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1 Introduction

Stochastic control problems have been actively studied and widely applied in

many areas since the 1970s, especially in quantitative finance. To determine

the optimal control process and compute the corresponding value function,

the celebrated dynamic programming principle (DPP) plays a crucial role. It

provides a convenient way to handle a global optimization problem by solving

a series of recursive local optimization problems, which is closely related to

the tower property of conditional expectations. In the Markovian framework,

it has been shown in the vast literature that DPP allows one to relate the value

function of a control problem to a solution of the associated Hamilton-Jacob-

Bellman (HJB) equation in a classical sense or a viscosity sense. Numerical

approximations can also come into play in various models. See [1,2] for the

comprehensive review on the topic of stochastic control.

The growing complexity of financial markets motivates the continuing de-

velopment of stochastic control theory. In particular, stochastic control prob-

lems subject to various constraints have been extensively investigated in differ-

ent contexts. The existing literature is far-reaching, see for instance [3–9] that

discuss DPP for stochastic control with constraints and also [10–13] that ad-

dress DPP issues for optimal stopping with constraints. To avoid measurability

issues of the value function and technical challenges in measurable selection ar-

guments, one can introduce some measurable test functions based on the value

function and develop the weak version of DPP instead. Note that a weak DPP

is sufficient to verify that the value function corresponds to a viscosity solution

to some HJB equation, see [14]. In a similar fashion, [5] further establishes a

weak DPP for control problems under the expectation constraint at terminal

time in a Markovian setting.

Dynamic trading constraints arise naturally in many financial applications.

In particular, expectation constraints at each intermediate time create new

challenges in the control problem, and it is still an open problem whether

the strong version of DPP holds or not, especially in the non-Markovian set-

ting. This paper aims to fill this gap and proves the strong DPP by applying

some measurable selection arguments. For a given control process, the result-

ing state process induces a new probability measure. Consequently, to find

an optimal control is equivalent to optimize the probability measures induced

by all admissible controls. Along this line, [15] constructed a sublinear ex-

pectation which satisfies the tower property also known as time-consistency.
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Regarding probabilities therein as controls and the sublinear expectation as

the value function, the tower property is essentially equivalent to DPP. To

handle the expectation constraints at terminal time, [5] introduces some aux-

iliary martingales to aid the proof of DPP. We generalize this idea further by

considering some auxiliary supermartingales and establish the desired DPP in

the model when intermediate expectation constraints are binding at all time.

Moreover, our general setting allows the admissible probabilities and the value

function to be path-dependent so that DPP in this paper can be applied in

some path-dependent stochastic control problems.

Another contribution of this paper is to show that several dynamic trading

constraints such as (but not limited to) the following types can be transformed

into the intermediate expectation constraint:

(i) State constraint: it requires the controlled wealth process to stay in a

prescribed region, see some examples in [6,7,16–18].

(ii) Floor constraint: it requires the controlled wealth process to stay above

a benchmark stochastic process, see [19].

(iii) Drawdown constraint: it requires the controlled wealth process to stay

above a fraction of its own running maximum process, see [20] and [21].

(iv) Target constraint: it studies a reachability set, namely, the collection

of all initial data such that the state process can be driven into a target set at

a specified time. See some examples in [8] and [3,4,9].

(v) Quantile hedging: it mandates the wealth process to stay in a given set

with the probability greater than some specified level, see [22] and [23].

Our main results can also recover DPP in other control applications with

constraints beyond quantitative finance such as aircraft abort landing in [24]

and [25] and energy and resources management in [26]. See also [27] and [28]

on general stochastic control problems with similar constraints.

The rest of the paper is organized as follows. Sect. 2 introduces some math-

ematical preliminaries. An abstract version of DPP is first developed therein.

Sect. 3 establishes the main result of this paper, namely, DPP for stochastic

control problems under intermediate expectation constraints. Sect. 4 presents

some applications in optimal investment and hedging problems under various

dynamic trading constraints. At last, we give the conclusion in Sect. 5.
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2 General Framework

2.1 Notations and Preliminaries

Let Ω = {ω ∈ C([0, T ];Rd) : ω0 = 0} be the canonical space of continuous

paths equipped with the topology of uniform convergence under the norm

‖ω‖∞ := supt∈[0,T ] ‖ωt‖. P0 is the Wiener measure on Ω and B is the canonical

process Bt(ω) = ωt.

Let F = (Ft)t∈[0,T ] be the canonical filtration generated by B and let

F+ = (F+
t )t∈[0,T ] be the right limit of F with F+

t := ∩s>tFs for all t ∈ [0, T )

and F+
T = FT . Furthermore, P(Ω) denotes the set of all probability measures

on (Ω,F), equipped with the topology of weak convergence. Given two paths

ω̄ and ω, their concatenation at t is defined by

(ω̄ ⊗t ω)s := ω̄s1[0,t[(s) + (ω̄t + ωs − ωt)1[t,T ](s), s ∈ [0, T ].

