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Abstract
We propose and analyze a global search algorithm for the computation of the min-
imum zone sphericity (circularity) error of a given set. The formulation is valid in
any dimension and covers both finite sets of data points as well as infinite sets like
polygonal chains or triangulations of surfaces. We derive theoretical estimates for the
cost to reach a desired accuracy, and validate the performance of the algorithm with
various numerical experiments.

Keywords Circularity error · Global optimization · Minimum zone · Minimum width
annulus · Roundness evaluation · Sphericity error

Mathematics Subject Classification 90C26 · 90C90

1 Introduction

In metrology applications (e.g., quality and wearing assessment of industrial rollers)
an object is considered round enough, if all measurement points on its surface lie
between two spheres (cirlces) around a common center, such that the difference of
their radii is smaller than some prescribed tolerance. This complies with ANSI Y14.5
and ISO 1101 standards [1,2].

The roundness of any set S ⊂ R
d may be defined as the smallest possible difference

of radii for a suitable center. A precise definition of the corresponding optimization
problem will be given in the next section.
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The problemof computing the roundness is also known as the problemof computing
the minimum radial separation, the minimum zone sphericity (circularity) error, or the
minimum-width shell (annulus).

Computational geometry algorithms that compute exact solutions for finite sets S
with n points aremostly based onVoronoi diagrams [3–7]. In the plane, they haveworst
caseO(n2)-time behavior, but there are also subquadraticO(n3/2+β)-time algorithms
[8] for arbitrarily small β > 0. Under special assumptions on the set S even (expected)
linear time can be achieved with linear programming techniques [9], see also [10].
In [11] it was noted that the general complexity to compute an exact solution in any
dimension d is O(nfloor(d/2)+1). No estimates on the constants involved are given,
but they generally depend exponentially on d. Indeed, as pointed out in [12], even
in the plane, algorithms, that compute exact global solutions, are rather inefficient
for large n. Therefore, it is of practical interest to develop algorithms, that efficiently
compute approximate global minimizers of the roundness problem for any prescribed
accuracy ε > 0, especially, if the roundness of many manufactured objects has to be
evaluated. Since the roundness problemmay have several local minima, standard local
optimization methods cannot guarantee to find global minimizers. To our knowledge,
the algorithm with the best complexity estimate to compute an approximate global
minimizer is the one in [11] with O(

n · ln(1/ε)/εd), which for d = 2 improves the
O(

n ·ln(n)+ n
ε2

)
result of [12]. Again, no estimates on the constants involved are given.

Furthermore, the case d = 2 is often treated in a special manner, and the algorithms
cannot directly be used to deal with sets S, that contain infinitely many points such
as line segments. But, for the case that S is the boundary of a convex polygon with n
vertices in the plane, an exact solution can also be computed with the help of Voronoi
diagrams in O(n)-time [13].

Here, we analyze a global search algorithm to solve the roundness problem, which
adaptively divides the initial search space into smaller parts until an approximate
global minimizer with the desired accuracy is found. The main idea is in the spirit
of the general branch-and-bound methods for global optimization discussed in [14],
but here we make use of the special structure of the roundness problem to reduce the
search space. The algorithm is simple to implement, because it is based only on the
comparison of objective function values, and neither derivatives nor Voronoi diagrams
have to be computed, which also makes it less sensitive to perturbations in the data.
The formulation is valid in any dimension d, and for both finite sets S of data points as
well as infinite sets like polygonal chains or triangulations of surfaces. An approximate
global minimizer is found inO(

n · ln(1/ε))-time (with n beeing the number of points
or vertices), which also improves the O(

n · ln(1/ε)/εd) result of [11]. The constants
involved depend on the number of objective function evaluations (the most costly
operation), which in the worst case also grows exponentially with the dimension d.
But, under mild assumptions on the roundness of S and the initial search space, we
compute explicit upper bounds on the number of objective function evaluations that are
needed to find an approximate global minimizer, whose objective value is not larger
than twice the minimal value. Similar ideas might be used to formulate and analyze
global search algorithms for related problems like cylindricity or flatness problems
under appropriate assumptions on the data.
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In the next section we give a precise definition of the roundness problem, and recall
a result proven in [9], which shows that global minimizers of the roundness problem
exist for almost round sets. We will need this result for the complexity estimate of our
algorithm, which is analyzed in Sect. 3. The performance of the algorithm is tested in
Sect. 4 with various numerical experiments.

2 Global Solutions of the Roundness Problem

For vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d we denote their scalar product

by 〈x , y〉 := ∑d
i=1 xi · yi , and the Euclidean norm by ‖x‖ :=

√∑d
i=1 x

2
i . By

introducing the roundness function for a given set S ⊂ R
d ,

rdS(x) := max
p∈S ‖x − p‖ − min

q∈S ‖x − q‖ ,

the problem of computing the roundness rd(S) of S may be formulated as the uncon-
strained optimization problem

rd(S) := min
x∈Rd

rdS(x) . (RP)

