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Abstract

We consider a stylized model for a power network with distributed local power

generation and storage. This system is modeled as a network connection of a

large number of nodes, where each node is characterized by a local electricity

consumption, has a local electricity production (e.g. photovoltaic panels), and

manages a local storage device. Depending on its instantaneous consumption

and production rate as well as its storage management decision, each node may

either buy or sell electricity, impacting the electricity spot price. The objective

at each node is to minimize energy and storage costs by optimally controlling

the storage device. In a non-cooperative game setting, we are led to the analysis

of a non-zero sum stochastic game with N players where the interaction takes

place through the spot price mechanism. For an infinite number of agents, our

model corresponds to an Extended Mean-Field Game. We are able to compare

this solution to the optimal strategy of a central planner and in a linear quadratic

setting, we obtain and explicit solution to the Extended Mean-Field Game and we

show that it provides an approximate Nash-equilibrium for N -player game.

Keywords: smart-grid, distributed generation, stochastic renewable generation,

optimal storage, stochastic control, extended mean-field games

1 Introduction

Until the late 90’s, the power system was characterized by predictable supply insured
by massive vertically-integrated utilities which assumed the three major services: gen-
eration, transmission and distribution. Since then, critical changes have been occurring,
and the centralized and vertically-integrated scheme is giving way to a new scheme where
small-scale distributed generation and storage have an important weight [13]. Indeed,
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technological innovation and environmental concerns triggered and are still boosting
the integration of intermittent renewable energy, part of which is provided by rela-
tively small and geographically distributed generation. The fast growing deployment
of decentralized small scale power generation is aided by the simultaneous evolution of
local storage technologies and its complementary deployment. This transition calls for
in-depth re-engineering of distribution networks at various levels, including tariff struc-
tures. A growing literature is interested in distributed storage management and the
analysis of its development within the system. In particular, mean field games (MFG)
approach has been already used by [11] who analyze a system with controlled electrical
vehicles and by [12] with local batteries. These two papers deal with numerical anal-
ysis of the corresponding MFG without providing the existence and uniqueness of the
optimal control results.

Our Mean Field Game model for a power network with distributed storage
and generation. The aim of a our paper is to provide a stylized quantitative model
for a power system with distributed local energy generation and storage where some
questions arising in this power grid can be tractably analyzed. This system is modeled
as a network connecting a large number of nodes. Each node has a local electricity
consumption, a local electricity production (e.g. photovoltaic panels), and manages a
local storage device. In our model each node is characterized by two state variables:
the local net production Qt and the battery level St, and a control variable: the storage
action αt. At each moment, Qt − αt can be either positive or negative ; if positive,
respectively negative, it corresponds to electricity that the node sells to, resp. buys
from, the grid at the spot price. We consider that objective of each node is to minimize
its own cost of electricity consumption by controlling the storage device. As in [11] or
[12], we assume that the spot price level reflects the instantaneous global consumption,
hence, it depends on the strategies of the nodes. In a non-cooperative game setting,
we are led to the analysis of a non-zero sum stochastic game with N players and to
the search of Nash equilibria. By making the hypothesis that N goes to infinity, we
rely on a Mean Field Game (MFG) approach, more precisely we formulate and solve an
Extended Mean Field Game (EMFG) with common noise.

Literature review for MFG and FBSDE. First we mention that mean field game
theory was introduced by the parallel works of Huang and Malhame [17, 16] and of
Lasry and Lions [18, 19], see the notes of Cardaliaguet [3] based on the lectures of P.-L.
Lions at the Collège of France [22], and the recent the book of Carmona and Delarue
[8]. Carmona, Delarue, and Lacker [9] have developed a probabilistic approach based
on a stochastic maximum principle for a representative player and use a fixed point
argument to find a mean field Nash equilibrium. A related but distinct concept is that
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of mean field type control. In this case, the goal is to assign a strategy to all players at
once, such that the resulting crowd behavior is optimal with respect to costs imposed
on a central planner. For a comparison of mean field games and mean field type control,
see the book of Bensoussan, Frehse, and Yam [1] (see also [2]) as well as the article by
Carmona, Delarue, and Lachapelle [7]. A key reference is the work of Carmona and
Delarue [6], which characterizes solutions to the mean field type control problem in
terms of a stochastic maximum principle for McKean-Vlasov type dynamics (see also
[9], [10]).
Conceptually, mean field type control (MFC) is different from the mean field game
(MFG), and although in general an optimal control on MFC is not an equilibrium
strategy on MFG, nevertheless Lasry and Lions in [20] have pointed out that in many
cases a mean field Nash equilibrium is also the solution to an optimal control problem.
The work of Graber [14] also have highlighted this point of view. Motivated by economic
examples, he reformulated the Nash equilibrium for MFG as an optimal control problem.
Therefore, he has studied the mean field type control problem associated to the MFG,
even though, a priori, he was interested in mean field games. The present work also
follows this point of view.

Main contributions. A primary contribution of this paper is that the EMFG ap-
proach provides an analytically and numerically tractable setting to assess questions
related to the distributed generation and storage. Under proper conditions, the EMFG
we associate to this power network game is proven to admit a unique solution which can
be characterized though solving an associated Forward Backward Stochastic Differential
Equations (FBSDE). In the particular case where the cost structure is quadratic and
the pricing rule is linear, the FBSDE which characterizes the solution of the EMFG can
even be solved explicitly. This provides a quite tractable and efficient setting to analyze
numerically various questions arising in this power grid. For example, our model gives
indications to the question on how decentralized batteries could spread, be managed and
how this will impact the spot price depending on the electricity tariff structure. Our
model also points out how characteristics of the prosumers’ consumptions/productions
such as their seasonal pattern and their volatility change the way they manage a storage.
To our knowledge, only the paper by [4] also provides explicit solution for an EMFG
applied to optimal liquidation of a portfolio. We refer the reader to [5] for general dis-
cussion on the probabilistic approach for MFG.
A secondary, yet important finding, is that our EMFG can be profitably compared to
a suitable Mean Field Type Control (MFC) problem whose solution can be interpreted
as the optimal strategy of a central planner who coordinates the storage actions at the
nodes. Therefore, our model gives clues to an aggregator on how to manage a collection
of consumers in a decentralized way.
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Structure of the paper. This paper is organized as follows. In Section 2 we introduce
the stylized model for the power network, we define the associated N -players Nash
Game as well as the problem of a central planner who aims to optimally coordinate the
storage in the nodes. In Section 3 we provide the EMFG approximation, characterize the
solution of this EMFG and show how it compares to the solution of the MFC problem
related to the central planner. In Section 4 we provide and discuss the explicit solution
in the particular case where the cost structure is quadratic and the pricing rule is linear.
Finally, in Section 5 a numerical case of study is detailed: our model is applied to the
case where the network is composed by two types of agents: group 1 of traditional
consumers with no local production nor storage, and group 2 of prosumers with local
production and storage. Both the EMFG and central planner strategies are analyzed,
compared and commented.