Let EP [·] denote the expectation under probability P , and we simply write

E[·] if P = P0. We define integrals of measurable functions ξ with values in the

extended real line R̄ = [−∞,∞] and set EP [ξ] := EP [ξ+]−EP [ξ−] if EP [ξ+]

or EP [ξ−] is finite, and define EP [ξ] := −∞ if EP [ξ+] = EP [ξ−] = +∞. In

accordance with the convention, we adopt sup ∅ = −∞ (resp. inf ∅ =∞). Let

T be the collection of all F−stopping times taking values in [0, T ].

As in Chapter 1 of [7] and Chapter 7 of [29], for any P ∈ P(Ω), τ ∈ T , there

exists a regular conditional probability distribution {Pωτ }ω∈Ω of P given Fτ .

That is, Pωτ ∈ P(Ω) for each ω, and ω ∈ Ω → Pωτ (A) ∈ [0, 1] is Fτ -measurable

for any A ∈ F and EP
ω
τ [ξ] = EP [ξ|Fτ ](ω) for P -a.e. ω ∈ Ω, whenever ξ is

F-measurable and bounded. Moreover, Pωτ can be chosen to be concentrated

on the set of paths that coincide with ω up to time τ(ω). Given P ∈ P(Ω)

and a family (Qω)ω∈Ω such that ω ∈ Ω → Qω ∈ P(Ω) is Fτ -measurable with

Qω(Ωωτ ) = 1 for all ω ∈ Ω, one can define a concatenated probability measure

P ⊗τ Q· by P ⊗τ Q·(A) :=
∫
Ω
Qω(A)P (dω), ∀A ∈ F . As in [29], a subset of

a Borel space is called analytic if it is the image of a Borel subset of another

Borel space under a Borel-measurable function.

2.2 Problem Formulation and Main Results

For each (t, ω) ∈ [0, T ]×Ω, we consider an adapted set P(t, ω) ⊆ P(Ω) such

that P(t, ω) = P(t, ω̃), if ω = ω̃ on [0, t] and it is assumed that P(t, ω) 6= ∅.
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Let Ωωt := {ω′ ∈ Ω : ω′ = ω on [0, t]}, then P (Ωωt ) = 1, for any P ∈ P(t, ω). If

τ is a stopping time, we denote P(τ, ω) = P(τ(ω), ω). For t = 0, we note that

P0 := P(0, ω) for any ω ∈ Ω.

Assumption 2.1 We assume that every P ∈ P0 satisfies the Blumenthal

zero-one law and the martingale representation property.

Remark 2.1 By Remark 2.4 in [30], it follows from Blumenthal zero-one law

that EP [ξ | Ft] = EP [ξ | F+
t ], P -a.s. for any t ∈ [0, 1] and P -integrable random

variable ξ. That is, any F+
t -measurable random variable has an Ft-measurable

P -modification. One typical example that satisfies Assumption 2.1 is the space

of probability measures induced by strong solutions of controlled SDEs with

invertible volatility coefficients. Our setting therefore includes some natural

examples that stem from financial applications.

Throughout the paper, we fix ξ : Ω → R̄ and ηt : Ω → R̄ for each t ∈ [0, T ].

In our control problem, ξ is used to model the reward and ηt is used to model

the intermediate constraint. It is assumed that ξ is upper semi-analytic and ηt

is lower semi-analytic for each t ∈ [0, T ] and the process (ηt)t∈[0,T ] has lower

semi-continuous paths. For a given constraint level m, we define the set

P(t, ω,m) := {P ∈ P(t, ω) : EP [ηs] ≤ m, ∀t ≤ s ≤ T}. (1)

Let us consider the control problem with intermediate expectation constraints

that

V (t, ω,m) = sup
P∈P(t,ω,m)

EP [ξ]. (2)

Note that the formulation (2) is general enough to cover many control prob-

lems including running rewards and exponential discounting. The present pa-

per aims to verify DPP for problem (2), which relates the value V (t) to the

conditional expectation of the later value V (τ) at some stopping time τ ≥ t.

At a later time τ , the state ω incurs more realization and the constraint level

may also change. We therefore need to randomize the constraints by intro-

ducing some auxiliary supermartingales, which are motivated by the auxiliary

martingales used in [5].

Definition 2.1 For each P ∈ P(t, ω,m), let M+
t,ω,m(P ) be the collection of

all supermartingales on [t, T ]×Ω → R̄ such that

(i) Mt ≤ m, P -a.s.;

(ii) EP [Ms2 |Fs1 ] ≤Ms1 , P -a.s., for any s1, s2 ∈ [t, T ] with s1 ≤ s2;
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(iii) Ms ≥ ηs, P -a.s. for any t ≤ s ≤ T .

First, we need to verify that the set M+
t,ω,m(P ) is not empty. One can

consider the set Vt,m of martingales starting from m at time t that

Vt,m := {M t,m,α : M t,m,α = m+

∫ ·
t

αsdW
P
s },

for some α ∈ H2 from the martingale representation of (EP [ηs|Fu])u∈[t,s]

under P , where WP is a P -Brownian motion and H2 denotes the set of all

adapted and square integrable processes. However, for a priori s ≥ t, we

can only get the existence of α(s) ∈ H2 such that the controlled martingale

M t,m,α(s)

· satisfies Definition 2.1 up to time s. More efforts are required in

order to ensure the existence of a controlled martingale independent on the

time s using the idea of aggregation. Let T 0 denote the set of F-stopping times

τ such that τ ∈ [0, T ] a.s. For θ in T 0, T θ is the set of stopping times τ ∈ T 0

such that θ ≤ τ ≤ T , P -a.s.. The next result confirms the existence of such an

aggregated auxiliary supermartingale.

