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1 Introduction

2 Preliminaries and Basic Definitions

In this paper, we denote the duality pairing between two elements of Rn by 〈·, ·〉
and the norm by ‖·‖. Let K ⊆ Rn, its closure is denoted by cl K, its boundary
by bd K, its topological interior by int K, its relative interior by ri K and its
convex hull by co K. By K∗ we denote the positive polar cone of K. The
indicator function of K is defined by δK(x) = 0 if x ∈ K and δK(x) = +∞
elsewhere, and its support function is defined by σK(y) := supx∈K〈x, y〉. By
B(x, δ) we mean the open ball with center at x ∈ Rn and radius δ > 0.

Given any function f : Rn → R := R ∪ {±∞}, the effective domain of f is
defined by dom f := {x ∈ Rn : f(x) < +∞}. We say that f is a proper function
if f(x) > −∞ for every x ∈ Rn and dom f is nonempty. For a function f , we
adopt the usual convention inf∅ f = +∞ and sup∅ f = −∞.

We denote by epi f := {(x, t) ∈ dom f × R : f(x) ≤ t} its epigraph and
for a given λ ∈ R by Sλ(f) := {x ∈ Rn : f(x) ≤ λ} its level set at height λ.
By definition, a function f : Rn → R is convex if epi f is convex. As usual,
argminKf := {x ∈ K : ∀y ∈ K, f(y) ≥ f(x)}.

A proper function f with convex domain is said to be:
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(a) semistrictly quasiconvex if for every x, y ∈ dom f with f(x) 6= f(y),

f(λx+ (1− λ)y) < max{f(x), f(y)}, ∀ λ ∈]0, 1[.

(b) quasiconvex if for every x, y ∈ dom f ,

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}, ∀ λ ∈ [0, 1].

Every convex function is quasiconvex, and every semistrictly quasiconvex
and lower semicontinuous (lsc from now on) function is quasiconvex. The con-
tinuous function f : R → R with f(x) = min{|x|, 1}, is quasiconvex without
being semistrictly quasiconvex.

Recall that,

f is convex⇐⇒ epi f is a convex set.

f is quasiconvex⇐⇒ Sλ(f) is a convex set, for all λ ∈ R.

For a further study on generalized convexity, we refer to [3, 4, 7].

As explained in [2], the notions of asymptotic cone and the associated asymp-
totic function have been employed in optimization theory in order to handle
unbounded and/or nonsmooth situations. In particular, when standard com-
pactness hypotheses are absent. We recall some basic definitions and properties
of asymptotic cones and functions, which can be found in [2].

For a nonempty set K from Rn its asymptotic cone is defined by

K∞ :=

{
u ∈ Rn : ∃ tk → +∞, ∃ xk ∈ K,

xk
tk
→ u

}
.

In case K is a closed convex set, it is known that the asymptotic cone is
equal to

K∞ =
{
u ∈ Rn : x0 + λu ∈ K, ∀ λ ≥ 0

}
for any x0 ∈ K. (2.1)

The basic properties of the asymptotic cone are listed below.

Proposition 2.1 Let ∅ 6= K ⊆ Rn, then

(a) If K0 ⊆ K, then (K0)∞ ⊆ K∞.

(b) (K + x0)∞ = K∞ for all x0 ∈ Rn.

(c) K∞ = (K)∞.

(d) K∞ = {0} iff K is bounded.

(e) Let {Ki}i∈I be a family of sets from Rn, then
⋃
i∈I(Ki)

∞ ⊆ (
⋃
i∈I Ki)

∞.
The equality holds when |I| < +∞.
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(f) Let {Ki}i∈I be a family of sets from Rn satisfying
⋂
i∈I Ki 6= ∅, then(⋂

i∈I
Ki

)∞
⊆
⋂
i∈I

(Ki)
∞.

The equality holds when every Ki is closed and convex.

