, assertion (a) is true. Next, if x = y(x) ∈ Y (x), then (11)
implies x ∈ X0, ϕ(x) ≤ 0 and ϕi(x) ≤ 0 for i = 1, . . . , n, hence, by (a), ϕ(x) = 0
and ϕi(x) = 0 for i = 1, . . . , n. Conversely, let x solve MVI (10), but x /∈ Y (x) or
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ϕ(x) > 0. Then there exists an index l and a point x′
l ∈ Xl such that σl(x,x

′
l) > 0. It

follows that
−
∑

i 6=l

σi(x,xi)− σl(x,x
′
l) < 0,

i.e. x /∈ X0, which is a contradiction. This means that assertion (b) is true. �

We see that the value ϕ(x) can serve as accuracy measure at a point x. We establish
now a useful descent property. Define for brevity I = {1, . . . , n}.

Lemma 2 Take any points x ∈ X, y(x) ∈ Y (x) and an index s ∈ I. If

di =

{

ys(x)− xs if i = s,
0 if i 6= s;

then
µ′(x;d) ≤ −ϕs(x). (15)

Proof. Due to the definition of d and (9), we have

µ′(x;d) = 〈g(x),d〉+ h′(x;d) = 〈gs(x),ds〉+ max
bs∈∂hs(xs)

〈bs,ds〉.

By convexity, we have
〈bs,ds〉 ≤ hs(ys(x))− hs(xs)

for any bs ∈ ∂hs(xs). It follows that

µ′(x;d) ≤ 〈gs(x),ys(x)− xs〉+ hs(ys(x))− hs(xs) = −ϕs(x),

hence (15) holds true. �

3 The descent method with inexact line-search

Denote by Z+ the set of non-negative integers. The basic cycle of the descent PL
method with inexact line-search for MVI (10) is described as follows.

Basic cycle (PL). Choose a point x0 ∈ X and numbers δ > 0, β ∈ (0, 1), θ ∈ (0, 1).
At the k-th iteration, k = 0, 1, . . ., we have a point xk ∈ X .
Step 1: Choose an index s ∈ I such that ϕs(x

k) ≥ δ, set sk = s,

dk
i =

{

ys − xk
s if i = sk,

0 if i 6= sk;

where ys = ys(x
k) ∈ Ys(x

k) and go to Step 3. Otherwise (i.e. when ϕi(x
k) < δ for all

i ∈ I) go to Step 2.
Step 2: Set z = xk and stop.

7



Step 3: Determine m as the smallest number in Z+ such that

µ(xk + θmdk) ≤ µ(xk)− βθmϕs(x
k), (16)

set λk = θm, xk+1 = xk + λkd
k, and k = k + 1. The iteration is complete.

Lemma 3 The line-search procedure in Step 3 is always finite.

Proof. If we suppose that the line-search procedure is infinite, then

θ−m(µ(xk + θmdk)− µ(xk)) > −βϕs(x
k),

for m → ∞, hence, by taking the limit we have µ′(xk;dk) ≥ −βϕs(x
k), but Lemma 2

gives µ′(xk;dk) ≤ −ϕs(x
k), hence (1− β)ϕs(x

k) ≤ 0, a contradiction. �

We recall that a single-valued mapping p : Rs → R
s is said to be uniformly contin-

uous on a set V ⊂ R
s, if for any number ε > 0 there exists a number τ > 0 such that

‖p(x)−p(y)‖ < ε for each pair of points x,y ∈ V with ‖x−y‖ < τ . Our convergence
analysis will be based on the following property.

Proposition 3 Suppose in addition that the gradient map g : RN → R
N is uniformly

continuous on X. Then the number of iterations in Basic cycle (PL) is finite.