Lemma 2.1 Under Assumption 2.1, the set M+
t,ω,m(P ) is non-empty.

Proof For each σ ∈ T 0, we define the Fσ-measurable random variable

Vσ := ess sup
τ∈T σ

EP [ητ |Fσ] P − a.s. (3)

By classical results of the general theory of processes (see e.g. [31]) and Remark

2.1, the family of supermartingales {Vσ : σ ∈ T 0} can be aggregated by an

optional process (Vt) admitting the Mertens decomposition that

Vt := Nt −At − Ct− ,

where N is a square integrable martingale, A is a non-decreasing RCLL pre-

dictable process such that A0 = 0 and C is a non-decreasing right-continuous

adapted process, purely discontinuous satisfying C0− = 0.

As for all s ∈ [t, T ], it holds that EP [ηs|Ft] ≤ m, P -a.s., which further

entails that ess sup
s∈[t,T ]

EP [ηs|Ft] ≤ m. In view of the definition of V (see (3)), we

obtain

Vt = Nt −At − Ct− ≤ m, P−a.s. (4)
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For fixed s ≥ t, we have ηs = EP [ηs|Fs] ≤ ess sup
u∈[s,T ]

EP [ηu|Fs] = Vs, P−a.s.

This observation, together with (4), leads to

ηs ≤ Ns −As − Cs− = Nt −At − Ct− +

∫ s

t

αudW
P
u −As +At − Cs− + Ct− .

Using the above inequality, (4) and the fact that the processes A and C are

non-decreasing, we obtain ηs ≤M t,m,α
s , P -a.s. and our claim holds. ut

Given τ ∈ T t, ω ∈ Ω, m ∈ R, P ∈ P(t, ω,m), M ∈ M+
t,ω,m(P ), we

set P(τ, ω,Mτ ) := P(τ(ω), ω,Mτ (ω)), V (τ, ω,Mτ ) := V (τ(ω), ω,Mτ (ω)). The

following conditions are required in our main results.

Assumption 2.2 Let (t, ω̄) ∈ [0, T ]×Ω and τ ∈ T t, for any P ∈ P(t, ω̄), we

assume:

(i) Measurability: the graph [[P]] := {(t, ω,Q) : (t, ω) ∈ [0, T ]×Ω,Q ∈ P(t, ω)}
is an analytic subset of [0, T ]×Ω ×P(Ω).

(ii) Invariance: there is a family of regular conditional probability distribution

(Pωτ )ω∈Ω of P given Fτ such that Pωτ ∈ P(τ, ω) for P -a.e. ω ∈ Ω.

(iii) Stability under pasting: let (Qω)ω∈Ω be such that ω → Qω is Fτ−measurable

and Qω ∈ P(τ, ω) for P -a.e. ω ∈ Ω, then P ⊗τ Q· ∈ P(t, ω̄).

Remark 2.2 Assumption 2.2 is essentially the same as Assumption 2.1 in [18],

in which G−expectations and random G−expectations have been considered

as typical examples.

Our first main result gives DPP in a measurable selection setting.

Theorem 2.1 Under Assumption 2.1 and Assumption 2.2, the value function

V defined by (2) satisfies

V (t, ω̄,m) = sup
P∈P(t,ω̄,m)

sup
M∈M+

t,ω̄,m(P )

EP [V (τ, ω̄ ⊗t ω,Mτ )]

= sup
P∈P(t,ω̄,m)

inf
M∈M+

t,ω̄,m(P )
EP [V (τ, ω̄ ⊗t ω,Mτ )].

(5)

Remark 2.3 The DPP result (5) involves both supremum and infimum over

M+
t,ω̄,m(P ), which manifests the auxiliary role of M+

t,ω̄,m(P ). In other words,

any element in M+
t,ω̄,m(P ) plays the same role. Intuitively, under the optimal

probability P∗, only the expectation matters and different choices of super-

martingales in M+
t,ω̄,m(P∗) will lead to the same expectation.

The proof of Theorem 2.1 requires several auxiliary results. First, by [29],

Corollary 7.48.1, we have
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Lemma 2.2 If ξ is upper semi-analytic, the function P ∈ P(Ω)→ EP [ξ] ∈ R̄
is upper semi-analytic. Similarly, for each t ≤ s ≤ T , if ηs is lower semi-

analytic, the function P ∈ P(Ω)→ EP [ηs] ∈ R̄ is lower semi-analytic.

Similar to the proof of Lemma 4.1 and Proposition 4.1 in [32], we have the

following result.

Lemma 2.3 As (ηs)s∈[t,T ] has lower semi-continuous paths, there exists a

countable subset S := {sn : t ≤ sn ≤ T}n∈N such that the supremum can be

achieved, i.e., sups∈[t,T ]E
P [ηs] = supsn∈S E

P [ηsn ].