The asymptotic function f∞ : Rn → R ∪ {±∞} of a proper function f as
before, is the function for which

epi f∞ := (epi f)∞. (2.2)

From this, one may show that

f∞(u) = inf

{
lim inf
k→+∞

f(tkuk)

tk
: tk → +∞, uk → u

}
. (2.3)

Moreover, when f is lsc and convex, for all x0 ∈ dom f we have

f∞(u) = sup
t>0

f(x0 + tu)− f(x0)

t
= lim
t→+∞

f(x0 + tu)− f(x0)

t
. (2.4)

A function f is called coercive if f(x) → +∞ as ‖x‖ → +∞. If f∞(u) > 0
for all u 6= 0, then f is coercive. In addition, if f is convex and lsc, then

f is coercive⇐⇒ f∞(u) > 0, ∀ u 6= 0⇐⇒ argminRn f 6= ∅ and compact.
(2.5)

The problem to find an adequate definition of an asymptotic function has
been studied in the last years, since the usual asymptotic function is not well
suited for the description of the behavior of a nonconvex function at infinity.
Several attempts to deal with the quasiconvex case has been made in [1, 5, 6, 10]
while applications to optimization can be found in [6, 9].

The following two asymptotic functions to deal with quasiconvexity were
introduced in [5]. Recall that, given a proper function f : Rn → R∪{+∞}, the
q-asymptotic function is defined by

f∞q (u) := sup
x∈dom f

sup
t>0

f(x+ tu)− f(x)

t
. (2.6)

Given λ ∈ R with Sλ(f) 6= ∅, the λ-asymptotic function is defined by

f∞(u;λ) := sup
x∈Sλ(f)

sup
t>0

f(x+ tu)− λ
t

. (2.7)

If f is lsc and quasiconvex, by [5, Theorem 4.7] we have

f∞q (u) > 0, ∀ u 6= 0 ⇐⇒ argminRn f 6= ∅ and compact, (2.8)
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and by [5, Proposition 5.3]

f∞(u;λ) > 0, ∀ u 6= 0 ⇐⇒ Sλ(f) 6= ∅ and compact, (2.9)

If f is quasiconvex (resp. lsc), then fq(·) and f∞(·;λ) are quasiconvex (resp.
lsc). Furthermore, the following relations hold for any λ ∈ R with Sλ(f) 6= ∅,

f∞ ≤ f∞(·;λ) ≤ f∞q . (2.10)

Both inequalities could be strict even for quasiconvex functions, as was proved
in [5, Example 5.6].

Finally, it is important to point out that f∞q (u) > 0 for all u 6= 0 does

not imply that f is coercive as the function f(x) = |x|
1+|x| shows. Hence, the

characterization (2.8) goes beyond coercivity.

3 A Quasiconvex Asymptotic Function

In this section we introduce a new definition of an asymptotic function to deal
with quasiconvex functions. Properties, calculus rules, geometric interpretation
and comparison with previous attempts presented in the literature are estab-
lished.

Definition 3.1 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex
function. We define the r-asymptotic function of f denoted by fr : Rn → R as
the function for which

fr(u) := inf {λ : u ∈ (Sλ(f))∞} . (3.1)

We adopt the convention that (∅)∞ = ∅.

The function is natural for quasiconvex functions, since it is defined through
the asymptotic cone of the level sets of the original function.

Since f is lsc and quasiconvex, Sλ(f) is a closed convex set. For any λ such
that Sλ(f) 6= ∅, by Proposition 2.1(f) we have

Sλ(fr) =
⋂
µ>λ

(Sµ(f))∞ =

⋂
µ>λ

Sµ(f)

∞ = (Sλ(f))∞. (3.2)

Next remark follows immediately from the previous equation.

Remark 3.1

(i) Since Sλ(f) is a closed convex set for any λ > infRn f , by the previous equa-
tion we have that Sλ(fr) is a closed convex set, hence fr is lsc and quasiconvex.
Furthermore, by definition of fr, all its level sets are closed convex cones, i.e.,
it is positively homogeneous of degree 0.

4



(ii) The r-asymptotic function is monotone in the sense that f1 ≤ f2 implies
that (f1)r ≤ (f2)r. In fact, take λ ∈ R such that Sλ(f2) 6= ∅, then

Sλ(f2) ⊆ Sλ(f1) =⇒ (Sλ(f2))∞ ⊆ (Sλ(f1))∞ ⇐⇒ Sλ(f2)r ⊆ Sλ(f1)r,

which means that (f1)r ≤ (f2)r.
The previous monotonicity property does not hold for f∞q , as the quasiconvex

functions f1, f2 : R→ R given by f1(x) = |x|
1+|x| and f2(x) ≡ 1 show.

