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Abstract

The steepest descent method for multiobjective optimization on Riemannian
manifolds with lower bounded sectional curvature is analyzed in this paper. The
aim of the paper is twofold. Firstly, an asymptotic analysis of the method is pre-
sented with three different finite procedures for determining the stepsize, namely,
Lipschitz stepsize, adaptive stepsize and Armijo-type stepsize. The second aim is to
present, by assuming that the Jacobian of the objective function is componentwise
Lipschitz continuous, iteration-complexity bounds for the method with these three
stepsizes strategies. In addition, some examples are presented to emphasize the
importance of working in this new context. Numerical experiments are provided to
illustrate the effectiveness of the method in this new setting and certify the obtained
theoretical results.
Keywords: Steepest descent method, multiobjective optimization problem , Rie-
mannian manifold, lower bounded curvature, iteration-complexity bound.
AMS subject classification: 90C33, 49K05, 47J25.

1 Introduction

A constrained multiobjective optimization problem with constraint set M, consists of
m objective functions f1, . . . , fm, that have to be optimized at the same time onM. In
recent years, there has been a significant increase in the number of papers addressing
this class of problems; for example, see [1–7]. Here, among the methods designed for
solving multiobjective optimization problems, we are interested in the steepest descent
method. This method, was proposed in [8] and since of then several variants have been
considered, including but not limited to [9–14]. Recently some iteration-complexity
results to gradient method for unconstrained multi-objective optimization problem were
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presented in [15]. These results have been shown to be the same global rates as for
steepest descent method in scalar objective optimization.

Constrained optimization problems, where the constraint set M can be endowed
with Riemannian manifold structure, have been studied extensively in the last few
years. Some aspects about the use of Riemannian geometry tools to study these class of
problems arises from the following interesting fact. Endowing M with a suitable Rie-
mannian metric, an Euclidean non-convex constrained problem with constraint set M
can be seen as a Riemannian convex unconstrained problem. In addition to this prop-
erty, for differentiable functions, its gradient can also become Riemannian Lipschitz
continuous; see [16]. Consequently, the geometric and algebraic structures that come
from the Riemannian metric make possible to greatly reduce the computational cost for
solving such problems. Indeed, it is well known that the iteration-complexity of several
optimization methods for convex optimization problems such that objective functions
have Lipschitz continuous gradient is much lower than nonconvex optimization prob-
lems; see for example [17–21] and references therein. Furthermore, many optimization
problems are naturally posed on the Riemannian context; see [18, 20, 22, 23]. Then, to
take advantage of the intrinsic Riemannian geometric structure, it is preferable to treat
these problems as the ones of finding singularities of gradient vector fields on Riemannian
manifolds rather than using Lagrange multipliers or projection methods; see [23–25].
In this sense constrained optimization problems can be seen as unconstrained from the
point of view of Riemannian geometry. Moreover, intrinsic Riemannian structures can
also opens up new research directions that aid in developing competitive optimization
algorithms; see [18,20,22,23,26,27]. More about concepts and techniques of optimization
on Riemannian context can be found in [21,25,28–34] and the bibliographies therein.

In this paper we will study the steepest descent method for multiobjective optimiza-
tion on Riemannian manifolds. The aim is twofold. First, asymptotic analysis will be
done for quasi-convex and convex vectorial functions. In fact, in [35] asymptotic analy-
sis of this method has already been done in Riemannian context; see also [36]. However,
the analysis asymptotic presented in these previous works is just to stepsize given by
Armijo rule and it demand that the Riemannian manifolds have nonnegative sectional
curvature. The asymptotic analysis presented in the present paper increase the previ-
ous ones in two different aspects. It is provided an analysis with three different finite
procedures for determining the stepsize, namely, Lipschitz stepsize, adaptive stepsize
and Armijo-type stepsize and only lower boundedness of the curvature of the Rieman-
nian manifold is assumed. The second aim is to present iteration-complexity bounds
for steepest descent method for multiobjective optimization on Riemannian manifolds.
It is worth noting that, our results generalize to the Riemannian context the results
obtained in [15]. Besides, we present one iteration-complexity bound that is new even
in Euclidean setting. In addition, some examples are presented to emphasize the impor-
tance of working in this new context. Numerical experiments are provided to illustrate
the effectiveness of the method in this new setting and certify the obtained theoretical
results.

The organization of this paper is as follows. In Section 2, some notations and aux-
iliary results, used throughout of the paper, are placed. In Section 3, we present the
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algorithm and the stepsizes that will be used. In Section 3.1, the asymptotic con-
vergence analysis of the sequence generated by the steepest descent method is made.
In Section 3.2, we present iteration-complexity bounds related to the steepest descent
method. In Section 4, we present examples of vectorial convex functions with componen-
twise Lipschitz continuous Jacobian. Numerical experiments are present in Section 5.
Finally, some conclusions are given in Section 6.

2 Notations and Auxiliary Concepts

In this section, we recall some concepts, notations, and basics results about Riemannian
manifolds and vector optimization. For more details we refer the reader to [19,25,37,38].

We denote by TpM the tangent space of a finite dimensional Riemannian manifold
M at p, and by TM = ∪p∈MTpM tangent bundle of M. The corresponding norm
associated to the Riemannian metric 〈·, ·〉 is denoted by ‖ · ‖. We use `(α) to denote the
length of a piecewise smooth curve α : [a, b] →M. The Riemannian distance between
p and q in M is denoted by d(p, q). Denote by X (M), the space of smooth vector
fields on M. Let ∇ be the Levi-Civita connection associated to (M, 〈·, ·〉). For each
t ∈ [a, b] and a piecewise smooth curve α : [a, b] → M, the covariant derivative ∇
induces an isometry, relative to 〈·, ·〉, Pα,a,t : Tα(a)M → Tα(t)M defined by Pα,a,t v =
V (t), where V is the unique vector field on the curve α such that ∇α′(t)V (t) = 0 and
V (a) = v, the so-called parallel transport along of α joining α(a) to α(t). When there
is no confusion, Pα,p,q denotes the parallel transport along the segment α joining p to
q. Given that the geodesic equation ∇ γ′γ

′ = 0 is a second order nonlinear ordinary
differential equation, then the geodesic γ = γv(·, p) is determined by its position p and
velocity v at p. The restriction of a geodesic to a closed bounded interval is called a
geodesic segment. For any two points p, q ∈ M, Γpq denotes the set of all geodesic
segments γ : [0, 1]→M with γ(0) = p and γ(1) = q. A geodesic segment joining p to q
in M is said to be minimal if its length is equal to d(p, q). In this paper, all manifolds
are assumed to be connected, finite dimensional, and complete. Hopf-Rinow’s theorem
asserts that any pair of points in a complete Riemannian manifold M can be joined
by a (not necessarily unique) minimal geodesic segment. Owing to the completeness
of the Riemannian manifold M, the exponential map expp : TpM → M is given by
expp v = γv(1, p), for each p ∈M. For f :M→ R a differentiable function on M, the
Riemannian metric induces the mapping f 7→ grad f which associates its gradient via
the following rule 〈grad f(p), V (p)〉 := df(p)V (p), for all p ∈ M and V ∈ X (M). For
a twice-differentiable function, the mapping f 7→ hessf associates its hessian via the
rule 〈hessfV, V 〉 := d2f(V, V ), for all V ∈ X (M), where the last equalities imply that
hessfV = ∇V grad f , for all V ∈ X (M). Let us to introduce some concepts of vector
optimization on a Riemannian manifoldM. Letting I := {1, . . . ,m} define Rm+ := {x ∈
Rm : xi ≥ 0, i ∈ I} and Rm++ := {x ∈ Rm : xi > 0, i ∈ I}. For x, y ∈ Rm+ , y � x (or
x � y) means that y − x ∈ Rm+ and y � x (or x ≺ y) means that y − x ∈ Rm++. Let
F := (f1, . . . , fm) : M→ Rm be a differentiable function. We denote the Riemannian
jacobian of F at a point p ∈ M by ∇F (p)v := (〈grad f1(p), v〉, . . . , 〈grad fm(p), v〉),
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where v ∈ TpM, and the image of the Riemannian jacobian of F at p by Im(∇F (p)) :=
{∇F (p)v : v ∈ TpM} . A vectorial function F : M → Rm is said to be convex on
M if for any p, q ∈ M and γ ∈ Γpq the composition F ◦ γ : [0, 1] → R satisfies
F ◦ γ(t) � (1 − t)F (p) + tF (q), for all t ∈ [0, 1]. By convexity of F , it follows that
∇F (p)γ′(0) � F (q) − F (p). A vectorial function F is called quasi-convex on M if,
for every p, q ∈ M and γ ∈ Γpq, it holds F (γ(t)) � max{F (p), F (q)}, for all t ∈ [0, 1],
where the maximum is considered coordinate by coordinate. It is immediate of the above
definitions that if F is convex then it is quasi-convex. Moreover, if F is a quasi-convex
function, than F (q) � F (p) implies ∇F (p)γ′(0) � 0.

