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Abstract

We study the well-known minimum-energy control of the double integrator, along with the
simultaneous minimization of the total variation in the control variable. We derive the op-
timality conditions and obtain the unique optimal solution to the combined problem, where
the initial and terminal boundary points are specified. We study the problem from a multi-
objective optimal control viewpoint, constructing the Pareto front. We show that the unique
asymptotic optimal control function, for the minimization of the total variation alone, is piece-
wise constant with one switching at the midpoint of the time horizon. For any instance of the
boundary conditions of the problem, we prove that the asymptotic optimal total variation is
exactly 2/3 of the total variation of the minimum-energy control. We illustrate the results for
a particular instance of the problem and include a link to a video which animates the solutions
while moving along the Pareto front.

Key words: Optimal control, Minimum-energy control, Total variation, Multi-objective
optimal control, Pareto front.
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1 Introduction

The double integrator is a mathematical model for a point mass, typically idealizing a car in
rectilinear motion on a flat and frictionless plane as schematically illustrated in Figure 1. It
also constitutes a model for analogous rotational-mechanical and electrical systems [17]. One
should recall that a cubic curve between two oriented points, which minimizes its averaged
acceleration, or more precisely, the L2-norm of its acceleration, serves as a building block
for cubic splines [3,11]. This latter case can be represented as the energy-minimizing double
integrator.

Due to its simplicity, optimal control of the double integrator is studied virtually in every
course of lectures on optimal control theory. In the teaching of optimal control theory and its
applications, although the minimum-energy, minimum-effort and minimum-time control of
the double integrator are widely studied, minimization of total variation is not even consid-
ered, presumably because a maximum principle for the control minimizing its total variation
does not exist.

The double integrator model is so simple that an analytical solution can be worked out
easily for the problem of energy minimization. Moreover, for the case of minimum-time
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PSfrag replacements
u(t)

x1(0) = s0 x1(t) := y(t)

x2(t) := ẏ(t)

Figure 1: A simplified physical model of a car as a point mass.

control, where the control variable is bound-constrained, the optimal control can simply be
shown to be bang–bang with at most one switching, i.e., the control variable switches from
one bound to the other, and it does so at most once. The control structure can also be worked
out easily in the case of minimum-effort control, where the L1-norm of the control function
is minimized. In summary, optimal control of the double integrator yields simple but rich-
enough examples for illustrations of some key aspects of the theory of optimal control [12].

Total variation of a function can be broadly described as the total vertical distance traversed
by the graph of the function (a precise definition is to be given in Section 3.1). A small total
variation in the control function is obviously desirable, as it would make the control system
easier to design and implement, resulting in, for example, smaller or lighter motors for a
robot or a spacecraft.

Although there is a lack of theory and results for the pure minimization of total variation,
it is often imposed in addition to the minimization of another functional, for instance, energy
or duration of time. This is done in the earlier works [10, 14, 16], where the optimal control
problem is discretized directly by assuming piecewise-constant optimal control variables. This
discretization simplifies the expression for the total variation in control; however, optimality
conditions for the original (continuous-time) problem cannot be derived or verified, because
of the discretization itself.

Total variation is widely used as a regularization term in more general optimization prob-
lems such as imaging and signal processing (see [4] and the references therein). It has also
relatively recently been used as a regularization term for parameter estimation in linear
quadratic control [8]. A bound on the total variation in the control is derived for minimum-
time linear control problems in [13], although the total variation itself is not incorporated
into the minimization problem.

In the present article, in addition to the minimization of energy, we consider the min-
imization of the total variation in the control variable of the double integrator. In other
words, we aim to study simultaneous minimization of energy and total variation, giving rise
to multi-objective optimization and the study of the set of all trade-off/compromise solutions
called the Pareto front. Optimal control problems which involve total variation have not been
studied yet from the viewpoint of multi-objective optimal control.

In this paper, we use a tutorial approach. First, in Section 2, we introduce the double
integrator model as well as the problem of energy minimization as an optimal control problem.
This is a standard problem in optimal control; so, we derive the optimal solution without
going into details.