2 The power grid model

We consider a stylized model for a power grid with distributed local energy generation
and storage. The grid connects N nodes indexed by i = 1, · · · , N . Each node is
characterized by two state variables: the local net power production Qit which represents
the local power production minus the local power consumption at node i, and the storage
level Sit which represents the total energy available in the storage device. We assume
that the nodes forming this grid can be partitioned in Γ different groups: the nodes in
the same group γ share same characteristics of local net power production and storage,
yet these characteristics vary from one group to the other.
We denote by Nγ the number of nodes in group γ, so that N =

∑Γ
γ=1Nγ , and let

πγ = Nγ/N be the ratio of the population size of region γ to the whole population. We
shall abusively write i ∈ γ to signify that the node i is in region γ.

The grid also connects a group, indexed by 0, which is characterized by one state
variable, its local net power production Q0

t , and which does not possess any storage.
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Power Grid

Rest of the

world Q0

Region 1

node 1
S1 | Q1

node 2
S2 | Q2

node i
Si | Qi

node j
Sj | Qj

node k
Sk | Qk

node N1

SN1 | QN1

Region 2

node 1
SN1+1 |
QN1+1

node 2
SN1+2 |
QN1+2

node i
SN1+i |
QN1+i

node N2

S2,N1+N2 |
Q2,N1+N2

Remark 2.1 (Partitioning of the nodes) Such a partitioning of the nodes is rele-
vant for the modelling and analysis of various situations. For instance, in Section 5 we
consider a grid with two types of agents, group 1 consists of traditional consumers with
no local production nor storage, and group 2 consists of prosumers with local produc-
tion and storage. We may also consider a grid with Γ different geographical regions,
each region beeing characterized by a specific mode of local power production driven by
example by specific meteorological conditions etc.

In order to model the dynamics of the state variables, we consider a complete proba-
bility space (Ω,F ,P) on which are defined independent Brownian motionsB0, B1, · · · , BN .
We considerN independent identically distributed (i.i.d.) random variables xi0 = (si0, q

i
0)

which are independent of B0 and Bi. We denote by IF = {Ft} the filtration defined by
Ft = σ((si0, q

0
0 , q

i
0), B0

s , B
i
s, i = 1, · · ·N, s ≤ t}, and by IF 0 = {F0

t } the filtration gener-
ated by B0 i.e. F0

t = σ(B0
s , s ≤ t}. We denote by A the set of IF -adapted real-valued

processes a = {at} such that E
[∫ T

0
|au|2du

]
<∞.

We assume that at node i in the region γ, the battery level is controlled through a
storage action αγ,i ∈ A according to

Sit = si0 +

∫ t

0

αisds,
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and that, if the node i is in the region γ, then the net power production is given by

dQit = µγ(t, Qit)dt+ σγ(t, Qit)dB
i
t + σγ0(t, Qit)dB

0
t , Qi0 = qi0.

The net injection of the node i is

Qit − αit.

It can be either positive or negative. If positive then it corresponds to electricity being
sold from the node i to the grid ; if negative, then it corresponds to electricity being
bought by the node i from the grid.
The net injection of the rest of the world is given by

dQ0
t = µ0(t, Q0

t )dt+ σ0(t, Q0
t )dB

0
t , Q0

0 = q0
0 .

In our model B0
t represents a common signal which affects the energy demand of the

whole grid. Then for each i, σγ0 : IR → IR is a given function which allows to model
how the node i of region γ is affected by the common signal B0

t . We assume that the
rest of the world is only affected by this common signal B0

t .

Remark 2.2 (Constraints on the storage) In our model we do not enforce con-
straints on the storage level nor on the injection/withdrawal rates. Indeed, we give
priority to finding explicit solutions to our problem in order to analyse the qualitative
behavior of the system. In the numerical examples we considered we were able to ob-
tain reasonable interpretations and results despite this limitation on the modeling of
the storages.

2.1 Electricity spot price

We make the assumption that the electricity price per Watt-hour depends on the in-
stantaneous demand. When the strategy α = (α1, · · · , αN ) ∈ AN is implemented the
spot price is given by

PN,αt = p

(
−Q0

t −
N∑
i=1

η(Qit − αit)

)
,

where p(·) is the exogeneous inverse demand function for electricity, and η is a scaling
parameter which weights the contribution of each individual node i to the whole system.
We model a grid with a large number of ‘small’ nodes i, hence we shall be considering
the limit as N → +∞ and η → 0. Here we assume that

η = 1/N

Hence the spot price depends on the averaged net injections 1
N

∑N
i=1(Qit − αit)

PN,αt = p

(
−Q0

t −
N∑
i=1

1

N
(Qit − αit)

)
.
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Assumption 2.1 The function p(·) is assumed to be strictly increasing.

Remark 2.3 The fact that the spot price depends on the averaged net injections
1
N

∑N
i=1(Qit−αit) is the rationale for our Extended Mean Field Game (EMFG) approx-

imation developed in Section 3. Recall that πγ = Nγ/N and notice that the electricity
price can be expressed as

PN,αt = p

−Q0
t −

Γ∑
γ=1

πγ
∑
i∈γ

1

Nγ
(Qit − αit)

 . (2.1)

At a “macroscopic level’, each region γ influences the price through the average net
injection

∑
i∈γ

1
Nγ

(Qit − αit) modulated by the ratio πγ = Nγ/N .

2.2 Cost functions

We consider a finite time horizon T > 0. When the control action α = (α1, · · · , αN ) is
implemented, the cost incurred at the node i in the region γ = 1, · · · , N breaks down
into three components : a volumetric charge, a demand charge, and a storage cost. The
first two components correspond to the electricity bill. Indeed, the consumer’s bill is
commonly the sum of this two components: one proportional to the energy consumed
(the volumetric charge) and one linked to the maximum power achieved (the demand
charge). For example, in France, the consumer subscribes to a maximum power level,
meaning that its instantaneous consumption is limited to this level physically by its
meter and its demand charge component increases with the level subscribed. In other
countries, such as in some states of the US, the demand charge could be based on the
highest 15-minute average usage recorded on the demand meter within a given month.
The third component of the cost corresponds to the costs of the storage (purchase,
maintenance, wear).

J i,γ,N (α) = E

[∫ T

0

PN,αt .
(
αit −Qit

)
dt

]
︸ ︷︷ ︸

volumetric charge

+E

[∫ T

0

LγT (Qit, α
i
t)dt

]
︸ ︷︷ ︸

demand charge

+ E

[∫ T

0

LS(Si,α
i

t , αit)dt+ g(Si,α
i

T )

]
︸ ︷︷ ︸

storage cost

.

where LγT , LS : IR× IR→ IR , and g : IR→ IR are continuous functions.
The term PN,αt .

(
αit −Qit

)
represents the current volumetric cost (or profit) of elec-

tricity consumed (or produced) at the spot price PN,αt . The term LγT (Qit, α
i
t) is linked

to the maximum instantaneous power. This demand charge component is designed to
reflect the fact that electricity system costs are closely related to power the system re-
quires in peak hours: production installed capacities and network are indeed designed
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to satisfy highest level of peak demand. The term LS(Si,α
i

t , αit) represents the current
storage cost and is assumed to be identical in all the regions γ. The terminal cost
g(Si,α

i

T ) typically guarantees a minimal level of storage at the end of the period.
Finally, the region 0/ rest of the world incurs only energy and transmission costs

J0,N (α) = E

[∫ T

0

−PN,αt .Q0
tdt

]
︸ ︷︷ ︸
volumetric charge

+E

[∫ T

0

L0
T (Q0

t , 0)dt

]
︸ ︷︷ ︸

demand charge

(2.2)

Assumption 2.2 The current cost (s, q, α) 7→ LγT (q, α) + LS(s, α) is strictly convex
with respect to (s, α). The terminal cost s 7→ g(s) is strictly convex with respect to s.

