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Abstract In this work, we model the time and age evolution of a partially
clonal population, i.e., able to reproduce sexually and asexually, in an en-
vironment with unlimited resources. The population is divided in two sub-
populations, sexual and asexual, whose densities follow a coupled system of
McKendrick-Von Foerster equations of evolution. The transition from one sub-
population to another are driven by transition probabilities for newborns to
be sexual (resp. asexual) when their parent(s) is(are) in the asexual (sexual)
subpopulation. We study the optimization of the growth rate of the whole
population, with respect to these transition probabilities. We prove, using a
result of the variation of the first eigenvalue (Malthusian growth rate) for this
problem, that the maximal eigenvalue is reached when the probabilities are
exactly (in time) equal to zero or one. Moreover, depending on birth and death
rates of both subpopulations (asexual and sexual), we show that the maximal
growth rate is reached when the population newborns switch (completely)
from sexual to asexual and then to asexual to sexual (periodically in time) or
when a subpopulation disappears.

Keywords Bang-Bang control · Growth rate · Eigenvalue · McKendrick
equation

Mathematics Subject Classification (2000) 65N25 · 35Q93 · 49J30

1 Introduction

Species that reproduce asexually (such as bacteria) or by parthenogenesis (fe-
male able to produce child without male and fertilization) produce clones at
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each generation, sexual beings produce half males and half females. At the
specie scale, parthenogenesis is much more prolific and cost free (no sexual
disease, no time lost in partner selection) than the sexual reproduction, and,
at the individual scale this is the most selfish way to reproduce (female do not
have to share their genetic material) and so costless than the sexual reproduc-
tion ([1] Ch. 1). Nevertheless, at the specie scale, variability of the genome of
a specie and ability to find a solution when arise environmental changes (new
diseases, new predators, climate...) gives a long time advantage to sexual re-
production. The dynamic balance between the long-time evolutive advantage
of sexual function and its reproductive cost in the short-time is an enigma of
sexuality [1,2].

Aphids are unusual organisms (partially clonal) which can both reproduce
sexually and by parthenogenesis, which is determined by environmental con-
ditions [3–6]. In [7], authors consider a time evolution model (using ODE)
of Aphids population, they study the nonlinear dynamics but do not study
the optimal growth rate and their optimisation with respect to the fecunda-
tion function in an environment with unlimited resources, i.e., when birth and
death rates do not depend on the size of the population. In this case, the pop-
ulation grows exponentially in time and the problem of optimal growth rate
becomes an eigenvalue optimization [8,9].

In this work, we first rewrite the model given in [7] to introduce transition
probabilities for a parthenogenetic individual to give birth to a sexual one
and for a sexual individual to give birth to a parthenogenetic one. Moreover,
we add an age structure, using the partial differential equation of evolution
introduced by McKendrick-Von Foerster [9], in Section 2. The population is
divided in two subpopulations : the asexual subpopulation of density nA(t, a)
at time t and age a and the sexual subpopulation of density nS(t, a) at time t
and age a. In Section 3, we give first results on the dynamics of (nA, nS)(t, a)
and we show that the dynamic is time-exponential and is driven by an eigen-
value/eigenfunction. Then, in Section 4, we study the optimization of this
eigenvalue (to improve the growth of the population) with respect to the prob-
abilities to switch from a way to produce offsprings to another (which could
be a measure to the ability of a population to invade (or replace) a less fitted
population, i.e., with a smaller Malthusian growth rate, see [10–15]). In Section
5, we give an example of application to this work when the balance between
death rates and birth rates changes and makes the asexual subpopulation have
a better growth rate, i.e., best fitted than an alternation of sexual to asexual.
We illustrate the work by giving numerical simulation in Section 6. Finally, in
Section 7, we discuss and conclude this work.

2 Model

In [7], a population u splits into asexual (i.e. born by parthenogenesis) : x and
sexual (i.e. born from females fertilized by males) y. Therefore, there are y/2
males and x+y/2 females, and so, the excess of females per male is ψ := 2x/y.
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We notice that authors assume that the ratio of male offsprings over the female
offsprings on the sexual population is 1:1 which is the case of most species [16].
In [16,17], Fisher develop an evolutionary model (mathematically formalized
by [18]) that explains that, this approximatively 1:1, sex ratio of offsprings is
an evolutionarily stable strategy. Therefore, we do not modify this point in this
work. Then authors introduce a fecundation function, h : ψ 7→ 1+g tanh(ψ/g)
where g = the limit number of females fertilized per male −11. The dynamics
of population x and y are driven by the following system{

x′(t) = −β(u)x+ α(u)[x+ y/2− h(ψ)y/2],
y′(t) = −β(u)y + α(u)[h(ψ)y/2],

(1)

where β is the death rate, α the birth rate and u(t) = x(t) + y(t) is the total
population. No sexual activity means that h = 0 and so, we have,{

x′(t) = −β(u)x+ α(u)[x+ y/2],
y′(t) = −β(u)y.

Now, let q = tanh(ψ/g)
ψ/g ∈ [0, 1] and p = h−ψq ∈ [0, 1], then we can rewrite the

system (1) as follows{
x′(t) = −β(u)x+ α(u)[(1− q)x+ (1− p)y/2],
y′(t) = −β(u)y + α(u)[qx+ py/2].

