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Abstract

In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary

lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural

assumptions and using the condition that the proximal parameters are bounded we prove the

convergence of the sequence generated by the algorithm and when the objective functions are

continuous, we prove the convergence to a generalized critical point. Furthermore, if each it-

eration minimize the proximal regularized function and the proximal parameters converges to

zero we prove the convergence to a weak Pareto solution. In the continuously differentiable

case, it is proved the global convergence of the sequence to a Pareto critical point and we intro-

duce an inexact algorithm with the same convergence properties. We also analyze particular

cases of the algorithm obtained finite convergence to a Pareto optimal point when the objective

functions are convex and a sharp minimum condition is satisfied.

Keywords: Multiobjective minimization, lower semicontinuous quasiconvex functions, proxi-

mal point methods, Fejér convergence, Pareto-Clarke critical point, finite convergence.

1 Introduction

In this work we consider the multiobjective minimization problem:

min{F (x) : x ∈ R
n} (1)

where F = (F1, F2, ..., Fm) : Rn −→ R
m ∪ {+∞}m is a lower semicontinuous and quasiconvex

vector function on the Euclidean space R
n. The above notation means that each Fi is an

extended function, that is, Fi : R
n −→ R

m ∪ {+∞} .
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The main motivation to study this problem are the consumer demand theory in economy,

where the quasiconvexity of the objective vector function is a natural condition associated to

diversification of the consumption, see Mas Colell et al. [12], and the quasiconvex optimization

models in location theory, see [7].

Recently Apolinario et al. [1] has been introduced an exact linear scalarization proximal

point algorithm to solve the above class of problems when the vector function F is locally

Lipschitz and dom(F ) = R
n. The proposed iteration was the following: given pk ∈ R

n, find

pk+1 ∈ Ωk =
{
x ∈ R

n : F (x) � F (pk)
}
such that:

0 ∈ ∂o
(
〈F (.), zk〉+

αk

2
‖ . − pk‖2

)
(pk+1) +NΩk

(pk+1)

where ∂o is the Clarke subdifferential, see Subsection 2.5 of [1], αk > 0, {zk} ⊂ R
m
+\ {0},

‖zk‖ = 1 and NΩk
(pk+1) the normal cone to Ωk at xk+1, see Definition 2.1.1 in Section 2 of this

paper. The authors proved, under some natural assumptions, that the sequence generated by

the above algorithm is well defined and converges globally to a Pareto-Clarke critical point.

Unfortunately, the algorithm proposed in that paper can not be applied to a general class

of proper lower semicontinuous quasiconvex functions, and thus can not be applied to solve

constrained multiobjective problems nor continuous quasiconvex functions which are not lo-

cally Lipschitz. Moreover, for a future implementation and application for example to costly

improving behaviors of strongly averse agents in economy (see Sections 5 and 6 of Bento et al.

[3]), that paper did not provide an inexact version of the proposed algorithm .

Thus we have two motivations in the present paper: the first motivation is to extend the

convergence properties of the linear scalarization proximal point method introduced in [1] to

solve more general, probabily constrained, quasiconvex multiobjective problems of the form (1)

and the second ones is to introduce an inexact algorithm when F is continuously differentiable

on R
m.

The main iteration of the proposed algorithm is: Given xk, find xk+1 such that

0 ∈ ∂̂
(
〈F (.), zk〉+

αk

2
‖ . − xk‖2 + δΩk

(.)
)
(xk+1) (2)

where ∂̂ is the Fréchet subdifferential, see Subsection 2.6, Ωk =
{
x ∈ R

n : F (x) � F (xk)
}
,

αk > 0, {zk} ⊂ R
m
+\ {0} and ‖zk‖ = 1.

Some works related to this paper are the following:

• Bento et al. [3] introduced the nonlinear scalarized proximal iteration:

yk+1 ∈ argmin
{
f
(
F (x) + δΩk

(x)e +
αk

2
‖ . − yk‖2e

)
: x ∈ R

n
}

where f : R
n −→ R is a function defined by f(y) := maxi∈I{〈y, ei〉} with ei is the

canonical base of the space Rn, Ωk =
{
x ∈ R

n : F (x) � F (yk)
}
and e = (1, 1, ..., 1) ∈ R

n.

Assuming that F : Rn −→ R
m is quasiconvex and continuously differentiable and un-

der some natural assumptions the authors proved that the sequence {yk} converges to a

Pareto Critical point of F. Furthermore, assuming that F is convex, the weak Pareto op-

timal set is weak sharp for the multiobjective problem and that the sequence is generated
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by the following unconstrained iteration

yk+1 := argmin
{
f(F (x)) +

αk

2
‖ x − yk‖2 : x ∈ R

n
}

then the above iteration obtain a Pareto optimal point after a finite number de iterations.

The difference between our work and the paper of Bento et al., [3], is that in the present

paper we consider a linear scalararization of F instead of a nonlinear ones proposed in

[3], another difference is that our assumptions are more weak, in particular, we obtain

convergence results for nondifferentiable quasiconvex functions.

• Makela et al., [14], developed a multiobjective proximal bundle method for nonsmooth

optimization where the objective functions are locally Lipschitz (not necessarily smooth

nor convex). The proximal method is not directly based on employing any scalarizing

function but based on a improvement function H : Rn × R
n −→ R defined by H(x, y) =

max{Fi(x)−Fi(y), gj(x) : i = 1, ...,m, j = 1, ..., r} with domF = {x ∈ R
n : gj(x) ≥ 0, j =

1, ..., r}. If Fi and gj are pseudoconvex and weakly semismooth functions and certain

constraint qualification is valid, the authors proved that any accumulation point of the

sequence is a weak Pareto solution and without the assumption of pseudoconvex, they

obtained that any accumulation point is a substationary point, that is, 0 ∈ ∂H(x̄, x̄),

where x̄ is an accumulation point.

• Chuong et al., [6], developed three algorithms of the so-called hybrid approximate proxi-

mal type to find Pareto optimal points for general class of convex constrained problems of

vector optimization in finite and infinite dimensional spaces, that is, minC{F (x) : x ∈ Ω},

where C is a closed convex and pointed cone and the minimization is understood with

respect to the ordering relation given by y �C x if and only if x − y ∈ C. Assuming

that the set
(
F (x0)− C

)
∩ F (Ω) is C - quasi-complete for Ω, that is, for any sequence

{ul} ⊂ Ω with u0 = x0 such that F (ul+1) �C F (ul) there exists u ∈ V I(Ω, A) satisfying

F (u) �C F (ul), for every l ∈ N; and the assumption that F is C+− uniformly semi-

continuous on Ω, the authors proved the convergence of the sequence generates by its

algorithm.

Under the assumption that F is a proper lower semicontinuous quasiconvex vector function

and the assumption that the set
(
F (x0)− R

m
+

)
∩ F (Rn) is Rm

+ - complete we prove the global

convergence of the sequence {xk}, generated by (2), to the set

E =
{
x ∈ R

n : F (x) � F
(
xk

)
, ∀ k ∈ N

}
.

Additionally, if F : Rn −→ R
m is continuous, and 0 < αk < ᾱ, for some ᾱ > 0, we prove that

lim
k→+∞

gk = 0, where gk ∈ ∂̂ (〈F (.), zk〉+ δΩk
) (xk+1). In the particular case when lim

k→+∞
αk = 0

and the iterations are given by

xk+1 ∈ arg min

{
〈F (x), zk〉+

αk

2

∥∥∥x− xk
∥∥∥
2
: x ∈ Ωk

}
, (3)

then the sequence {xk} converges to a weak pareto solution of the problem (1).

When the vector function F : Rn −→ R
m is continuously differentiable and 0 < αk < ᾱ, for
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some ᾱ > 0, we prove that the sequence {xk}, generated by (2), converges to a Pareto critical

point of the problem (1). Then, we introduce an inexact proximal algorithm given by

0 ∈ ∂̂ǫk (〈F (x), zk〉) (x) + αk

(
x− xk

)
+NΩk

(x), (4)

∞∑

k=1

δk <∞, (5)

where δk = max

{
εk
αk

,
‖νk‖

αk

}
, εk ≥ 0, and ∂̂εk is the Fréchet εk-subdifferential. We prove the

convergence of {xk}, generated by (4) and (5) to a Pareto critical point of the problem (1).