Proof. By construction, we have −∞ < µ∗ ≤ µ(xk) and µ(xk+1) ≤ µ(xk) − βδλk,
hence

lim
k→∞

λk = 0. (17)

Besides, the sequence {xk} is bounded and must have limit points, Suppose that the
sequence {xk} is infinite. Since the set I is finite, there is an index sk = s, which is
repeated infinitely. Take the corresponding subsequence {kl}. We intend to evaluate
the difference µ(xkl + λkld

kl) − µ(xkl), but we temporarily remove these indices for
more convenience. Then, using the mean value theorem and convexity of hi, we have

µ(x+ λd)− µ(x) = f(x+ λd)− f(x) + hs(xs + λds)− hs(xs)

≤ λ {〈gs(x),ys − xs〉+ hs(ys)− hs(xs)}+ λ〈gs(x+ ξλd)− gs(x),ys − xs〉

≤ −λϕs(x) + λ‖gs(x+ ξλd)− gs(x)‖‖ds‖,

where ξ = ξkl ∈ (0, 1). Since Xs is bounded, ‖ds‖ ≤ Cs < ∞. Due to the uniform
continuity of g, there exists a number λ′ > 0 such that

‖gs(x + ξλd)− gs(x)‖ ≤ (1− β)δ/Cs

if λ ≤ λ′, besides, ϕs(x) ≥ δ. It follows that

µ(x+ λd)− µ(x) ≤ −λϕs(x) + λ(1− β)δ ≤ −βλϕs(x)

8



if λ ≤ λ′, hence λkl ≥ λ̄ > 0 by the stepsize rule in Basic cycle (PL), which contradicts
(17). �

The whole method involves the upper level whose iterations (stages) contain Basic
cycle (LP) with decreasing values of δ.

Method (Upper level). Choose a point z0 ∈ X and a sequence {δl} ց 0.
At the l-th stage, l = 1, 2, . . ., we have a point zl−1 ∈ X and a number δl. Apply

Basic cycle (LP) with x0 = zl−1, δ = δl and obtain a point zl = z as its output.

Theorem 1 Suppose in addition that the gradient map g : RN → R
N is uniformly

continuous on X. Then the sequence {zl} generated by the method with Basic cycle
(LP) has limit points, all these limit points are solutions of MVI (10). Besides, if f is
convex, then

lim
l→∞

µ(zl) = µ∗; (18)

and all the limit points of {zl} belong to X∗.

Proof. Following the proof of Proposition 3, we see that µ(zl+1) ≤ µ(zl), hence

lim
l→∞

µ(zl) = µ̃.

Besides, the sequence {zl} is bounded and must have limit points. Take an arbitrary
limit point z̄ of {zl}, then

lim
t→∞

zlt = z̄.

For l > 0 we have
ϕi(z

l) ≤ δl for all i ∈ I,

hence ϕ(zl) ≤ nδl. Due to Lemma 1, taking the limit l = lt → ∞, we obtain ϕ(z̄) ≤ 0
and z̄ ∈ X . Due to Proposition 2, this means that ϕ(z̄) = 0 and that the point z̄ solves
MVI (10). Next, if f is convex, then by Proposition 1 (b), each limit point of {zl}
solves problem (8). It follows that µ̃ = µ∗ and (18) holds. �

In case h ≡ 0, the method is a new decomposable version of the conditional gradient
method. Although the dimensions Ni can be arbitrary, we think that the proposed PL
method may have preferences, in particular, over the method from [20], in case when
Ni > 1 and all the sets Xi are polyhedrons. Also, it may have preferences over the
usual conditional gradient and partial linearization methods if the number of subsets
n is rather large.

Remark 1 The initial boundedness requirement for the feasible set X was made in
Section 2 only for more simplicity of exposition and can be replaced with proper coer-
civity assumptions. In fact, instead of compactness of each set Xi we can require their
closedness and add e.g. the following conditions.
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(C1) For each i ∈ I and for each sequence {ul
i} such that ul

i ∈ Xi and {‖ul
i‖} → ∞

as l → ∞, we have {hi(u
l
i)/‖u

l
i‖} → +∞.

(C2) For each sequence {ul} such that ul ∈ X and {‖ul‖} → ∞ as l → ∞, we
have {µ(ul)} → +∞.