(2)

Therefore, we see that q is the probability for a parthenogenetic individual to
give birth to a sexual one and p is the probability for a sexual individual to
give birth to a sexual one. And so, the limit case p = q = 0 corresponds to
the case where there is no sexual activity. In an environment with unlimited
resources, the birth rate α and the death rate β do not depend on the size of
the population and (

x
y

)′
(t) = (−βI + αM)

(
x
y

)
(t), (3)

with

M =

(
1− q (1− p)/2
q p/2

)
.

What would be the optimal growth rate of the population with respect to
the probabilities (p, q) (chosen in [0, 1]2)? Since (p, q) ∈ [0, 1]2, solutions to the
linear system (3) are given by(

x
y

)
(t) = e(−βI+αM)t

(
x
y

)
(0),

1 for aphids around 7. [7]
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and the growth rate is given by the maximal eigenvalue of (−βI +αM) which
is αλmax(p, q) − β where λmax(p, q) is the the maximal eigenvalue of M :

λmax(p, q) =
1−q+p/2+

√
(1−q+p/2)2−2(p−q)

2 . Since we have

∂

∂q
λmax = −1

2
+

(q − p/2)√
(p/2− q)2 + (1− p)

and ∂
∂pλmax = − 1

2 [ ∂∂qλmax] − 1

2
√

(p/2−q)2+(1−p)
, the maximum of λmax is

reached on the boundary of [0, 1]2. We notice that

λmax(1, q) = max(1− q, 1/2), max
q

(λmax(1, q)) = λmax(1, 0) = 1,

λmax(p, 1) = max(1, (1− p)/2), max
p

(
p/2 +

√
(p/2)2 − 2(p− 1)

2
) =
√

2/2,

and λmax(0, q) = λmax(0, 0) = 1. For all p′ ∈ [0, 1], we have,

λmax(p, 0) = max(1, p/2), max
p

(λmax(p, 0)) = λmax(p′, 0) = 1.

Therefore, the maximum of the eigenvalue (growth rate) λmax is reached as
q = 0, i.e., when parthenogenetic gives only parthenogenetic whatever do the
sexual population. Then, we have

y(t) = y(0)e(αp/2−β)t, and x(t) = (x(0) + o(1))e(α−β)t,

and so, the growth of a population which reproduces only by parthenogenesis is
larger than every other choices of reproduction function. Moreover, we observe
that the parthenogenesis/sexual population survival depends on the value of
α and β (see fig. 1). In particular we notice that the maximum of the larger
eigenvalue is reached when p = 0 and q = 0 (so h = 0) which means that there
is no more sex.

The same question, in the case where α, β, p, q are T−periodic functions
modeling seasonal variations of the parameters, since we have

maxSp((−β(t)I + α(t)M)) = −β(t) + α(t),

for all t, gives the same answer : the best way to reproduce is given by q = 0,

i.e., y(t) = y(0)e(
∫ T
0

(αp/2−β)(s)t/T and x(t) = (x(0)+o(1))e(
∫ T
0

(α−β)(s)t/T . Con-

sequently we have again Figure 1 with
∫ T
0
αds/T (resp.

∫ T
0
βds/T ) instead of α

(resp. β). To include specificities of parthenogenetic and sexual subpopulations
in the model, we have to deal with the differences of birth and death rates of
both subpopulations. We add an age-structure in the model (McKendrick-Von
Foerster model [9–13]) for both subpopulations, at time t and age x, the den-
sity of asexual subpopulation nA(t, x) and the density of the sexual population
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Fig. 1 Left : Survival of species depending on the birth rate α and the death rate β. Right
: (p, q) 7→ λmax(p, q).

nS(t, x) have their time evolution driven by the system of transport equations
(with loss due to death term) :

∂
∂tnA(t, x) + ∂

∂xnA(t, x) + d(t)nA(t, x) = 0,

∂
∂tnS(t, x) + ∂

∂xnS(t, x) + d(t)χx>x0nS(t, x) = 0,
(4)

where d(t) is the death rate (due to environment and time periodic due to
seasonal variation). The only difference for death for both subpopulations is
during the first stage development and we consider that, for age x less than x0
a sexual individual is an egg which have a null death rate and the same death
rate for individuals (not in an egg). Newborns appear at age 0 which leads to
the following boundary condition,

nA(t, x = 0) =

∫
x′≥0

pS→A(t)BS(x′)nS(t, x′) dx′

+

∫
x′≥0

pA→A(t)BA(x′)nA(t, x′) dx′,

nS(t, x = 0) =

∫
x′≥0

pS→S(t)BS(x′)nS(t, x′) dx′

+

∫
x′≥0

pA→S(t)BA(x′)nA(t, x′) dx′.

(5)

with
pA→A(t) + pA→S(t) = pS→A(t) + pS→S(t) = 1, ∀t.