Assumption 2.3 There exists some constant C > 0 such that

|LγT (q, a)|+ |LS(s, a)|+ |g(s)| ≤ C
(
|q|2 + |s|2 + |a|2

)
Assumption 2.4 The functions LγT , LS and g are continuously differentiable and their
derivatives are a Lipschitz continuous functions.

Assumption 2.5 The coefficients µ0(., .) and σ0(., .) (respectively µγ(., .) and σγ(., .))
are Lipschitz continuous functions and with linear growth in the state variable.

Remark 2.4 (On the quadratic costs hypothesis) Though characterization results
of EMFG equilibria for more general cost functions exist in the literature, see e.g. [5],
very few are the cases where a tractable analysis can be worked out, especially under the
presence of common noise. In the case of quadratic cost functions, considered in Section
4 we are able to provide a quasi-explicit solution which allows to perform an easy-to-
implement numerical analysis for the system. We claim that, even under the quadratic
cost assumption, our model can to some extent accommodate for some relevant cases
of study.

2.3 Optimality criteria

Non-cooperative game point of view The aim of each node i is to minimize the
cost of electricity consumption by controlling the size and the management of the storage
device. In a non-cooperative game setting, we are led to the analysis of a non-zero sum
stochastic game with N players and to the search of Nash-equilibria:

Definition 2.1 (Nash equilibrium for the N-players game) We say that
α? = (α?,1, · · · , α?,N ) belongs to AN is a Nash-equilibrium if for each (i, γ), for any
u ∈ A:

J i,γ,N (α?,1, · · · , α?,i−1, u, α?,i+1, · · · , α?,N ) ≥ J i,γ,N (α?,1, · · · , α?,N ).
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Definition 2.2 (ε-Nash equilibrium for the N-players game) Let ε > 0. We say
that α? = (α?,1, · · · , α?,N ) ∈ AN is a ε-Nash-equilibrium if for each (i, γ), for any
u ∈ A:

J i,γ,N (α?,1, · · · , α?,i−1, u, α?,i+1, · · · , α?,N ) ≥ J i,γ,N (α?,1, · · · , α?,N )− ε.

Central Planner point of view We should also consider the power grid model
from the perspective of a central planner whose aim is to dictate a storage rule: α =

(α1, · · · , αN ) in order to minimize the egalitarian cost function between the nodes and
the rest of the world

JC,N (α) = J0,N (α) +

N∑
i=1

1

N
J i,γ,N (α).

where 1/N is the scaling parameter which weights the contribution of each individual
node to the system. The cost function JC,N (α) can also be written as

JC,N (α) = J0,N (α) +

Γ∑
γ=1

πγ
Nγ∑
i=1

1

Nγ
J i,γ,N (α).

Definition 2.3 (Optimal coordinated plan) We say that α̂ = (α̂1, · · · , α̂N ) ∈ AN

is an optimal coordinated plan if: α̂ = argminα∈AN JC,N,η(α).

3 An Extended Mean Field Game approximation

In this section we consider on the filtered probability space (Ω,F ,P, IF ), Γ Brownian
motions Bγ , γ = 1, · · · ,Γ which are mutually independent and independent from the
Brownian filtration IF 0.
We shall use the following notation. If ξ = {ξt} is an IF -adapted process, then ξ̄ = {ξ̄t}
denotes the process defined by : ξ̄t := E[ξt|F0

t ].

Let x0 = (s0, q0) = (xγ0 = (sγ0 , q
γ
0 ))1≤γ≤Γ be a random vector which is independent

from IF 0. Let Q0 and Qγ be the processes defined by

Qγ = qγ0 +

∫ t

0

µγ(u,Qγ)du+

∫ t

0

σγ(u,Qγ)dBγu +

∫ t

0

σγ,0(u,Qγ)dB0
u (3.1)

Q0
t = q0

0 +

∫ t

0

µr(u,Q0
t )du+

∫ t

0

σ0(u,Q0
u)dB0

u . (3.2)

If ν̄ = (ν̄1, · · · , ν̄Γ) is an IF 0-adapted IRΓ-valued process, we denote

P ν̄t = p

−Q0
t −

∑
γ∈Γ

πγ
(
E[Qγt |F0

t ]− ν̄γt
) . (3.3)
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Our approach is based on the following idea: for a large number of nodes N , we ap-
proximate the electricity price defined by (2.1) by the expression given by (3.3) and
we fix the mean field control represented by the process ν̄. We can then characterize
the solution and control process α and we achieve a Nash equilibrium if the conditional
expectation of the control process α is equal to ν̄. Moreover, we also fix the conditional
expectation of the net power production, but since this is uncontrolled, we can directly
set it to be E[Qγt |F0

t ].
We now consider two types of cost functions, for any control process α = (α1, · · · , αΓ)

and for each γ = 1, · · · ,Γ,

Jγx0
(αγ , ν̄) = E

∫ T

0

[
P ν̄t (αγt −Q

γ
t ) + LγT (Qγt , α

γ
t ) + LS(Sγt , α

γ
t )
]
dt+ E [g(Sγt )] (3.4)

and JCx0
(α) = E

∫ T

0

[
−P ᾱt Q0

t + L0
T (Q0

t , 0)
]
dt+

Γ∑
γ=1

πγJγx0
(αγ , ᾱt) (3.5)

where Sγt = sγ0 +

∫ t

0

αγudu. (3.6)

Definition 3.1 (Mean field Nash equilibrium) Let x0 = (s0, q0) be a random vec-
tor independent from IF 0. We say that α? = {αγ,?, 1 ≤ γ ≤ Γ} is a mean field Nash
equilibrium if, for each γ, αγ,? minimizes the function αγ 7→ Jγx0

(αγ , {E[α?t |F0
t ]}).

Definition 3.2 (Mean field optimal control) Let x0 = (s0, q0) be a random vector
independent from IF 0. We say that α̂ = {α̂γ , 1 ≤ γ ≤ Γ} is a mean field optimal control
if, α̂ minimizes the function α 7→ JCx0

(α).