An analytic formula for the r-asymptotic function in the lsc and quasiconvex
case is given below.

Proposition 3.1 Let f : Rn → R ∪ {+∞} be a proper lsc and quasiconvex
function, then for any u ∈ Rn we have

fr(u) = inf
x∈Rn

sup
t≥0

f(x+ tu). (3.3)

Proof. For every λ > fr(u) we have u ∈ (Sλ(f))∞. Then we can find x ∈ Sλ(f),
such that for all t ≥ 0 we have x+ tu ∈ Sλ(f). Thus,

∃ x ∈ Rn : sup
t≥0

f(x+ tu) ≤ λ =⇒ inf
x∈Rn

sup
t≥0

f(x+ tu) ≤ λ.

Since this is true for all λ > fr(u), we deduce that infx∈Rn supt≥0 f(x+tu) ≤
fr(u).

Conversely, if infx∈Rn supt≥0 f(x + tu) < λ, then there exists x ∈ Rn such
that for all t ≥ 0, x+ tu ∈ Sλ(f). Hence u ∈ (Sλ(f))

∞
, so fr(u) ≤ λ.

This shows that fr(u) ≤ infx∈Rn supt≥0 f(x+ tu) and proves equality (3.3).

Remark 3.2 Let C ⊆ Rn be a closed convex set. Then (δC)r = δC∞ . For the
usual asymptotic function, a similar result is [2, Corollary 2.5.1].

Another analytic formula for fr is given below.

Proposition 3.2 Let f : Rn → R ∪ {+∞} be a proper lsc and quasiconvex
function. Then for each u ∈ Rn,

fr(u) = inf
x∈Rn

lim
t→+∞

f(x+ tu). (3.4)

Proof. We know by [4] that for a quasiconvex function defined on an interval
I in R, there exist two consecutive disjoint intervals I1, I2 (one of them might
be empty) with I = I1 ∪ I2, such that the function is nonincreasing on I1 and
nondecreasing on I2. Thus,

sup
t≥0

f(x+ tu) = max

{
f(x), lim

t→+∞
f(x+ tu)

}
,
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and,

fr(u) = inf
x∈Rn

max

{
f(x), lim

t→+∞
f(x+ tu)

}
.

Since obviously

inf
x∈Rn

max

{
f(x), lim

t→+∞
f(x+ tu)

}
≥ inf
x∈Rn

lim
t→+∞

f(x+ tu), (3.5)

to show (3.4) it is enough to show that strict inequality in (3.5) is not possible.
Assume that strict inequality holds. Then there exists x0 ∈ Rn such that
limt→+∞ f (x0 + tu) < fr(u). Take t0 large enough so that f(x0+t0u) < fr(u).
Set x1 = x0 + t0u. Then obviously limt→+∞ f(x1 + tu) = limt→+∞ f(x0 + tu).
Thus,

max

{
f(x1), lim

t→+∞
f(x1 + tu)

}
< fr(u) = inf

x∈Rn
max

{
f(x), lim

t→+∞
f(x+ tu)

}
,

which is a contradiction.

Remark 3.3 Take t > 0 and u ∈ Rn, then supt≥0 f(x+tu) ≥ f(x) ≥ infx∈Rn f(x),
thus

inf
x∈Rn

f(x) = fr(0) ≥ inf
u∈Rn

fr(u) ≥ inf
x∈Rn

f(x).

This implies
inf
x∈Rn

f(x) = inf
u∈Rn

fr(u) = fr(0). (3.6)

Hence, f and fr has the same optimal value, and the r-asymptotic function
obtain the optimal value at u = 0.

From the geometric point of view, the r-asymptotic function provides the
behavior of the value of the original quasiconvex function at the infinity, rather
than the behavior of the slope, as does f∞. The next example ilustrates our
interpretation.

Example 3.1 Let f : R→ R be the continuous quasiconvex function given by

f(x) =

{
x2, x ≤ 0,
|x|

1+|x| , x > 0.

An easy calculus shows that

fr(u) =

 +∞, u < 0,
0, u = 0,
1, x > 0.

Next proposition provides calculus rules for the r-asymptotic function. We
recall that the composition of a nondecreasing function h with a quasiconvex
function g is also quasiconvex.
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Proposition 3.3 The following assertion holds,

(a) Let g : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex function. If
h : R→ R∪{+∞} is a nondecreasing continuous function, then (h◦g)r =
h(gr).