The next result plays an important role in next sections. Its proof, which will be
omitted here, follows the same ideas as those presented in the proof of [30, Lemma 3.2],
with some minor technical adjustments needed to settle it to our goals. For simplifying
our notations throughout the paper, we define

κ < 0, κ̂ :=
√
|κ|. (1)

Lemma 1. LetM be a complete Riemannian manifolds with sectional curvature K ≥ κ.
Let p, q ∈ M, p 6= q, v ∈ TpM, γ : [0,∞) −→ M be defined by γ(t) = expp (tv) and
β : [0, 1] → M be a minimizing geodesic with β(0) = p and β(1) = q. Then, for any
t ∈ [0,∞) there holds

cosh(κ̂d(γ(t), q)) ≤ cosh(κ̂d(p, q))+

κ̂ cosh(κ̂d(p, q)) sinh(tκ̂ ‖v‖)
(
t ‖v‖

2
− tanh(κ̂d(p, q))

κ̂d(p, q)

〈v, β′(0)〉
‖v‖

)
,

and, consequently, the following inequality holds

d2(γ(t), q) ≤ d2(p, q) +
sinh (κ̂t‖v‖)

κ̂

(
t‖v‖ κ̂d(p, q)

tanh (κ̂d(p, q))
− 2 〈v, β′(0)〉

‖v‖

)
.

Next we present the definition of Lipschitz continuous gradient vector field; see [39].

Definition 2. Let f be a differentiable function on the setM. The gradient vector field
of f is said to be Lipschitz continuous on M with constant L ≥ 0 if, for any p, q ∈ M
and γ ∈ Γpq, it holds that ‖Pγ,p,q grad f(p)− grad f(q)‖ ≤ L`(γ).

The norm of the hessian hess f at p ∈M is given by

‖hess f(p)‖ := sup {‖hess f(p)v‖ : v ∈ TpM, ‖v‖ = 1} .

The next result has similar proof to its Euclidean version and it will be omitted.

Lemma 3. Let f :M→ R be a twice continuously differentiable function. The gradient
vector field of f is Lipschitz continuous with constant L ≥ 0 if, and only if, there exists
L ≥ 0 such that ‖hess f(p)‖ ≤ L, for all p ∈M.

In the following we present the concept of Lipschitz continuity for the Riemannian
Jacobian of a vectorial function.
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Definition 4. Let F := (f1, . . . , fm) :M→ Rm be a differentiable function. If for each
fi :M→ R there exists a Li ≥ 0 such that ‖Pγ,p,q grad fi(p)− grad fi(q)‖ ≤ Li`(γ), for
any p, q ∈M and γ ∈ Γpq, then we say that ∇F is componentwise Lipschitz continuous
on M with constant L := maxi=1,...,m Li.

The proof of the next lemma follows, with appropriate adjustments, the same idea
of proof of the scalar version presented in [17, Corollary 2.1]. Throughout of the paper
we will use the following notation

e := (1, . . . , 1) ∈ Rm.

Lemma 5. Let F := (f1, . . . , fm) :M→ Rm be a differentiable function. Assume that
∇F is componentwise Lipschitz continuous on M with constant L ≥ 0 and p ∈ M.
Then there holds

F (expp(tv)) � F (p) + t∇F (p)v + t2
L

2
‖v‖2 e, ∀ t ∈ [0,+∞), v ∈ TpM.

Next we introduce the concept of quasi-Fejér convergence, which played an important
role in the analysis of the gradient method.

Definition 6. A sequence {yk} in the complete metric space (M, d) is quasi-Fejér
convergent to a set W ⊂M if, for every w ∈ W , there exist a sequence {εk} ⊂ R such
that εk ≥ 0,

∑∞
k=1 εk < +∞, and d2(yk+1, w) ≤ d2(yk, w) + εk, for all k = 0, 1, . . ..

In the following we state the main property of the quasi-Fejér concept, its proof
follows the same path as its Euclidean counterpart proved in [40], by replacing the
Euclidean distance by the Riemannian one.

Theorem 7. Let {yk} be a sequence in the complete metric space (M, d). If {yk} is
quasi-Fejér convergent to a nonempty set W ⊂M, then {yk} is bounded. Furthermore,
if a cluster point ȳ of {yk} belongs to W , then limk→∞ yk = ȳ.

Hereafter, we assume that M is a complete Riemannian manifolds with sectional
curvature K ≥ κ, where κ < 0. We point out that for Riemannian manifold with
nonnegative sectional curvature, the convergence analysis of the steepest descent method
for convex and quasi-convex vector functions is well understood; see for example [35,36].

3 Steepest Descent for Multiobjective Optimization

Let F := (f1, . . . , fm) :M→ Rm be a continuously differentiable function. The problem
of finding an optimum Pareto point of F , we denote by

min{F (p) : p ∈M}. (2)

A point p ∈ M satisfying Im(∇F (p)) ∩ (−Rm++) = ∅ is called critical Pareto. An
optimum Pareto point of F is a point p∗ ∈ M such that there exists no other p ∈ M
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with F (p) � F (p∗) and F (p) 6= F (p∗). Moreover, a point p∗ ∈ M is a weak optimal
Pareto of F if there is no p ∈M with F (p) ≺ F (p∗). Consider the following problem

min
v∈TpM

{
maxi∈I 〈grad fi(p), v〉+

1

2
‖v‖2

}
, I = {1, . . . ,m}. (3)

Whenever p ∈ M is not critical Pareto, the optimization problem (3) has only one
solution, which is called steepest descent direction for F in p and it is denoted by

vp := argminv∈TpM

{
maxi∈I 〈grad fi(p), v〉+

1

2
‖v‖2

}
. (4)

In the next lemma we state an important property of the steepest descent direction. Its
proof can be found in [35, Lemma 5.1].

Lemma 8. The steepest descent direction mappingM3 p 7→ vp ∈ TpM , is a continuous
vector field.

Moreover, the vector vp is the solution of the problem (3) if and only if there exist
µj ≥ 0, for j ∈ I(vp) := {j ∈ I : 〈grad fj(p), vp〉 = maxi∈I〈grad fi(p), vp〉}, such that

vp = −
∑

j∈I(vp)

µj grad fj(p),
∑

j∈I(vp)

µj = 1, (5)

see [35, Lemma 4.1]. In the following lemma we state an important inequality for our
convergence analysis and an equivalence for a point p ∈M to be a critical Pareto.

Lemma 9. Let p ∈M and vp as defined (4). Then,

maxi∈I〈grad fi(p), vp〉 = −‖vp‖2 . (6)

Consequently, ∇F (p)vp � −‖vp‖2 e. In addition, p is critical Pareto point of F if, and
only if, ‖vp‖ = 0.

Proof. Let p ∈M and vp as in (4). Thus, from the first equality in (5) we have

−‖vp‖2 = 〈−vp, vp〉 =

〈 ∑
j∈I(vp)

µj grad fj(p), vp

〉
=

∑
j∈I(vp)

µj 〈grad fj(p), vp〉 .