Then (C1) provides existence of a solution of auxiliary problem (12)–(13), more-
over, the sequence {dk} is bounded if so is {xk}. From (C2) it follows that µ∗ > −∞,
problems (8) and (10) have solutions, and that the sequence {xk} is bounded. Therefore,
all the assertions of Section 3 remain true.

Also, we supposed that domhi ⊇ Xi for i = 1, . . . , n only for more simplicity of
exposition. Set

D =
n
∏

i=1

(domhi

⋂

Xi).

It suffices to assume D 6= ∅. Then we should only take the initial point z0 ∈ D.

4 Modifications of the linesearch procedure

Due to Lemma 3 the current Armijo rule in (16) provides its finite implementation e.g.
in comparison with the one-dimensional minimization rule. This version can also be
substantiated under the same assumptions, but we are interested in developing line-
search procedures that are concordant to the partition of the space given in Section 2
and do not require calculation of all the components of the gradient and new point at
each iteration. In fact, rule (16) involves some shift in one component xs, but utilizes
the value of the cost function at the trial point. That is, we have to calculate the value
of f together with only one component hs.

Let us first consider the convex case where the function f is convex. Then, we can
replace (16) with the following:

〈gs(x
k + θmdk),dk

s〉+ θ−m
{

hs(x
k
s + θmdk

s)− hs(x
k
s)
}

≤ −βϕs(x
k). (19)

Since the trial point xk+ θmdk has the shift from xk only in dk
s , it can be implemented

independently of other variables. From (19) it now follows that

µ(xk + θmdk)− µ(xk) = f(xk + θmdk)− f(xk) + hs(x
k
s + θmdk

s)− hs(x
k
s)

≤ θm〈gs(x
k + θmdk),dk

i 〉+ hs(x
k
s + θmdk

i )− hs(x
k
s) ≤ −βθmϕs(x

k),

and (16) holds true. It easy to see that all the assertions of Section 3 remain true for
this version.

Moreover, we can utilize even a pre-defined stepsize in the Lipschitz gradient case.
Let us suppose that partial gradients of the function f are Lipschitz continuous, i.e.,

‖gi(x+ d(i))− gi(x)‖ ≤ Li‖d
(i)‖ = Li‖di‖

10



for any vector x, where

d
(i)
j =

{

di if j = i,
0 if j 6= i;

for i ∈ I and any vector d = (d1, . . . ,dn)
⊤ ∈ R

N . Clearly, this property holds if the
gradient of f is Lipschitz continuous with some constant L > 0, then Li ≤ L for each
i ∈ I. It is known that any function φ having the Lipschitz continuous gradient satisfies
the inequality

φ(y) ≤ φ(x) + 〈φ′(x),y− x〉+ 0.5Lφ‖y − x‖2;

see [5, Lemma 1.2]. Similarly, for any vectors x and d, we have

f(x+ d(i)) ≤ f(x) + 〈gi(x),di〉+ 0.5Li‖di‖
2 ∀i ∈ I.

If di = yi(x)− xi, then we have

µ(x+ λd(i))− µ(x) = f(x+ λd(i))− f(x) + hi(xi + λdi)− hi(xi)

≤ λ {〈gi(x),di〉+ hi(yi(x))− hi(xi)}+ 0.5Liλ
2‖di‖

2

≤ −λϕi(x) + 0.5Liλ
2‖di‖

2 ≤ −βλϕi(x),

if
λ ≤ λ̄(i)(x) = 2(1− β)ϕi(x)/(‖di‖

2Li). (20)

It follows that (16) holds with λk ≥ min{1, θλ̄(s)(x
k)} > 0. Moreover, we can simply

set λk = λ(s)(x
k) > 0, and all the assertions of Proposition 3 and Theorem 1 remain

true for this version. This modification reduces the computational expenses essentially
since calculations of the goal function values are not necessary and we can calculate
values of the partial gradients gi and functions hi only for necessary separate compo-
nents. Clearly, the adaptive PL method admits other modifications and extensions,
e.g. selection of a group of indices in I instead of only one component.