We assume throughout the paper that S ⊂ R
d is compact. This implies that the

maximumdistance rmax(x) := max p∈S ‖x− p‖ and theminimumdistance rmin(x) :=
minq∈S ‖x−q‖ of a given center x ∈ R

d to the set S are attained, and that the roundness
function rdS(x) = rmax(x) − rmin(x) is continuous. Even so, it was shown in [15,16]
that the minimum in (RP) need not exist in general. As a simple counterexample,
consider the case that S consists of 3 distinct points on a straight line: For any center
x ∈ R

d we have rdS(x) > 0, but, by moving the center perpendicularly to and further
away from the line, in the limit we get inf x∈Rd rdS(x) = 0. But a positive result was
obtained in [9] for sets which there are called almost round. Here we need this result
for slightly more general parameter values. Similar to [9], in addition to compactness,
we make the following two assumptions about the set S with respect to some given
center x0 ∈ R

d and angle α ∈ [0, π [.
(A1) The set S contains sufficiently many points sucht that there is at least one point

of S inside any cone with apex at x0 and angle α; see Fig. 1.
(A2) The ratio η of the value of the roundness function

rdS(x0) = rmax(x0) − rmin(x0)

to themean radius r(x0) := rmax(x0)+rmin(x0)
2 is sufficiently small; more precisely

it holds that

η := rdS(x0)
r(x0)

< 2 · cos (
α
2

)
.
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Fig. 1 Left. Blue: Data points of an almost round set S. Red: Each cone with apex at x0 and angle α contains
at least one point of S. Right. Typical graph of the roundness function rdS(x) of an almost round set S

Small values ofα in Assumption (A1) prevent “big holes” in the data. The ideal case
α = 0 in particular corresponds to closed surfaces, for instance if S is the boundary of
a polygon in the plane. Larger values of α force the ratio η in Assumption (A2) to be
smaller. The next theorem shows that under these assumptions the global minimum
exists, and moreover, the search for a minimizer can be restricted to a ball around x0.

Theorem 2.1 (cf. Lemma 1 in [9]) Under Assumptions (A1) and (A2) the roundness
problem (RP) has a global minimum, which is attained at some center in a ball around
x0 with radius

ρ := cos
(

α
2

) · (4 − η2)

4 · cos2 (
α
2

) − η2
· rdS(x0) .

If Assumption (A1) holds with α = 0, then Assumption (A2) is not necessary, and
the assertion is valid with ρ := rdS(x0).

Proof At first, we note that Assumption (A2) implies 0 ≤ ρ < ∞ in case α > 0. Let
x ∈ R

d be any center with ‖x − x0‖ ≥ ρ. We will show that the inequality rdS(x) ≥
rdS(x0) holds. Since the roundness function is continuous, its global minimum must
then be attained on the ball around x0 with radius ρ. By Assumption (A1) there
exist p, q ∈ S with 〈q−x0 , x−x0〉‖q−x0‖·‖x−x0‖ ≥ cos

(
α
2

)
and 〈 p−x0 ,−(x−x0)〉‖ p−x0‖·‖x−x0‖ ≥ cos

(
α
2

)
. We set

t := ‖x − x0‖ and estimate

‖ p − x‖ = ‖( p − x0) − (x − x0)‖ ≥
√
r2min + 2 cos

(
α
2

) · rmin · t + t2

and

‖q − x‖ = ‖(q − x0) − (x − x0)‖ ≤
√
r2max − 2 cos

(
α
2

) · rmax · t + t2 .
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For t ≥ 0 the function

f (t) :=
√
r2min + 2 cos

(
α
2

) · rmin · t + t2 −
√
r2max − 2 cos

(
α
2

) · rmax · t + t2 (1)

is increasing with f (ρ) = rmax − rmin = rdS(x0). For ‖x − x0‖ = t ≥ ρ it follows
that we get

rdS(x) ≥ ‖ p − x‖ − ‖q − x‖ ≥ f (t) ≥ f (ρ) = rdS(x0) .


�
We will make use of this theorem in two ways. First, an appropriate initial center

x0 allows us to restrict the initial search space for global minimizers. For example,
if α ≤ π

2 and η ≤ 0.4, then it suffices to search in a ball around x0 with radius
ρ < 3

2 · rdS(x0). This may be useful even if the roundness value rdS(x0) at the initial
center is not very small. Second, by applying the theorem with x0 being a global
minimizer, we will derive complexity estimates for our search algorithm in the next
section.

To ensure existence of the global minimum in general, it suffices to restrict the
choice of possible centers to a compact set Q ⊂ R

d . Therefore, in the following, we
consider the constrained roundness problem

rd(S|Q) := min
x∈Q rdS(x) , (CRP)

According to Theorem 2.1, for almost round sets we can choose Q large enough so
that solutions of (CRP) are also solutions of (RP). Note that the roundness function in
general is not convex.Hence itmay have several localminima, and the globalminimum
may be attained at different centers. Uniqueness of the optimal center cannot so easily
be guaranteed, even for almost round sets. As a pathological example, consider the
case that S consists of the origin together with a perfect sphere with radius r around
the origin: Then the roundness of S is rd(S) = r , and the global minimum is attained at
every point in the ball with radius r

2 around the origin. Since we are mainly interested
in the minimal objective value, we do not pursue any further the issue of uniqueness,
but instead refer to [9,17] for a positive result in dimension d = 2 and a discussion
why for almost round sets it is unlikely in practice to encounter local minima which
are not also global minima.

3 Roundness Evaluation Algorithm

We propose to solve the constrained roundness problem (CRP) with a global search
algorithm, which adaptively divides the initial search space into smaller parts until an
approximate global minimizer with the desired accuracy is found. It consists of the
basic global search Algorithm 1 together with Algorithm 2 to speed up convergence.
For reasons of simplicity and efficiency, we initially use a cube (square) Q in (CRP),
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Fig. 2 Black: Cube Qh(x) with
center x and edge length h. Red:
Vertices vi ∈ Vh/2(x) are
centers of the subcubes with
edge length h

2

which is then adaptively divided into smaller cubes in each iteration. The centers of
these cubes are candidates for potential minimizers.