Hence, by the definition of I(vp) and the second equality in (5), it is easy to verify
that (6) holds. The second statement follows by using the definitions of ∇F (p)vp and
I(vp). We proceed with the prove of the third statement of the lemma. Assuming that
p is a critical Pareto, it follows from the definition that there exists i ∈ I such that
〈grad fi(p), vp〉 ≥ 0. Then, the by first part of lemma we have ‖vp‖ = 0. The converse
follows from [35, Lemma 4.2] and the proof is concluded.

The proof of the next lemma is a straight combination of Lemma 5 with first part
of Lemma 9 and will be omited.

6



Lemma 10. Assume that ∇F is componentwise Lipschitz continuous on M with con-
stant L ≥ 0. Let p ∈M and vp as defined in (4). Then, there holds

F (expp (t vp)) � F (p) +

(
Lt2

2
− t
)
‖vp‖2 e, ∀ t ∈ [0,+∞).

Next we state the steepest descent algorithm in Riemannian manifold to solve (2).

Algorithm 1: Steepest descent algorithm in a Riemannian manifold M
Step 0. Let p0 ∈M. Set k = 0.

Step 1. Compute vk := vpk , where vpk is defined in (4). If vpk = 0, then stop;
otherwise, choose a stepsize tk > 0 and compute

pk+1 := exppk (tk vk) . (7)

Step 2. Set k ← k + 1 and proceed to Step 1.

Our goal is to analyze Algorithm 1 with three different strategies for choosing the
stepsize tk > 0. An analogous analysis done in the scalar case can be found in [16].
In the first strategy we assume that ∇F is componentwise Lipschitz continuous and in
the last two without any Lipschitz condition. The statements of the strategies are as
follows:

Strategy 1 (Lipschitz stepsize). Assume that ∇F is componentwise Lipschitz contin-
uous on M with constant L ≥ 0. Let ε > 0 and take

ε < tk ≤
1

L
. (8)

Despite knowing that ∇F is componentwise Lipschitz continuous, in general the
Lipschitz constant is not computable. Then, the next strategy can be used to compute
the stepsize without any Lipschitz condition. However, as we shall show, if ∇F is
componentwise Lipschitz continuous with constant L > 0 the stepsize computed is an
approximation to 1/L; see the scalar case in [16,41].

Strategy 2 (adaptive stepsize). Take ζ ∈ (0, 1/2], L0 > 0, t0 := L−1
0 , and 0 < η < 1.

Consider vk is defined as in (4). Set tk := ηiktk−1, where

ik := min
{
i : F

(
exppk

(
ηitk−1vk

))
� F (pk)− ζηitk−1‖vk‖2e, i = 0, 1, . . .

}
. (9)

In the next remark we show that if ∇F is componentwise Lipschitz continuous on
M, the adaptive stepsize can be seen as an approximation for 1/L.

Remark 11. Suppose that ∇F is componentwise Lipschitz continuous on M with con-
stant L > 0. Let L0 > 0 be an estimate for L and vk = vpk be defined as in (4). Taking
t = 1/L, using Lemma 10 and taking into account that ζ ≤ 1/2, we obtain

F
(
exppk (vk/L)

)
� F (pk)−

(
ζ‖vk‖2/L

)
e.
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Hence, it follows that tk = 1/L is always accepted for Strategies 2 with ik = 0. Therefore,
if L0 ≥ L then we have tk = 1/L0, i.e., the step-size is constant. On the other hand, if
L0 ≤ L then owing to η < 1 we conclude that tk in Strategies 2 satisfies

η

L
≤ tk ≤

1

L0
. (10)

In the following strategy a stepsize satisfying an Armijo-type sufficient descent con-
dition is chosen using a backtracking approach.

Strategy 3 (Armijo-type stepsize). Let tmax > tmin > 0, 0 < ω1 < ω2 < 1 and
δ ∈ (0, 1). Let vk = vpk be defined as in (4). The stepsize tk is chosen according the
following algorithm:

Step 0. Set ` = 0 and take t̂k0 ∈ [tmin, tmax].

Step 1. If
F
(
exppk(t̂k`vk)

)
� F (pk)− δt̂k`‖vk‖

2e, (11)

then set tk := t̂k` and stop.

Step 2. Choose a stepsize t̂k`+1
∈ [ω1t̂k` , ω2t̂k` ], set `← `+ 1 and proceed to Step 1.

In the next remark we show that, for ∇F componentwise Lipschitz continuous on
M, the stepsizes in Strategy 3 are bounded below by a positive constant.

Remark 12. Assume that ∇F is componentwise Lipschitz continuous on M with con-
stant L ≥ 0, tmax > 2[1−δ]/L and tmin < 2ω1(1−δ)/L. Hence, for any t ∈ (0, 2[1−δ]/L],
from Lemma 10 we have

F (exppk (t vk)) � F (pk)− δt‖vk‖2e.

Therefore, tk in Strategies 3 satisfies the inequality tk > tmin, for all k = 0, 1, . . . .

Since well-definedness of Strategies 2 and 3 follows by using ordinary arguments, we
will omitted its proof here. Hence, the sequence {pk} generated by Algorithm 1 with
Strategies 1, 2 or 3 is well-defined. Finally we remind that, p is a critical Pareto if,
and only if, ‖vp‖ = 0. Therefore, from now on we assume that ‖vk‖ 6= 0, for all k.
Moreover, let us denote by {pk} the infinity sequence generated by Algorithm 1.

3.1 Asymptotic Convergence Analysis

In this section, we analyze asymptotic convergence of the sequence {pk} generated by
Algorithm 1 with Strategies 1, 2 and 3. Let us define

A := {p ∈M : F (p) � F (pk), k = 0, 1, . . .}.

To proceed with our analysis, from now on, we will assume that the set A is non-empty.
A condition guaranteeing this assumption is the existence of accumulation point for the
sequence {pk}.

8



Lemma 13. Let {pk} be generated with any of Strategies 1, 2 or 3. Then,

F (pk+1) � F (pk)− νtk ‖vk‖2 e, k = 0, 1, . . . , (12)

where ν = 1/2 for Strategy 1, ν = ζ for Strategy 2 and ν = δ for Strategy 3. As a
consequence, there holds limk→+∞ tk ‖vk‖2 = 0.

Proof. The inequality (12) for Strategies 2 and 3 follows from (7), (9) and (11), respec-
tively. Now, assume that {pk} is generated by using Strategies 1. In this case, combining
(7) with Lemma 10 and taking into account that (8) implies (Ltk/2− 1) ≤ −1/2, (12)
follows with ν = 1/2. To proceed with the proof of the last statement, take q ∈ A and
an integer number ` > 0. Thus, (12) yields

0 �
∑̀
k=0

tk ‖vk‖2 e �
1

ν

∑̀
k=0

(F (pk)− F (pk+1)) � 1

ν
(F (p0)− F (q)) ,

with implies the desired result, and the proof of the lemma is concluded.

To simplify the statement and proof of the next result we need to define three
auxiliary constants. For that, let p0 ∈ M . By using (12) together with (8), (10) and
(11) define the first constant ρ > 0 as follows

∞∑
k=0

t2k ‖vk‖
2 ≤ ρ :=


mini∈I {2[fi(p0)− fi(q)]/L : q ∈ A} , for Strategy 1;

mini∈I {[fi(p0)− fi(q)]/(ζL0) : q ∈ A} , for Strategy 2;

mini∈I {tmax[fi(p0)− fi(q)]/δ : q ∈ A} , for Strategy 3.

(13)
The other two auxiliaries constants Cqρ,κ > 0 and Kqρ,κ > 0 are defined as follows

Cqρ,κ := cosh−1
(

cosh(κ̂d(p0, q))e
1
2(κ̂
√
ρ) sinh(κ̂

√
ρ)
)
, (14)

Kqρ,κ :=
sinh

(
κ̂
√
ρ
)

κ̂
√
ρ

Cqρ,κ
tanh Cqρ,κ

, (15)

where the constants κ̂ and ρ, are defined in (1) and (13), respectively.