These opportunities make the method very flexible and suitable for parallel and
distributed computations applicable for very high-dimensional optimization problems;
see e.g. [22, 16, 8, 10].

5 Convergence rates

In this section, we give some convergence rates for the adaptive PL method. We
suppose that all the basic assumptions of Section 2 hold, but will also utilize some
additional conditions.

We first establish the finite termination property under the following sharp solution
condition, which modifies those in [2, Chapter 7, §1, Section 3] and [23, Section 2.2].

There exist a number τ > 0 and a point x̄ ∈ X such that

〈g(x̄),x− x̄〉+ h(x)− h(x̄) ≥ τ‖x− x̄‖ ∀x ∈ X.

11



Theorem 2 Let a sequence {zl} be generated by the method with Basic cycle (LP).
Suppose that the function f is convex, its gradient is Lipschitz continuous with constant
L < ∞, and that the sharp solution condition holds. Then there exists a stage number
t such that X∗ = Y (zt).

Proof. First we note that the sharp solution condition implies x̄ ∈ X0, and, by
convexity, X0 = X∗; see Proposition 1. Next, if there exists some other point x̃ ∈ X ,
which provides the sharp solution condition, then, again by convexity, we must have

〈g(x̃), x̄− x̃〉+ h(x̄)− h(x̃) ≤ 〈g(x̄), x̄− x̃〉+ h(x̄)− h(x̃)

≤ −τ‖x̄ − x̃‖ < 0,

which is a contradiction. Hence, X∗ = {x̄}. From the sharp solution condition for any
point x ∈ X we have

〈g(zl), x̄− x〉+ h(x̄)− h(x)

= 〈g(x̄), x̄− x〉+ h(x̄)− h(x) + 〈g(zl)− g(x̄), x̄− x〉

≤ −τ‖x̄− x‖+ L‖zl − x̄‖‖x̄− x‖

= −τ‖x̄− x‖(1− L‖zl − x̄‖).

From Theorem 1 we now have {‖zl − x̄‖} → 0 as l → +∞. Hence

〈g(zl), x̄− x〉+ h(x̄)− h(x) < 0 ∀x ∈ X,x 6= x̄,

for l large enough. It follows that there exists a number t such that Y (zt) = {x̄}. �

In the method, each stage contains a finite number of iterations of the basic cycle.
Therefore, it seems suitable to derive its complexity estimate, which gives the total
amount of work of the method. We now suppose in addition that the function f is
convex and its partial gradients satisfy Lipschitz continuity conditions with constants
Li for each i ∈ I. Then it was shown in Section 4 that we can take the stepsize

λk = λ(s)(x
k) = 2(1− β)ϕs(x

k)/(‖dk
s‖

2Ls) ≥ 2(1− β)ϕs(x
k)/(ρ2L), (21)

where
L = max

s∈I
Ls, ρ = max

s∈I
ρs, ρs = diamXs;

see (20). We take the value Φ(x) = µ(x)−µ∗ as an accuracy measure for our method.
In other words, given a starting point z0 and a number ε > 0, we define the complexity
of the method, denoted by V (ε), as the total number of iterations at l(ε) stages such
that l(ε) is the maximal number l with Φ(zl) ≥ ε, hence,

V (ε) ≤

l(ε)
∑

l=1

Vl, (22)
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where Vl denotes the total number of iterations at stage l. We proceed to estimate the
right-hand side of (22). To change δl, we apply the geometric rate:

δl = νlδ0, l = 0, 1, . . . ; ν ∈ (0, 1), δ0 > 0. (23)

By (16), we have
µ(xk+1) ≤ µ(xk)− βλkδl,

hence, in view of (21), we obtain

Vl ≤ ρ2LΦ(zl−1)/(2β(1− β)δ2l ). (24)

Under the above assumptions, for some x∗ ∈ X∗ it holds that

µ(zl)− µ(x∗) = f(zl)− f(x∗) + h(zl)− h(x∗)

≤ 〈g(zl), zl − x∗〉+ h(zl)− h(x∗)

≤ max
y∈X

{

〈g(zl), zl − y〉+ h(zl)− h(y)
}

= ϕ(zl) ≤ nδl.