In Section 3, we define the total variation of a function and state the energy and total
variation minimization problem, by appending the total variation in control as a weighted
term to the energy functional. Next, we augment the state variable vector, so that the
problem can be rewritten and posed as an optimal control problem in standard form. We
derive optimality conditions, and discuss the problem as a multi-objective optimal control
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problem. By means of asymptotic analysis, we derive an optimal solution for the pure total
variation minimization problem. These kinds of results on total variation do not exist in the
literature.

In Section 4, via an example instance of the problem, we illustrate the results given in
Section 3. In particular, we provide, via a URL link in [7], a video illustration of the multi-
objective solutions on the Pareto front, so that evolution of the solutions as the weight of
total variation is varied can be animated and observed.

Finally, in Section 5, we offer concluding remarks and provide various relevant open prob-
lems.

2 Minimum-Energy Control

Consider the car as a point unit mass, moving on a frictionless planar ground in a fixed line
of action, as shown in Figure 1. Let the position of the car at time t be given by y(t) and the
velocity by ẏ(t) := (dy/dt)(t). By Newton’s second law of motion, ÿ(t) = u(t), where u(t)
is the summation of all the external forces applied on the car, in this case the force simply
representing the acceleration and deceleration of the car. This differential equation model is
referred to as the double integrator in system theory literature, since y(t) can be obtained by
integrating u(t) twice.

Let x1 := y and x2 := ẏ. The problem of minimizing the energy of the car, which starts at
a position x1(0) = s0 with a velocity x2(0) = v0 and finishes at the final position x1(1) = sf
with velocity x2(1) = vf , within one unit of time, can be posed as follows.

(Pe)























min
1

2

∫

1

0

u2(t) dt

subject to ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf .

Here, the functions x1 and x2 are referred to as the state variables and u the control variable.
As a first step in writing the conditions of optimality for this optimization problem, define
the Hamiltonian function H for Problem (Pe) in the usual way as

H(x1, x2, u, λ1, λ2) :=
1

2
u2 + λ1 x2 + λ2 u , (1)

where λ(t) := (λ1(t), λ2(t)) ∈ IR2 is the adjoint variable (or costate) vector such that (see [5])

λ̇1 = −∂H/∂x1 and λ̇2 = −∂H/∂x2 . (2)

The equations in (2) simply reduce to

λ1(t) = λ̄1 and λ2(t) = −λ̄1 t− c , (3)

where λ̄1 and c are real constants. By calculus of variations, or the maximum principle with
an unconstrained control variable (see [5]), if u is optimal, then

∂H/∂u = 0 , i.e., u(t) = −λ2(t) = λ̄1 t+ c . (4)

Substituting u(t) in (4) into the differential equations and solving these equations by also
utilizing the boundary conditions in Problem (Pe), one gets the analytical solution

u(t) = λ̄1 t+ c , (5)

x1(t) =
1

6
λ̄1 t

3 +
1

2
c t2 + v0 t+ s0 , (6)

x2(t) =
1

2
λ̄1 t

2 + c t+ v0 , (7)
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Figure 2: Graph of u(t) = sin t over [0, 3π/2], illustrating that TV(u) = 3.

for all t ∈ [0, 1], where

λ̄1 = −12 (sf − s0) + 6 (v0 + vf ) , (8)

c = 6 (sf − s0)− 2 (2 v0 + vf ) . (9)

We note that the position variable x1(t) of the car is a cubic polynomial of time. Therefore,
the minimum-energy control solution, despite being so simple, constitutes a building block
for the problem of finding a cubic spline interpolant passing through a given set of points.