Lemma 14. Let {pk} be generated with any of Strategies 1, 2 or 3 and q ∈ A. Assume
that the function F is quasi-convex on M. Then,

d(pk+1, q) ≤
1

κ̂
Cqρ,κ, k = 0, 1, . . . . (16)

As a consequence, {pk} is bounded and the following inequality holds

d2(pk+1, q) � d2(pk, q) +Kqρ,κt2k ‖vk‖
2 , k = 0, 1, . . . . (17)

9



Proof. For each k, let γk : [0,∞) −→ R be defined by γk(t) = exppk (tvk). Let βk :
[0, 1]→M be a minimizing geodesic with βk(0) = pk and βk(1) = q. By using (5), the
definition of vk, the quasi-convexity of F , and taking into account that q ∈ A, we have〈

vk, β
′(0)
〉

= −
∑

j∈I(vk)

µj
〈
grad fj(pk), β

′(0)
〉
≥ 0,

∑
j∈I(vk)

µj = 1. (18)

Thus, applying the first inequality of Lemma 1, with t = tk, γ = γk , β = βk and p = pk,
and using (7) and (18), we obtain

cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(pk, q))

(
1 +

1

2
(κ̂tk ‖vk‖)2 sinh(κ̂tk ‖vk‖)

κ̂tk ‖vk‖

)
.

Since (13) implies tk ‖vk‖ ≤
√
ρ, and the map (0,+∞) 3 t 7→ sinh(t)/t is increasing, we

conclude that

cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(pk, q))
(

1 + σ (tk ‖vk‖)2
)
,

where σ := κ̂(sinh(κ̂
√
ρ))/(2

√
ρ). Now note that the last inequality implies that

cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(pk, q))e
σ(tk‖vk‖)2 .

Therefore, by using (13), it follows that cosh(κ̂d(pk+1, q)) ≤ cosh(κ̂d(p0, q))e
σρ which,

considering the definition of σ and (14), yields (16). The boundedness of {pk} is im-
mediate from (16). We proceed with the proof of (17). Now, we apply the second
inequality of Lemma 1 and again we take into account (7) and (18) to conclude that

d2(pk+1, q) ≤ d2(pk, q) +
sinh (κ̂tk‖vk‖)

κ̂tk‖vk‖
κ̂d(pk, q)

tanh (κ̂d(pk, q))
t2k‖vk‖2. (19)

Since the maps (0,+∞) 3 t 7→ t/ tanh(t) and (0,+∞) 3 t 7→ sinh(t)/t are increasing and
positive, taking into account (16) and that tk ‖vk‖ ≤

√
ρ, the inequality (19) becomes

d2(pk+1, q) ≤ d2(pk, q) +
sinh

(
κ̂
√
ρ
)

κ̂
√
ρ

Cqρ,κ
tanh Cqρ,κ

t2k‖vk‖2.

Therefore, by using (15) we have the desired inequality.

In the next result we show that if F is a quasi-convex function on a Riemannian
manifolds with lower bounded sectional curvature, then {pk} converges to a critical
Pareto point of F .

Theorem 15. Let {pk} be generated with any of Strategies 1, 2 or 3. If F is quasi-
convex, then {pk} converges to a critical Pareto point of F .

10



Proof. Since A is non-empty, Lemma 14 and (13) imply that {pk} is bounded and
quasi-Fejér convergent to set A. Taking into account Lemma 13 we conclude that
{fs(pk)} is non-increasing, for all s = 1, . . . ,m. Thus, we conclude that all cluster
points of {pk} belongs to A. Hence, Theorem 7 implies that {pk} converges to a point
p̄ ∈ A. Hence, remais to prove that p̄ is a critical Pareto point of F . We know that,
for any of the three strategies 1, 2 or 3, the sequence {tk} is bounded. Let t̄ ≥ 0
be a cluster point of {tk} and take {tkj} such that limj→∞ tkj = t̄. First we suppose
that t̄ > 0. Since limj→∞ pkj = p̄ and limj→∞ tkj = t̄, (13) and Lemma 8 imply that
0 = limj→∞ tkj

∥∥vkj∥∥ = t̄ ‖vp̄‖ . Thus, considering that we are under the assumption
t̄ > 0, we obtain vp̄ = 0. Therefore, Lemma 9 implies that p̄ is a critical Pareto point
of F . Now, we suppose that t̄ = 0. In this case, we just need to analyze Strategies 2
and 3, due to Strategy 1 we have ε ≤ t̄. First assume that Strategy 2 is used and take
r ∈ N. Since limj→∞ tkj = 0 we conclude that if j is large enough, tkj < ηrt0 =: Cr.
Thus, for each j large enough, from (9) we have

fsj

(
exppkj

(Crvkj )
)
> fsj (pkj )− ζCr‖vkj‖

2,

for some sj ∈ {1, . . . ,m}. Since the set {1, . . . ,m} is finite, without lose of generality,
we assume the there exist ŝ and a infinite set of index j such that

fŝ

(
exppkj

(Crvkj )
)
> fŝ(pkj )− ζCr‖vkj‖

2.

Since limj→∞ pkj = p̄ and limj→∞ tkj = t̄, letting j goes to +∞ and taking into account
that vp and the exponential map are continuous, we obtain

fŝ
(
expp̄(Crvp̄)

)
− fŝ(p̄)

Cr
≥ −ζ‖vp̄‖2.

Thus, letting r goes to +∞, yields 〈grad fŝ(p̄), vp̄〉 ≥ −ζ‖vp̄‖2. Hence, from Lemma 9 we
conclude that −‖vp̄‖2 ≥ −ζ‖vp̄‖2 and, considering that ζ ∈ (0, 1/2], we have ‖vp̄‖ = 0.
Consequently, using again Lemma 9 we have p̄ is a critical Pareto of F . Finally, assume
that Strategy 3 is used. Since limj→∞ tkj = 0 we conclude that if j is large enough

we have tkj < tmin. Thus, if j is large enough, there exists 0 < t̂j ≤ tmax such that

0 < ω1t̂j ≤ tkj and

fsj

(
exppkj

(t̂jvkj )
)
> fsj (pkj )− t̂jδ‖vkj‖

2,

for some sj ∈ {1, . . . ,m}. Since the set {1, . . . ,m} is finite, without lose of generality,
we assume the there exist ŝ and a infinite set of index j such that

fŝ

(
exppkj

(t̂jvkj )
)
− fŝ(pkj )

t̂j
> −δ‖vkj‖

2.

Let γj(t) := exppkj
(tvkj ), for t > 0, be a geodesic segment. Thus, the mean value

theorem implies that there exists t̄j ∈ (0, t̂j) such that〈
grad fŝ (γj(t̄j)) , Pγj ,0,t̄jvkj

〉
> −δ‖vkj‖

2. (20)

11



On the other hand, let Bε(p) ⊂ M be a totally normal ball. Hence, considering that
limj→+∞ pkj = p̄, Lemma 8 implies that limj→+∞ vkj = v̄p̄. Moreover, 0 < ω1t̂j ≤ tkj
implies that limj→+∞ t̂j = 0. Owing to 0 < t̄j ≤ t̂j we obtain that limj→+∞ t̄j = 0.
Hence, for all j large enough we have {t̄j} ⊂ (0, 1) and γj(t̄j) ∈ Bε(p), which implies

Pγj ,0,t̄jvkj =
1

1− t̄j
exp−1

γj(t̄j)
exppkj

vkj .

Thus, letting j goes to +∞ and using [42, Lemma 1.1], we conclude that limj→+∞ Pγj ,0,t̄jvkj =
v̄p̄ (a general version for this equality, see [42, Lemma 1.2]). Then, letting j goes to
+∞ in (20) and taking into account Lemma 8, that grad fŝ and the exponential map
are continuous, we obtain 〈grad fŝ(p̄), vp̄〉 ≥ −δ‖vp̄‖2. Hence, Lemma 9 implies that
−‖vp̄‖2 ≥ −δ‖vp̄‖2 and, considering that δ ∈ (0, 1), we have ‖vp̄‖ = 0. Consequently,
using again Lemma 9 we conclude that p̄ is a critical Pareto of F . Therefore, for all
Strategies 1, 2 or 3, p̄ is a critical Pareto point of F , which concludes the proof.