Using this estimate in (24) gives

Vl ≤ ρ2Lnδl−1/(2β(1− β)δ2l ).

From (23) it follows that

Vl ≤ ρ2Lnν−l/(2β(1− β)δ0ν) = (C1/ν)ν
−l.

Besides, since ε ≤ Φ(zl) ≤ nδl = nδ0ν
l, we have

ν−l(ε) ≤ nδ0/ε.

Combining both the inequalities in (22), we obtain

V (ε) ≤ C1ν
−1

l(ε)
∑

l=1

ν−l = C1(ν
−l(ε) − 1)/(1− ν)

≤ C1((nδ0/ε)− 1)/(1− ν).

We have obtained the complexity estimate.

Theorem 3 Let a sequence {zl} be generated by the method with Basic cycle (LP).
Suppose that the function f is convex and its partial gradients satisfy Lipschitz conti-
nuity conditions with constants Li for each i ∈ I. Then the method has the complexity
estimate

V (ε) ≤ C1((nδ0/ε)− 1)/(1− ν),

where C1 = ρ2Ln/(2β(1− β)δ0).

We observe that the order of the estimates is similar to that in the usual conditional
gradient methods under the same assumptions; see e.g. [4, 1, 2].
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6 Some examples of applications

We intend now to give some examples of applied problems which reduce to decompos-
able composite optimization problems of form (8), where utilization of the proposed
adaptive PL method may give certain preferences.

6.1 Selective classification problems

One of the most popular approaches to data classification is support vector machine
techniques; see e.g. [24, 25]. The simplest linear support vector machine problem for
data classification consists in creating an optimal hyperplane separating two convex
hulls of a collection of known points xi ∈ R

m, i = 1, . . . , l attributed to previous data
observations with different labels yi ∈ {−1,+1}, i = 1, . . . , l, where m is the number
of features. That is, the distance between the hyperplane and each convex hull should
be as long as possible. This separation of the feature space enables us to classify new
data points. However, this requirement appears too strong for real problems where the
so-called soft margin approach, which minimizes the penalties for mis-classification, is
utilized. This problem can be formulated as the optimization problem

min
w∈Rn

→ (1/p)‖w‖pp + C
l

∑

i=1

L(〈w,xi〉; yi),

where L is a loss function and C > 0 is a penalty parameter. The usual choice is
L(z; y) = max{0; 1 − yz} and p is either 1 or 2. Taking p = 2, we can rewrite this
problem as

min
w,ξ

→ 0.5‖w‖2 + C
l

∑

i=1

ξi,

subject to
1− yi〈w,xi〉 ≤ ξi, ξi ≥ 0, i = 1, . . . , l.

In this formulation, each observation i is attributed to some data point xi, however, it
seems worthwhile to use sets here since any object may be often represented by some
set of features, this is also the case for noisy observations; see [26]. So, let object i
be represented by a set Xi ∈ R

m. Suppose it is the convex hull of the points xik,
k = 1, . . . , t, which thus have the same label yi ∈ {−1,+1}. Then we write the soft
margin classification problem as follows:

min
w,ξ

→ 0.5‖w‖2 + C

l
∑

i=1

ξi,

subject to

1− yi〈w,xik〉 ≤ ξi, k = 1, . . . , t; i = 1, . . . , l;

ξi ≥ 0, i = 1, . . . , l;

14



which somewhat differs from those in [26]. Here ξi is the set slack variable and we
impose the penalty for the sum of set slacks. By using the convex optimization theory,
we can write its dual that has the quadratic programming format:

max
α

→
l

∑

i=1

t
∑

k=1

αik − 0.5

∥

∥

∥

∥

∥

l
∑

i=1

t
∑

k=1

(αikyi)x
ik

∥

∥

∥

∥

∥

2

subject to

t
∑

k=1

αik ≤ C, i = 1, . . . , l;

αik ≥ 0, k = 1, . . . , t; i = 1, . . . , l;

The basic solution of the primal problem is given by the formula:

w =
l

∑

i=1

t
∑

k=1

(αikyi)x
ik.