Next, we give a measurability result.

Lemma 2.4 Let D := {(t, ω,m, P ) : (t, ω,m) ∈ [0, T ]×Ω×R, P ∈ P(t, ω,m)},
then D is an analytic subset of [0, T ]×Ω × R×P(Ω).

Proof Observe that

D = {(t, ω,m, P ) : (t, ω,m) ∈ [0, T ]×Ω × R, P ∈ P(t, ω)}∩

{(t, ω,m, P ) : L(s,m, P ) ≤ 0, ∀t ≤ s ≤ T}

= {(t, ω,m, P ) : (t, ω,m) ∈ [0, T ]×Ω × R, P ∈ P(t, ω)}∩

{(t, ω,m, P ) : sup
s∈[0,T ]

L(s,m, P ) ≤ 0}.

The first term is analytic by item (i) of Assumption 2.2.

We claim that the second term is also analytic. Firstly, Lemma 2.2 gives

that L(s,m, P ) is lower semi-analytic for each fixed t ≤ s ≤ T and Lemma

2.3 asserts that sups∈[0,T ] L(s,m, P ) = supsn∈S L(sn,m, P ). Secondly, Lemma

7.30 of [29] entails that sups∈[0,T ] L(s,m, P ) is also lower semi-analytic because

supsn∈S L(sn,m, P ) is lower semi-analytic. The claim therefore holds and we

get that D is analytic. ut
To simplify the notation, let us setX = [0, T ]×Ω×R, and define projX(D) =

{(t, ω,m) : (t, ω,m, P ) ∈ D}. It then follows that

projX(D) = {(t, ω,m) : P(t, ω,m) 6= ∅}.

Lemma 2.5 The value function V : projX(D) → R̄ is upper semi-analytic.

Moreover, for every ε > 0, there exists an analytically measurable function

ϕε : projX(D) → P(Ω) such that for every (t, ω,m) ∈ projX(D), one has
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(t, ω,m, ϕε(t, ω,m)) ∈ D and

Eϕε(t,ω,m)[ξ] ≥

V (t, ω,m)− ε, V (t, ω,m) <∞,

ε−1, V (t, ω,m) =∞.
(6)

Proof Thanks to Lemma 2.2 and Lemma 2.4, it is easy to conclude Lemma 2.5

by Proposition 7.47 on page 179 and Proposition 7.50 on page 178 of [29]. ut

Proof of Theorem 2.1: Step 1: Let us first show one direction of (5) that

V (t, ω̄,m) ≤ sup
P∈P(t,ω̄,m)

inf
M∈M+

t,ω̄,m(P )
EP [V (τ, ω̄ ⊗t ω,Mτ )]. (7)

Fix P ∈ P(t, ω̄,m) and M ∈M+
t,ω̄,m(P ). By Assumption 2.2 (ii), there exists

a family of regular conditional probability distributions (P ω̄⊗tωτ ) of P given

Fτ such that P ω̄⊗tωτ ∈ P(τ, ω̄ ⊗t ω) for P -a.e. ω ∈ Ω. We then claim that

P ω̄⊗tωτ ∈ P(τ, ω̄ ⊗t ω,Mτ ) for P -a.e. ω ∈ Ω. To see this, for P -a.e. ω ∈ Ω and

τ ≤ ρ ≤ T , we have

EP
ω̄⊗tω
τ [ηρ] = EP [ηρ|Fτ ](ω̄ ⊗t ω) ≤ EP [Mρ|Fτ ](ω̄ ⊗t ω) ≤Mτ (ω̄ ⊗t ω). (8)

The claim therefore holds. It follows that for P -a.e. ω ∈ Ω, one has

EP [ξ|Fτ ](ω̄ ⊗t ω) = EP
ω̄⊗tω
τ [ξ] ≤ V (τ, ω̄ ⊗t ω,Mτ ). (9)

Taking P (dω)-expectations, we obtain EP [ξ] ≤ EP [V (τ, ω̄ ⊗ ω,Mτ )], which

gives EP [ξ] ≤ infM∈M+
t,ω̄,m(P )E

P [V (τ, ω̄⊗ω,Mτ )]. The inequality (7) follows

by taking the supremum over P(t, ω̄,m).

Step 2: We then turn to prove the opposite direction that

V (t, ω̄,m) ≥ sup
P∈P(t,ω̄,m)

sup
M∈M+

t,ω̄,m(P )

EP [V (τ, ω̄ ⊗t ω,Mτ )]. (10)

Fix ε > 0, P ∈ P(t, ω̄,m), and take an arbitrary M ∈ M+
t,ω̄,m(P ). As the

composition of universally measurable functions is universally measurable, the

map ω ∈ Ω → ϕε(τ(ω̄ ⊗t ω), ω̄ ⊗t ω,Mτ (ω̄ ⊗t ω)) ∈ P(Ω) is F∗τ -measurable

by the universally measurable extension of Galmarino’s test, see lemma 2.5 in

[15]. Therefore, there exists an Fτ -measurable kernel Qε : Ω → P(Ω) such that

Qωε = ϕε(τ(ω̄⊗tω), ω̄⊗tω,Mτ (ω̄⊗tω)) for P -a.e. ω ∈ Ω. Again by Assumption

2.2(2) and equation (8), we have P(τ, ω,Mτ ) 6= ∅ for P -a.e. ω ∈ Ω. Thus by
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Lemma 2.5, for P -a.e. ω ∈ Ω, we have Qωε ∈ P(τ, ω̄ ⊗t ω,Mτ ) and

