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Abstract

In this work, some counterexamples are given to refute some results reported in the paper by

Guo and Li [8] (J Optim Theory Appl 162,(2014), 821-844). We correct the faulty in some

of their theorems and we present alternative proofs. Moreover, we extend the definition of

approximately pseudo-dissipative in the setting of metrizable topological vector spaces.

Keywords: Convex mapping, Optimality condition, Local weak minimal solution, Subdifferen-
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1 Introduction

In several optimization problems nonlinear and nonconvex functions can be decomposed into the

difference of convex (DC) functions (see [18]).

In the last decade, different kinds of DC programming have been investigated extensively and

significant results have been achieved, see for example [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19] and

the references therein. Here, we briefly mention the results on duality and optimality in [1, 2,

6, 5, 8, 16, 17]. In [1, 2, 6] the authors consider optimization problems with objectives given as

DC functions and constraints described by convex inequalities. For Banach spaces, they obtain

necessary and sufficient optimality conditions for DC infinite and semi-infinite programs. Efficient

upper estimates of certain subdifferentials of value functions for the DC optimization problem

are given in [1]. In [2], the authors provide characterizations of the Farkas-Minkowski constraint

qualification.

Fang and Zhao introduced the local and global KKT type conditions for the DC optimization

problem in [3]. Using properties of the subdifferential, they provide some sufficient and necessary

conditions for these optimality conditions. In the case of DC optimization, weak and strong

duality assertions for extended Ky Fan inequalities are provided in [16]. The authors in [16]

apply their dual problems also to a convex optimization problem and a generalized variational

inequality problem. By using the properties of the epigraphs of the conjugate functions, Sun, et

al. [17] introduced a closedness qualification condition. They then employed their condition to

investigate duality and Farkas-type results for a DC infinite programming problem. Also in [11]

established optimality conditions under convexity and continuity assumptions for set functions.
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In [8], Guo and Li use the notions of strong subdifferential and epsilon subdifferential to obtain

necessary and sufficient optimality conditions for an epsilon-weak Pareto minimal point and an

epsilon-proper Pareto minimal point of a DC vector optimization problem.

In this article, we show that some theorems and results in [8] are not correct. Furthermore,

we clarify an existence gap by providing some counterexamples. Finally we present corrected

versions of their results.

2 Preliminaries

Let us briefly recall the notation used in this work. For the most part, we follow notations as in

[8]. Throughout this paper, X is a metrizable topological vector space. Furthermore, Y and Z

stand for topological vector spaces. We will denote the dual of Y and Z by Y ∗ and Z∗ respectively,

with duality pairing denoted by 〈., .〉 . The origins of the topological vector spaces are denoted

by 0X , 0Y , and 0Z . As usual L(X,Y ) is the set of all linear continuous operators from X to Y .

Moreover, let K ⊂ Y and D ⊂ Z be proper (i.e., K 6= {0Y } 6= Y ) convex cones with nonempty

interior (i.e., intK 6= ∅). Let l(K) = K ∩ −K be the linearity of K. The cone K determines an

order relation on Y denoted in the sequel by �K . We recall the following definition of ordering

relations:
y′�K y ⇔ y − y′ ∈ K,

y′≺K y ⇔ y − y′ ∈ intK,

y′�
K
y ⇔ y − y′ /∈ K,

y′⊀K y ⇔ y − y′ /∈ intK.

The negative polar cone(or dual cone) K∗ of K and the strict polar cone (K∗)◦ of K are defined

respectively by

K∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 for all y ∈ K},

and

(K∗)◦ = {y∗ ∈ Y ∗ : 〈y∗, y〉 > 0 for all y ∈ K \ l(K)}.

Clearly, (K∗)◦ ⊂ K∗ \ {0} since K + K \ l(K) = K \ l(K). For A ⊂ X the indicator function

δA : X −→ R ∪ {+∞} is defined by

δA(x) =

{

0 x ∈ A,

+∞ x /∈ A.

Remark 2.1. Note that in a locally convex space Y, always there exists a convex cone with

nonempty interior. Indeed, if U be a convex neighborhood of zero and y /∈ Y, then it is sufficient

to consider K = cone(U − y) ⊂ Y.