At the same time, we observe that the dual problem falls into format (8) and its feasible
set is the corresponding Cartesian product. Hence, our method can be suitable in the
high-dimensional case, where the number of sets is also very large.

6.2 Network equilibrium problems

Various network equilibrium problems represent one of the main tools for evaluation of
flows distribution in traffic and communication networks. We now describe for instance
the path flow formulation of the network equilibrium problem with elastic demands;
see e.g. [27] and references therein.

The model is determined on an oriented graph, each of its arc being associated with
some flow and some cost (for instance, time of delay), which depends on the values of
arc flows. Usually, the number of nodes and arcs is very large for applied problems.

Let us be given a graph with a finite set of nodes V and a set of oriented arcs A
which join the nodes so that any arc a = (i, j) has the origin i and the destination j.
Next, among all the pairs of nodes of the graph we extract a subset of origin-destination
(O/D) pairs M of the form m = (i → j). Besides, each pair m ∈ M is associated with
a variable flow demand vm and with the set of paths Pm which connect the origin and
destination for this pair. We suppose that each vm is non-negative with some upper
bound γm ≤ +∞ for m ∈ M. Denote by τm the minimal path cost for the pair m and
suppose that it depends on the flow demand, i.e. τm = τm(vm). Also, denote by up the
path flow for the path p. Then the feasible set of flows/demands W can be defined as
follows:

W =
∏

m∈M

Wm,
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where

Wm =

{

wm = (um, vm)

∑

p∈Pm
up = vm, up ≥ 0, p ∈ Pm,

0 ≤ vm ≤ γm,

}

, ∀m ∈ M,

where um = (up)p∈Pm
. Given a flow vector u = (um)m∈M, one can determine the arc

flow
fa =

∑

m∈M

∑

p∈Pm

αpaup

for each arc a ∈ A, where

αpa =
{

1 if arc a belongs to path p,
0 otherwise.

If the vector f = (fa)a∈A of arc flows is known, one can determine the arc cost ca(fa).
We suppose for simplicity that it depends on the arc flow of just this arc. Usually, arc
costs are monotone increasing functions of arc flows. Then one can compute costs for
each path p:

gp(u) =
∑

a∈A

αpaca(fa).

We say that a feasible flow / demand pair (u∗,v∗) ∈ W is an equilibrium point if it
satisfies the following conditions:

∀m ∈ M, ∃λm such that gp(u
∗)

{

≥ λm if u∗
p = 0,

= λm if u∗
p > 0,

∀p ∈ Pm; (25)

and

τm(v
∗
m)







≤ λm if v∗m = 0,
= λm if v∗m ∈ (0, γm);
≥ λm if v∗m = γm;

∀p ∈ Pm. (26)

However, conditions (25)–(26) determine equivalently the following VI: Find a pair
(u∗,v∗) ∈ W such that

∑

m∈M

∑

p∈Pm

gp(u
∗)(up − u∗

p)−
∑

m∈M

τm(v
∗
m)(vm − v∗m) ≥ 0 ∀(u,v) ∈ W. (27)

Furthermore, due to the separability of the functions ca and τm, their continuity implies
integrability, i.e., then there exist functions

ηa(fa) =

fa
∫

0

ca(t)dt ∀a ∈ A, σm(vm) =

vm
∫

0

τm(t)dt ∀m ∈ M.