3.1 Basic Global Search

We denote a d-dimensional axis-parallel cube with center x ∈ R
d and edge length

h > 0 by

Qh(x) := { y ∈ R
d : max

i=1,...,d
|yi − xi | ≤ h

2 } ,

and its set of 2d vertices by Vh(x). The vertices in Vh/2(x) then coincide with the
centers of the subcubes that we obtain by dividing Qh(x) into 2d subcubes with edge
length h

2 , see Fig. 2.
We will prove the convergence of the algorithm with the help of the following

lemma, which gives a sharp bound on the growth of the roundness function on a cube
with respect to its center.

Lemma 3.1 For all y ∈ Qh(x) we have rdS(x) ≤ rdS( y) + √
d · h.

Proof To x we find p, q ∈ S such that ‖x − p‖ − ‖x − q‖ = rdS(x). Using the
triangle inequality, we get rdS( y) ≥ ‖ y− p‖ −‖ y−q‖ ≥ rdS(x)−2 · ‖ y− x‖. Now
the assertion follows from the estimate ‖ y − x‖ ≤ √

d · max
i=1,...,d

|yi − xi | ≤ √
d · h

2

for y ∈ Qh(x). 
�
In each iteration of Algorithm 1, we use a finite set C of centers of cubes Qh(x)

which have the same current edge length h. These centers are candidates for potential
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minimizers. The center x̂ with so far minimal roundness value rdS(x̂) is kept as current
approximate solution. In line 1 of Algorithm 1we initialize with x̂ := x0, h := h0, and
C := {x0}. New candidate centers are obtained as follows: We start with Cnew := ∅
(line 3) and run through all current centers x ∈ C (line 4). Based on Lemma 3.1, we
make in line 5 what we call a simple test to decide which of the current cubes can be
discarded in the next iterations, and which cubes have to be searched further. If the
current center x ∈ C passes the test, then we add all centers xnew ∈ Vh/2(x) of the
subcubes to Cnew (lines 6, 7). Furthermore, if one of the new centers has a smaller
roundness value than x̂, then we take it as the new approximate solution (lines 8,
9). In the next iteration, we replace C with the new centers (line 14), and halve the
edge length h (line 15). The iterations are stopped as soon as the desired accuracy
rd(x̂) ≤ rd(S|Q) + ε is reached, which by the next theorem will be guaranteed to be
the case if either the current edge length is small enough, or no cubes remain to be
searched (line 16).

Algorithm 1 Basic global search
Require: data S ⊂ R

d with roundness function rdS , initial center x0 ∈ R
d and edge length h0 > 0, and

accuracy ε > 0
Ensure: an approximate solution x̂ of (CRP) with rd(x̂) ≤ rd(S|Q) + ε

1: initialize x̂ := x0, h := h0, and C := {x0}
2: repeat
3: set Cnew := ∅
4: for all x ∈ C do
5: if rdS(x) < rdS(x̂) + √

d · h − ε then
6: for all xnew ∈ Vh/2(x) do
7: update Cnew := Cnew ∪ {xnew}
8: if rdS(xnew) < rdS(x̂) then
9: replace x̂ := xnew
10: end if
11: end for
12: end if
13: end for
14: replace C := Cnew
15: divide h := h

2
16: until

√
d · h ≤ ε or C = ∅

Theorem 3.1 Given an initial center x0 ∈ R
d , edge length h0 > 0, and desired

accuracy ε > 0, the basic global search Algorithm 1 finds an approximate global
minimizer x̂ of the constrained roundness problem (CRP) on the cube Q := Qh0(x0)

with rdS(x̂) ≤ rd(S|Q) + ε after at most ceil
(
log2

(√
d·h0
ε

))
iterations.

Proof We denote the union of all cubes with current centers C and edge length h at
the beginning of an iteration by

RC,h :=
⋃

x∈C
Qh(x) .
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ByLemma 3.1, for all y ∈ RC,h and corresponding center x ∈ C such that y ∈ Qh(x),
we have rdS(x) ≤ rdS( y) + √

d · h. Since the current approximate solution fulfills
rdS(x̂) ≤ rdS(x), we infer that

rdS(x̂) ≤ rdS( y) + √
d · h for all y ∈ RC,h . (2)

We prove inductively that on the complement of the region RC,h we have

rdS(x̂) ≤ rdS( y) + ε for all y ∈ Q \ RC,h . (3)

(This also shows that outside of the region RC,h the current approximate solution x̂
has already reached the desired accuracy, so that the search for new, potentially better,
approximate minimizers can be restricted to the region RC,h , see also Fig. 3.)

Initially we have C = {x0} and h = h0 (cf. line 1 of Algorithm 1), so that RC,h =
Qh0(x̂) = Q. Hence, (3) holds trivially since Q \ RC,h = ∅. Now we assume that (3)
holds for the current centers C and edge length h at the beginning of the for-loop in
line 4, and show that it also holds for RCnew,h/2 at the end (line 13) with the new centers
Cnew and edge length h

2 . Let y ∈ Q \ RCnew,h/2 be arbitrary. If y is also contained in
Q \ RC,h , then the induction hypothesis (3) immediately implies rdS(x̂) ≤ rdS( y)+ε.
Otherwise, we have y ∈ RC,h . According to the construction of the set of new centers
Cnew (lines 6, 7) this means that y ∈ Qh(x) for some center x ∈ C which must
have failed the test in line 5, i.e., rdS(x) ≥ rdS(x̂) + √

d · h − ε. Hence, together
with Lemma 3.1, in this case we also get

rdS(x̂) ≤ rdS(x) − √
d · h + ε ≤ rdS( y) + ε ,

so that (3) indeed holds for all y ∈ Q \ RCnew,h/2.
Note that if Cnew = ∅ then the new region RCnew,h/2 is empty, too, so that by (3)

we can stop iterating (line 16), because then x̂ already is an approximate minimizer
with the desired accuracy.

