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Abstract We consider the monotone inclusion problem with a sum of 3 op-
erators, in which 2 are monotone and 1 is monotone-Lipschitz. The classical
Douglas–Rachford and Forward-backward-forward methods respectively solve
the monotone inclusion problem with a sum of 2 monotone operators and a
sum of 1 monotone and 1 monotone-Lipschitz operators. We first present a
method that naturally combines Douglas–Rachford and Forward-backward-
forward and show that it solves the 3 operator problem under further assump-
tions, but fails in general. We then present a method that naturally combines
Douglas–Rachford and forward-reflected-backward, a recently proposed alter-
native to Forward-backward-forward by Malitsky and Tam [arXiv:1808.04162,
2018]. We show that this second method solves the 3 operator problem gener-
ally, without further assumptions.

Keywords Douglas–Rachford · Forward-backward-forward · Forward-
reflected-backward · Monotone inclusion
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1 Introduction

We consider the monotone inclusion problem of finding a zero of the sum
of 2 maximal monotone and 1 monotone-Lipschitz operators. The classical
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Douglas–Rachford (DR) splitting by Lions and Mercier [1] solves the prob-
lem with a sum of 2 maximal monotone operators. The classical forward-
backward-forward (FBF) splitting by Tseng [2] solves the problem with a sum
of 1 maximal monotone and 1 monotone-Lipschitz operators. We consider the
generalization of the setups of DR and FBF.

Recently, there has been much work developing splitting methods combin-
ing and unifying classical ones. Another classical method is forward-backward
(FB) splitting [3,4], which solves the problem with a sum of 1 monotone and
1 cocoercive operators. The effort of combining DR and FB was started by
Raguet, Fadili, and Peyré [5,6], extended by Briceño-Arias [7], and completed
by Davis and Yin [8] as they proved convergence for the sum of 2 monotone
and 1 cocoercive operators. FB and FBF were combined by Briceño-Arias
and Davis [9] as they proved convergence for 1 monotone, 1 cocoercive, and
1 monotone-Lipschitz operators. These combined splitting methods can effi-
ciently solve monotone inclusion problems with more complex structure.

On the other hand, DR and FBF have not been fully combined, to the best
of our knowledge. Banert’s relaxed forward backward (in the thesis [10]) and
Briceño-Arias’s forward–partial inverse–forward [11] combine DR and FBF in
the setup where one operator is a normal cone operator with respect to a
closed subspace. However, neither method applies to the general setup with 2
maximal monotone and 1 monotone-Lipschitz operators.

In this work, we first present a method that naturally combines and unifies
DR and FBF. We prove convergence under further assumptions, and we prove,
through a counterexample, that convergence cannot be established in full gen-
erality. We then propose a second method that naturally combines and unifies
DR and forward-reflected-backward (FRB), a recently proposed alternative to
FBF by Malitsky and Tam [12]. We show that this combination of DR and
FRB does converge in full generality.

The paper is organized as follows. Section 2 states the problem formally.
Section 3 reviews preliminary information and sets up the notation. Section 4
presents our first proposed method combining DR and FBF, proves conver-
gence under certain further assumptions, and proves divergence in the fully
general case. Section 5 presents our second proposed method combining DR
and FRB and proves convergence in the fully general case. Section 6 compares
our presented method with other similar and relevant methods.

2 Problem Statement, Contribution, and Prior Work

Consider the monotone inclusion problem

find x ∈ H such that 0 ∈ Ax +Bx+ Cx, (1)
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where H is a real Hilbert space. Throughout, we assume for some µ ∈]0,∞[:

A : H ⇒ H and B : H ⇒ H are maximal monotone.(A1)

C : H → H is monotone and µ-Lipschitz continuous.(A2)

zer(A+B + C) is not empty.(A3)

Let JγA, JγB, and JγC , respectively, denote the resolvents with respect
to A, B, and C with parameters γ. We informally assume JγA(x), JγB(x),
and C(x) can be evaluated efficiently for any input x ∈ H. However, JγC(x)
may be difficult to evaluate. Therefore, we restrict our attention to methods
that activate C through direct evaluations, rather than through JγC . The
monotone-Lipschitz operator C of Problem (1) arises as skew linear operators
primal-dual optimization [13,14] and saddle point problems [15].

When C = 0, we can use the classical Douglas–Rachford (DR) splitting
presented by Lions and Mercier [1]:







xn+1 = JγB(zn)

yn+1 = JγA(2xn+1 − zn)

zn+1 = zn + yn+1 − xn+1,

where the step size parameter satisfies γ ∈ ]0,+∞[. When B = 0, we can use
the classical forward-backward-forward (FBF) splitting by Tseng [2]:

{

yn+1 = JγA(xn − γCxn)

xn+1 = yn+1 − γ(Cyn+1 − Cxn),

where the step size parameter satisfies γ ∈ ]0, 1/µ[. Recently, Malitsky and
Tam [12] have proposed forward-reflected-backward (FRB) splitting, another
method for the case B = 0:

{

xn+1 = JγA(xn − γ(2Cxn − Cxn−1)),

where the step size parameter satisfies γ ∈ ]0, 1/(2µ)[.
The contribution of this work is the study of splitting methods combining

DR with other methods to incorporate an additional monotone-Lipschitz op-
erator. We characterize to what extent DR+FBF works and to what extent it
fails. We then demonstrate that DR+FRB is a successful combination.