3 Minimization of Total Variation

3.1 Total variation of a function

The total variation of a function u : [t0, tf ] → IR is defined as

TV(u) := sup
N
∑

i=1

|u(ti)− u(ti−1)| , (10)

where the supremum is taken over all partitions

t0 < t1 < · · · < tN = tf (11)

of the interval [t0, tf ] (see [9]). Here, N ∈ {1, 2, 3, . . .} is arbitrary as is the choice of the
values t1, · · · , tN−1 in [t0, tf ] which, however, must satisfy (11). The function u is said to be
of bounded variation on [t0, tf ], if TV(u) is finite. If u is absolutely continuous on [t0, tf ], in
other words, u ∈ W 1,1([t0, tf ]; IR), then

TV(u) =

∫ tf

t0

|u̇(t)| dt , (12)

where u̇ := du/dt. Practically speaking, TV(u) as given in (12) represents the total distance
traversed by the projection of the u(t) vs. t graph along the vertical u(t) axis. Figure 2
illustrates this interpretation with u(t) = sin t over [0, 3π/2], where clearly TV(u) = 3.
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3.2 Minimum-Total-Variation Control of the Double Integrator

Recall that in the case when one has Problem (Pe), minimizing only the energy, the solution
is as given in (5)–(9). So, clearly TV(u) = 6 |2 (sf − s0)− vf − v0|.

We consider optimal control problems where we aim to minimize the total variation in the
control variables in addition to the energy functional.

(Ptv)























min
1

2

∫

1

0

u2(t) dt+ α TV(u)

subject to ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf ,

where α > 0 is referred to as the weight. We assume that u is absolutely continuous on [0, 1],
in other words, u ∈ W 1,1([0, 1]). Then we define the new control variable v(t) := u̇(t) for
a.e. t ∈ [0, 1]. Using (12), Problem (Ptv) can now be reformulated by incorporating the new
variable as

(Paug)



































min
1

2

∫

1

0

(

u2(t) dt+ α |v(t)|
)

dt

subject to ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf ,

u̇(t) = v(t) , for a.e. t ∈ [0, tf ] .

In this augmented form of the problem, u becomes a new state variable.

3.3 Optimality Conditions

The Hamiltonian function for Problem (Paug) is given by

H(x1, x2, u, v, λ1, λ2, η) :=
1

2
u2 + α |v|+ λ1 x2 + λ2 u+ η v , (13)

where λ(t) = (λ1(t), λ2(t)) ∈ IR2 and η(t) ∈ IR are adjoint variables defined by (see [5])

λ̇1 := −∂H/∂x1 = 0 and λ̇2 := −∂H/∂x2 = −λ1 , (14)

η̇ := −∂H/∂u = −u− λ2 , η(0) = 0 , η(1) = 0 , (15)

In other words,

λ1(t) = λ̄1 , and λ2(t) = −λ̄1 t− c , (16)

η̇(t) = −u(t) + λ̄1 t+ c , η(0) = 0 , η(1) = 0 . (17)

where λ̄1 and c are real constants. Note that, although the expressions in (14) are respectively
the same as those in (2), the real constants λ̄1 and c in this case depend on the value of α
and so are different in general.

Next we state the maximum principle (see [15, Theorem 1.5.1]) for our setting as follows.

Maximum Principle. Suppose that x1, x2, u ∈ W 1,1([0, 1]; IR) and v ∈ L1([0, 1]; IR) solve
Problem (Paug). Then there exist functions λ1, λ2, η ∈ W 1,1(0, tf ; IR) such that
(λ1(t), λ2(t), η(t)) 6= 0, for every t ∈ [0, 1], and, in addition to the state differential equa-
tions and other constraints given in Problem (Paug) and the adjoint differential equations
in (14)–(15), the following condition holds:

v = argmin
w∈IR

H(x1, x2, u, w, λ1, λ2, η) = argmin
w∈IR

(α |w| + η w) ; for a.e. t ∈ [0, 1] . (18)
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Condition (18) implies that

v(t) =

{

0 , if |η(t)| < α ,

undetermined , if |η(t)| = α ,
(19)

for a.e. t ∈ [0, 1]. Note that |ηi(t)| > α is not allowed by the maximum principle, as otherwise
one would get v(t) = −∞.