By (2) and (3), we conclude that the current approximate solution fulfills

rdS(x̂) ≤ rd(S|Q) + max{ε,√d · h} , (4)

so that we can also stop iterating as soon as the edge length h of the cubes is small
enough, i.e.,

√
d · h ≤ ε (line 16). Since at the end of the K -th iteration the edge

length of the cubes is h = h0
2K

, the desired accuracy
√
d · h ≤ ε is reached after at

most ceil
(
log2

(√
d·h0
ε

))
iterations. 
�

Themost costly operation is the evaluation of the roundness function for the encoun-
tered centers. In the worst case, no cubes can be discarded, i.e., after K iterations there
are at most

∑K
k=0(2

d)k = 2(K+1)·d−1
2d−1

function evaluations. On the one hand, this
implies that the complexity of the algorithm to compute an approximate solution for
finite sets S with n data points isO(n), i.e., it increases only linearly with the number
n of data points. On the other hand, there is a potentially huge constant hidden in the
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Fig. 3 Left. Blue: Data points S, approximately on a circular arc. Red: Currently best center x̂ after some
iterations with Algorithm 1, and region RC,h where centers x with rdS(x) < rdS(x̂) − ε may be found.
Right. Typical graph of the roundness function rdS(x) of an approximate circular arc S

O-notation, and for higher dimensions even storing the current centers in computer
memory will be a problem. But Theorem 2.1 indicates that many cubes will be dis-
carded up to a small neighborhood around a minimizer. The next lemma shows how to
derive much smaller upper bounds on the number of roundness function evaluations
for almost round sets S by counting the number of certain integer lattice points.

Lemma 3.2 Let xmin ∈ Q be a globlal minimizer of the constrained roundness prob-
lem (CRP), and let Assumptions (A1) and (A2) be fullfilled for xmin in place of x0
with corresponding mean radius r = rmax(xmin)+rmin(xmin)

2 and ratio η = rdS(xmin)
r . For

simplicity we assume that Algorithm 1 is run with initial edge length h0 = r and

desired accuracy ε ≤ rd(S|Q). Then after at most K := ceil
(
log2

(√
d

η

))
iterations

the current approximate solution fulfills

rdS(x̂) ≤ 2 · rd(S|Q) .

We set c := cos
(

α
2

)
, and for k = 0, . . . , K and integer lattice points z ∈ Z

d we define

gk(z) :=
√

(
1 − η

2

)2 + 2c · (1 − η
2

) · ‖z‖−
√
d
2

2k−1 +
(
‖z‖−

√
d
2

)2

22k−2

−
√

(
1 + η

2

)2 − 2c · (
1 + η

2

) · ‖z‖−
√
d
2

2k−1 +
(
‖z‖−

√
d
2

)2

22k−2 . (5)

Let ak be the number of lattice points z ∈ Z
d which fulfill either ‖z‖ <

√
d
2 , or

gk(z) < η + 3·√d
2k−1 in case ‖z‖ ≥

√
d
2 (it may be ak = ∞). Set m0 := 1 and mk :=

min{2d · mk−1, ak} for k ≥ 1. Then the number of roundness function evaluations in
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iteration k is at most mk, i.e., after K iterations there are at most
∑K

k=0 mk roundness
function evaluations.

Proof Let x̂ be the current approximate solution and x ∈ C be any of the centers in
line 4 of Algorithm 1 at the beginning of iteration k ≥ 1. The cube Qh(x) is discarded
if the test in line 5 fails, i.e., if

rdS(x) ≥ rdS(x̂) + √
d · h − ε . (6)

We will derive a sufficient condition for the test to fail.
Let us divide Q into equally sized subcubes, which have current edge length h =

h0
2k−1 = r

2k−1 (at the beginning of iteration k). The minimizer must lie in one of those
cubes, say xmin ∈ Qh(x̃) for some suitable center x̃ ∈ Q (not necessarily x̃ ∈ C). By
Lemma 3.1, we get

rdS(x̃) ≤ rdS(xmin) + √
d · h = rd(S|Q) + √

d · h . (7)

Furthermore, as was shown in (4) in the proof of Theorem 3.1, we have

rdS(x̂) ≤ rd(S|Q) + max{ε,√d · h} ≤ rdS(x̃) + max{ε,√d · h} . (8)

By definition of K it is the smallest integer with 2K ≥
√
d

η
. Hence, for k ≤ K we get

ε ≤ rd(S|Q) = η · r <
√
d · r

2k−1 = √
d · h, so that (8) and (7) yield the estimate

rdS(x̂) ≤ rdS(x̃) + √
d · h ≤ rd(S|Q) + 2 · √

d · h . (9)

For the current center x ∈ C , we can write x − x̃ = h · z with some suitable z ∈ Z
d .

Since xmin ∈ Qh(x̃) we conclude that

t := ‖x − xmin‖ ≥ ‖x − x̃‖ − ‖x̃ − xmin‖ ≥ h · (‖z‖ −
√
d
2

) =: tz .