Parthenogenetic female can give birth, with a birth rate depending on the age
x of the female : BA(x) to parthenogenetic female, with probability pA→A(t)
at time t, and to sexual female with probability pA→S(t). Respectively, sexual
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female can give birth, with a rate BS(x) (which is < BA(x)) depending on
the age x (in particular for eggs BS(x) = 0 for x ∈ [0, x0]), with probability
pS→A(t) at time t to a parthenogenetic female and with probability pS→S(t)
to sexual female (5). Since parthenogenesis is much more prolific and cost free
than the sexual reproduction we assume that

BA(x′) > BS(x′). (6)

We set that for T > 0 (here T = 365 days)

t 7→ d(t) ∈ L∞(R) T − periodic, (7)

x 7→ BA(x), (resp BS(x)) ∈ L∞(R) and vanishing for x large enough. (8)

Remark 2.1 We consider an environment with unlimited resources. This means
that we assume that the death rate and the birth rate do not depend on the
population itself (only on time for death rate : season and more precisely for
Aphids : temperature and only on age for birth rates (see [19] p17)). Therefore,
we expect that the population has an exponential growth or decay [8,9].

We are expecting that the best way (to give an optimal growth rate) is to
switch from sexual to asexual when it is profitable to do so (and so a Bang-Bang
principle). In Section 3 we study the dynamics of (nA, nS) solution to (4)-(5).
Then in Section 4 we prove that the optimal growth rate of (nA, nS) with
respect to (pS→A, pA→A) ∈ [0, 1]R+ is reached for pS→A, pA→A ∈ {0, 1}R+ . We
give a theoretical result, in Section 5, showing that under some conditions on
the death rate, the sexual subpopulation could disappear. We illustrate this
work by a numerical example in Section 6 and we conclude in Section 7.

3 First Mathematical Results

We have the following results on the dynamic (and more precisely on the long
time behavior) of this system of Partial Differential Equations. Proposition
3.1 cares about the long time behavior of the solution and we prove that it is
characterized by a time exponential growth rate (positive : growth, negative
: decay) which corresponds to the larger (in real part) eigenvalue. Whereas
Proposition 3.2 deals with the variation of the eigenvalue with respect to the
probability transition t 7→ (pA→A(t), pS→S(t)).

Proposition 3.1 Under assumptions (7)-(8) and for all initial data nA(0, .),
nS(0, .) ∈ L1(R+,R+), there exists an unique solution to (4)-(5) :

(nA, nS) ∈ L∞([0, T ], (L1(R+,R+))2).

Moreover, we have (nA(t, x), nS(t, x)) behaves as
Cst eλt(NA(t, x), NS(t, x)), (as ∼t→∞) where Cst ≥ 0, λ ∈ R and
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(NA(t, x), NS(t, x)) are T− periodic L∞([0, T ], (L1(R+,R+))2) solutions to the
following eigenproblem

( ∂∂t + ∂
∂x +

(
d(t) 0

0 d(t)χx>x0

)
)

(
NA(t, x)
NS(t, x)

)
+ λ

(
NA(t, x)
NS(t, x)

)
= 0,

(
NA(t, 0)
NS(t, 0)

)
=

∫
x′≥0

(
pA→A(t)BA(x′) pS→A(t)BS(x′)
pA→S(t)BA(x′) pS→S(t)BS(x′)

)
(
NA(t, x′)
NS(t, x′)

)
dx′.

(9)

Proof The proof of existence and uniqueness of (nA, nS) solution to (4)-(5)
(transport equation with a nonlocal boundary condition) is similar to the
proves given in [20] (chapter IV, using Semigroup theory), [21] and [9] (chapter
III, using Banach Picard fixed point theorem and bound given by an energy
methods : the General Relative Entropy [8] and [9] chapter III.3 and III.9.5 for
the periodic case). The existence of the eigenelements λ, (NA(t, x), NS(t, x))
is also a generalization of the Floquet result [22], and the proof is similar to
[8] p1256-1259. The asymptotic behavior is a direct application of the General
Relative Entropy ([8] p1256-1259 and [9,12,13]) which gives a general form of
energy : let H any positive regular convex function, and define the entropy by

Ht :=
[ ∫

[0,∞[

H(
nA(t, a)e−λt

NA(t, a)
)NA(t, a)ΦA(t, a)da

+

∫
[0,∞[

H(
nS(t, a)e−λt

NS(t, a)
)NS(t, a)ΦS(t, a)da

]
,

where (ΦA, ΦS) is solution to a dual eigenproblem (10) then we have

d

dt
Ht = ΦA(t, 0)NA(t, 0)

[
H(

∫
nA(t, a)e−λt

NA(t, a)
dν1(a) +

∫
nS(t, a)e−λt

NS(t, a)
dν2(a))

−
∫
H(

nA(t, a)e−λt

NA(t, a)
)dν1(a)−

∫
H(

nS(t, a)e−λt

NS(t, a)
)dν2(a)

]
+ ΦS(t, 0)NS(t, 0)

[
H(

∫
nA(t, a)e−λt

NA(t, a)
dµ1(a) +

∫
nS(t, a)e−λt

NS(t, a)
dµ2(a))

−
∫
H(

nA(t, a)e−λt

NA(t, a)
)dµ1(a)−

∫
H(

nS(t, a)e−λt

NS(t, a)
)dµ2(a)

]
,

with dν1, dν2, dµ1 and dµ2 positive measures satisfying dν1 + dν2 and dµ1 +
dµ2, are probability measures. Therefore using Jensen inequality, we find that
d
dtHt ≤ 0 (decay of Entropy). This decay result implies uniform bound of
nA(t,a)e−λt