Proposition 3.1 (Characterization of mean field Nash equilibria) Let ν̄ be a given
IF 0-adapted IRΓ-valued process, and x0 = (s0, q0) = {xγ0 = (sγ0 , q

γ
0 ), 1 ≤ γ ≤ Γ} be

a random vector which is independent form IF 0. Then there exists a unique control
α? = (α1,?, · · · , αΓ,?) = α?(ν̄, x0) such that: for each γ, αγ,? minimizes the function
αγ 7→ Jγx0

(αγ , ν̄). Moreover, if (Sγ,?, Qγ) is the state process corresponding to the ini-
tial data condition xγ0 , to the control αγ,?, and to the dynamic (3.6)-(3.1), then there
exists a unique adapted solution (Y γ,?, Z0,γ,?, Zγ,?) of the BSDE{

dY γ,?t = −∂sLS(Sγ,?t , αγ,?t )dt+ Z0,γ,?
t dB0

t + Zγ,?t dBγt

Y γ,?T = ∂sg(Sγ,?T )
(3.7)

satisfying the coupling condition

0 = Y γ,?t + P ν̄t + ∂αL
γ
T (Qγt , α

γ,?
t ) + ∂αLS(Sγ,?t , αγ,?t ). (3.8)

Conversely, assume that there exists (αγ,?, Sγ,?, Y γ,?, Z0,γ,?, Zγ,?) which satisfy the cou-
pling condition (3.8) as well as the FBSDE (3.6)-(3.1)-(3.7), then αγ,? is the optimal
control minimizing Jγx0

(αγ , ν̄) and Sγ,? is the optimal trajectory. If in addition:

E
[
αγ,?t |F0

t

]
= ν̄γ,0t , ∀γ = 1, · · · ,Γ, (3.9)
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then α? is a mean field Nash equilibrium.

Proof. The proof is based on the classical Pontryagin’s maximum principle where the
characterization of the Mean field Nash equilibrium is given by the associated McKean-
Vlasov FBSDEs (3.6)-(3.1)-(3.7). Fix some γ ∈ {1, · · · ,Γ}. Assumptions 2.2, 2.3 and
2.4 ensure that the function

αγ ∈ A 7→ Jγx0
(αγ , ν̄)

is a strictly convex coercive function and Gateaux-differentiable. The Gateaux derivative
of J := Jγx0

(·, ν̄) is

dβJ (αγ) = E

[∫ T

0

{
P ν̄u + ∂αL

γ
T (Qγu, α

γ
u) + ∂αLS(Sγu , α

γ
u)
}
βudu

]

+E

[∫ T

0

∂sL(Sγu , α
γ
u)S̃βudu + S̃βT∂sg(SγT )

]
,

where S̃βu is the process defined by

dS̃βu = βudu, S̃β0 = 0 .

Hence, there exists a unique optimal control αγ,? = αγ,?(ν̄, x0) which satisfies the Euler
optimality condition

0 = E

[∫ T

0

{
P ν̄u + ∂αL

γ
T (Qγu, α

γ
u) + ∂αLS(Sγu , α

γ
u)
}
βudu

]

+E

[∫ T

0

∂sL(Sγu , α
γ
u)S̃βudu + S̃βT∂sg(SγT )

]
(3.10)

Let Sγ,? be the associated optimal trajectory, and let (Y γ,?, Z0,γ,?, Zγ,?) be the solution
to the BDSE (3.7), then by Itô Lemma, for each β

E
[
S̃βTY

γ,?
T

]
= E

[∫ T

0

(
Y γ,?t βt − ∂sLS(Sγ,?t , α?t )S̃

β
t

)
dt

]
. (3.11)

Taking into account the terminal condition Y ?T = ∂sg(Sγ,?T ) and the optimality condition
(3.10), the previous equation leads to

E

[∫ T

0

(
Y γ,?u + P ν̄u + ∂αL

γ
T (Qγu, α

γ,?
u ) + ∂αLS(Sγ,?u , αγ,?u )

)
βudu

]
= 0. (3.12)

Since β is arbitrary we conclude to the coupling condition (3.8).
Conversely, if (αγ,?, Sγ,?, Y γ,?, Z0,γ,?, Zγ,?) satisfies the coupling condition (3.8) and the
FBSDE system (3.6)-(3.1)-(3.7), then we verify that the gateau derivative of Jγ,MFG

x0
(·, ν̄)

at αγ,? is equal to zero and we conclude by the strict convexity of Jγ,MFG
x0

(·, ν̄) to the
desired result. tu
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Proposition 3.2 (Characterization of mean field optimal controls) Assume that
α̂ = (α̂1, · · · , α̂Γ) minimizes the functional JCx0

(α), and denote by Ŝ = (Ŝ1, · · · , ŜΓ)

the corresponding controlled trajectory. Then there exists a unique adapted solution
(Ŷ = (Ŷ 1, · · · Ŷ Γ

t ), Ẑ = (Ẑ1, · · · , ẐΓ), Ẑ0 = (Ẑ0,1, · · · , Ẑ0,Γ)) of the BSDE{
dŶ γt = −∂sLS(Ŝγt , α̂

γ
t )dt+ Ẑ0,γ

t dB0
t + Ẑγt dB

γ
t

Ŷ γT = ∂sg(ŜγT )
(3.13)

satisfying the coupling condition: for all γ = 1, · · · ,Γ

0 = Ŷ γt + ∂αL
γ
T (Qγt , α̂

γ
t ) + ∂αLS(Ŝt, α̂

γ
t ) + P

¯̂α
t

−p′
(
−Q0

t −ΠΓ ·
(
Q̄t − ¯̂αt

)) (
−Q0

t −ΠΓ ·
(
Q̄t − ¯̂αt

))
(3.14)

with ¯̂αt = E[α̂t|F0
t ] and ΠΓ = (π1, · · · , πΓ)T .

Conversely, suppose (Ŝ, α̂, Ŷ , Ẑ0, Ẑ) is an adapted solution to the forward backward
system (3.6)-(3.13), with the coupling condition (3.14), then α̂ is the optimal control
minimizing JMFC

x0
(α) and Ŝ is the optimal trajectory.

Proof. We only prove the necessary condition of Pontryagin’s maximum principle for
optimality. The sufficient condition could be proven exactly as it is done in Proposi-
tion 3.1. Assumption 2.4 insures that the cost function α ∈ A 7→ JC

x0
(α) is Gâteaux

differentiable. with Gateaux derivative given by

dβJ
C
x0

(α) =
∑
γ

πγE

[
∂sg(SγT )S̃β

γ

T +

∫ T

0

∂sLS(Sγu , α
γ
u)Sβ

γ

u du

]

+
∑
γ

πγE

[∫ T

0

{
P ᾱu + ∂αL

γ
T (Qγ , αγt ) + ∂αLS(Sγ , αγ)

}
βγudu

]

−
∑
γ

πγE

[∫ T

0

p′
(
−Q0

u −ΠΓ ·
(
Q̄u − ᾱu

)) (
−Q0

u −ΠΓ ·
(
Q̄u − ᾱu

)}
βγudu

]
,

where S̃β
γ

u is the process defined by

dS̃β
γ

u = βγudu, S̃β
γ

0 = 0 .