Several other 3-operator splitting methods have been presented in recent
years. Combettes and Pesquet’s PPXA [13], Boţ–Hendrich [16], Latafat and
Patrinos’s AFBA [17], and Ryu’s 3-operator resolvent-splitting [18] solve the
problem with 3 or more monotone operators by activating the operators through
their individual resolvents. Condat–Vũ [19,20], FDR [5,6,7,8], and Yan’s PD3O
[21] solve the problem with 2 monotone and 1 cocoercive operators by acti-
vating the 2 monotone operators through their resolvents and the cocoercive
operator through forward evaluations. FBHF [9] solves the problem with 1
monotone, 1 cocoercive, and 1 monotone-Lipschitz operators by activating the
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monotone operator through its resolvent and the cocoercive and monotone-
Lipschitz operators through forward evaluations. These methods do not apply
to our setup since we have 2 monotone operators, which we activate through
their resolvents, and 1 monotone-Lipschitz operator, which we activate through
forward evaluations.

The primal-dual method by Combettes and Pesquet [13] and the instances
of projective splitting by Johnstone and Eckstein [22,23] are existing methods
that do solve Problem (1). However, these methods do not reduce to DR. We
compare the form of these methods in Section 6.

While this paper was under review, there have been exciting develop-
ments on splitting methods based on cutting planes (separating hyperplanes):
Warped proximal iterations by Bùi and Combettes [24] and NOFOB by Gisels-
son [25] are general frameworks that can solve Problem (1). The methods that
arise from these frameworks are different from the methods we present.

3 Preliminaries

In this section, we quickly review known results and set up the notation. The
notation and results we discuss are standard, and interested readers can find
further information in [26,27].

Write H for a real Hilbert space and, respectively, write 〈·, ·〉 and ‖ · ‖ for
its associated scalar product and norm. Write Id : H → H for the identity
operator. Write A : H ⇒ H to denote that A is a set-valued operator. For
simplicity, we also write Ax := A(x). When A maps a point to a singleton, we
also write Ax = y instead of Ax = {y}. Write dom(A) :=

{
x ∈ H : Ax 6= ∅

}

for the domain of A and ran(A) :=
{
u ∈ H : (∃x ∈ H)u ∈ Ax

}
for the range

of A. Write gra(A) :=
{
(x, u) ∈ H ×H : u ∈ Ax

}
for the graph of A. The

inverse of A is the set-valued operator defined by A−1 : u 7→
{
x : u ∈ Ax

}
.

The zero set of A is zer(A) := A−10. We say that A is monotone if

(
∀(x, u), (y, v) ∈ graA

)
〈x− y, u− v〉 ≥ 0,

and it is maximally monotone if there exists no monotone operator B such
that gra(B) properly contains gra(A). The resolvent of A is JA := (Id+A)−1.
When A is maximal monotone, JA is single-valued and domJA = H. A single-
valued operator B : H → H is κ-cocoercive for κ ∈]0,∞[ if

(∀x, y ∈ H) 〈x− y,Bx−By〉 ≥ κ‖Bx−By‖2.

A single-valued operator C : H → H is µ-Lipschitz for µ ∈]0,∞[ if

(∀x, y ∈ H) ‖Cx− Cy‖ ≤ µ‖x− y‖.

A single-valued operator R : H → H is nonexpansive if

(∀x, y ∈ H) ‖Rx−Ry‖ ≤ ‖x− y‖,
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i.e., if R is 1-Lipschitz. Let θ ∈ [0, 1]. A single-valued operator T : H → H is
θ-averaged if T = (1− θ)I + θR for some nonexpansive operator R. Define the
normal cone operator with respect to a nonempty closed convex set C ⊆ H as

NC(x) =

{
∅, if x 6∈ C
{
y ∈ H : 〈y, z − x〉 ≤ 0 ∀z ∈ C

}
, if x ∈ C.

The Cauchy–Schwartz inequality states 〈u, v〉 ≤ ‖u‖‖v‖ for any u, v ∈ H.
The Young’s inequality states

〈u, v〉 ≤ η

2
‖u‖2 + 1

2η
‖v‖2,

for any u, v ∈ H and η > 0.

Lemma 3.1 If C : H → H is µ-Lipschitz continuous, then Id−γC is one-to-
one for γ ∈]0, 1/µ[.
Proof Although this result follows immediately from the machinery of scaled
relative graphs [28], we provide a proof based on first principles. Let x, y ∈ H.
Then ‖Cx− Cy‖ ≤ µ‖x− y‖ and

‖(Id−γC)x− (Id−γC)y‖ ≥ ‖x− y‖ − γ‖Cx− Cy‖ ≥ (1− γµ)‖x− y‖,
by Cauchy–Schwartz and µ-Lipschitz continuity. Thus (Id−γC)x = (Id−γC)y
if and only if x = y. ⊓⊔

A classical result states that JB is (1/2)-averaged if B is maximal monotone
[26, Proposition 23.8]. The following lemma states that JB is furthermore θ-
averaged with θ < 1/2 if B is cocoercive.

Lemma 3.2 Let γ, κ ∈]0,∞[. If B : H → H is κ-cocoercive, then JγB is
1

2(1+κ/γ) -averaged and

‖JγBx− JγBy‖2 ≤ ‖x− y‖2 −
(

1 +
2κ

γ

)

‖(Id−JγB)x− (Id−JγB)y‖2.

for any x, y ∈ H.