EQ
ω
ε [ξ] ≥

V (τ, ω̄ ⊗t ω,Mτ )− ε, V (τ, ω̄ ⊗t ω,Mτ ) <∞,

ε−1, V (τ, ω̄ ⊗t ω,Mτ ) =∞.

It yields that P ⊗τ Q·ε ∈ P(t, ω̄) by item (iii) of Assumption 2.2. We now claim

that P ⊗τ Q·ε ∈ P(t, ω̄,m). To see this, for any t ≤ ρ ≤ T , we have

EP⊗τQ
·
ε [ηρ] = EP [EQ

·
ε [ηρ1ρ>τ ]] + EP [EQ

·
ε [ηρ1ρ≤τ ]]

≤ EP [Mτ1ρ>τ ] + EP [Mρ1ρ≤τ ] ≤ EP [Mρ] ≤ m,

which verifies the claim. We then derive that

EP [V (τ, ω̄ ⊗t ω,Mτ ) ∧ ε−1] ≤ EP [EQ
ω
ε [ξ]] + ε = EP⊗τQ

·
ε [ξ] + ε

≤ sup
P ′∈P(t,ω̄,m)

EP
′
[ξ] + ε = V (t, ω̄,m) + ε.

Let ε → 0, we have EP [V (τ, ω̄ ⊗t ω,Mτ )] ≤ V (t, ω̄,m). As M ∈ M+
t,ω̄,m(P )

is arbitrary, we get supM∈M+
t,ω̄,m(P )E

P [V (τ, ω̄ ⊗ ω,Mτ )] ≤ V (t, ω̄,m). In ad-

dition, as P ∈ P(t, ω̄,m) is arbitrary, we arrive at (10) by taking supremum

over P(t, ω̄,m), which completes the proof. ut

3 Stochastic Control under Expectation Constraints

Define Ω′ = {ω′ ∈ C([0, T ];Rn) : ω′0 = 0} for some n ∈ N \ {0}. Similar to

(Ω,F , P0) in Section 2, we consider the probability space (Ω′,F ′, P ′0) to model

real world scenarios.

3.1 Strong DPP for Stochastic Control Problems

For each (t, ω) ∈ [0, T ] × Ω, we are given a non-empty set U(t, ω) whose

elements are interpreted as controls starting from time t with the past path ω.

Note that elements in Ω are observable, thus the dependence of control on past

paths is reasonable. We assume that U(t, ω) depends on ω only up to time t in

the sense that we do not distinguish two paths at time t if they coincide up to

time t. That is, U(t, ω) = U(t, ω̃) if ω = ω̃ on [0, t]. For each (t, ω) ∈ [0, T ]×Ω
and ν ∈ U(t, ω), we are given a continuous process Xt,ω,ν : [0, T ] × Ω′ → Rd
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satisfying Xt,ω,ν
s (ω′) = ωs for all s ∈ [0, t] and ω′ ∈ Ω′, which indicates that

we can not change the past.

Assumption 3.1 For functions f(·), g(s, ·) : Ω → R̄, s ∈ [0, T ], let us assume

that f(·) is upper semi-analytic and g(s, ·) is lower semi-analytic and lower

semi-continuous for all s ∈ [0, T ].

Here g(s, ω) := g(s, ω|[0,s]). For each (t, ω,m) ∈ [0, T ] × Ω × R, the set of

admissible controls with the constraint level m is defined as

U(t, ω,m) := {ν ∈ U(t, ω) : E[g(s,Xt,ω,ν)] ≤ m}, ∀s ∈ [t, T ], (11)

where we denote E[g(s,Xt,ω,ν)] := E[g(s,Xt,ω,ν |[0,s])].
We consider the value function

V (t, ω,m) = sup
ν∈U(t,ω,m)

E[f(Xt,ω,ν)]. (12)

Note that expectations in (11) and (12) are taken under P ′0.

Let us consider the setting of stochastic control problems with the ad-

missible set U(t, ω) such that for each ν ∈ U(t, ω), the controlled process

Xt,ω,ν : (Ω′,F ′) → (Ω,F) is measurable. That is, for every A ∈ F , we have

(Xt,ω,ν)−1(A) ∈ F ′. Note that the process Xt,ω,ν induces a probability mea-

sure Pt,ω,ν on (Ω,F) by Pt,ω,ν(A) := P ′0((Xt,ω,ν)−1(A)), A ∈ F .
We call Pt,ω,ν the probability induced by ν for any ν ∈ U(t, ω), and define

P(t, ω) = {Pt,ω,ν ∈ P(Ω) : ν ∈ U(t, ω)} as the set of probability measures

induced by elements in U(t, ω). If ω = ω̃ on [0, t], then P(t, ω) = P(t, ω̃). In

addition, we have P(t, ω) 6= ∅ for any (t, ω) ∈ [0, T ] × Ω, and P (Ωωt ) = 1 for

any P ∈ P(t, ω). By the definition of Pt,ω,ν , let us denote

EPt,ω,ν [f ] := E[f(Xt,ω,ν)] and EPt,ω,ν [g(s)] := E[g(s,Xt,ω,ν |[0,s])].