Hence the optimal control α̂ satisfies the Euler optimality condition: for all β = (β1, · · · , βΓ)

0 =
∑
γ

πγE

[
∂sg(SγT )S̃β

γ

T +

∫ T

0

∂sLS(Sγu , α
γ
u)Sβ

γ

u du

]

+
∑
γ

πγE

[∫ T

0

{
P ᾱu + ∂αL

γ
T (Qγu, α

γ
u) + ∂αLS(Sγu , α

γ
u)
}
βγudu

]

−
∑
γ

πγE

[∫ T

0

{
p′
(
−Q0

u −ΠΓ ·
(
Q̄0
u − ᾱ0

u

)) (
−Q0

u −ΠΓ · (Q̄u − ᾱu
)}
βγudu

]
,
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Now, let (Ŷ , Ẑ, Ẑ0) be the unique solution to the BSDE (3.13), and let Ŝ be the state
process associated to the optimal control α̂, applying Itô formula, we obtain

∑
γ

πγE
[
Ŷ γT S̃

βγ

T

]
=

∑
γ

πγE

[∫ T

0

{
−∂sLS(Ŝu, α̂u) + βγu Ŷ

γ
u

}
du

]
.

Taking into account the terminal condition Ŷ γT = ∂sg(ŜγT ) and the Euler Optimality
condition for α̂ we get: for all β = (β1, · · · , βΓ) ∈ AΓ:

0 =
∑
γ

πγE

[∫ T

0

{
Ŷ γu + P

¯̂α
u + ∂αL

γ
T (Qγu, α̂u + ∂αLS(Ŝu, α̂u)

−p′
(
−Q0

u −ΠΓ ·
(
Q̄u − ¯̂αu

)) (
−Q0

u −ΠΓ ·
(
Q̄u − ¯̂αu

))}
βγudu

]
.

We deduce the coupling condition (3.14).

Proposition 3.3 Assume that α̂ is a mean field optimal control for the problem with
a pricing rule p. Then α̂ is a mean field Nash equilibrium for the MFG problem with
pricing rule

pMFG(x) = p(x) + xp′(x) . (3.15)

Proof. We first remark that the two McKean-Vlasov BSDEs (3.7) and (3.13) are of
the same form. Therefore we obtain the desired result by comparing the two coupling
equations (3.8) and (3.14). tu

4 The Linear quadratic case

In this section, we assume that the pricing rule is linear

p : x 7→ p0 + p1x. (4.1)

In this case, the function α 7→ JCx0
(α) is coercive and strictly convex, which implies the

existence of a unique mean field optimal control α̂.
Moreover, we assume that

LS : (s, α) 7→ A2

2
s2 +A1s+

C

2
α2

LγT : (q, α) 7→ Kγ

2
(q − α)

2

g : s 7→ B2

2

(
s− B1

B2

)2

,

where p0, p1, A1, A2, C, B1, B2 and {Kγ}Γγ=1 are some given constants with p1 > 0,
A2 > 0, A1 < 0, C < 0, B2 > 0 and Kγ ≥ 0 ∀γ.
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• In the storage cost LS : the term (C/2)α2 is the current usage cost of the battery,
it penalizes the injection and withdrawal rate, the term (A2/2)s2 is the current
cost of storage capacity and A1 < 0 is the penalized negative stock level.

• The demand charge Lγ should be linked to the maximum instantaneous power
consumed and is approximated in this setting by a quadratic expression.

• The terminal cost g(Si,α
i

T ) typically guarantees a a minimal level of storage at the
end of the period.

In this setting, the convergence of the Nash-equilibrium for the N -player game to
the EMFG can be proven. We mention that Graber [14] (Section 3, Theorem 3.7, p.15)
shows for a class of linear-quadratic extended Mean Fields an approximate Nash equi-
libria property. Same arguments apply in our case and lead to the following convergence
result.

Proposition 4.1 (ε-Nash equilibrium for the N-players game) Let αi,? is a mean
field Nash equilibrium for JMFG

xI0
. Then for each ε > 0 there exists Nε and ηε such that:

if N ≥ Nε and η ≤ ηε, then α? := (α1,?, · · · , αN,?) is an ε-Nash equilibrium for the
N-players game.

4.1 Explicit solution of the MFC

Explicit solution of the MFC can be calculated. To simplify the notations in the
following, we would write the optimal control of the MFC as simply α and not α̂ (the
same for the controlled variable Ŝ). To calculate the explicit solution, we first take
the conditional expectation with respect to the common noise of the FBSDE system
to calculate the optimal expected control ᾱ. Given this optimal expected control, the
optimal control α can be caracterised in a second step.

Let’s denote by K̂γ := C +Kγ . K̂γ is strictly positive since we assume C > 0 and
Kγ ≥ 0.

Let also define the matrixMMFC :=


K̂1 + 2p1π1 2p1π2 · · · 2p1πΓ

2p1π1 K̂2 + 2p1π2 · · · 2p1πΓ

...
. . .

...
2p1π1 2p1π2 · · · K̂Γ + 2p1πΓ

 .

Its determinant is detMFC =
∏Γ
j=1(K̂j) +

∑Γ
j=1(2p1πj)

∏
i 6=j(K̂

i). And its inverse
matrix is −M := M−1

MFC = 1
detMMFC

M̂MFC with M̂MFC the following matrix
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∏
j 6=1

K̂j +
∑
j 6=1

2p1πj
∏
i 6=1,j

K̂i −2p1π2

∏
j 6=1,2

K̂j · · · −2p1πΓ

∏
j 6=1,Γ

K̂j

−2p1π1

∏
j 6=1,2

K̂j
∏
j 6=2

K̂j +
∑
j 6=2

2p1πj
∏
i 6=2,j

K̂i · · · 2p1 − πΓ

∏
j 6=2,Γ

K̂j

...
. . .

...
−2p1π1

∏
j 6=1,Γ

K̂j · · ·
∏
j 6=Γ

K̂j +
∑
j 6=Γ

2p1πj
∏
i6=Γ,j

K̂i


.

Step 1. In this linear quadratic case, if α is an optimal coordinated plan, we deduce
from the FBSDE (3.6)-(3.13) and the coupling condition (3.14) that

dS̄t = ᾱtdt, S̄0 = 0,

dȲt = −(A2S̄t +A11Γ)dt+ Z̄0
t dB

0
t , ȲT = B2S̄T −B1,1Γ

with ᾱt = M
(
Ȳt + bt

)
,

where

bt = −
(
diag[K̂Γ] + 2p1ΠΓ

)
Q̄t − 2p1Q

0
t1Γ + p01Γ,

K̂Γ = (K̂1, · · · , K̂Γ)T and M = −M−1
MFC.

By looking at a solution of the form Ȳt − B2S̄t = φ̄(t)S̄t + ψ̄t, we are held to solve
the following system:

˙̄φ(t) + φ̄(t)Mφ̄(t) +B2Mφ̄(t) +B2φ̄(t)M +A2 +B2
2M = 0,

φ̄(T ) = 0

dψ̄t + (B2M + φ̄()t)M)ψ̄tdt+ (φ̄(t)Mbt +B2Mbt +A11Γ)dt− Z0
t dB

0
t = 0,

ψ̄T = −B11Γ.