We also analyze some conditions to obtain finite convergence of a particular case of the

proposed algorithm.

The paper is organized as follows: In Section 2 we recall some concepts and basic results on

multiobjective optimization, descent direction, scalar representation, quasiconvex and convex

functions, Fréchet and Limiting subdiferential, ǫ−Subdifferential and Fejér convergence. In

Section 3 we present the problem and we give an example of a quasiconvex model in demand

theory. In Section 4 we introduce an exact algorithm and analyze its convergence. In Section

5 we present an inexact algorithm for the differentiable case and analyze its convergence.

In Section 6, we introduce an inexact algorithm for nonsmooth proper lower semicontinuous

convex multiobjective minimization and using some concepts of weak sharp minimum we prove

the convergence of the iterations in a finite number of steps to a Pareto optimal point. In

Section 7 give a numerical example of the algorithm and in Section 8 we give our conclusions.

2 Preliminaries

In this section, we present some basic concepts and results that are of fundamental importance

for the development of our work. These facts can be found, for example, in Hadjisavvas [8],

Mordukhovich [15] and, Rockafellar and Wets [18].

2.1 Definitions, notations and some basic results

Along this paper Rn denotes an Euclidean space, that is, a real vectorial space with the canon-

ical inner product 〈x, y〉 =
n∑

i=1
xiyi and the norm given by ||x|| =

√
〈x, x〉.

Given a function f : Rn −→ R ∪ {+∞}, we denote by dom(f) = {x ∈ R
n : f(x) < +∞} , the

effective domain of f . If dom(f) 6= ∅, f is called proper. If lim
‖x‖→+∞

f(x) = +∞, f is called

coercive. We denote by arg min {f(x) : x ∈ R
n} the set of minimizer of the function f and

by f∗, the optimal value of problem: min {f(x) : x ∈ R
n} , if it exists. The function f is

lower semicontinuous at x̄ if for all sequence {xk}k∈N such that lim
k→+∞

xk = x̄ we obtain that

f(x̄) ≤ lim inf
k→+∞

f(xk).

The next result ensures that the set of minimizers of a function, under some assumptions, is

nonempty.

Proposition 2.1.1 (Rockafellar and Wets [18], Theorem 1.9)

Suppose that f : Rn −→ R∪{+∞} is proper, lower semicontinuous and coercive, then the optimal

value f∗ is finite and the set arg min {f(x) : x ∈ R
n} is nonempty and compact.
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Definition 2.1.1 Let D ⊂ R
n and x̄ ∈ D. The normal cone to D at x̄ ∈ D is given by

ND(x̄) = {v ∈ R
n : 〈v, x− x̄〉 ≤ 0,∀ x ∈ D}.

It follows an important result that involves sequences of non-negative numbers which will be

useful in Section 5.

Lemma 2.1.1 Let {wk}, {pk} and {qk} sequences of non-negative real numbers. If

wk+1 ≤ (1 + pk)wk + qk,
∞∑

i=1

pk < +∞ and
∞∑

i=1

qk < +∞,

then the sequence {wk} is convergent.

Proof. See Polyak [17], Lema 2.2.2.

2.2 Multiobjective optimization

In this subsection we present some properties and notation on multiobjective optimization.

Those basic facts can be seen, for example, in Miettinen [13] and Luc [10].

Throughout this paper we consider the cone R
m
+ = {y ∈ R

m : yi ≥ 0,∀ i = 1, ...,m}, which

induce a partial order � in R
m given by, for y, y′ ∈ R

m, y � y′ if, and only if, y′ − y ∈ R
m
+ ,

this means that yi ≤ y′i, for all i = 1, 2, ...,m . Given R
m
++ = {y ∈ R

m : yi > 0,∀ i = 1, ...,m}

the above relation induce the following one ≺, induced by the interior of this cone, given by,

y ≺ y′, if, and only if, y′ − y ∈ R
m
++, this means that yi < y′i for all i = 1, 2, ...,m. Those par-

tial orders establish a class of problems known in the literature as Multiobjective Optimization.

Let us consider the unconstrained multiobjective optimization problem (MOP) :

min {G(x) : x ∈ R
n} (6)

where G : Rn −→ R
m ∪ {+∞}m, with G = (G1, G2, ..., Gm) and Gi : R

n −→ R,∀i = 1, ...,m.

Definition 2.2.1 (Miettinen [13], Definition 2.2.1) A point x∗ ∈ R
n is a Pareto optimal

point or Pareto solution of the problem (6), if there does not exist x ∈ R
n such that Gi(x) ≤

Gi(x
∗), for all i ∈ {1, ...,m} and Gj(x) < Gj(x

∗), for at least one index j ∈ {1, ...,m} .

Definition 2.2.2 (Miettinen [13],Definition 2.5.1) A point x∗ ∈ R
n is a weak Pareto

solution of the problem (6), if there does not exist x ∈ R
n such that Gi(x) < Gi(x

∗), for all

i ∈ {1, ...,m}.

We denote by arg min{G(x) : x ∈ R
n} and by arg minw {G(x) : x ∈ R

n} the set of Pareto

solutions and weak Pareto solutions to the problem (6), respectively. It is easy to check that

arg min{G(x) : x ∈ R
n} ⊂ arg minw {G(x) : x ∈ R

n}.

2.3 Pareto critical point and descent direction

Let G : Rn −→ R
m be a differentiable function and x ∈ R

n, the jacobian of G at x, denoted by

JG(x), is a matrix of order m× n whose entries are defined by (JG(x))i,j =
∂Gi

∂xj
(x). We may

represent it by,
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JG (x) := [∇G1(x)∇G2(x)...∇Gm(x)]T , x ∈ R
n.

The image of the jacobian of G at x we denote by

Im (JG (x)) := {JG (x) v = (〈∇G1(x), v〉, 〈∇G2(x), v〉, ..., 〈∇Gm(x), v〉) : v ∈ R
n}.

A necessary but not sufficient first order optimality condition for the problem (6) at x ∈ R
n, is

Im (JG (x)) ∩
(
−Rm

++

)
= ∅. (7)

Equivalently, ∀ v ∈ R
n, there exists i0 = i0(v) ∈ {1, ...,m} such that

〈∇Gi0(x), v〉 ≥ 0.

Definition 2.3.1 Let G : Rn −→ R
m be a differentiable function. A point x∗ ∈ R

n satisfying

(7) is called a Pareto critical point.

Follows from the previous definition, if a point x is not Pareto critical point, then there exists

a direction v ∈ R
n satisfying

JG (x) v ∈
(
−Rm

++

)
,

i.e, 〈∇Gi(x), v〉 < 0, ∀ i ∈ {1, ...,m}. As G is continuously differentiable, then

lim
t→0

Gi(x+ tv)−Gi(x)

t
= 〈∇Gi(x), v〉 < 0, ∀ i ∈ {1, ...,m}.

This implies that v is a descent direction for the function Gi, i.e, there exists ε > 0, such that

Gi(x+ tv) < Gi(x),∀ t ∈ (0, ε],∀ i ∈ {1, ...,m}.

Therefore, v is a descent direction for G at x, i.e, there exists ε > 0 such that

G(x+ tv) ≺ G(x), ∀ t ∈ (0, ε].

2.4 Scalar representation

In this subsection we present a useful technique in multiobjective optimization which allows

to replace the original optimization problem into a scalar optimization problem or a family of

scalar problems.

Definition 2.4.1 (Luc [10], Definição 2.1) A function f : Rn −→ R ∪ {+∞} is said to be

a strict scalar representation of a map F : Rn −→ R
m ∪ {+∞}m when given x, x̄ ∈ R

n :

F (x) � F (x̄) =⇒ f(x) ≤ f(x̄) and F (x) ≺ F (x̄) =⇒ f(x) < f(x̄).

Furthermore, we say that f is a weak scalar representation of F if

F (x) ≺ F (x̄) =⇒ f(x) < f(x̄).

Proposition 2.4.1 Let f : Rn −→ R ∪ {+∞} be a proper function. Then f is a strict scalar

representation of F if, and only if, there exists a strictly increasing function g : F (Rn) −→ R

such that f = g ◦ F.
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Proof. See Luc [10], Proposition 2.3.