Finally, the set P(t, ω,m) of admissible probability measures is defined by

P(t, ω,m) := {P ∈ P(t, ω) : EP [g(s)] ≤ m, ∀s ∈ [t, T ]}. We then have

V (t, ω,m) = sup
ν∈U(t,ω,m)

E[f(Xt,ω,ν)] = sup
P∈P(t,ω,m)

EP [f ]. (13)

Similar to Definition 2.1 in the general framework, we need the assistance

of some auxiliary supermartingales to establish the DPP result.

Definition 3.1 For each ν ∈ U(t, ω,m), letM+
t,ω,m(ν) be the collection of all

supermartingales on [t, T ]×Ω → R̄ such that
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(i) Mt ≤ m for P ′0-a.e.;

(ii) M(Xt,ω,ν) is a supermartingale under P ′0;

(iii) Ms(X
t,ω,ν) ≥ g(s,Xt,ω,ν) for P ′0-a.e..

The goal is to prove the following DPP

V (t, ω,m) = sup
ν∈U(t,ω,m)

sup
M∈M+

t,ω,m(ν)

E[V (τ,Xt,ω,ν ,Mτ )]

= sup
ν∈U(t,ω,m)

inf
M∈M+

t,ω,m(ν)
E[V (τ,Xt,ω,ν ,Mτ )].

(14)

Theorem 3.1 Suppose that f and g satisfy Assumption 3.1, and sets P(t, ω)

induced by sets U(t, ω) satisfy Assumption 2.1 and Assumption 2.2, we have

that (14) holds.

Proof It is easy to check P(t, ω,m) = {Pt,ω,ν ∈ P(Ω) : ν ∈ U(t, ω,m)} and

M+
t,ω,m(ν) =M+

t,ω,m(Pt,ω,ν), so (14) follows directly from Theorem 2.1. ut

3.2 Connection to Classical DPP

The DPP in (14) involves both the supremum and infimum over M+
t,ω,m(ν),

because the set M+
t,ω,m(ν) of supermartingales depends on the control ν. In

some specific cases such as the next proposition, we can actually get rid of the

supremum and infimum over M+
t,ω,m(ν).

Proposition 3.1 Define

M+
t,ω,m := ∩ν∈U(t,ω,m)M+

t,ω,m(ν), (15)

and assumeM+
t,ω,m is non-empty. Under the assumptions in Theorem 3.1, for

any M ∈M+
t,ω,m, it holds that

V (t, ω,m) = sup
ν∈U(t,ω,m)

E[V (τ,Xt,ω,ν ,Mτ )]. (16)

Note that (16) is a strong version of DPP in a non-Markovian setting. In a

Markovian setting, one has V (t, ω,m) = V (t, ωt,m) using x to denote the state

variable and (16) is written as V (t, x,m) = supν∈U(t,x,m)E[V (τ,Xt,x,ν
τ ,Mτ )],

which is a strong DPP in [5] with generalized state constraints. Therefore, in

the Markovian setting, (16) can be used to show that the value function of a

control problem with general state constraints is the viscosity solution of some

associated HJB equation.
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3.3 General Dynamic State Constraints

We now give a general framework to describe dynamic state constraints. Fix

analytic sets O(s, ω) ⊆ Ω indexed by time (s, ω) ∈ [0, T ] × Ω. Note that

O(s, ω) depends only on s and the path ω|[0,s] up to time s. We are interested

in dynamic constraints that the controlled state process Xt,ω,ν ∈ O(s,Xt,ω,ν)

at each time s ∈ [t, T ]. More precisely, the admissible control set is defined by

Ū(t, ω) = {ν ∈ U(t, ω) : Xt,ω,ν ∈ O(s,Xt,ω,ν), P ′0-a.s., ∀ s ∈ [t, T ]}. (17)

We then study the control problem under the state constraint (CPSC):

V̄ (t, ω) = sup
ν∈Ū(t,ω)

E[f(Xt,ω,ν)]. (18)

Let us consider the set of all paths satisfying state constraints up to time t by

Ω(O(t)) := {ω ∈ Ω : ω ∈ O(s, ω),∀ s ∈ [0, t]}, (19)

We assume Ū(t, ω) 6= ∅, for any t ∈ [0, T ], ω ∈ Ω(O(t)) to exclude the trivial

case. In order to rewrite the above dynamic state constraints as expectation

constraints, we set the function g(s, ω) by

g(s, ω) :=

0, ω ∈ Ω(O(s)),

1, otherwise.
(20)

Based on the pair of f(·) and g(s, ·), s ∈ [0, T ], we define U(t, ω,m) as in (11)

and V (t, ω,m) as in (12). By the definition of g in (20), we have

Xt,ω,ν ∈ O(s,X), P ′0-a.s., ∀s ∈ [t, T ] ⇐⇒ E[g(s,Xt,ω,ν)] ≤ 0, ∀s ∈ [t, T ].