(b) Let fi : Rn → R ∪ {+∞} be a family of proper, lsc and quasiconvex
functions with I an arbitrary index set. Then(

sup
i∈I

fi

)r
≥ sup

i∈I
(fi)

r. (3.7)

Proof. (a) : Take u ∈ Rn, thus

(h ◦ g)r(u) = inf
x∈Rn

lim
t→+∞

(h ◦ g)(x+ tu) = inf
x∈Rn

lim
t→+∞

h(g(x+ tu))

= inf
x∈Rn

h

(
lim

t→+∞
g(x+ tu)

)
= h

(
inf
x∈Rn

lim
t→+∞

g(x+ tu)

)
= h(gr(u)).

(b) Set f := supi∈I fi. Then

fr(u) = inf
x∈Rn

sup
t≥0

sup
i∈I

fi(x+ tu) = inf
x∈Rn

sup
i∈I

sup
t≥0

fi(x+ tu)

≥ sup
i∈I

inf
x∈Rn

sup
t≥0

fi(x+ tu) = sup
i∈I

(fi)
r(u).

Hence (3.7) holds.
Note that equality does not hold in general in (3.7).

Example 3.2 Define on R2 the convex functions given by f1(x1, x2) = |x1 − 1|
and f2(x1, x2) = |x1 + 1|, and f = max {f1, f2} = 1 + |x1|. Take u = (0, 1).
Then

(f1)r (u) = inf
(x1,x2)∈R2

sup
t≥0
|x1 − 1| = 0, (f2)r (u) = inf

(x1,x2)∈R2
sup
t≥0
|x1 + 1| = 0,

fr(u) = inf
(x1,x2)∈R2

sup
t≥0

(1 + |x1|) = 1.

Thus, fr(u) > max {(f1)r, (f2)r}.

Another formula for computing the r-asymptotic function is given below.

Proposition 3.4 Let g : Rm → R ∪ {+∞} be a proper, lsc and quasiconvex
function, let A : Rn → Rn be a linear map with A(Rn) ∩ dom g 6= ∅, and let
f(x) := g(Ax). Then f is lsc, quasiconvex and

fr(u) ≥ gr(Au), ∀ u ∈ Rn. (3.8)

Whenever A is onto, equality holds in (3.8).
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Proof. It is clear that f is lsc and quasiconvex. Now, take any u ∈ Rn, then

fr(u) = inf
x∈Rn

sup
t≥0

f(x+ tu) = inf
x∈Rn

sup
t≥0

g(Ax+ t(Au))

≥ inf
z∈Rm

sup
t≥0

g(z + t(Au)) = gr(Au).

If A is onto, then Ax takes on all values z ∈ Rm so equality holds.

3.1 Comparison with other Asymptotic Functions

Let us compare the three asymptotic functions f∞, f∞q and f∞(·;λ) which
are known from the literature, with the function fr introduced in the previous
section.

When f is convex, the three functions f∞, f∞q and f∞(·;λ) are equal, see
also [5, Proposition 5.4]:

Proposition 3.5 Let f be convex and λ be such that Sλ(f) 6= ∅. Then f∞ =
f∞q = f∞(·;λ).

Proof. Only f∞ = f∞(·;λ) needs a proof. We note that for x ∈ Sλ(f),

the functions t → f(x+tu)−f(x)
t and t → f(x)−λ

t are nondecreasing, thus t →
f(x+tu)−λ

t is nondecreasing too, and

sup
t>0

f(x+ tu)− λ
t

= lim
t→+∞

f(x+ tu)− λ
t

= lim
t→+∞

f(x+ tu)− f(x)

t
= f∞(u).

It follows that

f∞ (u;λ) = sup
x∈Sλ(f)

sup
t>0

f(x+ tu)− λ
t

= f∞(u).

In contrast to the above, when f is convex, fr is in general not equal to
f∞. For example, consider the constant function f(x) = α. Here, f∞ ≡ 0 and
fr ≡ α. Hence, for α > 0 we have f∞ < fr, while for α < 0 we have fr < f∞.
The same example shows that there is no connection between fr and f∞q or
f∞(·;λ). This difference is not surprising, since f∞ is related to the slope of
the function f at infinity, whereas fr is related to the value of f at infinity.