Proposition 2.4.2 Let f : Rn −→ R ∪ {+∞} be a weak scalar representation of a vector

function F : Rn −→ R
m ∪ {+∞}m and argmin {f(x) : x ∈ R

n} the set of minimizer points of

f . Then, we have

argmin {f(x) : x ∈ R
n} ⊆ argminw{F (x) : x ∈ R

n}.

Proof. It is immediate.

2.5 Quasiconvex and Convex Functions

In this subsection we present the concept and characterization of quasiconvex functions and

quasiconvex multiobjective function. This theory can be found in Bazaraa et al. [2], Luc [10],

Mangasarian [11], and references therein.

Definition 2.5.1 Let f : Rn −→ R∪{+∞} be a proper function. Then, f is called quasiconvex

if for all x, y ∈ R
n, and for all t ∈ [0, 1], it holds that f(tx+ (1− t)y) ≤ max {f(x), f(y)}.

Definition 2.5.2 Let f : Rn −→ R ∪ {+∞} be a proper function. Then, f is called convex if

for all x, y ∈ R
n, and for all t ∈ [0, 1], it holds that f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Observe that if f is a quasiconvex function then dom(f) is a convex set. On the other hand,

while a convex function can be characterized by the convexity of its epigraph, a quasiconvex

function can be characterized by the convexity of the lower level sets:

Definition 2.5.3 Let F = (F1, ..., Fm) : Rn −→ R
m ∪ {+∞}m be a function, then F is R

m
+

- quasiconvex if every component function of F , Fi : R
n −→ R ∪ {+∞}, is quasiconvex.

Definition 2.5.4 Let F = (F1, ..., Fm) : Rn −→ R
m ∪ {+∞}m be a function, then F is R

m
+

- convex if every component function of F , Fi : R
n −→ R ∪ {+∞}, is convex.

2.6 Fréchet and Limiting Subdifferentials

Definition 2.6.1 Let f : Rn → R ∪ {+∞} be a proper function.

(a) For each x ∈ dom(f), the set of regular subgradients (also called Fréchet subdifferential)

of f at x, denoted by ∂̂f(x), is the set of vectors v ∈ R
n such that

f(y) ≥ f(x) + 〈v, y − x〉+ o(‖y − x‖), where lim
y→x

o(‖y−x‖)
‖y−x‖ = 0.

Or equivalently, ∂̂f(x) :=

{
v ∈ R

n : lim inf
y 6=x, y→x

f(y)− f(x)− 〈v, y − x〉

‖y − x‖
≥ 0

}
.

If x /∈ dom(f) then ∂̂f(x) = ∅.

(b) The set of general subgradients (also called limiting subdifferential) f at x ∈ R
n, denoted

by ∂f(x), is defined as follows:

7



∂f(x) :=
{
v ∈ R

n : ∃ xl → x, f(xl)→ f(x), vl ∈ ∂̂f(xl) and vl → v
}
.

Proposition 2.6.1 (Fermat’s rule generalized) If a proper function f : Rn → R ∪ {+∞}

has a local minimum at x̄ ∈ dom(f), then 0 ∈ ∂̂f (x̄).

Proof. See Rockafellar and Wets [18], Theorem 10.1.

Proposition 2.6.2 Let f : Rn → R ∪ {+∞} be a proper function. Then, the following prop-

erties are true

(i) ∂̂f(x) ⊂ ∂f(x), for all x ∈ R
n.

(ii) If f is differentiable at x̄ then ∂̂f(x̄) = {∇f(x̄)}, so ∇f(x̄) ∈ ∂f(x̄).

(iii) If f is continuously differentiable in a neighborhood of x, then ∂̂f(x) = ∂f(x) = {∇f(x)}.

(iv) If g = f + h with f finite at x̄ and h is continuously differentiable in a neighborhood of

x̄, then ∂̂g(x̄) = ∂̂f(x̄) +∇h(x̄) and ∂g(x̄) = ∂f(x̄) +∇h(x̄).

Proof. See Rockafellar and Wets [18], Exercise 8.8, page 304.

2.7 ε-Subdiffential

We present some important concepts and results on ε-subdifferential. The theory of these facts

can be found, for example, in Jofre et al. [9] and Rockafellar and Wets [18].

Definition 2.7.1 Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function and let

ε be an arbitrary nonnegative real number. The Fréchet ε-subdifferential of f at x ∈ dom(f) is

defined by

∂̂εf(x) :=

{
x∗ ∈ R

n : lim inf
‖h‖→0

f(x+ h)− f(x)− 〈x∗, h〉
‖h‖

≥ −ε

}
(8)

Remark 2.7.1 When ε = 0, (8) reduces to the well known Fréchet subdifferential, wich is

denoted by ∂̂f(x), according to Definition 2.6.1. More precisely,

x∗ ∈ ∂̂f(x), if and only if, for each η > 0 there exists δ > 0 such that

〈x∗, y − x〉 ≤ f(y)− f(x) + η‖y − x‖, for all y ∈ x+ δB,

where B is the closed unit ball in R
n centered at zero. Therefore ∂̂f(x) = ∂̂0f(x) ⊂ ∂̂εf(x).

From Definition 5.1 of Treiman, [21],

x∗ ∈ ∂̂ǫf(x)⇔ x∗ ∈ ∂̂(f + ǫ‖.− x‖)(x).

Equivalently, x∗ ∈ ∂̂ǫf(x), if and only if, for each η > 0, there exists δ > 0 such that

〈x∗, y − x〉 ≤ f(y)− f(x) + (ǫ+ η)‖y − x‖, for all y ∈ x+ δB.
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We now defined a new kind of approximate subdifferential.

Definition 2.7.2 The limiting Fréchet ε-subdifferential of f at x ∈ dom(f) is defined by

∂εf(x) := lim sup

y
f−→x

∂̂εf(y) (9)

where

lim sup

y
f−→x

∂̂εf(y) := {x
∗ ∈ R

n : ∃ xl −→ x, f(xl) −→ f(x), x∗l −→ x∗ with x∗l ∈ ∂̂εf(xl) }

In the case where f is continuously differentiable, the limiting Fréchet ε-subdifferential takes a

very simple form, according to the following proposition

Proposition 2.7.1 Let f : Rn → R be a continuously differentiable function at x with deriva-

tive ∇f(x). Then

∂εf(x) = ∇f(x) + εB.

Proof. See Jofré et al., [9], Proposition 2.8.

2.8 Fejér convergence

Definition 2.8.1 A seguence {yk} ⊂ R
n is said to be Fejér convergent to a set U ⊆ R

n if,

‖yk+1 − u‖ ≤ ‖yk − u‖ ,∀ k ∈ N, ∀ u ∈ U .

The following result on Fejér convergence is well known.

Lemma 2.8.1 If {yk} ⊂ R
n is Fejér convergent to some set U 6= ∅, then:

(i) The sequence {yk} is bounded.

(ii) If an accumulation point y of {yk} belongs to U , then lim
k→+∞

yk = y.

Proof. See Schott [20], Theorem 2.7.

3 The Problem

We are interested in solving the multiobjective optimization problem (MOP):

min{F (x) : x ∈ R
n} (10)

where F = (F1, F2, ..., Fm) : Rn −→ R
m ∪ {+∞}m is a vector function satisfying the following

assumption:

(C1.1) F is a proper lower semicontinuous vector function on R
n, i.e, each Fi : R

n −→ R
m ∪

{+∞}, i = 1, ...,m, is a proper lower semicontinuous function.

(C1.2) 0 � F.

9



3.1 A quasiconvex model in demand theory

Let n be a finite number of consumer goods. A consumer is an agent who must choose how

much to consume of each good. An ordered set of numbers representing the amounts consumed

of each good set is called vector of consumption, and denoted by x = (x1, x2, ..., xn) where xi

with i = 1, 2, ..., n, is the quantity consumed of good i. Denote by X, the feasible set of these

vectors which will be called the set of consumption, usually in economic applications we have

X ⊂ R
n
+.