In view of (19), when −α < η(t) < α, a.e. t ∈ [0, 1], the original control u(t) is (possibly
piecewise) constant. What if |η(t)| ≡ α over a subinterval of [0, 1]? If so, then we refer to the
optimal control in this subinterval as singular control, which we elaborate further next.

Singular control. If there exist s1 and s2 such that |η(t)| = α for every t ∈ [s1, s2] ⊂ [0, tf ]
(in fact, one has either η(t) = α or η(t) = −α for every t ∈ [s1, s2], because of the continuity
of η), then the control variable v(t) for every t ∈ [s1, s2] is said to be singular. A candidate
for a singular optimal control v(t) might be obtained by observing that, since η(t) is constant
over [s1, s2], one will have η̇(t) = η̈(t) = 0 for every t ∈ [s1, s2]. By using (17), this observation
yields

η̇(t) ≡ 0 = −u(t)− λ2(t) ,

i.e.,
u(t) = λ̄1 t+ c ,

and so
v(t) = λ̄1 ,

for all t ∈ [s1, s2].

Optimal control. With the incorporation of the singular control, and by the continuity of
the adjoint variable η, (19) can be rewritten as

v(t) =

{

0 , if |η(t)| < α ,

λ̄1 , if |η(t)| = α ,
(20)

for all t ∈ [0, 1]. Note that v(t) in (20) is piecewise-constant and so u(t) is piecewise-linear
and continuous in t. Then, by (17), η(t) is continuous and piecewise-quadratic in t. Note in
particular that, differentiating both sides of the ODE in (17), using u̇ = v and substituting
(20), one gets

η̈(t) =

{

λ̄1 , if |η(t)| < α ,

0 , if |η(t)| = α .
(21)

The expression in (21) and the boundary conditions in (17) imply that there will be at most
two junction points, 0 < t1 < t2 < 1, for η(t). Namely, either η(t) = α or η(t) = −α, for
t1 ≤ t < t2, and η(t) is quadratic in t, for 0 ≤ t < t1 and t2 ≤ t ≤ 1, with the same constant
second derivative λ̄1. In other words,

v(t) =

{

0 , if 0 ≤ t < t1 or t2 ≤ t ≤ 1 ,

λ̄1 , if t1 ≤ t < t2 .
(22)

Then from u̇ = v and continuity of u, one gets

u(t) =















ū1 , if 0 ≤ t < t1 ,

ū1 + λ̄1 (t− t1) , if t1 ≤ t < t2 ,

ū3 , if t2 ≤ t ≤ 1 .

(23)

where ū1 and ū3 are unknown constants. Subsequently, c = −λ̄1 t1 + ū1,

λ2(t) = λ̄1 (t1 − t)− ū1 ,
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and

η(t) =























1

2
λ̄1 (t

2 − 2 t1 t) , if 0 ≤ t < t1 ,

α or − α , if t1 ≤ t ≤ t2 ,

1

2
λ̄1

[

t2 + 2 t2 (1− t)− 1
]

, if t2 < t ≤ 1 .

(24)

Note that limt→t−
1

η(t) = limt→t+
2

η(t) (both equal to α or −α), which, after simple algebraic

manipulations, yields
t1 = 1− t2 . (25)

We also note that lim
t→t−

1

η(t) = −λ̄1 t
2
1
/2 = ∓α, i.e.,

λ̄1 = ±2α

t2
1

. (26)

Lemma 1 One has that 0 < t1 < 1/2 .