The r-asymptotic function fr is also convex whenever f is convex. In fact,
it is constant in its domain:

Proposition 3.6 Let f be proper, convex and lsc. Then fr = inf f + δC , where
C := {u ∈ Rn : f∞(u) ≤ 0}.

Proof. By [2, Proposition 2.5.3], for each α ∈ R such that Sα(f) 6= ∅, one has
the equality: (Sα(f))

∞
= S0(f∞). Thus, fr has just one level set, and its value

on this level set is inf fr = inf f .
The asymptotic functions fr, f∞ and f∞(·;λ) are not convex in general if

f is not convex. In contrast, f∞q is always convex, for any proper function f .
To see this, we first recall the notion of generalized recession cone [14].
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Definition 3.2 Let K be any nonempty subset of Rn. Its generalized recession
cone is the set

recK := {u ∈ Rn : x+ tu ∈ K, ∀ x ∈ K, ∀ t > 0} .

Note that K is not required to be closed or convex. If K is closed and
convex, then recK = K∞, the usual asymptotic cone of K.

It was proved in [14, Lemma 2.1] that for any nonempty set K from Rn, the
set rec K is always a convex cone. This result will be important in our further
analysis.

A natural definition is the following.

Definition 3.3 Let f : Rn → R ∪ {+∞} be a proper function. We define the
(generalized) recession function of f as the function frec : Rn → R for which

epi frec := rec(epi f). (3.9)

The recession function is well-defined, as shown by the following proposition,
which is useful to understand the nature of the q-asymptotic function.

Proposition 3.7 Let f : Rn → R∪{+∞} be a proper function. Then for every
u ∈ Rn

frec(u) = sup
x∈dom f

sup
t>0

f(x+ tu)− f(x)

t
= f∞q (u). (3.10)

Proof. Observe that

(u, α) ∈ rec (epi f)⇐⇒ (x, λ) + t(u, α) ∈ epi f, ∀ (x, λ) ∈ epi f, ∀ t > 0

⇐⇒ (x+ tu, f(x) + tα) ∈ epi f, ∀ x ∈ dom f, ∀ t > 0

⇐⇒ f(x+ tu) ≤ f(x) + tα, ∀ x ∈ dom f, ∀ t > 0

⇐⇒ f(x+ tu)− f(x)

t
≤ α, ∀ x ∈ dom f, ∀ t > 0

⇐⇒ sup
x∈dom f

sup
t>0

f(x+ tu)− f(x)

t
≤ α

⇐⇒ (u, α) ∈ epi f∞q .

This shows that rec (epi f) = epi f∞q , so frec is well defined and is equal to
f∞q .

As a result, we have:

Proposition 3.8 For any proper function f , its q-asymptotic function f∞q is
convex.

Proof. Set K = epi f , by [14, Lemma 2.1] we have that rec(epi f) = epi f∞q is
convex. Thus, f∞q is convex.

9



Remark 3.4 The λ-asymptotic function g := f∞(·;λ) satisfies

S0(g) = rec(Sλ(f)).

Indeed, u ∈ rec(Sλ(f)) is equivalent to x+ tu ∈ Sλ(f) for all x ∈ Sλ(f) and all
t > 0. This is equivalent to f(x+ tu) ≤ λ, ∀ x ∈ Sλ(f), ∀ t > 0, that is,

sup
x∈Sλ(f)

sup
t>0

f(x+ tu)− λ
t

≤ 0.

This is turn means u ∈ S0(g).

As seen in Proposition 3.6, the r-asymptotic function fr is very particular
when the function f is proper, convex and lsc. However, in some situations,
even in this case, fr gives us information about the behavior of the function at
the infinity while other asymptotic functions fail to do so.

Example 3.3 Let f : R → R ∪ {+∞} be the convex function given by f(x) =
−
√
x for x ≥ 0, and f(x) = +∞ otherwise. Here

f∞(u) = f∞q (u) = f∞(u;λ) = 0, u ≥ 0,

and no information about the unboundedness from below of f was detected.
On the other hand, for u > 0 we have fr(u) = −∞. Which means that f is

not bounded from below.