Proof Although this result follows immediately from the machinery of scaled
relative graphs [28], we provide a proof based on first principles. Let u = JγBx
and v = JγBy, i.e., γ−1(x − u) = Bu and γ−1(y − v) = Bv. Since B is
κ-cocoercive, we have

κ‖γ−1(x− u)− γ−1(y − v)‖2 ≤
〈
u− v, γ−1(x− u)− γ−1(y − v)

〉
.

This implies

(κ/γ)‖x− u− y + v‖2 ≤ 〈u− v, x− u− y + v〉
= 〈u− v, x− y〉 − ‖u− v‖2

= −1

2
‖u− v‖2 + 1

2
‖x− y‖2 − 1

2
‖x− u− y + v‖2,

which proves the stated inequality. Finally, this inequality is equivalent to
1

2(1+κ/γ) -averagedness of JγB by [26, Proposition 4.35]. ⊓⊔
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4 FBF+DR: Convergent with Further Assumptions

To solve Problem (1), we propose the following iteration







xn+1 = JγBzn

yn+1 = JγA(2xn+1 − zn − γCxn+1)

zn+1 = zn + yn+1 − xn+1 − γ(Cyn+1 − Cxn+1)

(FDRF)

for n = 0, 1, . . . where z0 ∈ H is a starting point and γ > 0. We call this
method forward-Douglas–Rachford-forward (FDRF) splitting as it combines
Tseng’s FBF [2] and Douglas–Rachford [1]; FDRF reduces to FBF when B = 0
and to DR when C = 0.

We can view FDRF as a fixed-point iteration zn+1 = Tzn with

T := (Id−γC)JγA(2JγB − Id−γCJγB) + Id−(Id−γC)JγB.

The following result states that T is a fixed-point encoding for Problem (1).

Lemma 4.1 Assume (A1) and (A2). If γ ∈]0, 1/µ[, then

zer(A+B + C) = JγB(Fix(T )),

where Fix(T ) :=
{
x ∈ H : Tx = x

}
.

Proof Let x ∈ zer(A + B + C). Then, there exists u ∈ Ax and v ∈ Bx such
that 0 = u+ v+Cx. It follows from v ∈ Bx that x = JγBz where z = x+ γv.
We have 2JγBz − z − γCJγBz = 2x − z − γCx = x + γu ∈ (Id+γA)x and
x = JγA(2JγBz − z − γCJγBz). Therefore,

(Id−γC)JγBz = (Id−γC)JγA(2JγBz − z − γCJγBz),

which shows that Tz = z and zer(A + B + C) ⊂ JγB(Fix(T )). Now, let
z ∈ Fix(T ). By Lemma 3.1, we have JγBz = JγA(2JγBz − z − γCJγBz). Set
x = JγBz. Then, z − x ∈ γBx and (2x − z − γCx) − x ∈ γAx. Therefore,
0 ∈ Ax+Bx+ Cx and hence JγB(Fix(T )) ⊂ zer(A+B + C). ⊓⊔

Under further assumptions, FDRF’s (xn)n∈N sequence converges weakly to
a solution of (1).

Theorem 4.1 Assume (A1), (A2), and (A3). If furthermore one of the fol-
lowing conditions holds

(i) B is κ-cocoercive and γ ∈
]
0, µ−1/

√

1 + γ/(2κ))
[
, which is satisfied, for

example, if 0 < γ < min{κ, µ−1
√

2/3}.
(ii) B = NV and C = PV C1PV for some closed vector space V and single-

valued operator C1 : H → H and γ ∈]0, 1/µ[,
then zn ⇀ z⋆ ∈ Fix(T ) and xn ⇀ JγBz⋆ ∈ zer(A + B + C) and yn ⇀ JγBz⋆
for (FDRF).
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Proof Let z⋆ ∈ Fix(T ) and x⋆ := JγBz⋆. Set un+1 := xn+1 − zn + z⋆ − x⋆ and
we have

zn+1 − z⋆ = zn + yn+1 − xn+1 − γ(Cyn+1 − Cxn+1)− z⋆

= yn+1 − x⋆ + γ(Cxn+1 − Cyn+1)− un+1.

By

‖zn+1 − z⋆‖2 = ‖yn+1 − x⋆ + γ(Cxn+1 − Cyn+1)‖2

− 2 〈yn+1 − x⋆ + γ(Cxn+1 − Cyn+1), un+1〉+ ‖un+1‖2. (2)

We expand the first term to get

‖yn+1 − x⋆ + γ(Cxn+1 − Cyn+1)‖2 (3)

= ‖yn+1 − x⋆‖2 + 2γ 〈yn+1 − x⋆, Cxn+1 − Cyn+1〉+ γ2‖Cxn+1 − Cyn+1‖2.

Note

2xn+1 − zn − γCxn+1 − yn+1 ∈γAyn+1,

x⋆ − z⋆ − γCx⋆ ∈γAx⋆.