Definition 2.1. The vector-valued map F : X −→ Y is said to be K-convex iff, for all x1, x2 ∈ X

and 0 ≤ λ ≤ 1, the following inequality

F (λx1 + (1− λ)x2) �K λF (x1) + (1− λ)F (x2),

holds. Also F is said to be K-convexlike iff for all x1, x2 ∈ X and 0 ≤ λ ≤ 1 there exists x3 ∈ X

such that

F (x3) �K λF (x1) + (1− λ)F (x2).

It is worth to mention that F is K-convexlike on a convex subset C ⊂ X iff F (C) + K be

convex.
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Definition 2.2. Let X and Y be topological linear spaces, Y be ordered by a convex cone K ⊂ Y,

and F : X −→ Y be a given map. For an arbitrary x̄ ∈ X, the set

∂F (x) := {T ∈ L(X,Y )| T (x− x) �K F (x)− F (x), ∀x ∈ X}

is called the strong subdifferential of F at x. Also let ε ∈ K, then ε-subdifferential of F at x̄

is defined as following

∂εF (x̄) := {T ∈ L(X,Y )|T (x− x)�KF (x)− F (x̄) + ε, ∀x ∈ X} .

We consider the following cone-constrained vector optimization problem as in [8] sometimes

called DC vector optimization where refers to difference of two cone convex functions:

(P )

{

K −Min (F (x)−G(x)) ,

subject to x ∈ C andH(x)− S(x) ∈ −D,

where F,G : X −→ Y are K-convex and S,H : X −→ Z are D-convex maps and C is a convex

subset of X.

Definition 2.3. [8] Suppose that Ω := {x ∈ C : H(x)−S(x) ∈ −D} and ε ∈ K. An element x̄ ∈

Ω is called an ε-weak local Pareto minimal solution of problem (P ) iff there exists a neighborhood

U of x̄ such that

F (x̄)−G(x̄) ∈ εWMin(F −G)(U ∩ Ω),

i.e.,

(F −G)(U ∩Ω) ⊂ F (x̄)−G(x̄)− ǫ+ Y \ −intK,

where

(F −G)(U ∩ Ω) = {F (x) −G(x) : x ∈ U ∩ Ω}.

Similarly, x̄ is said to be an ε-proper local Pareto minimal solution of problem (P ) iff there exists

a neighborhood U of x̄ such that

F (x)−G(x) ∈ εPMin(F −G)(U ∩ Ω),

i.e., there exists a convex cone K
′

⊂ Y with K \ l(K) ⊆ intK
′

such that

(F −G)(U ∩ Ω) ⊂ F (x)−G(x)− ε+ Y \ − intK
′

.

In the sequel we use the following well-known property, see [9].

Lemma 2.1. Let K be a convex cone in topological vector space Y. Then the following assertion

holds

y ∈ intK ⇒ 〈y∗, y〉 > 0, ∀y∗ ∈ K∗ \ {0}. (2.1)

The following definition is based on metrizable topological vector space which is slightly

different from Definition 3.1 in [8]. We note that X with the topology generated by metric d is a

topological vector space.

Definition 2.4. A set valued M : X ⇒ L(X,Y ) is said to be approximately pseudo-dissipative

at x̄ iff, for every ǫ ∈ intK, one can find a neighborhood U of x̄ such that

∀x ∈ U, ∃T ∈ M(x), T ∗ ∈ M(x) s.t. (T − T ∗) (x− x) �K εd(x, x). (2.2)
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3 Sufficient optimality condition

In this part, first we review the Theorems 3.1 and 3.2 stated in [8], then we give an example

which demonstrates these theorems are not correct.

(Theorem 3.1 [8]) Let x ∈ Ω. Assume that the set-valued maps ∂ǫG and ∂S are both approx-

imately pseudo-dissipative at x. If in addition, for any T ∈ ∂ǫG(x̄) and L ∈ ∂S(x̄), there exist

y∗ ∈ K∗ \ {0} and z∗ ∈ D∗ such that

{

y∗oT + z∗oL ∈ ∂(y∗oF + z∗oH)(x),

〈z∗,H(x)− S(x)〉 = 0,

then x̄ is an ǫ-weak local Pareto minimal solution of problem (P).