For ‖z‖ ≥
√
d
2 , we have tz ≥ 0, so that we can argue as in the proof of Theorem 2.1

for xmin instead of x0, and with the increasing function f (t) defined there in (1), we
get

rdS(x) ≥ f
(‖x − xmin‖

) = f (t) ≥ f (tz) = f
(
h · (‖z‖ −

√
d
2

))
. (10)

Hence, by (9) and (10), the inequality (6) is surely fulfilled in case

f
(
h · (‖z‖ −

√
d
2

)) ≥ rd(S|Q) + 3 · √
d · h .

By recalling that rd(S|Q) = η · r , h = r
2k−1 , rmin = (

1 − η
2

) · r , rmax = (
1 + η

2

) · r ,
and the definition of gk in (5), we conclude that the cube Qh(x) is discarded if

gk(z) = f
(
h·
(
‖z‖−

√
d
2

))

r ≥ η + 3·√d
2k−1 .
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Table 1 Maximum number of roundness function evaluations after K iterations, computed with the help
of Lemma 3.2

d = 2 d = 3 d = 4

η = 0.01, α = π
2 393 (105) 2793 (107) 23, 377 (109)

η = 0.01, α = 0 205 1049 5633

η = 0.001, α = π
2 501 (106) 3473 (1010) 27, 025 (1013)

η = 0.001, α = 0 273 1257 7009

Since the number of new centers is at most 2d -times the number of old centers, we
infer that the number of roundness function evaluations in iteration k is at most mk =
min{2d ·mk−1, ak} for k ≥ 1. Finally, because ε ≤ rd(S|Q) and at the end of iteration
K , we also have

√
d ·h = √

d · r
2K

≤ rd(S|Q), we infer from the first inequality in (8)
that the approximate solution at the end of iteration K fulfills rdS(x̂) ≤ 2 · rd(S|Q). 
�

Some of the results that we computed with the help of Lemma 3.2 are given in
Table 1, where the values in brackets correspond to the order of the general worst case
estimates if no cubes would be discarded (note that the worst case estimate depends
on K and thus on η, but not on α).

Lemma 3.2 explains well the good initial behavior of Algorithm 1, which only
uses the simple test in line 5 to decide which cubes can be discarded. Moreover, it
shows that it is not really important that the initial search space is small, because the
algorithm itself rapidly decreases the size of the initial search space.

3.2 Acceleration of the Basic Global Search

To speed up the convergence by increasing the number of discarded cubes, we use
Algorithm 1 together with Algorithm 2.

Algorithm 2 Acceleration of the basic global search: Replace the if-block in lines
5-12 of Algorithm 1 by the following.

1: if rdS(x) < rdS(x̂) + √
d · h − ε then

2: choose p, q ∈ S with ‖x − p‖ − ‖x − q‖ = rdS(x)

3: for all xnew ∈ Vh/2(x) do
4: set m := min{‖v − p‖ − ‖v − q‖ : v ∈ Vh/2(xnew)}
5: if m < max{0, rdS(x̂) − ε} then
6: update Cnew := Cnew ∪ {xnew}
7: if rdS(xnew) < rdS(x̂) then
8: replace x̂ := xnew
9: end if
10: end if
11: end for
12: end if

Algorithm 2 augments the simple test by a second one, which exploits the special
structure of the roundness function. If the simple test succeeded for the current center
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Fig. 4 Red: Subcubes Qh/2(xnew) of Qh(x) and their vertices. Blue: Data points p, q ∈ S and region
with rdS( y) ≥ ‖ y − p‖ − ‖ y − q‖ ≥ rdS(x̂) − ε for all y ∈ Qh/2(xnew,2), so that Qh/2(xnew,2) can be
discarded

x, then, instead of definitely keeping all 2d subcubes for the next iteration, the second
test in line 5 of Algorithm 2 decides whether some of the subcubes can be discarded
as well.

Lemma 3.3 If the additional test in line 5 of Algorithm 2 fails, then the subcube
Qh/2(xnew) can be discarded in subsequent iterations.

Proof If the test in line 5 fails, then we havem ≥ 0 andm ≥ rdS(x̂)−ε. By definition
of m (line 4) all vertices v ∈ Vh/2(xnew) of the subcube Qh/2(xnew) lie in the set
H := { y ∈ R

d : ‖ y − p‖ − ‖ y − q‖ ≥ m}, which for m ≥ 0 is either a hyperboloid
or a halfspace, and thus convex. This implies that the whole subcube Qh/2(xnew) is
contained in H . Hence, for all y ∈ Qh/2(xnew)we get rdS( y) ≥ ‖ y− p‖−‖ y−q‖ ≥
m ≥ rdS(x̂)−ε, i.e., the subcube Qh/2(xnew) can be discarded in subsequent iterations.


�
We point out that we do not evaluate the whole costly roundness function at the

vertices, but only the values ‖v− p‖−‖v−q‖ for the single pair p, q ∈ S chosen in line
2 of Algorithm 2. Furthermore, since the subcubes have several vertices in common,
and the value at the center x is already known, it actually suffices to compute the
values ‖v − p‖ − ‖v − q‖ for only 3d − 1 vectors v ∈ R

d (instead of 2d · 2d = 4d ),
cf. Fig. 4.