NA(t,a) (resp. nS(t,a)e
−λt

NS(t,a)
) and convergence (in Lp norm, for H : z 7→ |z|p)

to a constant (due to the equality case in the Jensen inequality) [8]. ut

The next result allows us to differentiate the eigenvalue λ (of Proposition 3.1)
with respect to parameters of the model.
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Proposition 3.2 There exists a positive and T− periodic solution
Φ := (ΦA ΦS ) ∈ L∞([0, T ], (L∞(R+,R+))2) to the dual eigenproblem (of (9))

L∗Φ = λΦ, (10)

which satisfies for all t > 0∫
Φ(t, x)N(t, x)dx = 1, (11)

where N(t, x) =

(
NA(t, x)
NS(t, x)

)
, and

(L∗Φ)(t, x) :=
∂

∂t
Φ(t, x) +

∂

∂x
Φ(t, x)− Φ(t, x)

(
d(t) 0

0 d(t)χx>x0

)
+ Φ(t, 0)

(
pA→A(t)BA(x) pS→A(t)BS(x)
pA→S(t)BA(x) pS→S(t)BS(x)

)
.

Moreover, if we assume that pA→A(t) =
∑
j p

A
j χIj (t), pS→S(t) =

∑
j p

S
j χIj (t),

where (IJ)j is a partition of [0, T ] and (pj)j is a sequence of real numbers (in
[0, 1])

∂
∂pAj

λ =
∫∫

R+×[0,T ]
(ΦA(t, 0)− ΦS(t, 0))BA(x)NA(t, x)χIj (t)

dxdt
T ,

∂
∂pSj

λ = −
∫∫

R+×[0,T ]
(ΦA(t, 0)− ΦS(t, 0))BS(x)NS(t, x)χIj (t)

dxdt
T .

Proof The existence of the eigenelements λ, (ΦA(t, x), ΦS(t, x)) is similar to
[8] p1256-1259 (see also [8,9]). Now, for the differentiation result, we follow
the same proof as [10,11] : we have by integration of (10) and condition (11)∫
L∗Φ(t, x)N(t, x)dx = λ

∫
Φ(t, x)N(t, x)dx = λ, and so, by differentiating

with respect to any parameter u we find that

∂

∂u
λ =

∫
∂

∂u

[
L∗Φ(t, x)N(t, x)

]
dx =

∫ [
(
∂

∂u
L∗)Φ(t, x)N(t, x)

]
dx

+

∫ [
L∗ ∂
∂u
Φ(t, x)N(t, x)

]
dx+

∫ [
L∗Φ(t, x)

∂

∂u
N(t, x)

]
dx.

Since we have
∫ [
L∗Φ(t, x) ∂

∂uN(t, x)
]
dx = λ

∫ [
Φ(t, x) ∂

∂uN(t, x)
]
dx, and

∫ [
L∗ ∂
∂u
Φ(t, x)N(t, x)

]
dx =

∫ [ ∂
∂u
Φ(t, x)LN(t, x)

]
dx

= λ

∫ [ ∂
∂u
Φ(t, x)N(t, x)

]
dx,
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we obtain
∫ [
L∗ ∂∂uΦN

]
dx +

∫ [
L∗Φ ∂

∂uN
]
dx = λ ∂

∂u

∫
ΦNdx = 0. Therefore,

we have

∂

∂pAj
λ =

∫∫
∂

∂pAj
L∗Φ(t, x)N(t, x)

dxdt

T
=

∫∫
Φ(t, 0)BA(x)(

1 0
−1 0

)
N(t, x)χIj

dxdt

T
=

∫∫
(ΦA(t, 0)−ΦS(t, 0))BA(x)NA(t, x)χIj

dxdt

T
,

and the same calculus holds for ∂
∂pSj

λ. ut

Moreover the solution to the dual eigenproblem (10)-(11) is regular with
respect to age and time.

Lemma 3.1 Let
(
ΦA ΦS

)
solution to the dual eigenproblem (10)-(11) then

Ψ(t) := Φ(t, 0) =
(
ΦA(t, 0) ΦS(t, 0)

)
, satisfies Ψ(t) =

∫∞
0
Ψ(t+y)dµtλ(y), with

dµtλ(y) := B(t, y)e−
∫ y
0
D(t,z)dz where

D(t, x) =

(
d(t+ x) + λ 0

0 d(t+ x)χx>x0 + λ

)
,

B(t, x) =

(
pA→A(t+ x)BA(x) pS→A(t+ x)BS(x)
pA→S(t+ x)BA(x) pS→S(t+ x)BS(x)

)
.

Finally, we have Ψ ∈ C0(R+) and Ψ(t) = lim
n→∞

∫∫∫
Rn+

∏n
i=1 dµ

t+
∑i−1
j=1 xj

λ (xi).

Proof We have, for all t,

− d

dx
Φ(t+ x, x) + Φ(t+ x, x)D(t, x)− Φ(t+ x, 0)B(t, x) = 0.

Therefore, we find

− d

dx
(Φ(t+ x, x)e−

∫ x
0
D(t,y)dy)−

[
Φ(t+ x, 0)B(t, x)e−

∫ x
0
D(t,y)dy

]
= 0.

Thus, integrating with respect to x, we find

Φ(t+ x, x) =

∫ ∞
x

Φ(t+ y, 0)B(t, y)e−
∫ y
x
B(t,z)dzdy.