Denote by A =

[
B2M M

−A2 −B2
2M −B2M

]
and referring to Theorem 5.3 in [23] , if

det

[
(0, IΓ) eA(T−t)

(
0

IΓ

)]
> 0

then φ̄ admits an explicit solution given by

φ̄(t) = −

[
(0, IΓ) eA(T−t)

(
0

IΓ

)]−1 [
(0, IΓ) eA(T−t)

(
IΓ

0

)]
. (4.2)

By denoting χt the solution of the following linear ordinary differential equation

dχt = (B2M + φ̄(t)M)χtdt, χ0 = IΓ,
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the solution of the linear BSDE for ψ̄ is

ψ̄t = −χ−1
t χTB11Γ + E

[∫ T

t

χ−1
t χu

(
(φ̄(uM +B2M)bu +A11Γ

)
du|F0

t

]
. (4.3)

Therefore, the optimal control ᾱ is explicitly given because let’s recall that ᾱt =

M
(
Ȳt + bt

)
and Ȳt −B2S̄t = φ̄(t)S̄t + ψ̄t.

Step 2. In this linear quadratic case, if α is an optimal coordinated plan, we deduce
from the FBSDE (3.6)-(3.13) and the coupling condition (3.14) that

dSt = αtdt, S0 = s0,

dYt = − (A2St +A11Γ) dt+ Z0
t dB

0
t + ZtdBt, YT = B2ST −B11Γ,

with αt = M̂
(
Yt + b̂t

)
,

M̂ = diag
(
−1

C +KΓ

)
and b̂t = p01Γ − 2p1(Qt0r + ΠΓ(Q̄t − ᾱ0

t ))1Γ − diag(KΓ)Qt.

By looking at a solution of the form Yt − B2St = φ(t)St + ψt, we are held to solve
the following system:

φ̇(t) + φ(t)M̂φ(t) +B2M̂φ(t) +B2φ(t)M̂ +A2 +B2
2M̂ = 0,

φ(T ) = 0

dψt + (B2M̂ + φ(t)M̂)ψtdt+ (φ(t)M̂ b̂t +B2M̂ b̂t +A11Γ)dt− Z0
t dB

0
t − ZtdBt = 0,

ψT = −B1.

As M̂ is diagonal, the solution of the Ricatti equation is explicit and by standard
computations we can get

φγ(t) +B2 = − ρ
γ

∆γ

e−ρ
γ(T−t)(−B2∆γ + ργ)− eργ(T−t)(B2∆γ + ργ)

e−ργ(T−t)(−B2∆γ + ργ) + eργ(T−t)(B2∆γ + ργ)
, (4.4)

with ργ :=
√
A2∆γ ,

∆γ :=
1

C +Kγ
.

Let’s define φγ,B2(t) := φγ(t) +B2, then the solution of the BSDE is given explicitly by

ψγt = −B1 exp

{
−
∫ T

t

∆γ
(
φγ,B2(u)

)
du

}
−

E

[∫ T

t

∆γφγ,B2(u) exp

{
−
∫ u

t

∆γφγ,B2(s)ds

}(
b̂u −

A1

∆γφγ,B2(u)

)
du|Ft

]
. (4.5)

Therefore, the optimal control α is explicitly given by these two previous equations
because let’s recall that αt = M̂

(
Yt + b̂t

)
and Yt −B2St = φ(t)St + ψt.
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4.2 Explicit solution of the MFC with 1 region

The case when the system is composed of only one region is already included in the
results of the previous section. Nevertheless, we provide the expression in the special
case of 1 region as the expressions are more simple and we can also in that case express
the controlled variable S. The system now becomes (π = 1):
Step 1. In this first step, we use the forward backward system (3.6)-(3.13) and the
coupling condition (3.14) in order to get the optimal control ᾱ and the optimal trajectory
S̄ associated to one node in this region.

dS̄t = ᾱtdt, S̄0 = 0,

dȲt = −(A2S̄t +A1)dt+ Z̄0
t dB

0
t , ȲT = B2S̄T −B1.

Rewriting the coupling condition (3.14) in the case of one region gives

Ȳt −K(Q̄t − ᾱt) + Cᾱt + P̄t − p′(−Q0
t − Q̄t + ᾱt)(−Q0

t − Q̄t + ᾱt) = 0,

where P̄t is given by

P̄t = pMFG(−Q0
t − Q̄t + ᾱt) = p0 + 2p1(−Q0

t − Q̄t + ᾱt).

So, we obtain

ᾱt = − 1

K + C + p1

(
Ȳt + p0 − p1Q

0
t − (K + p1)Q̄t

)
= −∆(Ȳt + bt)

where bt = p0 − p1Q
0
t − Q̄t(K + p1) and ∆ =

1

K + C + p1
.

By looking at solution of the form Ȳt = φ̄(t)S̄t+Ψ̄t, we are held to solve the following
system: φ̄ is the unique solution to the Riccati equation

˙̄φ−∆ φ̄2 +A2 = 0 with φ̄(T ) = B2 (4.6)

and Ψ̄ is the unique solution to the linear BSDE

dΨ̄t = ∆φ̄(t)
(
Ψ̄t + P̄t

)
dt+ Z̄0

t dB
0
t , Ψ̄T = −B1. (4.7)

Using the affine form of the solution Ȳ , the Ricatti equation (4.6) and by identification
with equation (4.7), we obtain the explicit expression of the energy price

P̄t = − A1

∆φ̄
+ bt. (4.8)

Moreover, by using the standard computations, we get from (4.6) and (4.7) the expres-
sions of φ̄ and Ψ̄ as following

φ̄(t) = − ρ
∆

e−ρ(T−t)(−B2∆ + ρ)− eρ(T−t)(B2∆ + ρ)

e−ρ(T−t)(−B2∆ + ρ) + eρ(T−t)(B2∆ + ρ)
with ρ :=

√
A2∆,
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Ψ̄t = −B1 exp

{
−
∫ T

t

∆φ̄(u)du

}
− E

[∫ T

t

∆φ̄(u) exp

{
−
∫ u

t

∆φ̄(s)ds

}
P̄udu|F0

t

]
.

It follows that S̄t satisfies

S̄t = −∆

∫ t

0

exp

{
−
∫ t

u

∆φ̄(s)ds

}(
P̄u + Ψ̄u +

A1

∆φ̄(u)

)
du.

Step 2. Once we obtain all the optimal elements of one node in the first step, we use
the FBSDE (3.6)-(3.1)-(3.7) and the coupling condition (3.8) to find the optimal objects
associated to one region containing a number of identical nodes. Thus, following the
same computations as the first step and looking for Yt = ϕ(t)St + ψt, we get:

αt = −δ
(
Yt + Pt +

A1

δφ(t)
.

)
,

where

δ =
1

C +K
and Pt = p0 − 2p1(Q0

t + Q̄t − ᾱt)−KQt −
A1

δφ(t)
.

Then the FBSDE (3.6)-(3.7) becomes

dSt = −δ
(
Yt + Pt +

A1

δφ(t)

)
dt, S0 = s0,

dYt = −(A2St +A1)dt+ Z0
t dB

0
t + ZtdBt, YT = B2ST −B1.

Again, we get explicitly in the same ways as the first step

ϕ(t) = −ρ
δ

e−ρ(T−t)(−B2δ + ρ)− eρ(T−t)(B2δ + ρ)

e−ρ(T−t)(−B2δ + ρ) + eρ(T−t)(B2δ + ρ)
with ρ :=

√
A2δ,

ψt = −B1 exp

{
−
∫ T

t

θϕ(u)du

}
− E

[∫ T

t

θϕ(u) exp

{
−
∫ u

t

θϕ(s)ds

}
Pudu|Ft

]
,

and

St = s0 exp

{
−
∫ t

0

δϕ(u)du

}
− δ

∫ t

0

exp

{
−
∫ t

u

δϕ(s)ds

}(
Pu + ψu +

A1

δφ(u)

)
du.