It follows that VI (27) also gives an optimality condition of the following optimization
problem:

min
(u,v)∈W

→

{

∑

a∈A

ηa(fa)−
∑

m∈M

σm(vm)

}

. (28)
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Hence, each solution of (28) is a solution to VI (27), the inverse assertion is true if the
functions ηa and −σm are convex, this seems rather natural. However, this problem
falls into the basic format (8) and the suggested PL method can be applied to this
problem.

The basic auxiliary problem consists in finding an element (ūs, v̄s) = ys(x
k) ∈

Ys(x
k) with xk = (uk,vk), which is now corresponds to a solution of the problem

min
(us,vs)∈Ws

→

{

∑

p∈Ps

gp(u
k)up − σs(vs)

}

(29)

for some selected pair s ∈ M. This solution can be found with the simple procedure
below, which is based on optimality conditions (25)–(26).

First we calculate a shortest path t ∈ Ps for the pair s with the minimal cost
λ̃ = gt(u

k).
Case 1. If τs(0) ≤ λ̃, then set v̄s = 0 and ūp = 0 for all p ∈ Ps, λs = λ̃. Otherwise

go to Case 2.
Case 2. If τs(γs) ≥ λ̃, set λs = λ̃, v̄s = γs, ūt = γs, and ūp = 0 for all p ∈ Ps, p 6= t.

Otherwise go to Case 3.
Case 3. We have τs(γs) < λ̃ < τs(0). By continuity of τs, we find the value

v̄s ∈ [0, γs] such that τs(v̄s) = λ̃, set λs = λ̃, ūt = v̄s, and ūp = 0 for all p ∈ Ps, p 6= t.
We supposed above that each function τm is continuous, i.e. that each function σm

is smooth. However, the described procedure for problem (29) is extended easily to
the case where −σm is convex and continuous, then τm can be set-valued. At the same
time, we note that the network equilibrium problem with fixed demands differs only
in somewhat simplified formulation of problem (28). Clearly, the described method
remains convergent in these cases and seems in general simpler and more flexible in
comparison with the usual conditional gradient and projection type methods.

6.3 Penalty method for decomposable optimization problems

A great number of optimization problems related to large scale systems are written as
follows:

max →
n

∑

i=1

〈ci,xi〉 (30)

subject to

n
∑

i=1

Aixi = b0, (31)

xi ∈ Xi = {y ∈ R
li
+ | Biy ≤ bi}, i = 1, . . . , n; (32)

for instance, it can be attributed to the total income maximization in a system con-
taining n subsystems (producers), who utilize common and particular factors. That is,
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producer i chooses an output vector xi ∈ R
li , his/her consumption rates are described

by an m0 × li matrix Ai of common factors and by an mi × li matrix Bi of particular
factors, whereas the vector ci denotes prices of his/her outputs, the vector bi ∈ R

mi (re-
spectively, b0 ∈ R

m0) denotes inventories of particular (respectively, common) factors;
see e.g. [28, 2]. Due to its very large dimensionality, a suitable decomposition approach
can be utilized to reduce the computer memory and calculation expenses. For instance,
the price (Dantzig-Wolfe) decomposition principle replaces problem (30)–(32) with its
dual defined with the help of the Lagrangian including only the term associated with
the common constraints in (31). However, we can also utilize the penalty approach
and replace problem (30)–(32) with the sequence of auxiliary problems of the form

min → 0.5τ

∥

∥

∥

∥

∥

n
∑

i=1

Aixi − b0

∥

∥

∥

∥

∥

2

−
n

∑

i=1

〈ci,xi〉 (33)

subject to
xi ∈ Xi, i = 1, . . . , n; (34)

where τ > 0 is a penalty parameter. Clearly, problem (33)–(34) also falls into the basic
format (8) and application of the suggested PL (conditional gradient) method leads to
some other decomposition method for the initial problem (30)–(32). In fact, the partial
gradient of the cost function at x is written as follows

gi(x) = τA⊤
i

[

n
∑

j=1

Ajxj − b0

]

− ci,

hence
gi(x

k + θdk) = gi(x
k) + θτA⊤

i Asd
k
s ,

and we can make shifts only in the selected component dk
s at each iteration. Besides,

in order to find yk
s = ys(x

k) ∈ Ys(x
k), we have to solve the separate problem

min
ys∈Xs

→ 〈gs(x
k),ys〉.