4 Applications in Optimization

In this section, applications for quasiconvex optimization problems are given.
We analyze the link between our new results with previous ones for the convex
case. We also show that our new asymptotic function has some properties than
previous quasiconvex asymptotic functions do not have.

The next proposition is straightforward since f and fr has the same infimum.

Proposition 4.1 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex
function. Then f is bounded from below iff fr > −∞.

A characterization result for boundedness from below for convex functions
using first and second order asymptotic functions can be found in [6, Section
3.3].

The r-asymptotic function characterizes the boundedness of a quasiconvex
function as the next proposition shows. For the convex case, a related result is
[2, Proposition 2.5.5].

Proposition 4.2 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex
function. Then f is bounded iff fr is real-valued.
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Proof. If f is bounded, then obviously fr is real-valued, by formula (3.4).
Conversely, assume that fr is real-valued, then f is bounded from below by
the previous proposition. To show that f is bounded from above, we observe
that since fr is real-valued, Rn =

⋃
k∈N Sk(fr). As the sets Sk(fr) are closed,

by Baire’s theorem there exists k0 ∈ N such that the interior of Sk0(fr) is
nonempty. Thus, there exist x0 ∈ Rn and ε > 0 such that B(x0, ε) ⊆ Sk0(fr).
Now, let m ∈ N be such that m > max{fr(−x0), k0}. Then −x0 ∈ Sm(fr)
and B(x0, ε) ⊆ Sm(fr), thus co ({−x0} ∪B(x0, ε)) ⊆ Sm(fr). It follows that
0 ∈ int Sm(fr) and since Sm(fr) is a cone, Sm(fr) = Rn. Since Sm(fr) =
(Sm(f))

∞
, then Sm(f) = Rn, so f is bounded from above by m and the result

follows.

Remark 4.1 We notice that the previous proposition does not hold for the q-
asymptotic function. In fact, set f : R→ R given by f(x) = min{

√
|x|, 3}, which

is continuous, bounded and quasiconvex. Here f∞q (u) = +∞ for all u 6= 0. On
the other hand, for the function f(x) = |x|, the function f∞q is real valued, but
f is unbounded.

The next result provides a characterization of the nonempiness and com-
pactness of the solution set of a lsc quasiconvex function.

Theorem 4.1 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex func-
tion. Then the following assertions are equivalent.

(a) argminRn f is nonempty and compact.

(b) argminRn f
r is nonempty and compact.

(c) fr(u) > fr(0) for all u 6= 0.

Proof. Obviously (c) implies (b). If (b) holds and u0 ∈ argminRn fr, then
tu0 ∈ argminRn f

r for all t > 0 since fr is 0-homogeneous. Hence necessarily
u0 = 0, so (c) holds.

(c) ⇒ (a): If (a) does not hold, then there exists a sequence (xk) with
f(xk) → infRn f and ‖xk‖ → +∞. By selecting a subsequence if necessary, we
may assume that xk

‖xk‖ → u. For every λ > infRn f we have that xk ∈ Sλ(f)

for k large enough, so u ∈ (Sλ(f))
∞

= Sλ(fr), that is, fr(u) ≤ λ. Hence,
fr(u) ≤ infRn f = fr(0), contradicting (c).

(a) ⇒ (c): Suppose for the contrary that (c) does not hold. Then there
exists u 6= 0 with fr(u) ≤ fr(0) = infRn f . Then u ∈ Sinf f (fr) = (Sinf f (f))

∞
.

Choose x ∈ argminRn f , then x ∈ Sinf f (f). Thus for every t > 0, we have
that x + tu ∈ Sinf f (f), that is, x + tu ∈ argminRn f . Which contradicts the
compactness of argminRn f .

Remark 4.2 Since for a proper, lsc and convex function f∞(0) = 0, the previ-
ous characterization for quasiconvexity is similar to the characterization (2.5).
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In the next example, we study the quasiconvex quadratic case, that is the
case when the function f is given by f(x) = 1

2 〈x,Ax〉 + 〈a, x〉 + α, where A ∈
Rn×n is symmetric, a belongs to Rn and α belongs to R. To that end, we first
recall that whenever f is quadratic, f is convex on Rn iff f is quasiconvex on
Rn (see [3, Theorem 6.3.1]). Thus, a quadratic function f can be quasiconvex
without being convex, only if its domain is a proper subset K of Rn. We say
that f is merely quasiconvex on K if f is a quasiconvex function without being
convex on K [3, page 120]. A necessary condition for a quadratic f to be
merely quasiconvex is the existence of exactly one simple negative eigenvalue of
A (see [3, Remark 6.3.1]). The properties of quasiconvex quadratic functions
are investigated in depth in [3, Chapter 6].