It follows that

Ū(t, ω) = U(t, ω, 0) and V̄ (t, ω) = V (t, ω, 0). (21)

For each ν ∈ U(t, ω,m),M+
t,ω,m(ν) andM+

t,ω,m are defined by the modification

of Definition 3.1 and the set in (15) with the specific function g in (20).

Theorem 3.2 Suppose the sets P(t, ω) induced by U(t, ω) satisfy Assumption

2.2, and the function g has lower semi-continuous path, then the corresponding
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DPP for (18) holds true that

V̄ (t, ω) = sup
ν∈Ū(t,ω)

E[V̄ (τ,Xt,ω,ν)]. (22)

Proof. By Theorem 3.1, the DPP (14) for V holds true. Take m = 0, if we have

ν ∈ U(t, ω, 0), then for P ′0-a.e., g(s,Xt,ω,ν) = 0 for s ∈ [t, T ]. Therefore the

constant process 0 ∈ M+
t,ω,m, and V (t, ω, 0) = supν∈U(t,ω,0)E[V (τ,Xt,ω,ν , 0)]

follows from Proposition 3.1, which implies (22) thanks to (21). ut

4 Applications in Quantitative Finance

This section is devoted to applications in the context of optimal investment and

option hedging under dynamic trading constraints. We aim at reformulating

each of those constraints to expectation constraints and consequently DPP for

these problems can be established by applying Theorem 3.2.

4.1 State, Floor, Drawdown Constraints

Case 1: State Constraint.

Let d ≥ 1 and Ω = {ω ∈ C([0, T ];Rd) : ω0 = 0}. Fix a family of analytic

sets O(t) ⊆ Rd indexed by time t ∈ [0, T ], the state constraint condition

requires the controlled process to stay in some open sets (X(t) ∈ O(t)) at each

intermediate time t. We define

O1(s, ω) := {ω ∈ Ω : ωt ∈ O(t),∀ t ∈ [0, s]}.

Replacing O(s, ω) by O1(s, ω) in (17) and further replacing Ū(t, ω) by Ū1(t, ω)

in (18), we can define V̄1(t, ω). We refer the resulting problem as control prob-

lem under the state constraint (CPSC).

Case 2: Floor Constraint.

Let d = 1 in this case and Ω = {ω ∈ C([0, T ];R) : ω0 = 0}. A fixed continu-

ous path β ∈ Ω is regarded as the floor and it is required that the controlled

process stays above β. Let O2(s, ω) = O(s) := {ω ∈ Ω : ωt ≥ βt,∀ t ∈ [0, s]}.
Replacing O(s, ω) by O2(s, ω), we have the admissible control set Ū2(t, ω) by

(17) and value function V̄2(t, ω) by (18). We refer the resulting problem as

control problem under floor constraint (CPFC).
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Case 3: Drawdown Constraint.

Let d = 1 in this case. Fix x ≥ 0, and let Ω = {ω ∈ C([0, T ];R) : ω0 = x}. Fix

a continuous function α : [0, T ]→ [0, 1], the controlled state process is required

to satisfy the drawdown condition at all intermediate time (with drawdown

no less than 1−α). Given ω ∈ Ω, we define its running maximum function by

ω∗s = sup0≤r≤s ωr. Let us defineO3(s, ω) := {ω ∈ Ω : ωt ≥ α(t)ω∗t ,∀ t ∈ [0, s]}.
Replacing O(s, ω) by O3(s, ω), we have the admissible control set Ū3(t, ω) by

(17) and value function V̄3(t, ω) by (18). We refer the resulting problem as

control problem under drawdown constraint (CPDC).

Replacing O(s, ω) by Oi(s, ω), we define Ω(Oi(t)) by (19) and gi by (20) for

i = 1, 2, 3. All three functions gi (i = 1, 2, 3) are lower semi-analytic because

the associated O(t) is analytic, the path β is continuous and the function α is

continuous. The next result is a direct application of Theorem 3.2.

Theorem 4.1 Suppose that the sets P(t, ω) induced by U(t, ω) satisfy As-

sumption 2.2, and the functions gi (i = 1, 2, 3) have lower semi-continuous

path, then DPP results for (CPSC), (CPFC) and (CPDC) hold that

V̄i(t, ω) = sup
ν∈Ūi(t,ω)

E[V̄i(τ,X
t,ω,ν)], for i = 1, 2, 3. (23)

Remark 4.1 In case 1 and case 2, it is by no means restrictive to assume that

the starting point of the controlled process is at the origin. If not, we can

simply make the translation such that it starts from origin. However, case 3

is different. If a path satisfies the maximum drawdown condition, it may not

satisfy the condition after a translation. Therefore, in case 3, we allow the

controlled process to start from any point x ≥ 0.