Since A and C are monotone, we have

0 ≤ 〈yn+1 − x⋆, 2xn+1 − zn − γCxn+1 − yn+1 − x⋆ + z⋆ + γCx⋆〉
= 〈yn+1 − x⋆, xn+1 − yn+1 − γCxn+1 + γCx⋆〉+ 〈yn+1 − x⋆, un+1〉
≤ 〈yn+1 − x⋆, xn+1 − yn+1 + γCyn+1 − γCxn+1〉+ 〈yn+1 − x⋆, un+1〉 ,

which implies that

2γ 〈yn+1 − x⋆, Cxn+1 − Cyn+1〉
≤ 2 〈yn+1 − x⋆, xn+1 − yn+1〉+ 2 〈yn+1 − x⋆, un+1〉
= ‖xn+1 − x⋆‖2 − ‖yn+1 − x⋆‖2 − ‖xn+1 − yn+1‖2 + 2 〈yn+1 − x⋆, un+1〉 .

(4)

Combining (3) and (4), we get

‖yn+1 − x⋆ + γ(Cxn+1 − Cyn+1)‖2

≤ ‖xn+1 − x⋆‖2 − ‖xn+1 − yn+1‖2 + γ2‖Cxn+1 − Cyn+1‖2

+ 2 〈yn+1 − x⋆, un+1〉 .

Applying this bound to (2), we get

‖zn+1 − z⋆‖2 ≤ ‖xn+1 − x⋆‖2 − ‖xn+1 − yn+1‖2 + γ2‖Cxn+1 − Cyn+1‖2

− 2γ 〈Cxn+1 − Cyn+1, un+1〉+ ‖un+1‖2. (5)
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(i) We consider the case where B is κ-cocoercive. From (5), we get

‖zn+1 − z⋆‖2

≤ ‖zn − z⋆‖2 − ‖xn+1 − yn+1‖2 + γ2‖Cxn+1 − Cyn+1‖2

− 2γ 〈Cxn+1 − Cyn+1, un+1〉 −
2κ

γ
‖un+1‖2

≤ ‖zn − z⋆‖2 − ‖xn+1 − yn+1‖2 + γ2

(

1 +
γ

2κ(1− ε′)

)

‖Cxn+1 − Cyn+1‖2

− 2κε′

γ
‖un+1‖2

≤ ‖zn − z⋆‖2 − ‖xn+1 − yn+1‖2 + γ2

(

1 +
γ

2κ(1− ε′)

)

µ2‖xn+1 − yn+1‖2

− 2κε′

γ
‖un+1‖2

= ‖zn − z⋆‖2 − ε‖xn+1 − yn+1‖2 −
2κε′

γ
‖un+1‖2, (6)

where 0 < ε′ < 1. The first inequality follows from Lemma 3.2, the second
inequality follows from Young’s inequality, the third inequality follows from
µ-Lipschitz continuity of C, and the final equality follows from the definition

ε := 1− γ2
(

1 + γ
2κ(1−ε′)

)

µ2. We choose ε′ > 0 small enough so that ε > 0.

(ii) If B = NV and C = PV C1PV , then

〈Cxn+1 − Cyn+1, un+1〉
= 〈C1PV xn+1 − C1PV yn+1, PV (xn+1 − zn) + PV (z⋆ − x⋆)〉 = 0.

Hence, (5) becomes,

‖zn+1 − z⋆‖2

= ‖xn+1 − x⋆‖2 − ‖xn+1 − yn+1‖2 + γ2‖Cxn+1 − Cyn+1‖2 + ‖un+1‖2

≤ ‖zn − z⋆‖2 − ‖xn+1 − yn+1‖2 + γ2‖Cxn+1 − Cyn+1‖2

≤ ‖zn − z⋆‖2 − ‖xn+1 − yn+1‖2 + γ2µ2‖xn+1 − yn+1‖2

= ‖zn − z⋆‖2 − ε‖xn+1 − yn+1‖2,
where the first inequality follows from ‖xn+1 − x⋆‖2 ≤ ‖zn − z⋆‖2 − ‖un+1‖2,
which follows from (1/2)-averagedness of PV , the second inequality follows
from µ-Lipschitz continuity of C, and the final equality follows from the defi-
nition ε := 1− γ2µ2 > 0.

In cases (i) and (ii) both, we have

(∀z⋆ ∈ Fix(T )) ‖zn+1 − z⋆‖2 ≤ ‖zn − z⋆‖2 − ε‖xn+1 − yn+1‖2

with ε > 0, which shows that (zn)n∈N is Fejér monotone with respect to Fix(T )
and ∑

n∈N

‖xn+1 − yn+1‖2 < +∞,
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which implies xn+1 − yn+1 → 0. Let us prove that every weak cluster point
of (zn)n∈N is in Fix(T ). Let z be a weak cluster point of (zn)n∈N, i.e., there
exists a subsequence (zkn

)n∈N such that zkn
⇀ z. Consider two cases:

(i) We consider the case where B is κ-cocoercive. From the second negative
term in (6), we get

∑

n∈N

‖un‖2 < +∞ =⇒ un → 0 =⇒ xn+1 − zn → x⋆ − z⋆

=⇒ Bxn+1 → Bx⋆ = BJγBz⋆

where the last implication follows from xn+1 = JγBzn, zn − xn+1 = γBxn+1,
x⋆ = JγBz⋆, and z⋆ − x⋆ = γBx⋆. Since zkn

⇀ z, we have x1+kn
⇀ x =

z − γBx⋆ and y1+kn
⇀ z − γBx⋆. Since x1+kn

⇀ x and Bx1+kn
→ Bx⋆

and gra(B) is closed under Hweak × H strong [26, Proposition 20.38], we get
Bx⋆ = Bx. Hence, x = JγBz. By definition of the FDRF iteration, we have

x1+kn
− zkn

︸ ︷︷ ︸

→−γBx

+ x1+kn
− y1+kn

︸ ︷︷ ︸

→0

+ γCy1+kn
− γCx1+kn

︸ ︷︷ ︸

→0

∈ γAy1+kn

︸ ︷︷ ︸

⇀x

+γC y1+kn

︸ ︷︷ ︸

⇀x

.