In the classical approach of demand theory, the analysis of consumer behavior starts spec-

ifying a preference relation over the set X, denoted by �. The notation: ”x � y” means that

”x is at least as good as y” or ”y is not preferred to x”. This preference relation � is assumed

rational, i.e, is complete because the consumer is able to order all possible combinations of

goods, and transitive, because consumer preferences are consistent, which means if the con-

sumer prefers x̄ to ȳ and ȳ to z̄, then he prefers x̄ to z̄ (see Definition 3.B.1 of Mas-Colell et

al. [12]).

The quasiconvex model for a convex preference relation �, is max{µ(x) : x ∈ X}, where µ

is the utility function representing the preference, see Papa Quiroz et al. [16] for more detail.

Now consider a multiple criteria, that is, consider m convex preference relations denoted by

�i, i = 1, 2, ...,m. Suppose that for each preference �i, there exists an utility function, µi,

respectively, then the problem of maximizing the consumer preference on X is equivalent to

solve the quasiconcave multiobjective optimization problem

(P’) max{(µ1(x), µ2(x), ..., µm(x)) ∈ R
m : x ∈ X}.

Since there is not a single point which maximize all the functions simultaneously the con-

cept of optimality is established in terms of Pareto optimality or efficiency. Taking F =

(−µ1,−µ2, ...,−µm), we obtain a minimization problem with quasiconvex multiobjective func-

tion, since each component function is quasiconvex one.

4 Exact algorithm

In this section, to solve the problem (10), we propose a linear scalarization proximal point

algorithm with quadratic regularization using the Fréchet subdifferential, denoted by SPP al-

gorithm.

SPP Algorithm

Initialization: Choose an arbitrary starting point

x0 ∈ R
n (11)

Main Steps: Given xk finding xk+1 such that

0 ∈ ∂̂
(
〈F (.), zk〉+

αk

2
‖ . − xk‖2 + δΩk

(.)
)
(xk+1) (12)

where ∂̂ is the Fréchet subdifferential, Ωk =
{
x ∈ R

n : F (x) � F (xk)
}
, αk > 0,

10



{zk} ⊂ R
m
+\ {0} and ‖zk‖ = 1.

Stop criterion: If xk+1 = xk or xk+1 is a Pareto critical point, then stop. Otherwise to do

k ← k + 1 and return to Main Steps.

4.1 Existence of the iterates

Theorem 4.1.1 Let F : Rn −→ R
m ∪ {+∞}m be a vector function satisfying (C1.1), and

(C1.2), then the sequence
{
xk

}
, generated by the SPP algorithm, is well defined.

Proof. Let x0 ∈ R
n be an arbitrary point given in the initialization step. Given xk, define

ϕk(x) = 〈F (x), zk〉+
αk

2

∥∥x− xk
∥∥2+ δΩk

(x), where δΩk
(.) is the indicator function of Ωk. Then

we have that min{ϕk(x) : x ∈ R
n} is equivalent to min{〈F (x), zk〉 +

αk

2

∥∥x− xk
∥∥2 : x ∈ Ωk}.

As ϕk is lower semicontinuous and coercive then, using Proposition 2.1.1, we obtain that there

exists xk+1 ∈ R
n which is a global minimum of ϕk. From Proposition 2.6.1, xk+1 satisfies:

0 ∈ ∂̂
(
〈F (.), zk〉+

αk

2
‖ . − xk‖2 + δΩk

(.)
)
(xk+1)

4.2 Fejér convergence Property

To obtain some desirable properties it is necessary to assume the following assumptions on the

function F and the initial point x0 :

(C2) F is Rm
+ -quasiconvex;

(C3) The set
(
F (x0)− R

m
+

)
∩F (Rn) is Rm

+ - complete, meaning that for all sequences {ak} ⊂

R
n, with a0 = x0, such that F (ak+1) � F (ak), there exists a ∈ R

n such that F (a) �

F (ak), ∀ k ∈ N.

Remark 4.2.1 The assumption (C3) is cited in several works involving the proximal point

method for convex functions, see Bonnel et al. [4], Ceng and Yao [5] and, Villacorta and

Oliveira [22].

Proposition 4.2.1 Let F : Rn −→ R
m ∪ {+∞}m be a function that satisfies the assumptions

(C1.1) and (C2). If g ∈ ∂̂ (〈F (.), z〉 + δΩ) (x), with z ∈ R
m
+\ {0}, and F (y) � F (x), with y ∈ Ω,

and Ω ⊂ R
n a closed and convex set, then 〈g, y − x〉 ≤ 0.

Proof. Let t ∈ (0, 1], then from the R
m
+ -quasiconvexity of F and the assumption that

F (y) � F (x), we have: Fi(ty + (1 − t)x) ≤ max {Fi(x), Fi(y)} = Fi(x), ∀ i ∈ {1, ...m}. It

follows that for each z ∈ R
m
+\ {0}, we have

〈F (ty + (1− t)x), z〉 ≤ 〈F (x), z〉 . (13)

As g ∈ ∂̂ (〈F (.), z〉 + δΩ) (x), we obtain

〈F (ty + (1− t)x), z〉+ δΩ(ty + (1− t)x) ≥ 〈F (x), z〉+ δΩ(x) + t 〈g, y − x〉+ o(t ‖y − x‖) (14)
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From (13) and (14), we conclude

t 〈g, y − x〉+ o(t ‖y − x‖) ≤ 0 (15)

On the other hand, we have lim
t→0

o(t‖y−x‖)
t‖y−x‖ = 0. Thus, lim

t→0

o(t‖y−x‖)
t

= lim
t→0

o(t‖y−x‖)
t‖y−x‖ ‖y − x‖ = 0.

Therefore, dividing (15) by t and taking t→ 0, we obtain the desired result.

Observe that if the sequence
{
xk

}
generated by the SPP algorithm satisfies the assumption

(C3) then the set

E =
{
x ∈ R

n : F (x) � F
(
xk

)
, ∀ k ∈ N

}

is nonempty.

Proposition 4.2.2 Under assumptions (C1.1), (C1.2), (C2) and (C3) the sequence
{
xk

}
,

generated by the SPP algorithm, (11) and (12), is Fejér convergent to E.

Proof. Observe that ∀ x ∈ R
n:

∥∥∥xk − x
∥∥∥
2
=

∥∥∥xk − xk+1
∥∥∥
2
+
∥∥∥xk+1 − x

∥∥∥
2
+ 2

〈
xk − xk+1, xk+1 − x

〉
. (16)

From Theorem 4.1.1, (12) and from Proposition 2.6.2, (iv), we have that there exists gk ∈

∂̂ (〈F (.), zk〉+ δΩk
) (xk+1) such that:

xk − xk+1 =
1

αk

gk (17)

Now take x∗ ∈ E, then x∗ ∈ Ωk for all k ∈ N. Combining (16) with x = x∗ and (17), we obtain:

∥

∥

∥x
k
− x

∗
∥

∥

∥

2

=
∥

∥

∥x
k
− x

k+1
∥

∥

∥

2

+
∥

∥

∥x
k+1

− x
∗
∥

∥

∥

2

+
2

αk

〈

gk, x
k+1

− x
∗
〉

≥

∥

∥

∥x
k
− x

k+1
∥

∥

∥

2

+
∥

∥

∥x
k+1

− x
∗
∥

∥

∥

2

(18)

where the last inequality follows from Proposition 4.2.1. From (18), it implies that

0 ≤
∥∥∥xk+1 − xk

∥∥∥
2
≤

∥∥∥xk − x∗
∥∥∥
2
−

∥∥∥xk+1 − x∗
∥∥∥
2
. (19)

Thus, ∥∥∥xk+1 − x∗
∥∥∥ ≤

∥∥∥xk − x∗
∥∥∥ (20)

Proposition 4.2.3 Under assumptions (C1.1), (C1.2), (C2) and (C3), the sequence
{
xk

}
gen-

erated by the SPP algorithm, (11) and (12), satisfies

lim
k→+∞

∥∥xk+1 − xk
∥∥ = 0.

Proof. It follows from (20) that ∀ x∗ ∈ E,
{∥∥xk − x∗

∥∥} is a nonnegative and nonincreasing

sequence, and hence is convergent. Thus, the right-hand side of (19) converges to 0 when

k → +∞, and the result is obtained.
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4.3 Convergence Analysis I: non differentiable case

In this subsection we analyze the convergence of the proposed algorithm when F is a non

differentiable vector function.