Obviously, the assertions of Theorem 3.1 and Lemma 3.2 remain valid, if we use
Algorithm 1 togetherwithAlgorithm 2. But since the second test uses the smaller value
rdS(x̂) − ε instead of rdS(x̂) + √

d · h − ε, potentially more cubes can be discarded,
especially in the final iterations, where the simple functions y �→ ‖ y− p‖ −‖ y− q‖
with fixed p, q ∈ S are locally good approximations of the roundness function. This
claim is supported by the next lemma and our numerical experiments.
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Lemma 3.4 Let r be the mean radius at a minimizer xmin of (CRP). We make the
following assumptions about the ratio η := rd(S|Q)

r and the desired accuracy ε:

η ≤ 1

10
and 21 · η2 · rd(S|Q) ≤ ε ≤ rd(S|Q) . (11)

If the current edge length h in line 1 of Algorithm 2 is small enough, and the distance
of the current center x to its corresponding data point q ∈ S chosen in line 2 is large
enough such that √

d · h ≤ rd(S|Q) and ‖x − q‖ ≥ r
2 , (12)

then at least one subcube of Qh(x)will be discarded by the test in line 5. In particular,
the condition ‖x − q‖ ≥ r

2 is automatically fulfilled, if x passed the test in line 1, and
if Assumption (A1) holds with α ≤ π

2 for xmin in place of x0.

Proof As shown in (4) in the proof of Theorem 3.1, the current approximate solution
fulfills rdS(x̂) ≤ rd(S|Q) + max{ε,√d · h}. Hence, (11) and (12) imply rdS(x̂) ≤
2 · rd(S|Q). If the current center x passed the first test in line 1 of Algorithm 2, then
it follows that

rd(x) < 3 · rd(S|Q) . (13)

We show that the second test in line 5 fails for the center xnew of the subcube which
lies in the halfspace H := { y ∈ R

d : 〈 x− p
‖x− p‖ − x−q

‖x−q‖ , y − x〉 ≥ 0} (note that at
least one of the subcubes must lie in H because the center x lies in H ). Each vertex
v ∈ Vh/2(xnew) can be written as v = x + t · u for some 0 ≤ t ≤ √

d · h and a unit
vector u ∈ R

d with
〈 x− p
‖x− p‖ − x−q

‖x−q‖ , u〉 ≥ 0 . (14)

We set h(t) := ‖x+t ·u− p‖−‖x+t ·u−q‖. To see that the test in line 5 fails, it is then
sufficient to show that h(t) ≥ rdS(x)− ε (recall that rdS(x)− ε ≥ rd(S|Q)− ε ≥ 0).

By Taylor expansion around t = 0 there exists some t̃ ∈ (0, t) and a function g(t̃)
such that

h(t) = rdS(x) + t · 〈 x− p
‖x− p‖ − x−q

‖x−q‖ , u〉 ·
(
1 − t

2·‖x−q‖ · 〈 x− p
‖x− p‖ + x−q

‖x−q‖ , u〉
)

− t2 · rdS(x)
2·‖x− p‖·‖x−q‖ ·

(
1 − t

2·‖x−q‖ ·
(
〈 x− p
‖x− p‖ , u〉

)2) − g(t̃) · t3 . (15)

We will derive lower bounds for the summands in the Taylor expansion.
From (11) and (12) we infer that

t̃ ≤ t ≤ √
d · h ≤ rd(S|Q) = η · r ≤ r

10
, (16)

which implies t
‖x−q‖ ≤ r/10

r/2 = 1
5 . It follows that the second summand in (15) is

non-negative, because t ≥ 0 and by (14) we have 0 ≤ 〈 x− p
‖x− p‖ − x−q

‖x−q‖ , u〉 ≤ 2.
Similarly we see that in the third summand the whole expression in the big brackets is
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less than or equal to 1, and by (13) and (16) we then can estimate the third summand
from below by

−t2 · rdS(x)
2·‖x− p‖·‖x−q‖ ≥ − rd(S|Q)2 · 3·rd(S|Q)

2·r2/4 = −6 · η2 · rd(S|Q) .

Hence we have

h(t) ≥ rdS(x) − 6 · η2 · rd(S|Q) − g(t̃) · t3 . (17)

An elementary but lengthy calculation leads to the estimate

|g(t̃)| ≤ 2√
3

·
(

1
‖x− p+t̃ ·u‖2 + 1

‖x−q+t̃ ·u‖2
)

.

From (16) and (12) we infer that

‖x − q + t̃ · u‖ ≥ ‖x − q‖ − t̃ ≥ r
2 − t̃ ≥ 2r

5 .

Since ‖x − p‖ ≥ ‖x − q‖ we likewise get ‖x − p + t̃ · u‖ ≥ 2r
5 and thus

|g(t̃)| ≤ 2√
3

· ( 25
4r2

+ 25
4r2

) = 25√
3

· 1
r2

.

Together with (11) and (16) we finally get the desired lower bound for h(t) in (17),
i.e.,

h(t) ≥ rdS(x) − 6 · η2 · rd(S|Q) − 25√
3

· t3

r2

≥ rdS(x) − 6 · η2 · rd(S|Q) − 25√
3

· η2 · rd(S|Q)

≥ rdS(x) − 21 · η2 · rd(S|Q) ≥ rdS(x) − ε .