Since A + C is maximal monotone (A and C are maximal monotone with
domC = H [26, Corollary 25.5]) gra(A + C) is closed under Hweak ×H strong

[26, Proposition 20.38] and we get

−γBx ∈ γAx+ γCx,

which shows that x ∈ zer(A+B + C). Furthermore, x− z ∈ γAx+ γCx and
hence x = JγA(2x− z − γCx) = JγBz. Therefore,

(Id−γC)JγA(2x− z − γCx) + z − (Id−γC)JγBz = z,

or equivalently Tz = z. Hence, zn ⇀ z⋆ and xn ⇀ JγBz⋆. Since we have
xn+1 − yn+1 → 0, we conclude yn ⇀ JγBz⋆.

(ii) We consider the case where B = NV . Then, JγB = PV is weakly
continuous and hence x1+kn

⇀ x = PV z. Then, we have

pkn
:= x1+kn

− zkn

︸ ︷︷ ︸

⇀x−z

+ x1+kn
− y1+kn

︸ ︷︷ ︸

→0

+ γCy1+kn
− γCx1+kn

︸ ︷︷ ︸

→0

∈ γAy1+kn

︸ ︷︷ ︸

⇀x

+γC y1+kn

︸ ︷︷ ︸

⇀x

.

Since A + C is maximal monotone, x1+kn
= PV zkn

, x1+kn
− y1+kn

→ 0, we
have

pkn
⇀ x− z, PV ⊥y1+kn

→ 0, and PV pkn
→ 0.

From [26, Example 26.7] we have x ∈ zer(A+C+NV ) and x−z ∈ (γA+γC)x.
Hence x = JγA(2x− z − γCx) = JγBz. Therefore,

(Id−γC)JγA(2x− z − γCx) + z − (Id−γC)JγBz = z,

or equivalently Tz = z. Hence zn ⇀ z and xn ⇀ JγBz. ⊓⊔
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Under condition (i), B is single-valued and one can alternatively use FBF
[2] or FBHF [9] by utilizing forward evaluations of B rather than the resolvent
JγB. However, many cocoercive operators B require similar computational
costs for evaluating B and JB, and, in such cases, it may be advantageous to
use JB instead of the forward evaluation B [29].

Under condition (ii), the operator B = NV enforces a linear equality con-
straint. Consider

find x ∈ H such that 0 ∈
m∑

i=1

Aix+ Cix,

where A1, . . . , Am are maximal monotone and C1, . . . , Cm are monotone and
Lipschitz. The equivalent formulation

find x ∈ Hm such that 0 ∈ NV (x) +
m∑

i=1

(Aixi + Cixi),

where x = (x1, . . . , xm) and V =
{
x ∈ Hm : x1 = · · · = xm

}
is the consensus

set, is an important instance of case (ii). (This problem class is the motivation
for Raguet et al.’s forward-Douglas–Rachford [5,6].) When B = NV and V
is the consensus set, FDRF reduces to Banert’s relaxed forward backward,
presented in the thesis [10]. Finally, Briceño-Arias’s forward–partial inverse–
forward [11] is also applicable under this setup. Briceño-Arias’s method is
different from our FDRF, but it can also be considered a “forward–Douglas–
Rachford–forward splitting” as it reduces to DRS and FBF as special cases.

FDRF resembles forward-Douglas–Rachford (FDR) splitting [5,6,7,8] but
is different due to the correction term γ(Cyn+1 − Cxn+1). For convergence,
FDR requires C to be cocoercive or (with a slight modification) B to be
strongly monotone [8, Theorems 1.1 and 1.2]. In contrast, Theorem 4.1 states
that FDRF converges when B is cocoercive.

However, FDRF does not converge in full generality. The following result
establishes that Assumptions (A1), (A2), and (A3) are not sufficient to ensure
that FDRF converges.

Theorem 4.2 Given any γ > 0, there exist operators A, B, and C satisfying
Assumptions (A1), (A2), and (A3) such that the FDRF iterates (zn)n∈N and
(xn)n∈N diverge.

Proof Let H = R
2 and let A, B, and C satisfy

JγA(x, y) =

[
0 0
0 0

] [
x
y

]

, B(x, y) =

[
0 γ−1 cot(ω/2)

−γ−1 cot(ω/2) 0

] [
x
y

]

,

C(x, y) =

[
0 µ
−µ 0

] [
x
y

]

,

where cot denotes cotangent and ω > 0 is small. Then, A, B, and C are
maximally monotone and {0} = zer(A+B +C). With direct calculations, we
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get

T (x, y) =

[
1
2 (1 + cos(ω) + γµ sin(ω)) 1

2 (γµ− γµ cos(ω) + sin(ω))
1
2 (−γµ+ γµ cos(ω)− sin(ω)) 1

2 (1 + cos(ω) + γµ sin(ω))

] [
x
y

]

.

The 2× 2 matrix defining T has eigenvalues

|λ1|2 = |λ2|2 = (cos(ω/2) + γµ sin(ω/2))2 = 1 + γµω +O(ω2).