Corollary 16. Let {pk} be generated with any of Strategies 1, 2 or 3. If F is convex,
then {pk} converges to a weak optimal Pareto of F .

Proof. Since F is convex, critical points are weak optimal Pareto of F , see [35, Propo-
sition 5.2]. Considering that convex functions are also quasi-convex the result follows
from Theorem 15.

3.2 Iteration-Complexity Analysis

In this section we present iteration-complexity bounds related to the steepest descent
method with Strategies 1, 2 and 3, for F having ∇F with componentwise Lipschitz
continuous constant L > 0. For this purpose, by using (8), (10) and Remark 12, define

ξ :=


ε, for Strategy 1;

η/L, for Strategy 2;

tmin, for Strategy 3.

(21)

The following result extends the scalar result [17, Theorem 3.1] to multiobjective set-
tings. Moreover, it also extends to Riemannian context [15, Theorem 3.1].

Theorem 17. Let {pk} be generated with any of Strategies 1, 2 or 3, and set f∗i :=
inf{fi(q) : q ∈ M}, for i ∈ I. Suppose that f∗i is bounded from below for some i ∈ I,
and define i∗ ∈ I such that

fi∗(p0)− f∗i∗ := min {fi(p0)− f∗i : i ∈ I} .

Then, for every N ∈ N, there holds

min {‖vk‖ : k = 0, 1, . . . , N − 1} ≤
[
fi∗(p0)− f∗i∗

νξ

] 1
2 1√

N
,

where ν = 1/2 for Strategy 1, ν = ζ for Strategy 2 and ν = δ for Strategy 3.

12



Proof. It follows from Lemma 13 that νtk ‖vk‖2 e � F (pk)−F (pk+1), for all k = 0, 1, . . ..
By summing both sides of this inequality for k = 0, 1, . . . , N−1 and using (21), we obtain

νξ

N−1∑
k=0

‖vk‖2 e � F (p0)− F (pN ).

Thus, by the definition of i∗, we conclude from the last inequality that

νξN min
{
‖vk‖2 : k = 0, 1, . . . , N − 1

}
≤ fi∗(p0)− f∗i∗ ,

which implies the statement of the theorem.

Remark 18. It is worth mentioning that in the above result it was not necessary to use
any hypothesis about convexity of F and curvature of M.

Now we are going to prove that under the assumption of convexity Theorem 17 can
be improved. We begin by presenting an auxiliary inequality.

Lemma 19. Let {pk} be generated with any of Strategies 1, 2 or 3. Assume that F is
a convex function on M. Then, for q ∈ A and each k, there exist µkj′s ≥ 0 satisfying∑

j∈I(vk) µ
k
j = 1 such that

d2(pk+1, q) ≤ d2(pk, q) +Kqρ,κt2k ‖vk‖
2 + 2tk

∑
j∈I(vk)

µkj [fj(q)− fj(pk)], (22)

where ρ is defined in (13).

Proof. For each k, let γk : [0,∞) −→ R be defined by γk(t) = exppk (tvk) and βk :
[0, 1] → M with βk(0) = pk and βk(1) = q be a minimizing geodesic. Using (5) and
the convexity of F we conclude that exist µkj′s ≥ 0 satisfying

∑
j∈I(vk) µ

k
j = 1 such that〈

vk, β
′
k(0)

〉
= −

∑
j∈I(vk)

µkj
〈
grad fj(pk), β

′
k(0)

〉
≥

∑
j∈I(vk)

µkj (fj(pk)− fj(q)).

Applying the second inequality of Lemma 1 with β = βk, γ = γk and t = tk and using
the last inequality we obtain

d2(pk+1, q) ≤ d2(pk, q)+

sinh (κ̂tk‖vk‖)
κ̂tk‖vk‖

 κ̂d(pk, q)

tanh (κ̂d(pk, q))
t2k‖vk‖2 + 2tk

∑
j∈I(vk)

µkj (fj(q)− fj(pk))

 . (23)

Since (0,+∞) 3 t 7→ t/ tanh(t) and (0,+∞) 3 t 7→ ψ(t) := sinh(t)/t are increasing,
taking into account that (13) implies tk ‖vk‖ ≤

√
ρ, and using (16), the inequality (23)

becomes

d2(pk+1, q) ≤ d2(pk, q)+

sinh
(
κ̂
√
ρ
)

κ̂
√
ρ

 Cqρ,κ
tanh Cqρ,κ

t2k‖vk‖2 + 2tk
∑

j∈I(vk)

µkj (fj(q)− fj(pk))

 .
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Therefore, due to fj(q)− fj(pk) ≤ 0 and ψ be bounded from below by 1, the inequality
(22) follows by using (15), which concludes the proof.

The next result, with minor adjustments, is a generalization of [15, Theorem 4.1] to
Riemannian setting, when the Armijo’s type strategy is used.

Proposition 20. Let {pk} be generated with any of Strategies 1, 2 or 3. Assume that F
is a convex function on M and q ∈ A. Then, for every N ∈ N, there are non-negative
numbers λ1, . . . , λm with

∑m
i=1 λi = 1, satisfying

m∑
i=1

λi[fi(pN )− fi(q)] ≤
d2(p0, q) +Kqρ,κρ

2ξN
, (24)

where ρ is defined in (13).

Proof. Since fi(pk)− fi(q) ≥ 0 for all i, Lemma 19 and (21) implies there exist µki′s ≥ 0
such that

2ξ

m∑
i=1

µki (fi(pk)− fi(q)) ≤ d2(pk, q)− d2(pk+1, q) +Kqρ,κt2k ‖vk‖
2 ,

and
∑m

i=1 µ
k
i = 1, where for each k, define µki := 0 for all i /∈ I(vk). By summing both

sides of this inequality for k = 0, 1, . . . , N − 1, and using (13) follows

2ξ
N−1∑
k=0

m∑
i=1

µki (fi(pk)− fi(q)) � d2(p0, q) +Kqρ,κρ.

Since fi(pk) is a decreasing sequence for each i ∈ {1, . . . ,m}, by some algebraic manip-
ulations in the previous inequality we have

m∑
i=1

[
1

N

N−1∑
k=0

µki

]
[fi(pN )− fi(q)] ≤

d2(p0, q) +Kqρ,κρ
2ξN

.

Defining λi :=
∑N−1

k=0 µki /N we obtain the inequality in (24). To complete the proof, we
have show that

∑m
i=1 λi = 1. For that, it is sufficient to note that

m∑
i=1

λi =
1

N

m∑
i=1

N−1∑
k=0

µki =
1

N

N−1∑
k=0

m∑
i=1

µki ,

and
∑m

i=1 µ
k
i = 1 for each k.

Finally we are ready to present the main result of this section, namely, the improve-
ment of Theorem 17. We remark that this result is new, even in Euclidean context.
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Theorem 21. Let {pk} be generated with any of Strategies 1, 2 or 3. Assume that F
is a convex function on M and q ∈ A. Then, for every N ∈ N, there holds

min {‖vk‖ : k = 0, 1, . . . , N} ≤

(
2
(
d2(p0, q) +Kqρ,κρ

)
νξ2

) 1
2 1

N
.

where ρ is defined in (13) and ν = 1/2 for Strategy 1, ν = β for Strategy 2 and ν = δ
for Strategy 3.

Proof. Let N ∈ N and denote by dN/2e the least integer that is greater than or equal to
N/2. It follows from Lemma 13 that νtk ‖vk‖2 e � F (pk)−F (pk+1), for all k = 0, 1, . . ..
Thus, by summing both sides of this inequality for k = dN/2e, . . . , N and using (21),
we obtain

νξ

N∑
k=dN/2e

‖vk‖2 ≤ fi(pdN/2e)− fi(pN+1), ∀ i ∈ I.