It remains to show that the condition ‖x − q‖ ≥ r
2 is fulfilled if Assumption (A1)

holds with α ≤ π
2 for xmin in place of x0. At first we note that by (11) we have

‖xmin − q‖ ≥ rmin = r − rd(S|Q)

2
≥ 19r

20
. (18)

As we have seen above, (13) holds if x passed the first test in line 1 of Algorithm 2.
We will show that this implies

‖x − xmin‖ ≤ 9r

20
, (19)

because together with (18) we then can indeed conclude that

‖x − q‖ ≥ ‖xmin − q‖ − ‖x − xmin‖ ≥ 19r

20
− 9r

20
= r

2
.
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Let us define

r̃max := r + 3

2
· rd(S|Q) ≥ rmax and r̃min := r − 3

2
· rd(S|Q) ≤ rmin ,

r̃d(S|Q) := r̃dS(xmin) := r̃max − r̃min = 3 · rd(S|Q) ,

η̃ := r̃d(S|Q)

r
= 3 · η and ρ̃ := cos

(
α
2

) · (4 − η̃2)

4 · cos2 (
α
2

) − η̃2
· r̃d(S|Q) .

Condition (11) implies η̃ ≤ 0.3, so that for α ≤ π
2 we have

ρ̃ ≤ 3

2
· r̃d(S|Q) = 9

2
· η · r ≤ 9r

20
.

Now assume that (19) does not hold, which implies ‖x − xmin‖ > 9r
20 ≥ ρ̃. But then

a similar argument as in the proof of Theorem 2.1 leads to the estimate rdS(x) ≥
r̃dS(xmin) = 3 · rd(S|Q), which contradicts (13). 
�

3.3 Initial Center

In many applications, an adequate initial center is at hand. But if none is given, we
compute an initial center for finite datasets S = { p1, . . . , pn} by solving

min
x∈Rd ,r≥0

n∑

i=1

(‖ pi − x‖2 − r2
)2

.

In [18] it was shown that this problem is equivalent to the following linear least squares
problem by setting t := r2 − ‖x‖2,

min
x∈Rd ,t∈R

n∑

i=1

(‖ pi‖2 − 2 · 〈 pi , x〉 − t
)2

. (LSQ)

4 Numerical Experiments

We have implemented Algorithm 1 together with Algorithm 2 in Matlab (R2017b),
and test its performance with different kind of sets S.

4.1 Random Sets with Predefined Roundness and Unique Optimal Center

At first we generate random sets of test points, but with predefined roundness and
unique optimal center. The following lemma explains the construction of such sets.

Lemma 4.1 For given δ ∈]0, 1[ we define the positive numbers u :=
√

4+δ2·d
4+4d , v :=

√
4d−δ2·d
4+4d and w := √

d + 1 · δ
2 . Let ei ∈ R

d for i = 1, . . . , d be the standard basis
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Fig. 5 Set S of test points pi, j,σu,σv,σw for i, j ∈ {1, 2} with i �= j and σu , σv, σw ∈ {−1,+1}, with
predefined roundness rd(S) = 0.2

vectors. For all i, j ∈ {1, . . . , d}, with i �= j , and σu, σv, σw ∈ {−1,+1} we define
the 8 · d · (d − 1) different points pi, j,σu,σv,σw ∈ R

d by

pi, j,σu,σv,σw := σu · (u + σw · w) · ei + σv · v · e j .

Then all pi, j,σu,σv,−1 lie on the spherewith radius rmin :=
√
1 + d

4 · δ2− δ
2 around the

origin, and all points pi, j,σu,σv,+1 lie on the spherewith radius rmax :=
√
1 + d

4 · δ2+
δ
2 around the origin, cf. Fig. 5. The set S of all these points has roundness rd(S) = δ

with the origin as unique optimal center. Obviously, any superset of S obtained by
adding arbitrarily many points p ∈ R

d with rmin ≤ ‖ p‖ ≤ rmax to S then also has
roundness δ with the origin as unique optimal center.

Proof Since rdS(0) = rmax − rmin = δ, we have rd(S) ≤ δ, and the assertion follows
by proving that there can be no center x ∈ R

d with rdS(x) < δ.
We define the functions h, hi, j,σu ,σv : Rd → R by

hi, j,σu ,σv (x) := d · (xi − σu · u)2 − (x j − σv · v)2 −
d∑

k=1
k �=i, j

x2k

and

h(x) :=
∑

σu ,σv∈{±1}

d∑

i, j=1
i �= j

hi, j,σu ,σv (x) .
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Table 2 Average number of roundness function evaluations for examples created according to Lemma 4.1

d = 2 d = 3 d = 4 d = 5

rd(S) = 0.01 43 (102) 110 (442) 297 (2231) 849 (10,080)

rd(S) = 0.001 54 (126) 144 (593) 391 (2902) 1165 (13,605)

d = 6 d = 7 d = 8 d = 9

rd(S) = 0.01 2522 8472 27,505 116,814

rd(S) = 0.001 3818 12173 46,259 139,944

Then the two points pi, j,σu,σv,−1 and pi, j,σu,σv,+1 are foci of the hyperboloid defined
by the equation

hi, j,σu ,σv (x) = d · δ2

4 ,

andwhich contains the origin (this can easily be confirmed by elementary calculations,
using the relations u2+v2 = 1 and d ·u2−v2 = d · δ2

4 ). The function h is quadratic and
strictly convexwith gradient h′(x) = 8·x andHessian h′′(x) = 8· I with d×d-identity
matrix I , and hence h has the origin as unique minimizer with h(0) = d2 · (d−1) · δ2.