Applying in x = 0 we finally obtain Ψ(t) =
∫∞
0
Ψ(t+ y)dµtλ(y), and regularity

comes directly from this integral equation (convolution form). ut
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4 Optimization and Survival Analysis

In this part we focus on the optimization of the eigenvalue with respect to the
probability transitions t 7→ (pA→A(t), pS→S(t)), i.e. to find

λmax := sup
(pA→A,pS→S)∈[0,1]R+

λ(pA→A, pS→S),

and more generally to evaluate (pA→A, pS→S) 7→ λ(pA→A, pS→S). Indeed, the
eigenvalue λ gives the growth rate of the population, and so, that can be
used as a fitness characterization of the population [10–15], the larger is λ the
more invasive is a population and a negative λ implies the extinction of the
population. Therefore, questions are :

1. Do switching, i.e. bang-bang [23], form asexual to sexual gives the best
exponential growth rate?

λmax := sup
pA→A,pS→S

λ(pA→A, pS→S) = λ(pswitchA→A , pswitchS→S )?

2. What happens to population if there is no more switch, i.e., when pA→A
and pS→S are constant functions equal to zero or one?
(a) λmax := λ(0, 1), which means that the parthenogenetic subpopulation

disappears,
(b) λmax := λ(1, 0) which means that the sexual subpopulation disappears,

or
(c) λmax := λ(1, 1) which means that subpopulations are no more mixed

and so there are two separated populations.

Theorem 4.1 [Sex Bang-Bang Optimization] The maximum of the eigenvalue
is reached for (almost) a couple of probabilities satisfying

(pA→A(t), pS→S)(t) ∈ {0, 1}, ∀t ∈ [0, T ].

More precisely, there exists (aj)j and (bj)j in [0, T ] s.t.

pA→A(t) =
∑
j

χ[aj ,bj ](t), pS→S(t) = 1−
∑
j

χ[aj ,bj ](t),

with ΦA(aj , 0) = ΦS(aj , 0), ΦA(bj , 0) = ΦS(bj , 0), where (ΦA, ΦS) is solution
to the dual eigenproblem (10)-(11).

The proof is subdivided in two parts. Using the same argument as in propo-
sition 3.2 (more general [10,11]), we prove that we can construct a sequence
that increases the eigenvalue. Then, we prove that its limit is the ”best one”.
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Increasing sequence Let, for all τ ≥ 0,

pτA→A(t) :=
e
∫ τ
0
[(Φτ

′
A (t,0)−Φτ

′
S (t,0))]dτ ′

1 + e
∫ τ
0
[(Φτ

′
A (t,0)−Φτ′S (t,0))]dτ ′

,

pτS→S(t) :=
e−

∫ τ
0
[(Φτ

′
A (t,0)−Φτ

′
S (t,0))]dτ ′

1 + e−
∫ τ
0
[(Φτ

′
A (t,0)−Φτ′S (t,0))]dτ ′

,

with Φτ (t, x) =
(
ΦτA(t, x) ΦτS(t, x)

)
solution to the dual eigenproblem

L∗Φτ = λτΦτ where

L∗
(
ΦτA ΦτS

)
(t, x) =

∂

∂t

(
ΦτA(t, x) ΦτS(t, x)

)
+

∂

∂x

(
ΦτA(t, x) ΦτS(t, x)

)
−
(
ΦτA(t, x) ΦτS(t, x)

)(d(t) 0
0 d(t)χx>x0

)
+
(
ΦτA(t, 0) ΦτS(t, 0)

)(pτA→A(t)BA(x) pτS→A(t)BS(x)
pτA→S(t)BA(x) pτS→S(t)BS(x)

)
.

Using the same argument as in proposition 3.2, we have

d

dτ
λτ =

∫∫
pτA→A(t)(1− pτA→A(t))(ΦτA(t, 0)−ΦτS(t, 0))2BA(x)NA(t, x)dxdt

+

∫∫
pτS→S(t)(1− pτS→S(t))(ΦτA(t, 0)− ΦτS(t, 0))2BS(x)NS(t, x)dxdt ≥ 0.

Since (pτA→A, p
τ
S→S , Φ

τ
A, Φ

τ
S) are uniformly bounded, using Banach Aologlu

theorem, we can extract a weak* convergent subsequence as τ →∞. Therefore,
at the limit, we have

0 =

∫∫
p∞A→A(t)(1− p∞A→A(t))(Φ∞A (t, 0)− Φ∞S (t, 0))2BA(x)NA(t, x)dxdt

+

∫∫
p∞S→S(t)(1− p∞S→S(t))(Φ∞A (t, 0)− Φ∞S (t, 0))2BS(x)NS(t, x)dxdt.

Finally, we have

– p∞A→A,(resp. p∞S→S) belongs {0, 1},
or

–
∫
BA(x)NA(t, x) = 0, (resp.