(Theorem 3.2, [8]) Let x̄ ∈ Ω. Assume that the set-valued maps ∂εG and ∂S are both approx-

imately pseudo-dissipative at x̄. If in addition, for any T ∈ ∂εG(x) and L ∈ ∂S(x) there exist

y∗ ∈ (K∗)◦ and z∗ ∈ D∗ such that

{

y∗oT + z∗oL ∈ ∂(y∗oF + z∗oH)(x),

〈z∗,H(x)− S(x)〉 = 0,

then x̄ is an ε-proper local Pareto minimal solution of problem (P ).

The following example shows that Theorems 3.1 and 3.2 and subsequent corollaries 3.1, 3.2,

3.3, 3.4, 3.5, 3.6 in [8] are not correct, and need several corrections.

Example 3.1. Let X = R, Y = Z = R2, C = [−1, 1],K = D = [0,+∞) × [0,+∞), x̄ = 0, ε =

(0, 0). Define F,G,H, S : R → R2 by



















F (x) = (x4, x2)

G(x) = (x2, 2x2)

H(x) = (x,−1)

S(x) = (x+ 1, 0).

Clearly F,G are K-convex and H,S are D-convex and

Ω = {x ∈ C : H(x)− S(x) ∈ −D} = [−1, 1].

Also we have

∂Gε(x) = {(2x, 4x)} and ∂S(x) = {(1, 0)}.

Since ∂Gε, ∂S are continuous then by Lemma 3 in [15] are approximately pseudo-dissipative at

x̄ = 0. For given T ∈ ∂Gε(x̄) and L ∈ ∂S(x̄), we let z∗ = 0, y∗ ∈ K∗ \ {0}. One can easily check

that
{

〈z∗,H(x̄)− S(x̄)〉 = 〈z∗, (−1,−1)〉 = 0,

y∗oT + z∗oL = 0 ∈ ∂(y∗oF + z∗oH) (x̄) = ∂
(

y∗o(x4, x2)
)

(0).

Observe that all hypotheses of Theorem 3.1 in [8] are satisfied, but x̄ is not an ε-weak local

Pareto minimal solution of problem (P). Indeed, for any neighborhood U of x̄ = 0 and x ∈ U ∩Ω,

one has

F (x)−G(x)− (F (x)−G(x)) = (x4 − x2,−x2) ∈ −intK = (−∞, 0)× (−∞, 0).

The following theorems are modifications of Theorems 3.1 and 3.2 in [8] respectively.
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Theorem 3.1. Let x̄ ∈ Ω. Assume that the set-valued maps ∂εG and ∂S are both approximate

pseudo-dissipative at x̄. If in addition, for any (T,L) ∈ ∂εG(x)× ∂S(x) and (α, β) ∈ intK× intD

there exist (y∗, z∗) ∈ K∗\{0} ×D∗ such that

{

y∗o(T − α) + z∗o(L− β) ∈ ∂(y∗oF + z∗oH)(x),

〈z∗,H(x)− S(x)〉 = 0,

then x̄ is an ε-weak local Pareto minimal solution of problem (P ).

Proof. By approximately pseudo-dissipativity of ∂εG and ∂S at x̄, for given α ∈ intK and β ∈

intD there exist neighborhoods Vα and Vβ of x̄ such that (2.2) holds for ∂εG and ∂S. Let V =

Vα ∩ Vβ . Hence

∀x ∈ V, ∃
(

T
′

, T
)

∈ ∂εG(x)× ∂G(x) ,
(

L
′

, L
)

∈ ∂S(x)× ∂S(x)

such that







(

T
′

− T
)

(x− x) �K αd(x, x),
(

L
′

− L
)

(x− x) �D βd(x, x).







.
(3.1)

We claim that for all x ∈ V ∩ Ω, there exist y∗ ∈ K∗ \ {0} and z∗ ∈ D∗ such that

〈y∗, F (x) −G(x)− (F (x)−G(x)) + ε〉

+〈y∗, α(d(x, x)− 1)〉+ 〈z∗, β(d(x, x)− 1)〉 ≥ 0.
(3.2)

Fix x ∈ V ∩Ω. Then by (3.1) there exists T
′

∈ ∂εG(x) and L
′

∈ ∂S(x), such that ∀y ∈ X the

following hold
{

G(y)−G(x) − T
′

(y − x) + ε ∈ K,

S(y)− S(x)− L
′

(y − x) ∈ D.
(3.3)