5 Numerical interpretations

5.1 Description of the game

The "rest of the world" region is composed by agents who are traditional consumers and
do not consider the opportunity to have storage and just face random consumption for
electricity and pay the resulting random bill for their electricity. Indeed, their consump-
tion is random but also spot prices they pay for their energy. The prosumer zones gather
prosumers who optimize the capacity size of an individual battery and their injections
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and withdrawals. Agents could be consumers, producers or alternatively both. This last
situation may represent residential consumers with photovoltaic pannels on top of their
roof. These Agents are indeed producers during daytime when the sun shines and while
they are out for work and these same Agents are consumers when they get back home
at sunset. We will consider examples with one or two prosumer zones with different
characteristics like their load demand volatility, seasonality...

Remark: possible extension of the proposed model to demand side man-
agement. Let’s point out that our model can be extended to handle demand side man-
agement with respect to little adjustments. Indeed, demand response actions mainly
consist in postponing or moving forward electricity usages that can be typically repre-
sented by a storage. Costs of storage then represent the costs of effort it takes to the
Agent to modify its electricity load demand.

The optimization horizon T of the Agents is typically several hours like a day or two.
Indeed, we have in mind that residential batteries we represent in our problem can help
to dispatch Agent’s consumption over this horizon but not longer. In the simulations,
we consider T = 1 day.

Remark: model parameters. Our examples are designed to illustrate some styl-
ized behaviors of the model and parameter values we use in the following are not based
on real figures. Extensions of our model should be considered in the future, in particular
the illustration of a real system.

The random injection of the prosumer and rest of the world zones are modeled as
the sum of a deterministic seasonal function µ and an Ornstein-Uhlenbeck (OU) process
(without independent noise for the rest of the world zone).

dQit = −aγ(Qit − µγ(t))dt+ σγdBit + σγ 0dB0
t , Qi0 = qi0, i ∈ γ,

dQ0
t = −a0(Q0

t − µ0(t))dt+ σ0dB0
t , Q0

0 = q0
0 .

We consider here only one prosumer zone, ie Γ = 1. We will consider examples in the
following where the seasonality of the rest of the world is twice in average the one of
the prosumer zones. The seasonality µ is a simple cosine function which is a proxy for
the peak and off-peak consumption of residential Agents. To summarize, the seasonal
component of the consumption are given for each date t expressed in day by:

µ0(t) = 2 cos(4πt− π/2)− 3 and µγ(t) = µ0(t)/2.

The other parameters of the model, if not stated otherwise, are in the following of the
analysis: a0 = aγ = 1, σγ = σ0 = 0.8 , σγ,0 = 0.3, p0 = 5, p1 = 5, A2 = 250, A1 = −15,
C = 5, K = 10, B2 = 5000 and B1 = −0.12B2.
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Next figure is an example of random trajectories of the consumptions of several Agents
with corresponding spot prices driven by linear pricing rule 4.1. It happens that con-
sumption can be negative which means that the Agents are producing electricity at
that particular time. In the meanwhile spot prices can be negative which is an observed
feature of electricity spot price which typically occurs when the residual consumption
(consumption minus wind/solar productions) is very low, see for example [21].

Figure 1: Agent’s consumption (upper figure) and corresponding spot price (low figure)
with average prices (wide black line) for several simulations, T = 1 day.

5.2 Management of the storage with respect to the bill structure
and the impact of Agents on spot price

To have a storage enables Agents to influence two part of their electricity bill:

• to reduce the cost of the volumetric part of their electricity bill by reporting
their consumption/production when spot prices are low/high which also means
time-arbitraging spot. By doing so, they have a smoothing impact on spot prices:
their peak consumption is shifted during low global demand period whereas their
off-peak demand is shifted during high global consumption period. This impacts
directly the other population who also pays their volumetric part at the spot price.

• to reduce the cost of their capacity charge by limiting their maximum load
demand. In general, this has less influence on the other consumer, ie. the rest of
the world, as this smoothes less spot prices.

Several factors imply that Agents are going to use their storage rather to favor one
reduction or the other:
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• The influence of the Agent’s consumption on the spot price: the influence
of the Agent’s consumption is measured by two factors. First of all is the individual
impact of the Agents linked to the size of the region he belongs to with respect to
others (represented by parameter πi). The second factor is the price differential
between peak and off-peak period linked in our model to the global influence of
the electricity consumption of the whole system over the spot price represented
by parameter p1. Small dissemination of storage in the system (low πi) and/or
large peak/off-peak spot price differential (high p1) favor spot arbitrage and the
willingness by the Agent to use their storage to reduce the cost of their volumetric
part. Indeed, high πi which means lots of storage on the sytem will diminish
the interest of storage to make spot arbitrage because for example the individual
Agent who decides to store to benefit from low spot price is also imitated by many
others which has for consequence to increase spot price. On the contrary, low p1

implies that the seasonality of spot price is less and automatically reduces the
peak/off-peak differential.

• The bill structure: depending on the proportional weight of the volumetric
part of the bill (PN,αt

(
Qit − αit

)
) compared to the demand charge part of the bill

(K
γ

2 |Q
i
t − αit|2), the Agents manage their storage differently. If bills are driven

mainly by the demand charge, ie high K, the Agents use their storage so that
they smooth the seasonality of their consumption and even obtain a residual load
−Qit + αit nearly constant and as close as possible to the average of the load −Qit
over the period.

Let’s illustrate these conclusions by numerical examples. First, we modeled the rest
of the world and the prosumer zones to be equivalent in terms of consumption but we
suppose that the prosumers’ zone has no influence over the spot price compared
to the traditional consumers zone. It means that even if the number of prosumers is
non negligible (can even be approximated as being infinite), their number compared to
traditional consumers is low. This should correspond to a situation where residential
storages have being developed but are still an exception in the population. Fig. 1 shows
one simulation of spot price and the consumption −Qi of the prosumers before they
consider using their storage. The optimized way to used their storage is, as expected,
to store when prices are low and to withdraw when prices are high as shown in Fig. 2
on one simulation of spot and Agents’ consumption.

Let’s point out that the storage curves are almost always positive. Negative values do
occur but do not disrupt interpretations we can deduce from the model. Indeed, these
negative value may be thought as the necessity to consider an energy reserve in the
storage: the storage in normal mode is always operated above an energy reserve which
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may be necessary to use for some particular consumption/storage level occurrences.

Figure 2: One simulation of spot price (upper graph), prosumers’ consumption Qi

(middle graph), prosumer’s net consumptionQi−αi (lower middle graph) and prosumer’
storage level (lower graph) for every prosumers.