So |λ1|2 = |λ2|2 > 1 for small enough ω. Therefore, FDRF with z0 6= 0 diverges
in the sense that ‖zn‖ → ∞ and ‖xn‖ → ∞. ⊓⊔

In splitting methods, step size requirements often depend on the assump-
tions, rather than on the specific operators. Theorem 4.2 rules out the possibil-
ity of proving a result like “Assuming (A1), (A2), and (A3), FDRF converges
for γ ∈]0, γmax(µ)[”, where γmax(µ) is some function that depends µ. However,
Theorem 4.2 does not rule out the possibility that one can examine the spe-
cific operators A, B, and C (to gain more information beyond the Lipschitz
parameter of C) and then select γ > 0 to obtain convergence.

5 FRB+DR: Convergent in General

To solve Problem (1), we propose the following iteration







xn+1 = JγB(xn − γun − γ(2Cxn − Cxn−1))

yn+1 = JβA(2xn+1 − xn + βun)

un+1 = un + 1
β (2xn+1 − xn − yn+1)

(FRDR)

for n = 0, 1, . . . , where x0, x−1, u0 ∈ H are starting points and γ > 0, β > 0.
We call this method forward-reflected-Douglas–Rachford (FRDR) splitting as
it combines Malitsky and Tam’s FRB [12] and Douglas–Rachford [1]. Note
FRDR evaluates operator C only once per iteration, since the evaluation of
Cxn−1 from the previous iteration can be reused. In contrast, FDRF evaluates
C twice per iteration.

FRDR reduces to FRB when A = 0 and to DR when C = 0 and β = γ.
When A = 0, we have JβA = Id, un = 0, and the iteration is independent of β.
FRB converges when γ < 1/(2µ) [12, Theorem 2.5], which is consistent with
the parameter range of Theorem 5.1 with β → ∞. When C = 0 and β = γ,
one recovers DR with zn = xn − γun.

Without any further assumptions, the (xn)n∈N sequence of FRDR con-
verges weakly to a solution of (1).

Theorem 5.1 Assume (A1), (A2), (A3), 0 < β, and 0 < γ < β/(1 + 2µβ).
Then xn ⇀ x⋆ ∈ zer(A+B + C) for (FRDR).
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Proof Consider the Hilbert space H × H equipped with an alternative inner
product and norm

〈(x, u), (y, v)〉
H×H

:= (1/γ) 〈x, y〉 − 〈x, v〉 − 〈y, u〉+ β 〈u, v〉 ,
‖(x, u)‖2H×H := (1/γ)‖x‖2 − 2 〈x, u〉+ β‖u‖2.

Since γ < β, the inner product and norm are valid. Let x⋆ ∈ zer(A+B + C),
u⋆ ∈ Ax⋆, and −u⋆ ∈ (B + C)x⋆.

Define

Ãyn+1 := un +
1

β
(2xn+1 − xn − yn+1),

B̃xn+1 :=
1

γ
(xn − xn+1)− un − 2Cxn + Cxn−1,

Ãx⋆ := u⋆, and B̃x⋆ := −u⋆ − Cx⋆ so that Ãyn+1 ∈ Ayn+1, B̃xn+1 ∈ Bxn+1,
Ãx⋆ ∈ Ax⋆, and B̃x⋆ ∈ Bx⋆. Define

Vn := ‖(xn, un)− (x⋆, u⋆)‖2H×H +
1

2
‖(xn, un)− (xn−1, un−1)‖2H×H

+ 2 〈Cxn − Cxn−1, x⋆ − xn〉

Sn :=
1

2
‖(xn, un)− (xn+1, un+1)‖2H×H +

1

2
‖(xn, un)− (xn−1, un−1)‖2H×H.

We have

‖(xn+1, un+1)− (x⋆, u⋆)‖2H×H

= ‖(xn, un)− (x⋆, u⋆)‖2H×H − ‖(xn+1, un+1)− (xn, un)‖2H×H

− 2
〈

B̃xn+1 − B̃x⋆, xn+1 − x⋆

〉

− 2
〈

Ãyn+1 − Ãx⋆, yn+1 − x⋆

〉

+ 2 〈Cxn − Cxn−1, xn − xn+1〉 − 2 〈Cx⋆ − Cxn, x⋆ − xn+1〉
+ 2 〈Cxn − Cxn−1, x⋆ − xn〉

(a)

≤ ‖(xn, un)− (x⋆, u⋆)‖2H×H − ‖(xn+1, un+1)− (xn, un)‖2H×H

+ 2 〈Cxn − Cxn−1, xn − xn+1〉 − 2 〈Cx⋆ − Cxn, x⋆ − xn+1〉
+ 2 〈Cxn − Cxn−1, x⋆ − xn〉

(b)

≤ ‖(xn, un)− (x⋆, u⋆)‖2H×H − ‖(xn+1, un+1)− (xn, un)‖2H×H

+ L‖xn − xn−1‖2 + L‖xn+1 − xn‖2 − 2 〈Cxn+1 − Cxn, x⋆ − xn+1〉
+ 2 〈Cxn − Cxn−1, x⋆ − xn〉 .