∫
BS(x)NS(t, x) = 0),

or
– Φ∞A (t, 0) = Φ∞S (t, 0).
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The best. Now, using lemma 3.1, we have (Φ∞A (t, 0), Φ∞S (t, 0)) is continuous and
T - periodic, therefore, the set {t : Φ∞A (t, 0) = Φ∞S (t, 0)} = ∪jI0j is a countable

union of intervals (the same holds for {t : Φ∞A (t, 0) > Φ∞S (t, 0)} = ∪jI+j and

{t : Φ∞A (t, 0) < Φ∞S (t, 0)} = ∪jI−j ). We have

p∞A→A(t) =
∑
j

χI0j (t)p∞A→A(t) +
∑
j

χI+j
(t)p∞A→A(t) +

∑
j

χI−j
(t)p∞A→A(t),

and the same for p∞S→S(t). We notice that, for all piecewise constant functions

p∞,JA→A and p∞,JA→A, defined as follows

p∞,JA→A(t) =
∑
j

χI0j (t)p0j +
∑
j

χI+j
(t)p+j +

∑
j

χI−j
(t)p−j ,

p∞,JA→A(t) =
∑
j

χI0j (t)q0j +
∑
j

χI+j
(t)q+j +

∑
j

χI−j
(t)q−j .

We have directly that ∂
∂p0j

[L∗(Φ)] = ∂
∂p0j

[λΦ], and so, we obtain that

(
∂

∂p0j
L∗)(Φ) + L∗( ∂

∂p0j
Φ) = (

∂

∂p0j
λ)Φ+ (

∂

∂p0j
Φ)λ.

Since we have ( ∂
∂p0j
L∗)(Φ) = 0 and ( ∂

∂p0j
λ) = 0, we find L∗( ∂

∂p0j
Φ) = ( ∂

∂p0j
λ)Φ.

Noticing that the first eigenvalue of L∗ has its eigenspace of dimension 1
(Perron Frobenius extension [9]), there exists a constant C so that ∂

∂p0j
Φ = CΦ.

This implies that (ΦA(t, 0) − ΦS(t, 0)) = 0 for all p0j ∈ [0, 1]. We, thus, can

choose p0j ∈ {0, 1}. Since, this result holds for all p∞,JA→A, we can approximate

p∞A→A by a sequence of (p∞,JA→A)J and p∞A→A(t) can be chosen in {0, 1} for all
t.

End of proof. To prove that ΦA(aj , 0) = ΦS(aj , 0), ΦA(bj , 0) = ΦS(bj , 0),
when pA→A(t) =

∑
j χ[aj ,bj ](t), pS→S(t) = 1 −

∑
j χ[aj ,bj ](t), it is sufficient

to derivate λ with respect to ai (resp. bi). We find that

d

dai
λ = (ΦA(ai, 0)− ΦS(ai, 0))

∫
BA(x)NA(ai, x)dx.

Therefore, to be optimal, it needs to have (ΦA(ai, 0) − ΦS(ai, 0)) = 0 or no
newborn at time ai. The same holds for bi. When there is no newborn for
asexual population, we can choose pA→A = 1 without changing anything (and
the same for pS→S when there is no newborn for sexual population). Therefore,
the only case where switches appear are given by (ΦA(ai, 0)− ΦS(ai, 0)) = 0.

ut
We show in Sections 4.1 and 4.2 that assumption∫

x≥0
BA(x)e−x

∫ T
0
d(s)/Tds < 1, (12)
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implies that a only parthenogenetic female population has a negative Malthu-
sian growth rate, i.e., extinguishes and assumption∫

x′>x0

BS(x′)e−
∫ T
0
d(s)ds/Tx′ dx′max

t
e
∫ t+x0
t d(w)dw < 1, (13)

implies the extinction of the only sexual female population. Therefore, under
assumptions (12)-(13) we have λ(1, 1) = max(λ(0, 1), λ(1, 0)) < 0. Neverthe-
less, it suffices that the condition2∫

x′>x0

BS(x′)e
−

∫ T
T−x′0

d|s>x0ds/Tx
′

dx′

max
t
e
∫ t+x0
t d|w>x0dw

∫
x≥0

BA(x)e−x
∫ T−x′0
0 d|s>x0/Tdsdx > 1,

is satisfied, for almost a x′0 > x0, to find a, mixing way of reproducing, survival
strategy, i.e., we have λmax > 0. Therefore, we have the following inequality
λmax ≥ λ(pwinter switchA→A , pwinter switchS→S ) ≥ 0.

4.1 Only Parthenogenetic Female. No Sex

Assuming that
p∞A→A = 1, p∞S→S = 0, (14)

is satisfied. Then, after a living time of the individuals of the sexual popu-
lation (since there is no newborn), the sexual population (able to reproduce)
vanishes. Therefore, we only have to look for nA solution to the McKendrick
Von-Foerster equation

∂
∂tnA(t, x) + ∂

∂xnA(t, x) + d(t)nA(t, x) = 0,

nA(t, x = 0) =

∫
x′≥0

BA(x′)nA(t, x′) dx′.
(15)

Using Proposition 3.2, to study the dynamics of nA solution to (15), it is
sufficient (see lemma 4.1) to study the eigenproblem (9), which becomes under
the assumption (14)

∂
∂tNA(t, x) + ∂

∂xNA(t, x) + d(t)nA(t, x) = −λANA(t, x),

NA(t, x = 0) =

∫
x′≥0

BA(x′)NA(t, x′) dx′.
(16)

and leads to a condition on λA :

1 =

∫
x≥0

BA(x)e
∫ x
0
(−λA−

∫ T
0
d(s)ds/T )dx. (17)

We have then the following result on the survival of the parthenogenetic pop-
ulation :

2 for the survival (and more precisely the growth) of the asexual population during Spring
to Autumn
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Proposition 4.1 Assuming that∫
x≥0

BA(x)e−x
∫ T
0
d(s)/Tds < 1 (≥ 1). (18)

then λA < 0 (resp. λA ≥ 0), i.e., parthenogenetic population disappears (resp.
survives) in long time with a Malthusian exponential growth rate : λA.