Proof. The proof is furnished by the fact that 0 < t1 < t2 < 1 and (25). ✷

3.4 Multi-Objective Optimal Control

Problem (Ptv), or equivalently Problem (Paug), concerns a simultaneous minimization of two
objectives, which can simply be written as

(Pmo) min
u∈U

[ϕ1(u) , ϕ2(u)] , (27)

where

ϕ1(u) :=
1

2

∫

1

0

u2(t) dt and ϕ2(u) := TV (u) . (28)

Problem (Pmo) is referred to as a multi-objective, or vector, optimal control problem, with U
representing the feasible, or admissible, set of all control functions satisfying the differential
equation constraints and the boundary conditions—see [2] and the references therein. The
set of all solutions of (27) is usually infinite, consisting of all trade-off, or Pareto, solutions.
Broadly speaking, a Pareto solution is a solution where one cannot improve the value of one
objective functional without making the other worse. The set of all Pareto solutions in the
ϕ1ϕ2-plane (or the value space) is referred to as the Pareto front of Problem (Pmo). An
example of a Pareto front is given in Figure 3(a) (see details in Section 4).

For solving (27), a typical approach is to consider a scalarization of the vector objective
and so reduce Problem (Pmo) to a single-objective optimal control problem. Note that ϕ1

and ϕ2 are convex and the constraint set represents linear differential equations and linear
boundary conditions. Therefore we can use the weighted-sum scalarization (see [2]):

(Ps1) min
u∈U

α1 ϕ1(u) + (1− α1)ϕ2(u) ,

where α1 ∈ (0, 1). Since α1 6= 0, we can define α := (1− α1)/α1 and write

(Ps2) min
u∈U

ϕ1(u) + αϕ2(u) ,

with α ∈ (0,∞). We note that Problems (Ps1) and (Ps2) are equivalent and that Prob-
lem (Ps2) is in the same form as Problem (Ptv).
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In this case, the individual functionals in (28) can be calculated using (23) and (25), in
terms of the unknown parameters t1, ū1 and ū3, as follows.

ϕ1(u) =
1

2

[

(ū21 + ū23) t1 +
1

3 λ̄1

(

ū33 − ū31
)

]

, (29)

ϕ2(u) = |ū1 − ū3| . (30)

3.5 Solution

By using (23) and the initial conditions in Problem (Ptv), and by integrating directly, one
can obtain the following expressions for the state variables x1(t) and x2(t).

x1(t) =











































1

2
ū1 t

2 + v0 t+ s0 , if 0 ≤ t < t1 ,

1

6
λ̄1(t− t1)

3 +
1

2
ū1 t

2 + v0 t+ s0 , if t1 ≤ t < t2 ,

1

6
λ̄1(t2 − t1)

3 +
1

2
ū1 t

2

2 + v0 t2 + s0

+
1

2
ū3(t− t2)

2 +

[

1

2
λ̄1(t2 − t1)

2 + ū1 t2 + v0

]

(t− t2) , if t2 ≤ t ≤ 1 ;

(31)

x2(t) =























ū1 t+ v0 , if 0 ≤ t < t1 ,

1

2
λ̄1(t− t1)

2 + ū1 t+ v0 , if t1 ≤ t < t2 ,

1

2
λ̄1(t2 − t1)

2 + ū1 t2 + v0 + ū3(t− t2) , if t2 ≤ t ≤ 1 .

(32)

Finally, writing out the terminal conditions x1(1) = 0 and x2(1) = 0 using (31) and (32),
respectively, using (25) and (34), and carrying out lengthy manipulations, we obtain the
following.

4 t31 − 3

(

2± vf + v0 + 2 (s0 − sf )

α

)

t21 + 1 = 0 (33)

λ̄1 = ±2α

t2
1

, (34)

ū1 = vf − v0 −
λ̄1

2
(1− 2 t1) , (35)

ū3 = 2 (vf − v0)− ū1 . (36)

Once t1 is determined as a solution of (33), the parameters λ̄1, ū1 and ū3 in (34)–(36),
respectively, can explicitly be found. The following lemma guides us as to which of the
signs ± (in the coefficient of the t2

1
-term) in (33) will yield a solution and that whether the

solution will be unique or not.