Inequality (a) follows from monotonicity of A and B. Inequality (b) follows
from

2 〈Cxn − Cxn−1, xn − xn+1〉 ≤
1

µ
‖Cxn − Cxn−1‖2 + µ‖xn − xn+1‖2

≤ µ
(
‖xn − xn+1‖2 + ‖xn − xn−1‖2

)
,
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which follows Young’s inequality and Lipschitz continuity of C, and

−2 〈Cx⋆ − Cxn, x⋆ − xn+1〉 ≤ −2 〈Cxn+1 − Cxn, x⋆ − xn+1〉

which follows from monotonicity of C. Reorganizing, we get

Vn+1

≤ Vn − 1

2

(
‖(xn+1, un+1)− (xn, un)‖2H×H + ‖(xn, un)− (xn−1, un−1)‖2H×H

)

+ L
(
‖xn − xn−1‖2 + ‖xn+1 − xn‖2

)

we now add

βγµ

β − γ

(
1

β
‖xn − xn+1‖2 − 2 〈xn − xn+1, un − un+1〉+ β‖un − un+1‖2

)

≥ 0

βγµ

β − γ

(
1

β
‖xn − xn−1‖2 − 2 〈xn − xn−1, un − un−1〉+ β‖un − un−1‖2

)

≥ 0

to the right-hand-side (nonnegativity follows from Young’s inequality) to get

Vn+1 ≤ Vn − β − γ − 2µγβ

2(β − γ)
Sn. (7)

Using the telescoping sum argument with (7), we get

V0 −
β − γ − 2µγβ

2(β − γ)

n∑

i=0

Si ≥ Vn

Next, we have

Vn

(a)

≥ 1

γ
‖xn − x⋆‖2 − 2 〈xn − x⋆, un − u⋆〉+ β‖un − u⋆‖2

+
1

2γ
‖xn − xn−1‖2 − 〈xn − xn−1, un − un−1〉+

β

2
‖un − un−1‖2

− µ
(
‖xn − xn−1‖2 + ‖x⋆ − xn‖2

)

(b)

≥ 1

2
‖(xn, un)− (x⋆, u⋆)‖2H×H

+

(
1

2γ
− 1

2β
− µ

)

‖xn − x⋆‖2 +
(

1

2γ
− 1

2β
− µ

)

‖xn − xn−1‖2

(c)

≥ 1

2
‖(xn, un)− (x⋆, u⋆)‖2H×H.

Inequality (a) follows from

2 〈Cxn − Cxn−1, x⋆ − xn〉 ≤
1

µ
‖Cxn − Cxn−1‖2 + µ‖x⋆ − xn‖2

≤ µ
(
‖xn − xn−1‖2 + ‖x⋆ − xn‖2

)
,



14 Ernest K. Ryu, B`̆ang Công Vũ

which follows Young’s inequality and Lipschitz continuity of C, inequality (b)
follows from

β

2
‖un − u⋆‖2 − 〈xn − x⋆, un − u⋆〉 ≥ − 1

2β
‖xn − x⋆‖2

β

2
‖un − un−1‖2 − 〈xn − xn−1, un − un−1〉 ≥ − 1

2β
‖xn − xn−1‖2,

Young’s inequality, and inequality (c) follows from γ < β/(1 + 2µβ). Putting
these together, we have

V0 −
β − γ − 2µγβ

2(β − γ)

n∑

i=0

Si ≥
1

2
‖(xn, un)− (x⋆, u⋆)‖2H×H.

This implies that the sequence ((xn, un))n∈N
is bounded and Sn → 0. Since

Sn ≥ 1

2
‖(xn+1, un+1)− (xn, un)‖2H×H,

Sn → 0 implies xn+1 − xn → 0 and un+1 − un → 0. Since

un+1 − un = (1/β)(2xn+1 − xn − yn+1)

we also have xn+1 − yn+1 → 0.

Now consider a weakly convergent subsequence ((xkn
, ukn

))n∈N
such that

(xkn
, ukn

) ⇀ (x, u). Note that xn+1 and yn+1 are defined by the inclusion

[ 1
γ (xn − xn+1) + 2Cxn − Cxn−1 − Cxn+1

1
β (2xn+1 − yn+1 − xn)

]

∈
[
(B + C)xn+1 + un

Ayn+1 − un

]

.

The right-hand side is a maximal monotone operator on H×H (equipped with
the usual inner product) [26, Propositions 20.23, 20.38] and the left-hand side
strongly converges to 0 since C is continuous. Since gra(B+C) is closed under
Hweak ×H strong [26, Proposition 20.38], we have

−u ∈ (B + C)x, u ∈ Ax.

Adding these we also get x ∈ zer(A + B + C). Finally, since (Vn)n∈N is a
monotonically decreasing nonnegative sequence, it has a limit. Since C is con-
tinuous, (xn)n∈N and (un)n∈N are bounded sequences, and xn−xn−1 → 0 and
un − un−1 → 0, we have

lim
n→∞

Vn = lim
n→∞

‖(xn, un)− (x⋆, u⋆)‖2H×H.

By plugging in (x⋆, u⋆) = (x, u), we conclude that the entire sequence weakly
converges to (x, u). ⊓⊔
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The proof of Theorem 5.1 closely follows Malitsky and Tam’s analysis [12,
Lemma 2.4]. In fact, FRDR can be thought of as an instance FRB on a primal-
dual system with an auxiliary metric. Naively translating Malitsky and Tam’s
convergence analysis via a change of coordinates leads to a step size require-
ment of µ < (β − γ)/(1 + γβ +

√

(1 + γβ)2 − 4γ(β − γ)) and 0 < γ < β.
With a direct analysis, we obtain the better (and simpler) requirement of
µ < (β − γ)/(2βγ).