Hence, taking non-negative numbers λ1, . . . , λm as in the Proposition 20 and considering
that q ∈ A, we conclude from the last inequality that

νξ
N∑

k=dN/2e

‖vk‖2 ≤
m∑
i=1

λi
(
fi(pdN/2e)− fi(pN+1)

)
≤

m∑
i=1

λi
(
fi(pdN/2e)− fi(q)

)
.

Thus, from Proposition 20 and considering that N/2 ≤ dN/2e it follows that

N∑
k=dN/2e

‖vk‖2 ≤
d2(p0, q) +Kqρ,κρ

2νξ2dN/2e
≤ d2(p0, q) +Kqρ,κρ

νξ2N
.

Therefore, min{‖vk‖2 : k = dN/2e, . . . , N} ≤ 2(d2(p0, q) + Kqρ,κρ)/(νξ2N2), which
implies the desired inequality.

4 Examples

In this section we present some examples to illustrate the results obtained in previous
sections. In particular, we will present some examples of convex vectorial functions such
that its Riemannian Jacobian is componentwise Lipschitz continuous.

Example 22. Let Pn++ be the cone of symmetric positive definite matrices. Define the
vectorial function F (X) = (f1(X), . . . , fm(X)), where fi : Pn++ −→ R is given by

fi(X) = ai ln
(

det(X)bi + ci

)
− di ln (det(X)) , (25)

ai, bi, ci, di ∈ R++ with di < aibi for all i = 1, . . . ,m. Endowing Pn++ with the Rieman-
nian metric given by

〈U, V 〉 := tr(V X−1UX−1), X ∈ Pn++, U, V ∈ TXPn++,
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where tr(X) denotes the trace of X ∈ Pn, we obtain a Riemannian manifolds M :=
(Pn++, 〈·, ·〉)with nonpositive sectional curvature, see [43, Theorem 1.2. p. 325]. In M,
fi is convex and has Lipschitz gradient with constant Li ≤ aib2in, for each i = 1, . . . ,m,
see [16, example 4.5]. Hence, from Definition 4 the Jacobian ∇F is componentwise
Lipschitz continuous with constant L ≤ nmax{a1b

2
1, . . . , amb

2
m}. In M, the exponential

mapping expX : TXM→M, is given by

expX(V ) = X1/2eX
−1/2V X−1/2

X1/2, V ∈ Pn, X ∈ Pn++. (26)

Therefore, from Corollary 16 we can apply Algorithm 1 with Strategies 1, 2 or 3 to find
weak optimal Pareto of F .

In the following we present, without giving the details, one more example of con-
vex vectorial function with Lipschitz gradients in the Riemannian manifolds M :=
(Pn++, 〈·, ·〉).

Example 23. Let F (X) = (f1(X), . . . , fm(X)) be a vectorial function, where fi :
Pn++ → R is defined by

fi(X) = ai ln(det(X))2 − bi ln (det(X)) ,

ai, bi ∈ R++ for all i = 1, . . . ,m. In M := (Pn++, 〈·, ·〉), fi is convex and has Lipschitz
gradient with constant Li ≤ 2ai

√
n, for each i = 1, . . . ,m, [16, example 4.4]. The Jaco-

bian ∇F is componentwise Lipschitz continuous with constant L ≤ 2
√
nmax{a1, . . . , am}.

Now, we present some preliminaries results to study examples of convex vectorial
functions with componentwise Lipschitz continuous Riemannian Jacobians. We begin
with a result that, with some adjustments in the notation, can be found in [44, Lemma 2].

Lemma 24. Let M̄ and M be Riemannian manifold, ∇̄ be the Levi-Civita connection
associated to M̄ and ϕ : M̄ →M be an isometry. Then, ∇ : X (M)×X (M)→ X (M)
defined by

∇V U := dϕ(∇̄V̄ Ū), ∀ V,U ∈ X (M). (27)

is the Levi-Civita connection associated to M̄, where V̄ = dϕ−1V and Ū = dϕ−1U .

Proof. Let f be continuously differentiable, V and U be vector fields in M. Since ϕ
is a diffeomorphism, f ◦ ϕ is continuously differentiable, V̄ = dϕ−1V and Ū = dϕ−1U
are vector fields in M̄. Thus, we can prove that (27) satisfies [38, equations (1.9),
(1.10), (1.11) and (1.12) on page 27 and 28] and therefore is the Levi-Civita connection
associated to M.

The next result is the main tool used in the following examples.

Theorem 25. Let M and M̄ be Riemannian manifolds, f : M → R be a twice-
differentiable function and ϕ : M̄ → M be an isometry. Then, f has gradient vector
field Lipschitz continuous with constant L ≥ 0 if, and only if, g : M̄ → R defined by
g := f ◦ ϕ, has gradient vector field Lipschitz continuous with constant L ≥ 0.

16



Proof. Let V̄ ∈ X (M̄) and set V (ϕ(q)) = dϕ(q)V̄ (q). Thus, by using the definition of
the gradient vector field and the chain rule, we have〈

grad g(q), V̄ (q)
〉

= dg(q)V̄ (q)

= df(ϕ(q))dϕ(q)V̄ (q)

= df(ϕ(q))V (ϕ(q))

= 〈grad f(ϕ(q)), V (ϕ(q))〉 .

Taking into account that ϕ is an isometry and V (ϕ(q)) = dϕ(q)V̄ (q), we obtain that

〈grad f(ϕ(q)), V (ϕ(q))〉 =
〈
grad f(ϕ(q)),dϕ(q)V̄ (q)

〉
=
〈
dϕ(q)dϕ(q)−1 grad f(ϕ(q)),dϕ(q)V̄ (q)

〉
=
〈
dϕ(q)−1 grad f(ϕ(p)), V̄ (q)

〉
.

Hence, combining the two above equality we conclude that grad f(ϕ(q)) = dϕ(q) grad g(q).
Moreover, the definition of the hessian of f together with Lemma 24 yield

hess f(ϕ(q))dϕ(q)V̄ (q) = hess f(ϕ(q))V ((ϕ(q))

= ∇V (ϕ(q)) grad f(ϕ(q))

= dϕ(p)
(
∇̄V̄ (q) grad g(q)

)
= dϕ(q)hess g(q)V̄ (q),

which implies that hess f(ϕ(q))dϕ(q) = dϕ(q)hess g(q). Then, using again that ϕ is
an isometry, we have ‖hess f(ϕ(q))‖ = ‖hess g(q)‖. Therefore, by using Lemma 3 the
results follows.

The next result is an important property of isometries, its prove is in [45, Proposition
5.6.1, p. 196].

Proposition 26. Let M and M̄ be complete Riemannian manifolds. If ϕ : M̄ → M
is a isometry and γ is a geodesic in M̄, then ϕ ◦ γ is a geodesic in M.

The following result is a straight consequence of the definition of isometry and
Proposition 26.

Theorem 27. Let M, M̄ be Riemannian manifold and ϕ : M̄ →M an isometry. The
function g :M→ R is convex if and only if f : M̄ → R, defined by f(p) = (g ◦ ϕ)(p),
is convex.