Example 4.1 Let K be a nonempty closed convex and proper subset of Rn and
f : K → R a quasiconvex quadratic function f(x) = 1

2 〈x,Ax〉 + 〈a, x〉 + α. As
usual, we extend f to the whole Rn by setting f(x) = +∞ for x /∈ K.

Observe that if x ∈ K and u ∈ K∞, then

f(x+ tu) = f(x) + t〈∇f(x), u〉+
1

2
t2〈u,Au〉.

Accordingly, by Proposition (3.2),

fr(u) = inf
x∈K

lim
t→+∞

(
f(x) + t 〈∇f(x), u〉+

1

2
t2 〈u,Au〉

)
.

• If 〈u,Au〉 > 0 then the limit equals +∞ for all x ∈ K, so fr(u) = +∞.

• If 〈u,Au〉 < 0, then it is clear that fr(u) = −∞, so inf f = −∞.

• If 〈u,Au〉 = 0, then we have the following cases:

(i) If 〈∇f(x), u〉 < 0 for some x ∈ K, then fr(u) = −∞.

(ii) If 〈∇f(x), u〉 > 0 for some x, then the limit is +∞. These x can be
omitted from the calculation of the infimum.

Thus, fr is given by the following formula:

fr(u) =


+∞, if 〈u,Au〉 > 0,
−∞, if 〈u,Au〉 < 0,
−∞, if 〈u,Au〉 = 0 and u /∈ {∇f(K)}∗ ,

inf
x∈K, 〈∇f(x),u〉=0

f(x), if 〈u,Au〉 = 0 and u ∈ {∇f(K)}∗ .

Remark 4.3

(i) Characterizations for the nonempiness and compactness of the solution set for
quasiconvex quadratic functions are well-known. See for instance [8, Theorem
4.6] where the authors use the q-asymptotic function.

(ii) The term 〈u,Au〉 is exactly the second order asymptotic function f∞∞ in-
troduced in [8] (see [8, Example 3.5]).
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We provide another classical example for a class of nonconvex functions.

Example 4.2 Consider the affine functions h(x) = 〈a, x〉 + α and g(x) =
〈b, x〉 + β with a, b ∈ Rn and α, β ∈ R, and the closed convex set K :=
{x ∈ Rn : g(x) ≥ 1}.

Let f : Rn → R ∪ {+∞} be the linear fractional function

f(x) =


h(x)

g(x)
, if x ∈ K,

+∞, if x 6∈ K.

It is well-known that f is semistrictly quasiconvex on K (see [3, 13]) and
K∞ = {u ∈ Rn : 〈b, u〉 ≥ 0}. Notice that

fr(u) = inf
x∈K

lim
t→+∞

f(x+ tu) = inf
x∈K

lim
t→+∞

h(x) + t〈a, u〉
g(x) + t〈b, u〉

. (4.1)

We have the cases:

(i) If 〈b, u〉 > 0 then it is easy to see that fr(u) = 〈a,u〉
〈b,u〉 .

(ii) If 〈b, u〉 < 0 then for t sufficiently large, x+ tu /∈ K so f(x+ tu) = +∞.
In this case, fr(u) = +∞.

(iii) If 〈b, u〉 = 0 then again we have three cases: For 〈a, u〉 > 0 we find from
(4.1) that fr(u) = +∞. For 〈a, u〉 < 0 we find fr(u) = −∞. Finally, for
〈a, u〉 = 0, relation (4.1) gives

fr(u) = inf
x∈K

h(x)

g(x)
= inf
x∈K

f(x) = fr(0).

Before we introduce our next proposition, we remind that for a proper lsc
convex function, f∞(0) = 0 so f∞(u) ≤ 0 is equivalent to f∞(u) ≤ f∞(0). Also,
for proper lsc quasiconvex functions, fr(0) = inf f = inf fr so fr(u) ≤ fr(0) is
equivalent to fr(u) = fr(0).