Next let y = x̄, we get

{

G(x)−G(x)− T
′

(x− x) + ε ∈ K,

S(x)− S(x)− L
′

(x− x) ∈ D.
(3.4)

Since T ∈ ∂εG(x̄) and L ∈ ∂S(x̄), by the assumption there exists (y∗, z∗) ∈ K∗\{0} × D∗ such

that
{

y∗o(T − α) + z∗o(L− β) ∈ ∂(y∗oF + z∗oH)(x),

〈z∗,H(x)− S(x)〉 = 0.
(3.5)

Therefore

〈y∗, F (x)− F (x̄)− T (x− x̄)〉+ 〈z∗,H(x)−H(x̄)− T (x− x̄)〉

− 〈y∗, α〉 − 〈z∗, β〉 ≥ 0.
(3.6)

By using the fact that y∗ ∈ K∗, z∗ ∈ D∗, and (3.4) we deduce that

{

〈y∗, G(x)−G(x)− T
′

(x− x) + ε〉 ≥ 0,

〈z∗, S(x)− S(x)− L
′

(x− x) + ε〉 ≥ 0.
(3.7)

From (3.6) and (3.7) we obtain that

〈y∗, F (x)−G(x)− (F (x)−G(x))− (T
′

− T )(x− x) + ε〉

+〈z∗,H(x)− S(x)− (H(x)− S(x))− (L
′

− L)(x− x)〉

−〈y∗, α〉 − 〈z∗, β〉 ≥ 0.

(3.8)
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Form H(x)− S(x) ∈ −D we have

〈z∗,H(x)− S(x)〉 ≤ 0.

In addition, using 〈z∗,H(x̄)− S(x̄)〉 = 0 we get

〈y∗, F (x) −G(x)− (F (x)−G(x)) + ε〉 − 〈y∗, (T
′

− T )(x− x)〉

−〈z∗, (L
′

− L)(x− x)〉 − 〈y∗, α〉 − 〈z∗, β〉 ≥ 0,
(3.9)

by using (3.1) and (y∗, z∗) ∈ K∗ \ {0} ×D∗, we obtain that

{

〈y∗, αd(x, x)− (T
′

− T )(x− x)〉 ≥ 0,

〈z∗, βd(x, x)− (L
′

− L)(x− x)〉 ≥ 0.
(3.10)

Next by combining (3.10) and (3.9) the following holds

〈y∗, F (x) −G(x)− (F (x)−G(x)) + ε〉

+〈y∗, α(d(x, x)− 1)〉+ 〈z∗, β(d(x, x)− 1)〉 ≥ 0.
(3.11)

This completes the proof of (3.2). Next, X is metrizable, so there exists a neighborhood

U ⊆ V of x̄ such that for all y ∈ U we have d(y, x̄) ≤ 1. Assume that y ∈ U ∩ Ω ⊆ V ∩ Ω be

given, so there exists y∗ ∈ K∗ \ {0}, z∗ ∈ D∗ such that (3.2) holds for x = y. On the other hand,

using α ∈ intK,β ∈ intD follows that

〈y∗, α(d(y, x)− 1)〉 ≤ 0 and 〈z∗, β(d(y, x)− 1)〉 ≤ 0. (3.12)

Combining (3.2) with (3.12), yields

〈y∗, F (y)−G(y)− (F (x)−G(x)) + ε〉 ≥ 0. (3.13)

Finally by Lemma 2.1 one has

F (y)−G(y) − (F (x)−G(x)) + ε /∈ −intK,

but since y ∈ U ∩ Ω was arbitrary, thus x̄ is a ε−weak local Pareto minimal solution of problem

(P ). This complete the proof.

By similar argument as the previous theorem, we can obtain the following theorem for suffi-

cient optimality condition.

Theorem 3.2. Let x̄ ∈ Ω. Assume that the set-valued maps ∂εG and ∂S are both approximately

pseudo-dissipative at x̄. If in addition, for any (T,L) ∈ ∂εG(x)× ∂S(x) and (α, β) ∈ intK× intD

there exist (y∗, z∗) ∈ (K∗)◦ ×D∗ such that

{

y∗o(T − α) + z∗o(L− β) ∈ ∂(y∗oF + z∗oH)(x),

〈z∗,H(x)− S(x)〉 = 0,

then x̄ is an ε-proper local Pareto minimal solution of problem (P ).
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4 Necessary Optimality Conditions

In this section, we provide sufficient optimality conditions for an ε-weak Pareto minimal solution

and an ε-proper Pareto minimal solution for the cone-constrained vector optimization problem

(P). Here the objective function and constraint set are given as differences of two vector-valued

maps. Our results are corrections of Theorems 4.1 and 4.2 in [8].