4.2 Target Problem and Quantile Hedging

We consider in this subsection the quantile hedging and its implication to

target constraints. Fix a quantile level γ ∈ [0, 1] and a family of analytic

target sets G(t) ⊆ Rd indexed by time t ∈ [0, T ]. The quantile hedging problem

requires the probability to be greater than γ that the controlled process stays in

the target sets (X(t) ∈ G(t)). We consider the control problem under quantile
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hedging constraints (CPQC) that

V̄4(t, ω,m) = sup
ν∈Ū4(t,ω,m)

E[f(Xt,ω,ν)] (24)

where

Ū4(t, ω,m) := {ν ∈ U(t, ω) : P ′0(Xt,ω,ν
s ∈ G(s)) ≥ m, s ∈ [0, T ]}.

We can transform dynamic quantile hedging constraints to expectation con-

straints on paths by setting g4 as

g4(s, ω) =

0, ωs ∈ G(s),

1, otherwise.

Note that g4 is lower semi-analytic as G(s) is analytic. Based on this pair of

f and g4, we can define U4(t, ω,m) as in (11) and V4(t, ω,m) as in (12). The

definition of g4 implies that

P ′0(Xt,ω,ν
s ∈ G(s)) ≥ m, s ∈ [t, T ] ⇐⇒ E[g4(s,Xt,ω,ν)] ≤ 1−m, s ∈ [t, T ].

It then follows that

Ū4(t, ω,m) = U4(t, ω, 1−m) and V̄4(t, ω,m) = V4(t, ω, 1−m). (25)

Definition 4.1 For each ν ∈ Ū4(t, ω,m), let M̄−t,ω,m(v) be the collection of

all submartingales on [t, T ]×Ω → R̄ such that

(i) Mt ≥ m for P ′0-a.e.;

(ii) M(Xt,ω,ν) is a submartingale under P ′0;

(iii) Ms(X
t,ω,ν) ≤ 1− g4(s,Xt,ω,ν) for P ′0-a.e. and s ∈ [t, T ].

Let M+
t,ω,1−m,4(v) be defined as in Definition 3.1 by using the function g4

for ν ∈ U4(t, ω, 1−m), then we have

M̄−t,ω,m(v) = 1−M+
t,ω,1−m,4(v) := {1−M : M ∈M+

t,ω,1−m,4(v)}. (26)

The next result gives DPP for (CPQC).

Theorem 4.2 Suppose the sets P(t, ω) induced by U(t, ω) satisfy Assump-

tion 2.2, and the function g4 has lower semi-continuous path, then DPP for
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(CPQC) holds that

V̄4(t, ω,m) = sup
ν∈Ū4(t,ω,m)

sup
M∈M̄−t,ω,m(v)

E[V̄4(τ,Xt,ω,ν ,Mτ )]

= sup
ν∈Ū4(t,ω,m)

inf
M∈M̄−t,ω,m(v)

E[V̄4(τ,Xt,ω,ν ,Mτ )].
(27)

Proof. Thanks to Theorem 3.1, DPP in (14) for V4 holds valid. That is, we

have

V4(t, ω, 1−m) = sup
ν∈U4(t,ω,1−m)

sup
M∈M+

t,ω,1−m,4(v)

E[V4(τ,Xt,ω,ν ,Mτ )]

= sup
ν∈U4(t,ω,1−m)

inf
M∈M+

t,ω,1−m,4(v)
E[V4(τ,Xt,ω,ν ,Mτ )].

(28)

Together with (25) and (26), we can deduce (27). ut
By choosingm = 1, it is clear that the constant process 1 ∈ ∩ν∈Ū4(t,ω,1)M̄−t,ω,1(v),

and we obtain DPP for target constraint in the next result.

Proposition 4.1 Under assumptions in Theorem 4.2, we have

V̄4(t, ω, 1) = sup
ν∈Ū4(t,ω,1)

E[V̄4(τ,Xt,ω,ν , 1)]. (29)

Remark 4.2 Proposition 4.1 reduces to a geometric type of DPP when f is

chosen to be a constant. In particular, if we define the reachability set:

D(t) := {ω ∈ Ω : ∃ ν ∈ U(t, ω), such that Xt,ω,ν
s ∈ G(s) P ′0-a.s., s ∈ [t, T ]},

the geometric type of DPP states that

D(t) = {ω ∈ Ω : ∃ ν ∈ U(t, ω), such that Xt,ω,ν
τ ∈ D(τ) P ′0-a.s.}. (30)

By setting f(x) ≡ 1 in the problem (24), (30) follows directly from (29).

5 Conclusions

We investigated DPP for stochastic control problems under intermediate ex-

pectation constraints at each time in a general non-Markovian framework. For

continuous state processes, DPP is established in the present paper by apply-

ing the measurable selection method together with some auxiliary aggregated

supermartingales. Moreover, we show that several types of dynamic trading
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constraints from financial applications can be transformed into the expecta-

tion constraints at each intermediate time t. Hence DPP holds in optimal

investment and hedging problems under these trading constraints. It is still an

open problem whether the value function of the control problem corresponds

to a constrained viscosity solution to some path-dependent partial differential

equation in a non-Markovian setting, which is left for future research.
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