Combining this method with proper regulation of τ , we obtain a sequence convergent
to a solution of (30)–(32).

7 Computational experiments

In order to compare the performance of the presented method with the usual non-
decomposable version we carried out preliminary series of computational experiments.
For simplicity, we took only the smooth problems, i.e. set h ≡ 0. Hence, we compared
the usual conditional gradient method (CGM) from [1] and our method which is treated
as its adaptive version (ACGM). We took the even partition of RN , i.e., set Ni = t =
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Table 1: The numbers of iterations (it) and partial gradients calculations (cl)

(CGM) (ACGM)
N n it cl it cl
10 5 15 75 9 28
20 5 50 250 108 189
50 5 143 715 452 676
100 5 257 1285 775 1161
50 10 228 2280 632 1048
100 10 ∆500 = 0.11 500 5000 ∆1500 = 0.127 1500 2515
80 20 ∆500 = 0.3 500 10000 766 1646
100 20 ∆500 = 0.367 500 10000 1328 2820
100 25 ∆500 = 0.4 500 12500 980 2346
100 50 ∆500 = 0.76 500 25000 236 1036

N/n for i = 1, . . . , n. Next, each set Xi was chosen to be the standard simplex in R
t,

i.e.,

Xi =

{

u ∈ R
t
+

t
∑

i=1

ui = 1

}

.

We took ∆k = ϕ(xk) as accuracy measure and chose the accuracy 0.1. We chose
the same starting point (1/t)e, where e denote the vector of units in R

N , and the
rule δl+1 = νδl with ν = 0.5 for (ACGM). The methods were implemented in Delphi
with double precision arithmetic. We report the number of iterations (it) and the total
number of calculations (cl) of the partial gradients gi for attaining the desired accuracy.

In the first series, we took the convex quadratic cost function. We chose µ(x) =
f1(x) where

f1(x) = 0.5〈Px,x〉 − 〈q,x〉,

the elements of the matrix P are defined by

pij =











sin(i) cos(j) if i < j,
sin(j) cos(i) if i > j,
∑

s 6=i

|pis|+ 1 if i = j;

and elements of the vector q are defined by qj = sin(j)/j for all i, j. The results are
given in Table 1. In the second series, we took the composite convex cost function

µ(x) = f1(x) + f2(x),

where f1 was defined as above and

f2(x) = 1/(〈c,x〉+ τ),
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Table 2: The numbers of iterations (it) and partial gradients calculations (cl)

(CGM) (ACGM)
N n it cl it cl
10 5 15 75 10 32
20 5 49 245 113 189
50 5 139 695 475 666
100 5 240 1200 779 1161
50 10 231 2310 620 1003
100 10 ∆500 = 0.11 500 5000 ∆1500 = 0.125 1500 2515
80 20 ∆500 = 0.3 500 10000 766 1674
100 20 ∆500 = 0.36 500 10000 1329 2920
100 25 ∆500 = 0.39 500 12500 1011 2350
100 50 ∆500 = 0.775 500 25000 236 1040

where ci = 2 + sin(i) for i = 1, . . . , N and τ = 5. The results are given in Table 2. In
almost all the cases, (ACGM) showed some preference over (CGM) in the number of
partial gradients calculations. At the same time, tuning parameters of (ACGM) needs
further investigations.

8 Conclusions

We described a new adaptive component-wise method for decomposable composite
optimization problems involving non-smooth functions, where the feasible set is the
Cartesian product. The method consists in selective component-wise steps together
with a special control of tolerance sequences. We showed that this keeps the conver-
gence properties of the usual PL one together with reduction of the computational
expenses. We describe several classes of significant applications for the new method.
The preliminary results of computational tests showed rather satisfactory convergence.
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