Theorem 4.1. [8] Let ε ∈ K and x̄ ∈ Ω. If the vector-valued map F : X −→ Y is a K-convex

map, the vector-valued map H : X −→ Z is a D-convex map, and x̄ is an ε-proper local minimal

solution of (P ), then there exist y∗ ∈ (K∗)◦∪{0} and z∗ ∈ D∗ and (y∗, z∗) 6= (0Y ∗ , 0Z∗) such that
{

(y∗o∂G+ z∗o∂H)(x̄) ∩ ∂〈y∗,ε〉(y
∗oF + z∗oH + δU∩C)(x̄),

〈z∗,H(x)− S(x)〉 = 0,

where U is a neighborhood of x̄.

The following example shows that Theorems 4.1 and 4.2 and subsequent corollaries in [8] are

not correct.

Example 4.1. Take X = R, Y = Z = R, C = [−1, 1],K = D = [0,+∞), x̄ = 0, ε = 0. Consider

F,G,H, S : R → R defined by

F (x) =

{

−1 x 6= 0,

0 x = 0.
G(x) =

{

−2 x 6= 0,

0 x = 0.
H(x) = x− 1, S(x) = x.

Clearly F,G are K-convex and H,S are D-convex, with ∂G(x) = {0}, ∂H(x) = {1}. One can

verify that

Ω = {x ∈ C : H(x)− S(x) ∈ −D} = [−1, 1].

Hence for a neighborhood U of x̄ = 0 we have

F (x)−G(x)− (F (x)−G(x)) + ε /∈ − intK, ∀x ∈ U ∩ Ω,

which implies that x̄ = 0 is ε-weak local minimal solution of (P ). If
{

(y∗o∂G+ z∗o∂H)(x̄) ⊂ ∂〈y∗,ε〉(y
∗oF + z∗oH + δU∩C)(x̄),

〈z∗,H(x̄)− S(x̄)〉 = 0,

then

〈z∗,H(x)− S(x)〉 = 〈z∗,−1〉 = 0,

which implies that z∗ = 0. Therefore one has

(y∗o∂G + z∗o∂H) (x̄) = 0 ∈ ∂ (y∗oF + δU∩C) (x̄),

which gives F (x) ≥ 0 for all x ∈ U ∩ Ω, that is contradiction.

We generalize the result (Theorem 3.3 in [13]) Farkas-Minskowski forD-convexlike single value

functions.

Lemma 4.2. Let C be a convex subset of X. If the map F : C −→ Y is K-convexlike and

G : C −→ Z is D-convexlike and the system
{

F (x) ∈ −intK,

G(x) ∈ −intD,

has no solution in C, then there exist (y∗, z∗) ∈ K∗ ×D∗ with (y∗, z∗) 6= (0, 0), such that

〈y∗, F (x)〉+ 〈z∗, G(x)〉 ≥ 0 ∀x ∈ C.
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Proof. We can easily prove that F (C) +K and G(C) +D are convex sets. Define the set valued

map g : C ⇒ X × Y by

g(x) = (F (x) +K)× (G(x) +D).

One can check that g(C) ∩ int((−K) × (−D)) = ∅. Next, g(C) is convex set hence, by the

separation theorem, there exist a non zero (y∗, z∗) ∈ K∗ × D∗ and α ∈ R such that for all

(k, d) ∈ (K,D), x ∈ C we have

〈y∗,−k〉+ 〈z∗,−d〉 ≤ α ≤ 〈y∗, F (x) + k〉+ 〈z∗, G(x) + d〉 .

Choosing k = d = 0 yields

〈y∗, F (x)〉 + 〈z∗, G(x)〉 ≥ 0, ∀x ∈ C.

In the rest of this section, we present modification of Theorem 4.1 and 4.2 (Necessary opti-

mality conditions) in [8] by assuming convex-like condition which is weaker than convexity.