Proposition 4.3.1 Under assumptions (C1.1), (C1.2), (C2) and (C3), the sequence
{
xk

}
gen-

erated by the SPP algorithm converges to some point of E.

Proof. From Proposition 4.2.2 and Lemma 2.8.1, (i),
{
xk

}
is bounded, then there exists

a subsequence
{
xkj

}
such that lim

j→+∞
xkj = x̂. Since 〈F (.), z〉 is lower semicontinuos function

for all z ∈ R
m
+\ {0} then 〈F (x̂), z〉 ≤ lim inf

j→+∞

〈
F (xkj ), z

〉
. On the other hand, xk+1 ∈ Ωk so

〈
F (xk+1), z

〉
≤

〈
F (xk), z

〉
. Furthermore, from assumption (C1.2) the function 〈F (.), z〉 is

bounded below for each z ∈ R
m
+\ {0} , then, the sequence

{〈
F (xk), z

〉}
is nonincreasing and

bounded below, hence convergent. Therefore

〈F (x̂), z〉 ≤ lim inf
j→+∞

〈
F (xkj ), z

〉
= lim

j→+∞

〈
F (xkj ), z

〉
= infk∈N

{〈
F (xk), z

〉}
≤

〈
F (xk), z

〉
.

It follows that
〈
F (xk)− F (x̂), z

〉
≥ 0,∀ k ∈ N,∀ z ∈ R

m
+\ {0}. We conclude that F (xk) −

F (x̂) ∈ R
m
+ , i.e, F (x̂) � F (xk),∀ k ∈ N. Therefore x̂ ∈ E, and by Lemma 2.8.1, (ii), we get

the result.

4.3.1 Convergence to a weak Pareto solution

Theorem 4.3.1 Let F : Rn −→ R
m be a continuous vector function satisfying the assumptions

(C1.2), (C2) and (C3). If lim
k→+∞

αk = 0 and the iterations are given in the form

xk+1 ∈ arg min

{
〈F (x), zk〉+

αk

2

∥∥∥x− xk
∥∥∥
2
: x ∈ Ωk

}
, (21)

then the sequence {xk} converges to a weak Pareto solution of the problem (10).

Proof. Let xk+1 ∈ arg min
{
〈F (x), zk〉+

αk

2

∥∥x− xk
∥∥2 : x ∈ Ωk

}
, this implies that

〈
F (xk+1), zk

〉
+

αk

2

∥∥xk+1 − xk
∥∥2 ≤ 〈F (x), zk〉+

αk

2

∥∥x− xk
∥∥2 , (22)

∀ x ∈ Ωk. Since the sequence
{
xk

}
converges to some point of E, then exists x∗ ∈ E such

that lim
k→+∞

xk = x∗. Since that {zk} is bounded, there exists a subsequence {zkl}l∈N such that

lim
l→+∞

zkl = z̄, with z̄ ∈ R
m
+\ {0}. Taking k = kl in (22), we have

〈
F (xkl+1), zkl

〉
+

αkl

2

∥∥xkl+1 − xkl
∥∥2 ≤ 〈F (x), zkl

〉+
αkl

2

∥∥x− xkl
∥∥2 . (23)

∀ x ∈ E. As

αkl

2

∥∥xkl+1 − xkl
∥∥2 → 0 and

αkl

2

∥∥x− xkl
∥∥2 → 0 when l→ +∞

and from the continuity of F , taking l→ +∞ in (23), we obtain

〈F (x∗), z〉 ≤ 〈F (x), z〉 ,∀ x ∈ E (24)
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Thus x∗ ∈ arg min {〈F (x), z〉 : x ∈ E}. Now, 〈F (.), z〉, with z̄ ∈ R
m
+\ {0} is a strict scalar

representation of F , so a weak scalar representation, then by Proposition 2.4.2 we have that

x∗ ∈ arg minw {F (x) : x ∈ E}.

We shall prove that x∗ ∈ arg minw {F (x) : x ∈ R
n}. Suppose by contradiction that x∗ /∈

arg minw {F (x) : x ∈ R
n} then there exists x̃ ∈ R

n such that

F (x̃) ≺ F (x∗) (25)

So for z̄ ∈ R
m
+\ {0} it follows that

〈F (x̃), z̄〉 < 〈F (x∗), z̄〉 (26)

Since x∗ ∈ E, from (25) we conclude that x̃ ∈ E. Therefore from (24) and (26) we obtain a

contradiction.

4.3.2 Convergence to a generalized critical point

Theorem 4.3.2 Let F : Rn −→ R
m be a continuous vector function satisfying the assumptions

(C1.2), (C2) and (C3). If 0 < αk < α̃ then the sequence {xk} generated by the SPP algorithm,

(11) and (12) satisfies

lim
k→+∞

gk = 0,

where gk ∈ ∂̂ (〈F (.), zk〉+ δΩk
) (xk+1).

Proof. From Theorem 4.1.1, (12) and from Proposition 2.6.2, (iv), there exists a vector

gk ∈ ∂̂ (〈F (.), zk〉+ δΩk
) (xk+1) such that gk = αk(x

k − xk+1). Since 0 < αk < α̃ then

0 ≤ ‖gk‖ ≤ α̃
∥∥∥xk − xk+1

∥∥∥ (27)

From Proposition 4.2.3, lim
k→+∞

∥∥xk+1 − xk
∥∥ = 0, and from (27) we have lim

k→+∞
gk = 0.

4.3.3 Finite Convergence to a Pareto Optimal Point

Following the paper of Bento et al, [3] subsection 4.3, it is possible to prove the convergence of

a special particular case of the proposed algorithm to a Pareto optimal point of the problem

(10). Let F : Rn −→ R
m ∪ {+∞}m be a proper lower semicontinuous convex function and

consider the following particular iteration of (12):

xk+1 = arg min

{
〈F (x), z〉 +

αk

2

∥∥∥x− xk
∥∥∥
2
: x ∈ R

n

}
, (28)

where z ∈ R
m
+\ {0} such that ||z|| = 1.

Definition 4.3.1 Consider the set of Pareto optimal points of (10), denoted by Min(F ) and

let x̄ ∈ Min(F ). We say that Min(F ) is WF (x̄)-weak sharp minimum for the problem (10) if

14



there exists a constant τ > 0 such that

F (x)− F (x̄) /∈ B(0, τd(x,WF (x̄)))− R
m
+ , x ∈ R

n\WF (x̄),

where d(x,Z) = inf{d(x, z) : z ∈ Z} and Wp = {x ∈ R
n : F (x) = F (p)}.

Theorem 4.3.3 Let F be a proper lower semicontinuous convex vector function satisfying

the assumptions (C1.2), and (C3). Assume that {xk} is a sequence generated from the SPP

algorithm with xk+1 being generates from (28). Consider also that the set of Pareto optimal

points of (10) is nonempty and assume that Min(F ) is WF (x̄)-weak sharp minimum for the

problem (10) with constant τ > 0 for some x̄ ∈Min(F ). Then the sequence {xk} converges, in

a finite number of iterations, to a Pareto optimal point.

Proof. Simmilar to the proof of Theorem 4.3 of Bento et al., [3].

4.4 Convergence analysis II: Differentiable Case

In this subsection we analyze the convergence of the method when F satisfies the following

assumption:

(C4) F : Rn −→ R
m is a continuously differentiable vector function on R

n.

The next proposition characterizes a quasiconvex differentiable vector functions.

Proposition 4.4.1 Let F : Rn −→ R
m be a differentiable function satisfying the assumption

(C2), (C3). If x ∈ E, then
〈
∇Fi(x

k), x− xk
〉
≤ 0, ∀ k ∈ N and ∀ i ∈ {1, ...,m}.

Proof. Since F is R
m
+ -quasiconvex each Fi, i = 1, ...,m, is quasiconvex. Then the result

follows from the classical characterization of the scalar differentiable quasiconvex functions, see

see Mangasarian [11], p.134.

Theorem 4.4.1 Let F : Rn −→ R
m be a function satisfying the assumptions (C2), (C3) and

(C4). If 0 < αk < α̃, then the sequence {xk} generated by the SPP algorithm, (11) and (12),

converges to a Pareto critical point of the problem (10).