Lemma 2 (Existence and uniqueness of the solution of a cubic equation) Let c be
a real constant. Then the equation

4 t3 − 3 (2 + c) t2 + 1 = 0 (37)

has a unique solution for c > 0, and has no solution for c < 0, over the interval (0, 1/2).
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Proof. Let fc(t) := 4 t3 − 3 (2 + c) t2 + 1. Suppose that c = 0. Then f0(0) = 1 > 0,
f0(1) = −1 < 0 and that f ′

0
(t) = 12 t ( t−1) < 0 for all t ∈ (0, 1), implying that f(t) = 0 for a

unique t ∈ (0, 1). One can easily check that f0(pi) = 0, i = 1, 2, 3, where p1 = (1−
√
3)/2 < 0,

p2 = 1/2, p3 = (1 +
√
3)/2 > 1. We have that f ′

c(t) = 12 t (t− 1− c/2) and that

f ′
c(t)

{

< f ′
0
(t) if c > 0 ,

> f ′
0
(t) if c < 0 ,

for all t ∈ (0, 1).
(i) Suppose c > 0. Then fc(0) = 1 > 0 and fc(1/2) = 3/2 − 3 (2 + c)/4 = −3 c/4 < 0. With
f ′
c(t) < f ′

0
(t) < 0 for all t ∈ (0, 1/2), we conclude that fc(t) has a unique zero in (0, 1/2).

(ii) Suppose c < 0. Then fc(0) = 1 > 0. Since the only zero f0 has is 1/2 in the interval
[0, 1/2], and f ′

c(t) > f ′
0
(t) for all t ∈ (0, 1/2), fc has no zero in [0, 1/2]. ✷

Remark 1 Lemma 1 states that t1 ∈ (0, 1/2), and Lemma 2 implies which sign in (37) needs
to be considered in order to find a unique t1. By comparing (37) and (33), it is immediate
to see that the sign of (vf + v0 + 2 (s0 − sf )) has to be taken into account. The following
theorem provides the unique solution to Problem (Ptv), based on this observation. ✷

Theorem 1 (Solution of Problem (Ptv)) The solution to Problem (Paug) is unique and
given by the expressions for the optimal control variable in (23), and the state variables in
(31)–(32), where the parameter t1 is the solution of the cubic in (37) on the interval (0, 1/2),
with c = c̄ such that

c̄ =
|vf + v0 + 2 (s0 − sf )|

α
, (38)

the parameter λ̄1 given by

λ̄1 = sgn(c̄)
2α

t2
1

, (39)

and the parameters ū1 and ū3 given by (35)–(36). As a result, the optimal total variation is
given by

TV(u) =

∣

∣

∣

∣

v0 − vf − sgn(c̄)
4α

t2
1

(1− 2 t1)

∣

∣

∣

∣

.

Proof. By Lemma 2 with c = c̄ > 0, there exist a unique t1 ∈ (0, 1/2) which solves (37) and
satisfies the optimality condition in Lemma 1. Recall again Lemma 2 that, for c < 0, (37) has
no solution in (0, 1/2). Therefore, in (33), we use the plus sign when (vf+v0+2 (s0−sf )) > 0,
and the minus sign when (vf + v0+2 (s0 − sf )) < 0. Subsequently, this argument transforms
(33) into (37) with c = c̄. Furthermore, the ± sign in (34) is replaced by sgn(c̄) accordingly,
yielding (39). The rest of the theorem follows from direct substitutions. ✷

3.6 Asymptotic Solution (as α → ∞)

As mentioned in the Introduction, it is not possible to write down the necessary conditions of
optimality for the minimization of the total variation in the control variable alone. Neverthe-
less, an analytic solution of Problem (Ptv) can still be obtained by studying the asymptotic
behaviour of the solutions when α → ∞. In this case, Equation (33) becomes 4 t3

1
−6 t2

1
+1 = 0,

which has three real roots: 1/2 and (1±
√
3)/2. This means that, in (0, 1/2), t1 → 1/2. Then,

by (25), t2 → 1/2. Moreover, from Equation (34), λ̄1 → ±∞. However, these limit values
of t1 and λ̄1 make the expression in (35) indeterminate. Therefore, we need to write the
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asymptotic expressions for the state variables (with t1 = t2 = 1/2), in order to proceed:

x1(t) =















1

2
ū1 t

2 + v0 t+ s0 , if 0 ≤ t < 1/2 ,

1

8
ū1 +

1

2
v0 + s0 +

(

1

2
ū1 + v0

)(

t− 1

2

)