In the next example we change the metric of the Euclidean space Rn to prove, in
particular, that the extended Rosenbrock’s banana function is convex and has gradiente
Lipschitz in Rn with this new metric. It is worth to pointed out that the convexity of
this function in two dimension has been established in [25, p. 83].
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Example 28 (Rosenbrock’s banana function class). Let fj : R2n → R be a variant of
the Rosenbrock’s banana function, defined by

fj(x1, . . . , x2n) :=

n∑
i=1

aij
(
x2

2i−1 − x2i

)2
+ (x2i−1 − bij)2 , aij ∈ R++, bij ∈ R, (28)

for j = 1, . . . ,m. Denote M̄ as the Euclidean space R2n with the usual metric. It is
well known that fj is non-convex and its gradient is non-Lipschitz continuous in M̄.
Endowing R2n with the new Riemannian metric 〈u, v〉 := uTG(x)v, where u, v ∈ R2n

and G(x) is the 2n × 2n block diagonal matrix G(x) = diag(G1(x), . . . , Gn(x)), where
the blocks are given by

Gi(x) :=

(
1 + 4x2

2i−1 −2x2i−1

−2x2i−1 1

)
, i = 1, . . . , n,

and x = (x1, . . . , x2n), we obtain a Riemannian manifold M := (R2n, G). Taking into
account that the function ϕ : M̄ →M defined by

ϕ(z1, . . . , z2n) =
(
z1, z

2
1 − z2, . . . , z2n−1, z

2
2n−1 − z2n

)
,

is an isometry, the Riemannian manifolds M is complete and has constant seccional
curvature K = 0. On the other hand, gj : M̄ → R defined by

gj(z1, . . . , z2n) := (fj ◦ ϕ)(z1, . . . , z2n) =
n∑
i=1

aijz
2
2i + (z2i−1 − bij)2, j = 1, . . . ,m,

is a quadratics function, which is convex with gradient vector field Lipschitz in M̄ with
constant Lj := max{2, 2a1j , . . . , 2anj}. Therefore, Theorem 27 and Theorem 25 imply,
respectively, that fj is also convex and has gradient vector field Lipschitz continuous,
with constant Lj, in M. Let F = (f1, . . . , fm) be the Rosenbrock’s banana vectorial
function. Hence, F is convex and Definition 4 implies that ∇F is componentwise Lips-
chitz continuous with constant L = max{2, 2a11, . . . 2anm}. The gradient of fj is given
by grad fj(x) = G(x)−1f ′j(x), where f ′j is the usual gradient of fj. Given z ∈ M̄ the

exponential map in M̄, expz : TzM̄ → M̄, is given by expz(v̄) = z + v̄. Since ϕ is
an isometry, Proposition 26 implies that the exponential map in M, expx : TxM →
M, is given by expx(v) = ϕ(ϕ−1(x) + dϕ−1(x)v). Thus, due to ϕ−1(x) = (x1, x

2
1 −

x2, . . . , x2n−1, x
2
2n−1−x2n) and dϕ−1(x)v = (v1, 2x1v1−v2, . . . , v2n−1, 2x2n−1v2n−1− v2n),

we obtain that

expx(v) =
(
x1 + v1, v

2
1 + x2 + v2, . . . , p2n−1 + v2n−1, v

2
2n−1 + x2n + v2n

)
where x := (x1, . . . , x2n) and v := (v1, . . . , v2n).

We end this section by presenting, in particular, a family of vectorial functions in
positive orthant Rn+ that are not convex and their gradients are not componentwise
Lipschitz continuous. However, by a suitable change of the metric of Rn+ the functions
of that family are convex and have componentwise Lipschitz continuous gradients on
this new Riemannian manifold.

18



Example 29. Let fj : Rn++ → R be defined by

fj(x) := aj ln

(
n∏
i=1

x
uij
i + bi

)
−

n∑
i=1

wij ln(xi) + cj

n∑
i=1

ln2(xi), (29)

where x := (x1, . . . , xn) ∈ Rn++, uj := (u1j , . . . , unj)
T ∈ Rn+, wj := (w1j , . . . , wnj)

T ∈
Rn+ and aj , bj , cj ∈ R++, for all j = 1, . . . ,m. Denote M̄ as the Euclidean space Rn
with the usual metric. The function f is in general non-convex and its gradient is non-
Lipschitz in M̄. Endowing Rn++ with the new Riemannian metric 〈u, v〉 := uTG(x)v,
where u, v ∈ TxM and G(x) is the n× n diagonal matrix

G(x) := diag
(
x−2

1 , x−2
2 , . . . , x−2

n

)
,

we obtain the Riemannian manifold M := (Rn++, G). Since ϕ : M̄ →M defined by

ϕ(z1, . . . , zn) = (ez1 , . . . , ezn) , (30)

is an isometry, then M is complete and has constant seccional curvature K = 0. The
function gj : M̄ → R defined by

gj(z) := (fj ◦ ϕ)(z) = aj ln
(
eu

T
j z + bj

)
− wTj z + cjz

T z, z := (z1, . . . , zn)T ∈ M̄,

is convex and its gradient is Lipschitz in M̄ with constant Lj ≤ aju
T
j uj/bj + 2cj.

Thus, Theorem 27 and Theorem 25 imply, respectively, that fj is also convex and has
gradient Lipschitz in M with constant Lj. Therefore, the vectorial function F (x) =
(f1(x), . . . , fm(x)) is convex and Definition 4 implies that ∇F is componentwise Lip-
schitz continuous with constant L = max{L1, . . . , Lm}. The gradient of fj is given
by

grad fj(x) = diag(x)2f ′j(x), x ∈M

where diag(x) := diag(x1, . . . , xn) and f ′j is the usual derivative. Using the isometry
(30) Proposition 26 implies that the exponential map in M, expx : TxM→M, is given
by expx(v) = ϕ(ϕ−1(x) + dϕ−1(x)v). Since ϕ−1(x) = (lnx1, . . . , lnxn) and dϕ−1(x)v =
(x−1

1 v1, . . . , x
−1
n vn), where v = (v1, . . . , vn), we have

expx(v) =
(
x1e

v1
x1 , . . . , xne

vn
xn

)
, v := (v1, . . . , vn) ∈ TxM≡ Rn.

5 Numerical experiments

In order to illustrate the applicability of our proposal, we implemented Algorithm 1 with
the Armijo-type stepsize and tested it in the functions of the examples in Section 4.
Without attempting to go into details, we mention that the Armijo-type line search
sketched out in Strategy 3 was coded based on (quadratic) polynomial interpolations
of the coordinate functions. We refer the reader to [46] for a careful discussion about
line search strategies for vector optimization problems. We set δ = 10−4, tmin = 10−2,
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tmax = 102, ω1 = 0.05, and ω2 = 0.95. Given a Riemannian manifold M, the steepest
descent direction vp at a non-critical point p ∈M as in (4) can be calculated by solving
for λ ∈ R and u ∈ TpM the following differentiable problem

Minimize λ+
1

2
〈u, u〉

subject to 〈grad fi(p), u〉 ≤ λ, i = 1, . . . ,m,
(31)

which is a convex quadratic problem with linear inequality constraints, see [8]. In
our implementation, for calculating vp, we solve problem (31) using Algencan [47], an
augmented Lagrangian code for general nonlinear programming.

We stopped the execution of the algorithm at pk declaring convergence if

maxi∈I 〈grad fi(pk), vk〉+
1

2
‖vk‖2 ≥ −5× eps1/2,

where I = {1, . . . ,m}, and eps denotes the machine precision given. In our experiments
we used eps = 2−52 ≈ 2.22 × 10−16. We point out that this convergence criterion was
proposed in the numerical tests of [48] and also used in [1, 16]. The maximum number
of allowed iterations was set to 10000. Codes are written in double precision Fortran 90
and are freely available at https://orizon.ime.ufg.br/.

5.1 Rosenbrock’s Problem

We start the numerical experiments by verifying the practical behavior of Algorithm 1
in a small instance of the Rosenbrock’s problem given by the functions in Example 28.
We considered n = 1, m = 2 in (28), and set F (x) = (f1(x), f2(x)) where

f1(x1, x2) = 100
(
x2

1 − x2

)2
+ (x1 − 1)2 , (32)

f2(x1, x2) = 100
(
x2

1 − x2

)2
+ (x1 − 2)2 . (33)

Functions f1 and f2 have global minimizers at x∗ = (1, 1) and x̂ = (2, 4), respectively.
Note that f1(x∗) = f2(x̂) = 0 and f1(x̂) = f2(x∗) = 1. Figure 1(a) shows a represen-
tation of the image set of F (x) around the Pareto front, obtained by discretizing the
square [−5, 5] × [−5, 5] by a fine grid and plotting all the image points. We run the
algorithm 1000 times using starting points from a uniform random distribution belong-
ing to (−5, 5)× (−5, 5). In all instances, the Algorithm 1 stopped at a point satisfying
the convergence criterion. Figure 1(b) shows the image set of all final iterates. Thus,
given a reasonable number of starting points, Algorithm 1 was able to estimate the
Pareto front of the considered Rosenbrock’s problem. The value space generated by
the Riemannian gradient method using others 200 random starting points with image
belonging to the box (0, 4)× (0, 4) can be seen in Figure 2(a). A full point represents a
final iterate whereas the beginning of a straight segment represents the corresponding
starting point.