Proof. In Proposition 4.3.1 we prove that there exists x̂ ∈ E such that lim
k→+∞

xk = x̂. From

Theorem 4.1.1 and (12), we have

0 ∈ ∂̂
(
〈F (.), zk〉+

αk

2
‖ . − xk‖2 + δΩk

(.)
)
(xk+1)

Due to Proposition 2.6.2, (iv), we have

0 ∈ ∇ (〈F (.), zk〉) (x
k+1) + αk

(
xk+1 − xk

)
+NΩk

(xk+1)

where NΩk
(xk+1) is the normal cone to Ωk at xk+1 ∈ Ωk.

So there exists νk ∈ NΩk
(xk+1) such that:

0 =
m∑

i=1

∇Fi(x
k+1)(zk)i + αk

(
xk+1 − xk

)
+ νk. (29)
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Since νk ∈ NΩk
(xk+1) then

〈
νk , x− xk+1

〉
≤ 0, ∀ x ∈ Ωk. (30)

Take x̄ ∈ E. By definition of E, x̄ ∈ Ωk for all k ∈ N. Combining (30) with x = x̄ and (29),

we have
〈

m∑

i=1

∇Fi(x
k+1)(zk)i, x̄− xk+1

〉
+ αk

〈
xk+1 − xk, x̄− xk+1

〉
≥ 0. (31)

Since that {zk} is bounded, then there exists a subsequence
{
zkj

}
j∈N such that lim

j→+∞
zkj = z̄

with z̄ ∈ R
m
+\ {0}. Thus the inequality in (31) becomes

〈
m∑

i=1

∇Fi(x
kj+1)(zkj

)i, x̄− xkj+1

〉
+ αkj

〈
xkj+1 − xkj , x̄− xkj+1

〉
≥ 0. (32)

Since
{
xk

}
and {αk} are bounded, lim

k→+∞

∥∥xk+1 − xk
∥∥ = 0 and F is continuously differentiable,

the inequality in (32), for all x̄ ∈ E, becomes:

〈
m∑

i=1

∇Fi(x̂)z̄i , x̄− x̂

〉
≥ 0⇒

m∑

i=1

z̄i 〈∇Fi(x̂) , x̄− x̂〉 ≥ 0. (33)

From the quasiconvexity of each component function Fi, for each i ∈ {1, ...,m}, we have that

〈∇Fi(x̂) , x̄− x̂〉 ≤ 0 and because z̄ ∈ R
m
+\ {0}, from (33), we obtain

m∑

i=1

z̄i 〈∇Fi(x̂) , x̄− x̂〉 = 0. (34)

Without loss of generality consider the set J = {i ∈ I : z̄i > 0}, where I = {1, ...,m}. Thus,

from (34), for all x̄ ∈ E we have

〈∇Fi(x̂) , x̄− x̂〉 = 0, ∀ i ∈ J. (35)

Now we will show that x̂ is a Pareto critical point.

Suppose by contradiction that x̂ is not a Pareto critical point, then there exists a direction

v ∈ R
n such that JF (x̂)v ∈ −Rm

++, i.e,

〈∇Fi(x̂), v〉 < 0,∀ i ∈ {1, ...,m} . (36)

Therefore v is a descent direction for the multiobjective function F in x̂, so, ∃ ε > 0 such that

F (x̂+ λv) ≺ F (x̂), ∀ λ ∈ (0, ε]. (37)

Since x̂ ∈ E, then from (37) we conclude that x̂+λv ∈ E. Thus, from (35) with x̄ = x̂+ λv,

we obtain: 〈∇Fi(x̂) , x̂+ λv − x̂〉 = 〈∇Fi(x̂) , λv〉 = λ 〈∇Fi(x̂) , v〉 = 0.

It follows that 〈∇Fi(x̂) , v〉 = 0 for all i ∈ J, contradicting (36). Therefore x̂ is Pareto critical

point of the problem (10).

16



5 An inexact proximal algorithm

In this section we present an inexact version of the SPP algorithm, which we denote by ISPP

algorithm.

5.1 ISPP Algorithm

Let F : Rn → R
m be a vector function satisfying the assumptions (C2) and (C4), and consider

two sequences: the proximal parameters {αk} and the sequence {zk} ⊂ R
m
+\ {0} with ‖zk‖ = 1.

Initialization: Choose an arbitrary starting point

x0 ∈ R
n (38)

Main Steps: Given xk, define the function Ψk : Rn → R such that Ψk(x) = 〈F (x), zk〉 and

consider Ωk =
{
x ∈ R

n : F (x) � F (xk)
}
. Find xk+1 satisfying

0 ∈ ∂̂ǫkΨk(x
k+1) + αk

(
xk+1 − xk

)
+NΩk

(xk+1), (39)

∞∑

k=1

δk < +∞, (40)

where δk = max

{
εk
αk

,
‖νk‖

αk

}
, εk ≥ 0, and ∂̂εk is the Fréchet εk-subdifferential.

Stop criterion: If xk+1 = xk or xk+1 is a Pareto critical point, then stop. Otherwise to do

k ← k + 1 and return to Main Steps.

5.1.1 Existence of the iterates

Proposition 5.1.1 Let F : Rn −→ R
m be a vector function satisfying the assumptions (C1.2),

(C2) and (C4). Then the sequence
{
xk

}
generated by the ISPP algorithm, is well defined.

Proof. Consider x0 ∈ R
n given by (38). Given xk, we will show that there exists xk+1

satisfying the condition (39). Define the function ϕk(x) = Ψk(x) +
αk

2

∥∥x− xk
∥∥2 + δΩk

(x).

Analogously to the proof of Theorem 4.1.1 there exists xk+1 ∈ Ωk which is a global minimum

of ϕk(.), so, from Proposition 2.6.1, xk+1 satisfies

0 ∈ ∂̂
(
Ψk(.) +

αk

2
‖ . − xk‖2 + δΩk

(.)
)
(xk+1).

From Proposition 2.6.2, (iii) and (iv), we obtain

0 ∈ ∂̂Ψk(x
k+1) + αk

(
xk+1 − xk

)
+NΩk

(xk+1).

From Remark 2.7.1, xk+1 satisfies (39) with εk = 0.

Remark 5.1.1 From the inequality (a− 1/2)2 ≥ 0,∀a ∈ R, we obtain the following relation

‖x− z‖2 + 1
4 ≥ ‖x− z‖, ∀x, z ∈ R

n
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Proposition 5.1.2 Let
{
xk

}
be a sequence generated by the ISPP algorithm. If the assump-

tions (C1.2), (C2), (C3), (C4) and (40) are satisfied, then for each x̂ ∈ E, {
∥∥x̂− xk

∥∥2}
converges and {xk} is bounded.

Proof. From (39), there exist gk ∈ ∂̂εkΨk(x
k+1) and νk ∈ NΩk

(xk+1) such that

0 = gk + αk

(
xk+1 − xk

)
+ νk.