Proposition 4.3 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex
and u ∈ Rn. Then fr(u) = fr(0) iff for every x ∈ domf , the function t →
f(x+ tu), t > 0 is nonincreasing.

Proof. For u = 0 it is obvious, so we assume that u 6= 0.
(⇒) Take x ∈ dom f . Since fr(u) = fr(0) = inf f , we have fr(u) ≤ f(x)

so u ∈ Sf(x)(fr) =
(
Sf(x)(f)

)∞
. From x ∈ Sf(x)(f), for every t ≥ 0 we have

that x + tu ∈ Sf(x)(f), that is, f(x + tu) ≤ f(x). Thus, for every x ∈ dom f
and every t > 0 we have f(x+ tu) ≤ f(x). For every t′ > t > 0, set x′ = x+ tu
and t′′ = t′ − t. Then we have f(x′ + t′′u) ≤ f(x′), so f(x + t′u) ≤ f(x + tu).
Consequently, the function t→ f(x+ tu), t > 0 is nonincreasing.
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(⇐) Assume that for each x ∈ dom f , the function t → f(x + tu), t > 0 is
nonincreasing. Suppose to the contrary that fr(u) > fr(0). As fr(0) = inf f ,
we can choose x ∈ dom f with f(x) < fr(u). Then

f(x) < fr(u) ≤ lim
t→+∞

f(x+ tu).

It follows that t → f(x + tu), t > 0 cannot be nonincreasing, a contradiction.

Remark 4.4 If f is proper, lsc, convex, then f∞(u) ≤ 0 iff for one (equiva-
lently, for every) x ∈ dom f, limt→+∞ f(x+ tu) < +∞; see [2, Theorem 2.5.2]
and [11, Theorem 8.6]. Note that for a convex function, or more generally for a
quasiconvex function, t→ f(x+ tu), t > 0 is monotone for large values of t, so
the limit always exist and the lim inf or lim sup used in [2, Theorem 2.5.2] and
[11, Theorem 8.6] are not needed. The last assertion is also equivalent to the
fact that for each x ∈ dom f , the function t→ f(x+tu), t > 0 is nonincreasing.

In contrast to convex functions, if f is quasiconvex, it is possible that t →
f(x + tu), t > 0 is nonincreasing only for some x ∈ domf . For example,
consider the quasiconvex function f(x) = min {‖x‖ − 1, 0}, x ∈ R2. If e1 and
e2 are the usual basis vectors, then t → f(e2 + te1) is nonincreasing, while
t→ f(−e1 + te1) is not.

Now, we will recall [6, Theorem 3.1]. To that end, we first recall the following
class of functions which includes those functions that are convex or coercive.

Definition 4.1 ([6, Definition 3.1]) A function f : Rn → R ∪ {+∞} it is said
to be in C if for all x ∈ dom f and u ∈ (dom f)∞, the function s 7→ f(x+ su),
s > 0, is either unbounded from above or non-increasing.

Now the mentioned Theorem.

Theorem 4.2 ([6, Theorem 3.1]) Let F = (f1, . . . , fm) : Rn → Rm, be a
vector function with each fj, j = 1, 2, . . . ,m, being a finite-valued continuous,
semistrictly quasiconvex function belonging to C, and let K ⊆ Rn be closed and
convex. Assume that

Lj := {u ∈ K∞ : (fj)
∞
q (u) ≤ 0}, (4.2)

is a linear subspace for all j ∈ {1, 2, . . . ,m}. Then F (K) is closed.

Using the r-asymptotic function, Proposition 4.2 and 4.3, we can rewrite the
previous theorem as follows.

Corollary 4.1 Let F := (f1, f2, . . . , fm) : Rn → Rm be a vector-valued function
with each fj, j = 1, 2, . . . ,m, being a continuous and semistrictly quasiconvex
function. Let K ⊆ Rn be a closed convex set. Assume that for every u ∈ K∞,
fr(u) = +∞ or fr(u) = fr(0), and

(Lj)
r := {u ∈ K∞ : fr(u) = fr(0)}, (4.3)

is a linear subspace for all j ∈ {1, 2, . . . ,m}. Then F (K) is a closed set.

14



Notice that, the same result was written only in terms of the r-asymptotic
function and no class of functions was used.
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