+
1

2
ū3

(

t− 1

2

)2

, if 1/2 ≤ t ≤ 1 ,

(40)

x2(t) =











ū1 t+ v0 , if 0 ≤ t < 1/2 ,

1

2
ū1 + v0 + ū3

(

t− 1

2

)

, if 1/2 ≤ t ≤ 1 .
(41)

Now we can state the result, as α → ∞, in the following theorem.

Theorem 2 (Asymptotic minimum total variation) The unique asymptotic optimal con-
trol variable u(t) of Problem (Ptv), as α → ∞, is piecewise constant with a single switching
at t = 1/2, namely

u(t) =

{

4 (sf − s0)− vf − 3 v0 , if 0 ≤ t < 1/2 ,

3 vf + v0 − 4 (sf − s0) , if 1/2 ≤ t ≤ 1 .
(42)

Consequently, the asymptotic optimal total variation is given by

TV(u) = 4 |2 (sf − s0)− vf − v0| . (43)

Proof. The boundary conditions x1(1) = sf and x2(1) = vf using (40)–(41) yield, after
manipulations,

3 ū1 + ū3 = 8 (sf − s0 − v0) ,

ū1 + ū3 = 2 (sf − s0 − v0) ,

the solution of which is ū1 = 4 (sf −s0)−vf −3 v0 and ū3 = 3 vf +v0−4 (sf −s0), as required
by (42). The switching time, t = t1 = 1/2, is found as explained in the first paragraph of
this subsection 3.6. The expression in (43) is obtained by simply substituting the solutions
for ū1 and ū3 above into TV = |ū1 − ū3|. ✷

Remark 2 Recall that when no minimization of the total variation in control is done, i.e.,
when only the energy is minimized, the total variation is TV(u) = 6 |2 (sf − s0) − vf − v0|.
It is interesting to note that the asymptotic minimum total variation in (43) is exactly 2/3
of the total variation in minimum-energy control. ✷

4 An Example

To demonstrate the results in Theorems 1 and 2, as well as illustrate what the Pareto front
looks like using the expressions in (29)–(30), we consider a particular instance when s0 = 0,
sf = 0, v0 = 1 and vf = 0. In view of the interpretation of the double integrator dynamics
provided in the Introduction, this particular instance means that the car with an initial unit
velocity is required to come to rest in the same position where it started the motion.
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Figure 3: The Pareto front and the control variable for the multi-objective problem, with s0 = 0,
sf = 0, v0 = 1 and vf = 0.

The minimum energy solution can be obtained directly, after substituting s0 = 0, sf = 0,
v0 = 1 and vf = 0 into (5)–(9), as

u(t) = 6 t− 4 ,

x1(t) = t3 − 2 t2 + t ,

x2(t) = 3 t2 − 4 t+ 1 ,

for t ∈ [0, 1]. In this case, clearly, TV(u) = 6 .

Figure 3 depicts the full Pareto front, as well as the optimal control variable for the
parameter values α = 10−6, 0.05, 0.4 and 106. In drawing the graphs, first, Theorem 1 has
been used: the unknown parameters t1, λ̄1, ū1, ū3 (and t2 = 1 − t1). Then u(t), ϕ1(u) and
ϕ2(u) have been computed as given in (23) and (29)–(30), respectively.

Using a rather “continuous” range of values of α, we have generated a movie, by using
Matlab. The movie file is called mintotalvar.avi, which can be downloaded via the URL
in Reference [7]. An instance of the movie for α = 0.589 is shown in Figure 4. For a large
number of values of α, the movie depicts/animates the Pareto front (using (29)–(30)) and
the graphs of the control and state variables (using (23) and (31)–(32)), as well as the graph
of the adjoint variable η(t) divided (or normalized) by α (using (24)). The graph of η(t)/α
in the lower-right corner reconfirms that u(t) is constant when |η(t)| < α and u(t) is linear
in t when |η(t)| = α.