As expected, the resulting consumption that prosumers are adressing to the network
is therefore a mirror of their initial ones as shown in Fig. 2 (compare the two middle
graphics). The storage is used such that Agents are reporting their high consumption
when prices are low and are consuming less when prices are high. In addition, their net
load demand −Qi+αi is smoother compared to original consumption −Qi. To have lo-
cal storage enable to reduce the maximum instantaneous power consumption in average
by 21% for every prosumers and reduces the electricity bill of prosumers by more than
13% (the total reduction after including storage costs is only 7%). This is summarized
in the following table which indicates the repartition of the bill between the volumetric
part and the demand charge part and the reduction on both parts implied by having a
local storage.

electricity bill reduction implied by battery

volumetric charge 76% 21%

demand charge 24% 8%

prosumers - battery owners

Let’s now study the case when the prosumer zone has now equal influence on
the spot price as the rest of the world, which means that batteries would have spread
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among the population in such a way that battery owners and non-battery owners are
equally distributed among the total population. In this case, the benefit of having a
local battery is as expected slightly lower. Indeed, to postpone a large consumption
when price are lower is less efficient because every prosumers do the same and as such
make the spot price increase. We now observe the following impacts (after having
modified spot price parameter p1 such that the average spot price remains the same as
the previous one).

• The spot price are smoothed (maximum prices decrease whereas minimum prices
increase) and their volatility decreases (see upper graph of fig. 3). This smoothing
benefits to non-storer zone, indeed the spot price diminishes when their consump-
tion is high and spot price increases when their consumption is low which has a
lower impact on their bill. The "rest of the world" bill has diminished by 5 %.

• It is not optimal, contrary to previous example, to completely flip the maximum
and minimum consumption using the battery (see middle and lower graph of fig.
3), as such the reduction of the electricity bill on the volumetric charge is lower
than in the previous case when the influence on the spot price of prosumers was
very low,

• The prosumers make more effort to gain on their demand charge part of their bill:
they diminish their maximum consumption more (30% reduction compared to 21
% reduction when they have no influence on the spot price) because their main
interest is no more spot arbitrage. The impact on the prosumer’s bill is given in
the following table.

• The optimal battery capacity is slightly lower.

electricity bill reduction implied by battery

volumetric charge 76% 13%

demand charge 24% 16%

Impact on electricity bill for battery owners

Remark for autosufficient prosumer: we observe that a prosumer who produces
in average enough to fulfill its consumption in energy can disconnect from the system
if the gain on spot is too little.
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Figure 3: One simulation of spot price (upper graph) without battery in the sys-
tem (straight line) and with batteries (dashed line), prosumers’ original consumption
Qi (middle graph), and prosumers’ net consumption Qi − αi (lower graph) for every
prosumers.

5.3 Impact of decentralized management of batteries against
centralized management

The impact of decentralisation against centralization optimization can be measured with
the common notion in game theory of Price of Anarchy, PoA. PoA measures the ratio
of the total costs of all zones obtained with decentralized optimization (MFG optimiza-
tion) an the costs of the total costs of all zones obtained with centralized optimization
(MFC optimization)). PoA is always greater than 1.

In the example we consider, with two equivalent zones in terms of consumption
and influence on the spot price, PoA is close to 1 meaning that the impact of having
decentralized batteries in the system for the two consumer zones is not too high and
that the optimization is rather close to what would be obtained by a centralized planner.
Nevertheless, we observe some slight impacts: indeed a centralized management would
allocate cost reductions more in favor to normal consumers ("rest of the world") than
what a decentralized management does.

• A centralized planner would install slightly higher battery capacity which would
penalized a bit the battery owners zone because the cost of their battery would
increase.
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• To have bigger batteries would make the spot price smoother (see fig. 4) and
benefit the population without battery by reducing more their energy payment
(7% cost reduction compared to 5% in decentralised MFG management).

Figure 4: Average spot price over without battery in the system (straigth line), with
decentralized batteries (dashed line) and with batteries optimized by a central planner
(dotted line)

5.4 Load demand variability increases the benefit of storage

The more the volatility of the load demand, the more useful the batteries are for pro-
sumers. Indeed, when the volatility of load increases, the fraction of the bill related
to the demand charge increases. If the consumption variability is 2.5 times higher, the
battery still diminish the maximum consumption power by around 30 %, this has there-
fore a bigger impact on the bill (22% reduction to be compared to 13 % when standard
consumption variability). Of course, in order to be able to reduce the maximum ca-
pacity of the prosumer’s consumption in the same order as when the volatility of its
consumptions is 2.5 times lower, the battery capacity also increases with the variability
of consumption. To summarize, increase of load variability has two main impacts:

• increase of battery capacity of prosumers,

• a larger reduction of the electricity bill.

electricity bill reduction implied by battery

volumetric charge 67% 15%

demand charge 23% 28%

Impact on electricity bill for battery owners and system with 2.5 higher consumption
volatilities
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5.5 Example of two prosumer competing zones

Our model can deal with several prosumers’ zones. Let’s modify a bit our core example
to illustrate a competition between two zones. We consider now one prosumer zone
whose seasonal pattern of consumption is in opposition with the "rest of the world"
. This means that the prosumer peak consumption now occurs when the "rest of the
world" has its lowest consumption. Without storage, spot price pattern is still governed
by the "rest of the world" consumption seasonality (because the seasonality of "rest of
the game" is twice the one of prosumer zone as chosen in section 5.1). This induced that
the energy cost of prosumers, without storage, is now lower than in previous examples
(only 70%) because they naturally consumes when prices are the lowest.

If this prosumer zone now installs local batteries, prosumers will install lower battery
capacity than in previous examples and only fulfill the objective to diminish their de-
mand charge (indeed their consumption pattern is naturally optimal and their benefit
from spot arbitrage is then very low). By doing so, prosumers reduce their maxi-
mum consumption which occurs at off-peak and therefore reduce the off-peak spot price
slightly. This reduction of consumption is reported when their consumption is at the
lowest which also corresponds to the peak of spot prices and therefore makes the peak
spot price slightly increase. In this example, the storage management has a negative
impact for the "rest of the world population" which has its energy part of its bill slightly
increases (1% increase).

We show by numerical simulation that if the prosumer zone is now divided in two
zones, Γ = 2, of equal size: one zone with a seasonal pattern in phase with the "rest
of the world" and referred next as "in-phase" zone (studied in previous subsections)
and one in opposition to the seasonality of the "rest of the world" and referred as
"de-phase" zone (studied in above in this subsection). In that case, the "de-phase"
zone will suffer an increase of its bill after having installed batteries because the "in-
phase" has also installed batteries. By doing so, the "in-phase" zone has smooth spot
prices which is negative for "de-phase" zone. The "de-phase" zone would then lose from
battery installation in the system (whereas it is still beneficial to install batteries for
the "de-phase" zone or it would loose even more).

5.6 Conclusion of numerical tests

Examples presented in this paper are some illustrations of what the model can enable
to study. Many other experiments and tests can be conducted easily because the model
is quite generic. Let’s recall that the model can cope with quite general dynamics
for the consumptions/production and is not limited to the simple Ornstein-Uhlenbeck
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considered here. In particular, the implementation of cases calibrated on real figures
should be conducted in future research. Very recently [15] caracterised MFG with
constrained controls, their results may be applied for our class of Extended-MFG to
study how physical constraints of the storage influence numerical results.
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