It follows that for any x ∈ R
n, we obtain

〈−gk, x− xk+1〉+ αk〈x
k − xk+1, x− xk+1〉 = 〈νk, x− xk+1〉 ≤ ‖νk‖‖x− xk+1‖

Therefore

〈xk − xk+1, x− xk+1〉 ≤
1

αk

(
〈gk, x− xk+1〉+ ‖νk‖‖x− xk+1‖

)
. (41)

Note that ∀ x ∈ R
n:

∥∥∥x− xk+1
∥∥∥
2
−

∥∥∥x− xk
∥∥∥
2
≤ 2

〈
xk − xk+1, x− xk+1

〉
. (42)

From (41) and (42), we obtain

∥∥∥x− xk+1
∥∥∥
2
−

∥∥∥x− xk
∥∥∥
2
≤

2

αk

(
〈gk, x− xk+1〉+ ‖νk‖‖x − xk+1‖

)
. (43)

On the other hand, let Ψk(x) = 〈F (x), zk〉, where F : Rn → R
m is continuously differentiable

vector function, then Ψk : Rn → R is continuously differentiable with gradient denoted by

∇Ψk. From Proposition 2.7.1, we have

∂εkΨk(x) = ∇Ψk(x) + εkB, (44)

where B is the closed unit ball in R
n centered at zero. Futhermore, ∂̂εkΨk(x) ⊂ ∂εkΨk(x), (see

(2.12) in Jofré et al. [9]). As gk ∈ ∂̂ǫkΨk(x
k+1), we have that gk ∈ ∂ǫkΨk(x

k+1), then

gk = ∇Ψk(x
k+1) + εkhk,

with ‖hk‖ ≤ 1. Now take x̂ ∈ E, then

〈gk, x̂− xk+1〉 =
〈
∇Ψk(x

k+1) + εkhk , x̂− xk+1
〉

=

m∑

i=1

〈
∇Fi(x

k+1) , x̂− xk+1
〉
(zk)i + εk

〈
hk , x̂− xk+1

〉

(45)

From Proposition 4.4.1, we conclude that (45) becomes

〈gk, x̂− xk+1〉 ≤ εk

〈
hk , x̂− xk+1

〉
≤ εk‖x̂− xk+1‖

(46)
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From Remark 5.1.1 with x = x̂ and z = xk+1, follows

‖x̂− xk+1‖ ≤

(
‖x̂− xk+1‖2 +

1

4

)
. (47)

Consider x = x̂ in (43), using (46), (47) and the condition (40) we obtain

∥∥∥x̂− xk+1
∥∥∥
2
−

∥∥∥x̂− xk
∥∥∥
2
≤

2

αk

(εk + ‖νk‖) ‖x̂− xk+1‖

≤ 4δk

∥∥∥x̂− xk+1
∥∥∥
2
+ δk.

Thus

∥∥∥x̂− xk+1
∥∥∥
2
≤

(
1

1− 4δk

)∥∥∥x̂− xk
∥∥∥
2
+

δk
1− 4δk

. (48)

The condition (40) guarantees that

δk <
1

4
, ∀k > k0,

where k0 is a natural number sufficiently large, and so,

1 ≤
1

1− 4δk
≤ 1 + 2δk < 2, for k ≥ k0,

combining with (48), results in

∥∥∥x̂− xk+1
∥∥∥
2
≤ (1 + 2δk)

∥∥∥x̂− xk
∥∥∥
2
+ 2δk. (49)

Since
∞∑

i=1

δk < ∞, applying Lemma 2.1.1 in the inequality (49), we obtain the convergence of

{‖x̂ − xk‖2}, for each x̂ ∈ E, which implies that there exists M ∈ R+, such that
∥∥x̂− xk

∥∥ ≤
M, ∀ k ∈ N. Now, since that ‖xk‖ ≤ ‖xk − x̂‖+ ‖x̂‖, we conclude that {xk} is bounded, and

so, we guarantee that the set of accumulation points of this sequence is nonempty.

5.1.2 Convergence of the ISPP algorithm

Proposition 5.1.3 (Convergence to some point of E)

If the assumptions (C1.2), (C2), (C3) and (C4) are satisfied, then the sequence
{
xk

}
generated

by the ISPP algorithm converges to some point of the set E.

Proof. As
{
xk

}
is bounded, then there exists a subsequence

{
xkj

}
such that lim

j→+∞
xkj = x̂.

Since F is continuous in R
n, then the function 〈F (.), z〉 is also continuous in R

n for all z ∈ R
m, in

particular, for all z ∈ R
m
+\ {0}, and 〈F (x̂), z〉 = lim

j→+∞

〈
F (xkj ), z

〉
. On the other hand, we have

that F (xk+1) � F (xk), and so,
〈
F (xk+1), z

〉
≤

〈
F (xk), z

〉
for all z ∈ R

m
+\ {0}. Furthermore

the function 〈F (.), z〉 is bounded below, for each z ∈ R
m
+\ {0}, then the sequence

{〈
F (xk), z

〉}

is nonincreasing and bounded below, thus convergent. So,

〈F (x̂), z〉 = lim
j→+∞

〈
F (xkj ), z

〉
= lim

j→+∞

〈
F (xk), z

〉
= infk∈N

{〈
F (xk), z

〉}
≤

〈
F (xk), z

〉
.
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It follows that F (xk) − F (x̂) ∈ R
m
+ , i.e, F (x̂) � F (xk),∀ k ∈ N. Therefore x̂ ∈ E. Now, from

Proposition 5.1.2, we have that the sequence {
∥∥x̂− xk

∥∥} is convergent, and since lim
k→+∞

∥∥xkj − x̂
∥∥ =

0, we conclude that lim
k→+∞

∥∥xk − x̂
∥∥ = 0, i.e, lim

k→+∞
xk = x̂.

Theorem 5.1.1 Suppose that the assumptions (C1.2), (C2), (C3) and (C4) are satisfied. If

0 < αk < α̃, then the sequence {xk} generated by the ISPP algorithm , (38), (39) and (40),

converges to a Pareto critical point of the problem (10).

Proof. From Proposition 5.1.3 there exists x̂ ∈ E such that lim
j→+∞

xk = x̂. Furthermore,

as the sequence
{
zk
}

is bounded, then there exists
{
zkj

}
j∈N such that lim

j→+∞
zkj = z̄, with

z̄ ∈ R
m
+\ {0}. From (39) there exists gkj ∈ ∂̂εkjΨkj(x

kj+1), with gkj = ∇Ψkj(x
kj+1) + εkjhkj

with ‖hkj‖ ≤ 1, and νkj ∈ NΩkj
(xkj+1), such that:

0 =

m∑

i=1

∇Fi(x
kj+1)(zkj )i + εkjhkj + αkj

(
xkj+1 − xkj

)
+ νkj (50)

Since νkj ∈ NΩkj
(xkj+1) then,

〈
νkj , x− xkj+1

〉
≤ 0, ∀ x ∈ Ωkj (51)

Take x̄ ∈ E. By definition of E, x̄ ∈ Ωk, for all k ∈ N, so x̄ ∈ Ωkj . Combining (51) with x = x̄
and (50), we have

0 ≤

〈

m
∑

i=1

∇Fi(x
kj+1)(zkj

)i , x̄− x
kj+1

〉

+ εkj

〈

hkj
, x̄− x

kj+1
〉

++αkj

〈

x
kj+1

− x
kj , x̄− x

kj+1
〉

≤

〈

m
∑

i=1

∇Fi(x
kj+1)(zkj

)i , x̄− x
kj+1

〉

+ εkj
M + α̃

〈

x
kj+1

− x
kj , x̄− x

kj+1
〉

(52)

Observe that, ∀ x ∈ R
n:

∥∥∥xk+1 − xk
∥∥∥
2

=
∥∥∥x− xk

∥∥∥
2
−
∥∥∥x− xk+1

∥∥∥
2
+ 2

〈
xk − xk+1, x− xk+1

〉
(53)

Now, from (41) with x = x̄ ∈ E, and (46), we obtain

〈
xk − xk+1, x̄− xk+1

〉
≤

∥∥∥x̄− xk+1
∥∥∥
(
εk
αk

+
‖νk‖

αk

)
≤ 2Mδk

Thus, from (53), with x = x̄, we have

0 ≤
∥∥∥xk+1 − xk

∥∥∥
2
≤

∥∥∥x̄− xk
∥∥∥
2
−

∥∥∥x̄− xk+1
∥∥∥
2
+ 4Mδk (54)

Since that the sequence
{∥∥x̄− xk

∥∥} is convergent and

∞∑

i=1

δk <∞, from (54) we conclude that

lim
k→+∞

∥∥∥xk+1 − xk
∥∥∥ = 0. Furthermore, as

0 ≤
∥∥∥xkj+1 − x̄

∥∥∥ ≤ ‖xkj+1 − xkj‖+ ‖xkj − x̄‖, (55)
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we obtain that the sequence {
∥∥x̄− xkj+1

∥∥} is bounded.
Thus returning to (52), since lim

k→+∞
εk = 0, lim

j→+∞
xk = x̂ and lim

j→+∞
zkj = z̄, taking j → +∞,

we obtain
m∑

i=1

z̄i 〈∇Fi(x̂) , x̄− x̂〉 ≥ 0. (56)

Therefore, analogously to the proof of Theorem 4.4.1, starting in (33), we conclude that x̂ is a

Pareto critical point to the problem (10).