The discovery of this proof was computer-assisted in the sense that we used
the performance estimation problem (PEP) [30,31,32] and a computer algebra
system (CAS). We briefly describe the strategy here.

The proof of Theorem 5.1 crucially relies on finding the Lyapunov func-
tion Vn and showing Vn+1 ≤ Vn − Sn. For a fixed numerical value of β, γ,
and µ, roughly speaking, the PEP allows us to pose a semidefinite program
(SDP) which solution indicates whether a candidate Lyapunov function is
nonincreasing. (A proof establishing a Lyapunov function is nonincreasing is
a nonnegative combination of known inequalities, and the SDP automates the
search.) We used the SDP to quickly experiment with many candidate Lya-
punov functions and identified that the Vn used in the proof of Theorem 5.1
is a nonincreasing quantity.

To get a general proof, we numerically solved the SDP for many values of
β, γ, and µ and deduced the general symbolic solution. (The general proof is
equivalent to a general solution of the SDP that symbolically depends on β, γ,
and µ.) We relied on a CAS, Mathematica, to work through the symbolic cal-
culations. In deducing the symbolic form of the proof, we utilized the observed
structure of the solution. For example, the optimal SDP matrices were rank
deficient, so we set the determinant of the corresponding symbolic matrix to
0 and eliminated a degree of freedom.

Finally, we translated the symbolic calculations into a traditional proof
that is verifiable by humans without the aid of computer software. This step
involved some further simplifications, such as replacing the identity

2 〈u, v〉 = η‖u‖2 + 1

η
‖v‖2 − ‖√ηu− (1/

√
η)v‖2

with Young’s inequality

2 〈u, v〉 ≤ η‖u‖2 + 1

η
‖v‖2.

6 Comparison with Other Methods

We now quickly examine other existing methods applied to Problem (1) to
see how they differ from FDRF and FRDR. We leave the comparison of these
methods, in terms of their computational effectiveness, as a direction of future
work. Note that Problem (1) can be reformulated into the primal dual system

find x, u ∈ H such that

[
0
0

]

∈
[

Bx
A−1u

]

+

[
C Id

− Id 0

] [
x
u

]

. (8)
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Combettes–Pesquet. The method of [13] can be thought of as FBF applied to
the primal-dual system (8):







xn+1 = JγB(xn − γ(Cxn + un))

yn+1 = Jγ−1A(xn + γ−1un)

xn+1 = xn+1 − γ(Cxn+1 − Cxn)− γ2(xn − yn+1)

un+1 = un + γ(xn+1 − yn+1).

This method solves Problem (1) with an appropriate choice of γ > 0. This
method does not reduce to DR when C = 0.

Malitsky–Tam. We can plainly applying FRB [12] to (8):






xn+1 = JγB(xn − γ(2Cxn − Cxn−1 + 2un − un−1))

yn+1 = Jγ−1A(2xn − xn−1 + γ−1un)

un+1 = un + γ(2xn − xn−1 − yn+1).

This method solves Problem (1) with an appropriate choice of γ > 0. This
method does not reduce to DR when C = 0.

Briceño-Arias. When B = NV and V ⊂ H is a closed vector space, i.e., in
case (ii) of Theorem 4.1, forward–partial inverse–forward [11] applies:






xn+1 = JγA(zn − γJγBCJγBzn)

yn+1 = JγB(2xn+1 − zn + γJγBCJγBzn)− xn+1 + zn − γJγBCJγBzn

zn+1 = yn+1 − γ(JγBCJγByn+1 − JγBCJγBzn+1).

This method reduces to DRS when C = 0 and to FBF when B = 0. However,
this method does not apply in the general setup when B is not a normal cone
operator.

Johnstone–Eckstein. The method of [22,23] is based on the notion of projec-
tive splitting and bears little resemblance the other methods. The method is
very flexible, and there are multiple instances applicable to Problem (1). The
following instance follows the presentation of [22]:






xA
n+1 = JγA(zn + γwA

n )

xB
n+1 = JγB(zn + γwB

n )

xC
n+1 = zn − γ(Czn − wC

n )

zn+1 = zn − αn

γ2

(
3zn − xA

n+1 − xB
n+1 − γCxC

n+1 + γ(wA
n + wB

n + wC
n )

)

wA
n+1 = wA

n − αn(x
A
n+1 − xC

n )

wB
n+1 = wB

n − αn(x
B
n+1 − xC

n )

wC
n+1 = −wA

n+1 − wB
n+1.

The scalar parameter αn is computed each iteration with a formula given in
[22]. This method does not reduce to DR or FBF.
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7 Conclusions

In this paper, we considered the monotone inclusion problem with a sum of
3 operators, in which 2 are monotone and 1 is monotone-Lipschitz, and stud-
ied combinations of methods type “forward-Douglas-Rachford-forward”. We
presented FDRF, a combination of DR and FBF, and showed that it con-
verges with further assumptions, but not generally. We then presented FRDR,
a combination of DR and FRB, and showed that it converges in general. More-
over, FRDR has a lower computational cost per iteration since it evaluates the
monotone-Lipschitz operator only once per iteration. Therefore, we conclude
FRDR to be the better forward-Douglas-Rachford-forward method.
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