As expected, reduction in total control variation is obtained as the value of α is increased,
with the trade-off that minimum energy is increased. Figure 3(b), and the movie, clearly
demonstrate that, as α gets larger, the control variable appears to become closer to a
piecewise-constant function, switching from the constant level −3 to the constant level 1,
resulting in TV(u) = 4. This reconfirms Theorem 2 as well as Remark 2.

Finally, with ū1 = −3 and ū3 = 1, the asymptotic expressions for the state variables in
(40)–(41) can be rewritten neatly as

x1(t) =











−3

2
t2 + t , if 0 ≤ t < 1/2 ,

1

2
(t− 1)2 , if 1/2 ≤ t ≤ 1 ,

(44)
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Figure 4: A snapshot of the 11th second of the multi-objective solution video
mintotalvar.avi [7], with α = 0.589.

x2(t) =

{ −3 t+ 1 , if 0 ≤ t < 1/2 ,

t− 1 , if 1/2 ≤ t ≤ 1 .
(45)

5 Conclusion and Future Work

We have derived the unique solution to the optimal control problem of simultaneous min-
imization of energy and total variation in control for the double integrator. We obtained
analytic expressions for the construction of the Pareto front. We have shown that the unique
asymptotic optimal control function, for the minimization of the total variation alone, is
piecewise constant with one switching at the midpoint of the time horizon. We computed the
two constant levels of the asymptotic control function analytically. Subsequently, we have
proved that the asymptotic optimal total variation is exactly 2/3 of the total variation of the
minimum-energy control. These results seem to be the first of their kind in the literature
concerning optimal control with minimum total variation, even for a system as simple as the
double integrator.

The minimum-energy control problem which we have also considered is a special case of
a general linear quadratic control problem. An approach similar to the one employed in
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the current paper can be employed for the more general linear quadratic control (or linear
quadratic programming) problem where one is additionally concerned with the minimization
of total variation, namely the problem

(LQPTV)























min
1

2

∫

1

0

[x(t)TQ(t)x(t) + u(t)TR(t)u(t)] dt + αTV(u)

subject to ẋ(t) = A(t)x(t) +B(t)u(t) , for all t ∈ [0, 1] ,

x(0) = x0 , x(1) = xf .

The time horizon in Problem (LQPTV) has been set to be [0, 1], but, without loss of generality,
it can be taken to be any interval [t0, tf ], with t0 and tf specified. The state variable vector
x(t) ∈ IRn and the control variable vector u(t) ∈ IRm. The time-varying matrices A : [0, 1] →
IRn×n and B : [0, 1] → IRn×m are continuous, Q : [0, 1] → IRn×n is symmetric positive definite
and continuous in t, and R : [0, 1] → IRm×m is positive definite and continuous in t. The
initial and terminal states are specified as x0 and xf , respectively. Since there are more than
just one control variable, i.e., u(t) = (ū1(t), . . . , um(t)) ∈ IRm, the total variation in (12) can
be generalized for this case as

TV(u) :=

∫

1

0

(|u̇1(t)|+ . . . + |u̇m(t)|) dt . (46)

It should be noted that the problem we have studied in the current paper fits into the above
problem description (LQPTV) with n = 2, m = 1, Q = 0 and R = 1, and the appropriate
constant system and control matrices A and B.

The general linear quadratic problem is a convex problem, so the weighted-sum scalariza-
tion can still be used (see [2, 6]) when it is combined with the minimization of total vari-
ation. However, for a generalization to nonconvex problems, a scalarization different from
the weighted-sum scalarization needs to be considered. This requires specialized numerical
techniques in obtaining a solution—see [6] and the pertaining discussion therein for problems
which also have constraints on the state and control variables.
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