6 Finite convergence to a Pareto optimal point

In this section we prove the finite convergence of a particular inexact scalarization proximal

point algorithm for proper lower semicontinuous convex functions, which we call Convex Inexact

Scalarization Proximal Point algorithm, CISPP algorithm.

Let F : R
n −→ R

m ∪ {+∞}m be a proper lower semicontinuous convex function and

consider z ∈ R
m
+\ {0} with ‖z‖ = 1 and the sequences of the proximal parameters {αk} such

that 0 < αk < ᾱ.

CISPP algorithm

Initialization: Choose an arbitrary starting point

x0 ∈ R
n (57)

Main Steps: Given xk, and find xk+1 satisfying

ek ∈ ∂
(
〈F (.), z〉 +

αk

2
‖.− xk‖2

)
(xk+1) (58)

∞∑

k=1

||ek|| < +∞, (59)

where ∂ is the classical subdifferential for convex functions.

Stop criterion: If xk+1 = xk or xk+1 is a Pareto optimal point, then stop. Otherwise to do

k ← k + 1 and return to Main Steps.

Theorem 6.0.2 Let F : R
n −→ R

m ∪ {+∞}m be a proper lower semicontinuous convex

function, 0 � F and assume that {xk} is a sequence generated by the CISPP algorithm, (57),

(58) and (59). Consider also that the set of Pareto optimal points of (10), denoted by Min(F ),

is nonempty and assume that Min(F ) is WF (x̄)-weak sharp minimum for the problem (10) with

constant τ > 0 for some x̄ ∈ Min(F ). Then the sequence {xk} converges, in a finite number

of iterations, to a Pareto optimal point.

Proof. Denote by g(x) = 〈F (.), z〉 and

U = arg min{g(x) : x ∈ R
n}.
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As Min(F ) is nonempty and it is WF (x̄)-weak sharp minimum then Min(F ) = WMin(F ),

where WMin(F ) denotes the weak Pareto solution of the problem (10). From Theorem 4.2 of

[3] it follows that U is nonempty.

On the other hand, it is well known that the above CISPP algorithm is well defined and

converges to some point of U, see Rockafellar [19]. We will prove that this convergence is

obtained to Pareto optimal point in a finite number of iterations.

Suppose, by contradiction, that the sequence {xk} is infinite and take x∗ ∈ U. From the iteration

(58) we have that

g(xk+1)− g(x∗) ≤
αk

2

(
||xk − x∗||2 − ||xk+1 − xk||2

)
+ ||ek|||xk+1 − x∗||

From (16) the above inequality implies

g(xk+1)− g(x∗) ≤
αk

2

(
||xk+1 − x∗||2 + 2||xk+1 − xk||||xk+1 − x∗||

)
+ ||ek|||xk+1 − x∗||

Taking x∗ ∈ U such that ||xk+1−x∗|| = d(xk+1,WF (x̄)) and using the condition of 0 < αk < ᾱ,

we obtain
2τ

ᾱ
≤ d(xk+1,WF (x̄)) + 2||xk+1 − xk||+

2

ᾱ
||ek||

Letting k goes to infinite in the above inequality we obtain that

2τ

ᾱ
≤ 0,

which is a contradiction. Thus the CISPP algorithm converges to a some point x̂ ∈ U in a

finite number of steps.

Finally, we will prove that the point of convergence of {xk}, denoted by x̂ ∈ U, is a Pareto

optimal point of the problem (10). In fact, as g is weak scalar of the vector function F, then

from Proposition 2.4.2, we have x̂ ∈ WMin(F ) anf from the equality Min(F ) = WMin(F ),

we obtain that x̂ ∈ U, is a Pareto optimal point of the problem.

7 A Numerical Result

In this subsection we give a simple numerical example showing the functionally of the

proposed method. For that we use a Intel Core i5 computer 2.30 GHz, 3GB of RAM, Windows

7 as operational system with SP1 64 bits and we implement our code using MATLAB software

7.10 (R2010a).

Example 7.0.1 Consider the following multiobjective minimization problem

min
{
(F1(x1, x2), F2(x1, x2)) : (x1, x2) ∈ R

2
}

where F1(x1, x2) = −e
−x2

1−x2
2 +1 and F2(x1, x2) = (x1 − 1)2 + (x2 − 2)2. This problem satisfies

the assumptions (C1.2), (C2) and (C4). We can easily verify that the points x̄ = (0, 0) and

x̂ = (1, 2) are Pareto solutions of the problem.

We take x0 = (−1, 3) as an initial point and given xk ∈ R
2, the main step of the SPP algorithm
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is to find a critical point ( local minimum, local maximum or a saddle point) of the following

problem





min g(x1, x2) = (−e−x2
1
−x2

2 + 1)zk1 +
(
(x1 − 1)2 + (x2 − 2)2

)
zk2 + αk

2

(
(x1 − xk1)

2 + (x2 − xk2)
2
)

s.to :

x21 + x22 ≤ (xk1)
2 + (xk2)

2

(x1 − 1)2 + (x2 − 2)2 ≤ (xk1 − 1)2 + (xk2 − 2)2

In this example we consider zk =
(
zk1 , z

k
2

)
=

(
1√
2
, 1√

2

)
and αk = 1, for each k. We take

z0 = (2, 3) as the initial point to solve all the subproblems using the MATLAB function fmincon
(with interior point algorithm) and we consider the stop criterion ||xk+1−xk|| < 0.0001 to finish
the algorithm. The numerical results are given in the following table:

k N [xk] xk = (xk
1 , x

k
2) ||xk − xk−1||

∑
Fi(x

k)zki F1(xk
1 , x

k
2) F2(xk

1 , x
k
2)

1 10 (0.17128, 2.41010) 1.31144 1.30959 0.99709 0.85496

2 10 (0.65440, 2.16217) 0.54302 0.80586 0.99392 0.14574

3 9 (0.85337, 2.05877 ) 0.22423 0.71983 0.99303 0.02496

4 7 (0.93534, 2.01588 ) 0.09251 0.70518 0.99284 0.00443

5 7 (0.96912, 1.99814) 0.03816 0.70268 0.99279 0.00096

6 7 (0.98305, 1.99080) 0.01574 0.70226 0.99277 0.00037

7 7 (0.98879, 1.98776) 0.00649 0.70219 0.99277 0.00028

8 7 (0.99115,1.98651) 0.00268 0.70217 0.99276 0.00026

9 7 (0.99213, 1.98599) 0.00110 0.70217 0.99276 0.00026

10 7 (0.99253, 1.98578) 0.00046 0.70217 0.99276 0.00026

11 7 (0.99270, 1.98569) 0.00019 0.70217 0.99276 0.00026

12 7 (0.99277,1.98565) 0.00008 0.70217 0.99276 0.00026

The above table show that we need k = 12 iterations to solve the problem, N [xk] denotes

the inner iterations of each subproblem to obtain the point xk, for example to obtain the point

x3 = (0.85337, 2.05877) we need N [x3] = 9 inner iterations. Observe also that in each iteration

we obtain F (xk) � F (xk+1) and the function 〈F (xk), zk〉 is non increasing.

8 Conclusion

This paper introduce an exact linear scalarization proximal point algorithm, denoted by

SPP algorithm, to solve arbitrary extended multiobjective quasiconvex minimization problems.

In the differentiable case it is presented an inexact version of the proposed algorithm and for the

(not necessary differentiable) convex case, we present an inexact algorithm and we introduced

some conditions to obtain finite convergence to a Pareto optimal point.

To reduce considerably the computational cost in each iteration of the SPP algorithm it is

need to consider the unconstrained iteration

0 ∈ ∂̂
(
〈F (.), zk〉+

αk

2
‖ . − xk‖2

)
(xk+1) (60)

which is more practical than (12). One natural condition to obtain (60) is that xk+1 ∈ (Ωk)
0

(interior of Ωk). So we believe that a variant of the SPP algorithm may be an interior variable

metric proximal point method.
A future research may be the extension of the proposed algorithm for more general con-

strained vector minimization problems using proximal distances. Another future research may
be to obtain a finite convergence of the SPP algorithm for the quasiconvex case.
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