Lemma 4.1 Solution (λA, NA) to the eigenproblem (16) is given by

NA(t, x) = e−
∫ t
0
(d(s)−

∫ T
0
d(w)dw/T )dse

∫ x
0
(−λA−

∫ T
0
d(s)ds/T )dx

where λA satisfies (17).

Proof We search a solution of the form NA(t, x) = f(t)g(x). Therefore we have f ′(t)/f(t) + g′(x)/g(x) + (d(t)−
∫ T
0
d(s)ds) = −λA −

∫ T
0
d(s)ds,

g(0) =

∫
x′≥0

BA(x′)g(x′) dx′.

and so, we have f ′(t) = −f(t)(d(t) −
∫ T
0
d(s)ds/T ), g′(x) = g(x)(−λA −∫ T

0
d(s)ds/T ). Finally, the boundary condition implies that (17) is satisfied.

ut

4.2 Only Sex. No Parthenogenesis

Assuming that

p∞A→A = 0, p∞S→S = 1, (19)

is satisfied. Then, after a living time of the individuals of the asexual popula-
tion (since there is no newborn), the asexual population vanishes. Therefore,
we only have to look for nS solution to the McKendrick-Von Foerster equation

∂
∂tnS(t, x) + ∂

∂xnS(t, x) + d(t)χx>x0
nS(t, x) = 0,

nS(t, x = 0) =

∫
x′≥0

BS(t, x′)nS(t, x′) dx′
(20)

Using proposition 3.2, to study the dynamics of nS solution to (20), it is
sufficient (see lemma 4.1) to study the eigenproblem (9), which becomes under
the assumption (19)

∂
∂tNS(t, x) + ∂

∂xNS(t, x) + d(t)χx>x0
NS(t, x) = −λSNS(t, x),

NS(t, x = 0) =

∫
x′≥x0

BS(t, x′)NS(t, x′) dx′
(21)

where NS(T, .) = NS(0, .).
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Proposition 4.2 Assuming that∫
x′>x0

BS(x′)e−
∫ T
0
d(s)ds/Tx′ dx′max

t
e
∫ t+x0
t d(w)dw < 1,

(resp

∫
x′>x0

BS(x′)e−
∫ T
0
d(s)ds/Tx′ dx′min

t
e
∫ t+x0
t d(w)dw > 1), (22)

then λS < 0 (resp. λS ≥ 0), i.e., sexual population disappears in long time
(resp. survive) with a Malthusian growth rate : λS.

Proof Here, the term d(t)χx>x0
leads to some difficulties. We write the prob-

lem on [0, x0] and on [x0,∞]. We define

NS(t, x) =

{
N0
S(t, x), x ∈ [0, x0],

N1
S(t, x), x ∈ [x0,∞],

which satisfy

∂
∂tN

0
S(t, x) + ∂

∂xN
0
S(t, x) = −λSN0

S(t, x), x ≤ x0,

∂
∂tN

1
S(t, x) + ∂

∂xN
1
S(t, x) + d(t)N1

S(t, x) = −λSN1
S(t, x), x ≥ x0,

N1
S(t, x0) = N0

S(t, x0), N0
S(t, x = 0) =

∫
x′≥x0

BS(t, x′)N1
S(t, x′) dx′.

We let

M1
S(t, x) := N1

S(t, x)e
∫ t
0
(d(w)−

∫ T
0
d(s)ds/T )dw. (23)

Then, we have

M1
S(t, x) =

∫
x′≥x0

BS(x′)M1
S(t− x, x′) dx′e

∫ t+x0−x
t−x (d(w)−

∫ T
0
d(s)ds/T )dw

︸ ︷︷ ︸
:=J(t−x)

eλSx0e(−λS−
∫ T
0
d(s)ds/T )(x−x0).

Now, using the boundary condition and equation (23) we find that J satisfies

J(t) =
∫
x′≥x0

J(t− x′)dµλS (x′)U(t), where U(t) = e
∫ t+x0
t d(w)dw (independent

of λS) and dµλS (x′) = BS(x′)e(−λS−
∫ T
0
d(s)ds/T )x′ dx′. Consequently, assuming

that (22) is satisfied, J 6= 0 and λS ≥ 0 (resp. λS ≤ 0), we find that

sup
t
J(t) < sup

t
J(t), (resp. inf

t
J(t) > inf

t
J(t)),

which is absurd, therefore, λS < 0 (resp. λS > 0). ut
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5 Environment Change

Since parthenogenesis is much more prolific and cost free (no sexual disease,
no time lost in partner selection) than sexual reproduction, when the death
rate does not depend on time, we have a better Malthusian growth rate for
the asexual population than for the sexual population. For Aphids, eggs pro-
duced (by sexual reproduction) have the ability to survive to winter [3–6].
When the death rate due to winter is large enough, it suffices to produce only
parthenogenetic female between the end of winter and to change before the
next winter to sexual female that produce eggs (which are not sensible to the
death rate that eliminate the whole population) to survive and improve growth
rate. However, in our model, the end of winter, i.e., the increase of tempera-
ture, means the end of sex as soon as a mutant, which reproduces exclusively
by parthenogenesis, appears. We notice that, there exists a threshold death
rate, under which the parthenogenetic strategy is better.