Theorem 4.3. Let x̄ ∈ Ω. If the vector-valued map F : X −→ Y is a K-convexlike map, the

vector-valued map H : X −→ Z is a D-convexlike map, and x̄ is an ε-weak local minimal solution

of (P ), then there exist (y∗, z∗) ∈ K∗ ×D∗ and (y∗, z∗) 6= (0Y ∗ , 0Z∗) such that

(y∗o∂G+ z∗o∂H)(x̄) ∩ ∂〈y∗,ε〉(y
∗oF + z∗oH + δU∩C)(x̄) 6= ∅, (4.1)

where U is a neighborhood of x̄.

Proof. Let x̄ ∈ Ω and ε ∈ K. Since x̄ is an ε-weak local minimal solution of (P), there exists a

neighborhood U of x̄ such that for all x ∈ U ∩C,

F (x)−G(x) − (F (x̄)−G(x̄)) + ε /∈ −intK.

Now suppose that T ∈ ∂G(x̄) and L ∈ ∂H(x̄) be arbitrary elements. Note that F is K-

convexlike and G is D-convexlike mapping, thus F (·) − F (x̄) − T (· − x̄) + ε is K-convexlike

mapping and H(·)−H(x̄)− L(· − x̄) is D-convexlike mapping. We prove that the system







F (x)− F (x̄)− T (x− x̄) + ε ∈ −intK

H(x)−H(x̄)− L(x− x̄) ∈ −intD,
(4.2)

has no solution in U ∩ C. Arguing by contradiction, assume that there exists a solution

x0 ∈ U ∩C of (4.2). Thus







F (x0)− F (x̄)− T (x0 − x̄) + ε ∈ −intK,

H(x0)−H(x̄)− L(x0 − x̄) ∈ −intD.
(4.3)

Since T ∈ ∂G(x̄) and L ∈ ∂S(x̄), we have

G(x) −G(x̄)− T (x− x̄) ∈ K ∀x ∈ X,

and

S(x)− S(x̄)− L(x− x̄) ∈ D ∀x ∈ X.
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Let x = x0,thus one has







−G(x0) +G(x̄) + T (x0 − x̄) ∈ −K,

−S(x0) + S(x̄) + L(x0 − x̄) ∈ −D.
(4.4)

Next, note that

−K − intK = −intK, −D − intD = −intD, H(x̄)− S(x̄) ∈ −D.

Then combining (4.3) with (4.4), gives us that







F (x0)−G(x0)− (F (x̄)−G(x̄)) + ε ∈ −intK,

H(x0)− S(x0) ∈ −intD,

this contradicts the assumption x̄ is an ε-weak local minimal solution of (P). Hence, the

system (4.2) has no solution. Now by Lemma (4.2) there exists (y∗, z∗) 6= (0, 0) such that for all

x ∈ U ∩ C,

〈y∗, F (x)− F (x̄)− T (x− x̄) + ε〉+ 〈z∗,H(x)−H(x̄)− L(x− x̄)〉 ≥ 0.

Consequently,

(y∗oF + z∗oH)(x)− (y∗oF + z∗oH)(x̄) + 〈y∗, ε〉 − (y∗oT + z∗oL)(x− x̄) ≥ 0.

Hence it follows that

(y∗oT + z∗oL)(x̄) ∈ ∂〈y∗,ε〉(y
∗oF + z∗oH + δU∩C)(x̄).

This completes the proof.

By similar proof of the previous theorem we can obtain the following theorem for necessary

optimality condition.

Theorem 4.4. Let x̄ ∈ Ω. If the vector-valued map F : X −→ Y is a K-convexlike map, the

vector-valued map H : X −→ Z is a D-convexlike map, and x̄ is an ε-proper local minimal

solution of (P ), then there exist y∗ ∈ (K∗)◦∪{0} and z∗ ∈ D∗ and (y∗, z∗) 6= (0Y ∗ , 0Z∗) such that

(y∗o∂G+ z∗o∂H)(x̄) ∩ ∂〈y∗,ε〉(y
∗oF + z∗oH + δU∩C)(x̄) 6= ∅. (4.5)

Remark 4.1. To the best of our knowledge, there is no result on the existence of necessary

optimality conditions of problem (P ) under K-convexlike assumption. Therefore, Theorems 4.3

and 4.4 are new in the literature.
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