For comparative purposes, we implemented and tested the Euclidean gradient method
for minimizing (32)–(33). In summary, the Euclidean method corresponds to Algo-
rithm 1 with the usual inner product and the exponential map given by expx(v) = x+v.
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Figure 1: (a): Image set of the Rosenbrock’s problem around its Pareto front; (b) value
space of Rosenbrock’s problem for 1000 random starting points belonging to (−5, 5)×
(−5, 5).

We point out that an equivalent Armijo-type line search employed in the Riemannian
case was coded in the Euclidean algorithm. We also run the Euclidean algorithm using
the same 1000 starting points belonging to (−5, 5) × (−5, 5) considered for the Rie-
mannian algorithm. For each method, Table 1 reports the percentages of runs that
has reached a critical point (%) and, for the successful runs, the median of number of
iterations (it), the median of functions evaluations (evalf), and the median of gradient
evaluations (evalg). Thus, the reported data in Table 1 represents a typical run of the
Riemannian and the Euclidean algorithms. It is worth noting that we considered each
evaluation of a coordinate function (resp. gradient) in the calculation of evalf (resp.
evalg). Note that the number of steepest descent direction calculations is equal to the
number of iterations.

% it evalf evalg

Riemannian method 100.0 5.0 49.0 12.0

Euclidean method 95.1 1629.0 5721.0 3260.0

Table 1: Performance of the Riemannian and Euclidean gradient methods in the Rosen-
brock’s problem.

As can be seen in Table 1, in the considered Rosenbrock’s problem, the Riemannian
algorithm is much superior to the Euclidean one. The introduction of a suitable metric
that makes F convex with componentwise Lipschitz continuous Jacobian enabled a
huge reduction in computational cost to solve the problem. Figure 2(b) shows a typical
behavior of the methods on the Rosenbrock’s problem (32)–(33). For each method, we
plotted the image set of the generated sequence for the particular case where the starting
point is (0.5, 0.2). The convergence criterion was satisfied with 25 and 1585 iterations
for the Riemannian and Euclidean gradient methods, respectively. Due to the small
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steps sizes performed by the Euclidean method (typically of the order of 10−3), the
corresponding path illustrated in the Figure 2(b) appears to be a continuous segment.
In its turn, the Riemannian method quickly approaches the Pareto front.
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Figure 2: (a) Value space of Rosenbrock’s problem for 200 starting points with image
belonging to the box (0, 4) × (0, 4); (b) a typical behavior of the Riemannian and the
Euclidean gradient methods on the Rosenbrock’s problem.

5.2 Example in the Positive Orthant

Now we consider the application of Algorithm 1 for minimizing the vector function
F (x) = (f1(x), . . . , fm(x)) where fj(x) is given by (29). Note that for the Rieman-
nian manifold M = (Rn++, G) and x ∈ Rn++, the tangent space TxM corresponds to
Rn. Thus, problem (31) to calculate vx is directly posed as a quadratic programming
problem.

Since in the previous section we solved only a small Rosenbrock’s problem, we now
consider larger instances of the problem related to Example 29. First, we kept the
number of objectives equal to two and varied the dimension of the space assigning the
following values: n = 10, 100, 400, and 1000. In the second set of tests, we set n = 100
and varied the number of objectives taking m = 10, 20, 100, and 200. All the parameters
of each function fj in (29) were random generated belonging to (0, 1). Each problem
instance was solved 20 times using starting points from a uniform random distribution
inside the box (0, 10)n. The results in Table 2 are given in the same form as Table 1.

The highlight of Table 2 is that Algorithm 1 was robust with respect to the dimension
and to the number of objectives, which is consistent with the theoretical results. The
results of the present section suggest that Algorithm 1 is potentially able to solve large
problems. Surprisingly, for the first set of problems, a fewer number of function/gradient
evaluations were required for the case where n = 1000 compared to smaller instances of
the problem.
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n m % it evalf evalg

10 2 100.0 26.5 117.5 55.0
100 2 100.0 71.5 220.0 145.0
400 2 100.0 273.0 622.0 548.0
1000 2 100.0 17.0 104.0 36.0

(a)

n m % it evalf evalg

100 10 100.0 33.5 592.5 345.0
100 20 100.0 34.0 1039.5 700.0
100 100 100.0 24.5 3251.5 2550.0
100 200 100.0 36.5 8864.0 7500.0

(b)

Table 2: Performance of the Riemannian gradient method related to Example 29 vary-
ing: (a) the dimension of the space; (b) the number of objectives.

5.3 Example in the Cone of Symmetric Positive Definite Matrices

Let M be the Riemannian manifold (Pn++, 〈·, ·〉), where the inner product is defined
as in Example 22. For X ∈ Pn++, the tangent space TXM corresponds to the set of
the symmetric matrices Pn. In our implementation, in order to compute the steepest
descent direction, in addition to λ, the unknowns of problem (31) are the (n2 + n)/2
entries of the lower triangular part of the symmetric matrix u.

Given X ∈ Pn++ and V ∈ Pn, direct calculations shows that the exponential map in

(26) can be rewritten as expX(V ) = XeX
−1V . For computing the inverse of matrix X,

we used the LAPACK routine dpotri which uses the Cholesky factorization of X. For
computing matrix exponentials, we used dgpadm routine of EXPOKIT package [49]. It
should be noted that dpotri and dgpadm are dense routines.

We considered bicriteria and three-criteria problem instances related to Example 22.
The parameters of function (25) were randomly generated belonging to (0, 1). For each
instance, we run the Riemannian gradient method 20 times using random starting points
with eigenvalues belonging to the interval (0, 100). The results in Table 3 show that
Algorithm 1 solved all the instances with a moderate computational effort. It is worth
mentioning that in a typical iteration, the first trial step size of Strategy 3 defined by

t̂k0 = max{tmin,min{t̄k0 , tmax}}, t̄k0 =

{
1/ ‖v0‖ , if k = 0,

tk−1 ‖vk−1‖2 / ‖vk‖2 , if k ≥ 1,
(34)

satisfies the sufficient descent condition (11). Indeed, as it can be seen Table 3, the values
reported in evalf columns are slightly greater than the corresponding number of itera-
tions times the number of objectives m. We observe that the choice (34) corresponds to
the safeguarded Shanno and Phua [50] recommendation and was first proposed in the
multiobjective optimization setting in [1].

Finally, we report that Algorithm 1 converges with a single iteration when applied
to instances of Example 23. The considered metric makes it possible to explore the
structure of the problem turning it into a trivial problem from the Riemannian perspec-
tive.

6 Conclusions

In this paper, the behavior of the steepest descent method for multiobjective optimiza-
tion on Riemannian manifolds with lower bounded sectional curvature is analyzed. It
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n m % it evalf evalg

5 2 100.0 8.0 26.5 18.0
10 2 100.0 13.0 38.5 28.0
20 2 100.0 18.0 49.0 38.0
50 2 100.0 27.0 64.0 56.0

(a)

n m % it evalf evalg

5 3 100.0 7.0 28.5 24.0
10 3 100.0 12.0 45.5 39.0
20 3 100.0 18.0 68.0 57.0
50 3 100.0 28.0 91.0 87.0

(b)

Table 3: Performance of the Riemannian gradient method related to Example 22 for:
(a) bicriteria problems; (b) three-criteria problems.

would be interesting to study stochastic versions of this method. An interesting ques-
tion to be also investigated is the extension and analysis of subgradient method in this
new setting.
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