Proposition 5.1 Assuming that∫ ∞
0

BS(y + x0)e−d ydy <

∫ ∞
0

BA(y)e−d ydy, (24)

(verified as BS(. + x0) < BA(.)) and d(t) = d, then pA→A = 1, pS→S = 0, is
the best choice to have the best growth rate.

Proof We notice that solution to the dual eigenproblem (10)-(11), as we have
pA→A = 1, pS→S = 0, is given by ΦA(x) =

∫∞
x
BA(y)e−(d+λ)(y−x)dx, and

(ΦS(x)e−d
∫ x
0
χy>x0dy−λx) =

∫∞
x
BS(y)e−d

∫ y
x
χz>x0dz−λ(y−x)dy. Using (24) we

have directly that
∫∞
0
BS(y + x0)e−d ydy <

∫∞
0
BA(y)e−d ydy. Therefore, we

have ΦS(0) =
∫∞
0
BS(y)e−d

∫ y
0
χz>x0dz−λydy < ΦA(0), and so, using proposi-

tion 3.2, λ is increasing with respect to pA→A and decreasing with respect to
pS→S . ut

6 Numerical Simulations

For numerical simulations, we consider that death rate depends on time (with
annual, i.e., 365 days, periodicity) t 7→ d(t) and death rate is higher in winter :
d|Winter ≥ d|Summer,Spring,Autumn [3–6]. We consider that death rate for eggs
(sexual population of age x ∈ [0, x0] [3], for U. cirsii aphids) is null and we
chose for birth and death rate as in Figure 2.

We can notice that asexual birth rate is higher (see [3], for pea aphids : in
ten days a female can give birth to 80 clones) than for the sexual (for E. betulae
aphids, see [6], in twenty days, population is multiplied by approximatively
1.5). Parameters are chosen to take in account the difference between asexual
and sexual birth rates and the difference during winter and for other seasons
for death rates, but are not fitted for a peculiar aphid specie (see table 1).
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Fig. 2 Rates. Right : death rate on a time period. Left : birth rates (asexual in blue, sexual
in red). From 0 to 50 days there is no birth (egg time) for sexual population. The birth
rate for asexual population is higher than for the sexual population after egg time. During
winter, the death rate is higher than the death rate during other seasons.

Table 1 Parameters and functions definition.

Definition Variable Value
Maximal age of an Aphid Agemax 90 (days)
Maximal age to reproduce Agerep 30 (days)
Time in egg state eggstate 50 (days)
Definition Function Value
Birth rate for asexual BA .8χa∈[0,Ageep]
Birth rate for sexual BS .125χa∈[eggstate,eggstate+Agerep]
Death rate d 10χt<30 + .5χ30≤t<365

We search for the best bang-bang strategy, i.e.,

max
pA→A(t)=χ[xa,xb]

, pS→S(t)=1−pA→A(t)
λ(pA→A, pS→S).

We observe in figure 3 that for xb to large, i.e., when the sexual population
appears to late before winter, the population disappears (zero multiplicative
growth). The same happens if the asexual population arise too late (xa too
large). Maximum is reached for xa = 21 and xb ∈ [5, 30] days. We see, on
figure 4, that sexual population nS vanishes except before winter and asexual
population nA increases exponentially between the end of winter to the end
of autumn and then disappears just before winter.

7 Conclusions

In this work, we have proposed a Partial Differential Equations model to study
the time evolution of a population that uses both sexual and asexual way of
reproducing in an environment with unlimited resources. Then, we show that
the bang-bang strategy (switch from parthenogenesis to sex and from sex to
parthenogenesis) is the best in order to optimize the growth rate of the popula-
tion. Moreover, even in the case of both type of subpopulation can extinguish
(if they do not cooperate), a mixing strategy (a cooperation), i.e. sexual can
produce asexual and asexual can produce sexual, may implies survival of the
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Fig. 3 Computation of (xa, xb) 7→ eTλ, as pA→A = χ[xa,xb]
, pS→S = 1− pA→A. At the

right, we show the decay as xb is near 0 (zoom of the highest part of left figure).

Fig. 4 Computation of nA (left figure) and nS (right figure) with respect to age and time.
In particular, in dark blue, we have the extinction of the population.

population. Nevertheless, environment variations imply adaptation of species
to these variations. Consequently, if the death rate that penalize the asexual
population (which has a higher birth rate than the sexual one) decreases, at
some point, the asexual population becomes the best (in a growth rate) way
to reproduce. Thus, a mutant, that has lost sex, can invade the population. It
could be interesting to develop the research of an optimal strategy by taking
in account the growth rate and its variations due to random variations of the
environment.
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Comptes Rendus Mathématique 342(1), 17-22 (2006).
13. Clairambault, J., Michel, P., Perthame, B.: A mathematical model of the cell cycle and

its circadian control. Mathematical Modeling of Biological Systems, Volume I: Cellular
Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis. Deutsch,
A.; Brusch, L.; Byrne, H.; de Vries, G.; Herzel, H. (Eds.), Birkhäuser, Boston, 239-251
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