Now assume that there exists a center x̃ ∈ R
d with rdS(x̃) < δ. This implies that

|‖ pi, j,σu,σv,−1− x̃‖−‖ pi, j,σu,σv,+1− x̃‖| < δ, which is equivalent to hi, j,σu ,σv (x̃) <

d · δ2

4 . Summing up all 4 · d · (d − 1) inequalities yields the inequality h(x̃) <

d2 · (d − 1) · δ2 = h(0), which is a contradition to the origin beeing the unique
minimizer of h. 
�

We create examples according to Lemma 4.1 for different dimensions d and num-
bers n of data points (where random points are added to the points pi, j,σu,σv,σw ). In
all cases, our algorithm is run with accuracy rd(S)

100 , initial center x0 = (0.3, . . . , 0.3),
and initial edge length h0 = 1. The initial roundness is rdS(x0) ≈ 1. For each value
of d, n and rd(S) we compute the average number of roundness function evaluations,
taken over 100 runs with different random points.

At first, we examine the behavior for increasing dimension with a fixed number
n = 1000 of data points. The results are displayed in Table 2. The values in brackets
are obtained with the simple test of Algorithm 1 only (which only worked well for
d ≤ 5), and the values without brackets are obtained together with Algorithm 2.
This confirms that Algorithm 2 greatly accelerates the basic global search. On our PC
(Intel(R) Core(TM) i7 CPU with 2.8 GHz and 12 GB RAM) the average computing
times with Algorithm 2 are negligible for d = 2, 3, less than 0.1 s for d = 4, 5, about
3 s for d = 7, about 20 s for d = 8, and about 3 minutes for d = 9. In the following
we always use Algorithm 1 together with Algorithm 2.

Next we examine the behavior for an increasing number of data points with fixed
dimension and roundness rd(S) = 0.01. As can be seen in Fig. 6, the average number
of roundness function evaluations is almost constant.
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Fig. 6 Average number of roundness function evaluations for rd(S) = 0.01 and an increasing number of
data points
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Fig. 7 Average computing time in seconds for rd(S) = 0.01 and an increasing number of data points

Figure 7 confirms that the average computing time increases at most linearly with
the number of data points, and that the slope increases with the dimension.

4.2 Publicly Available Test Data

We check the performance of our algorithm for the publicly available 2D datasets with
CMM data (cartesian coordinates obtained with a Coordinate Measuring Machine)
that were used in Table 5 of [19], where a comparative study of existing roundness
evaluation algorithms was done. The number of data points is rather small, ranging
from n = 16 to n = 32. The roundness values obtained in [19] range from 0.03
[mm] to 36 [mm], and are given with 4 decimal digits. Therefore we run our algorithm
with accuracy ε = 10−6. We compute an initial center x0 by solving the linear least
squares problem (LSQ), and choose the initial edge length h0 in two ways: Once as
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Table 3 Results for the publicly available 2D-datasets used in Table 5 of [19]

Dataset 1 2 3 4 5

rdS(x0) 0.3742 0.9530 0.4264 0.8417 0.6571

rdS(x̂) 0.3376 0.7253 0.3781 0.7733 0.6437

η̂ 0.0339 0.0455 0.0181 0.0308 0.0236

h0 = r0 9.91 15.89 20.77 25.12 27.23

h0 = 2ρ 0.81 2.08 0.89 1.72 1.35

rdS -eval. 103 [135] 153 [165] 92 [124] 122 [129] 187 [207]
Dataset 6 7 8 9 10

rdS(x0) 0.6058 0.9036 38.1985 2.6069 0.0298

rdS(x̂) 0.5141 0.8271 35.7924 2.3355 0.0293

η̂ 0.0133 0.0149 0.5065 0.4485 0.0010

h0 = r0 38.74 55.42 71.63 4.98 30.00

h0 = 2ρ 1.24 1.89 77.43 5.68 0.06

rdS -eval. 123 [143] 138 [159] 251 [185] 145 [125] 86 [119]

h0 = r0 with the mean radius r0 at the initial center, and once as h0 = 2ρ with
the radius ρ according to Theorem 2.1. In all cases, we obtain the same minimal
roundness values as given in [19] and computing times are negligible. Table 3 lists the
initial roundness value rdS(x0), the computed roundness value rdS(x̂), the ratio η̂ at
the approximate minimizer, the initial edge length h0, and the number of roundness
function evaluations, where the values without brackets correspond to the choice h0 =
2ρ, and the values in brackets correspond to the choice h0 = r0.With the smaller initial
edge length less function evaluations are needed, but, as expected, the difference is
not that great.

4.3 Polygonal Chains and Triangulations

Here we consider examples for the case that S is not a set of finitely many points,
but a union of simple sets like line segments or triangles. The roundness function for
such sets can be evaluated easily: At first, we recall that for any compact polyhedral
set P the maximum distance max p∈P ‖x − p‖ of a given center x to any point of
P is attained at one of the vertices of P . Consequently this also holds for lines and
triangles.

Let L := {v + t · u : t ∈ [0, 1]} be a line segment with v, u ∈ R
d . Then the

minimum distance of x to any point of L can be computed as

min
p∈L ‖x − p‖ = min

t∈[0,1] ‖x − (v + t · u)‖ ,

and is attained at v + t̂ · u with t̂ = min
{
1,max{0, 〈x−v , u〉

‖u‖2 }}.
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Fig. 8 Blue: The vertices of the polygonal chain S lie exactly on a circle. Red: Computed optimal center x̂

Now let D := {v + t1 · u1 + t2 · u2 : t1, t2 ∈ [0, 1] , t1 + t2 ≤ 1} be a triangle with
v, u1, u2 ∈ R

d . Then the minimum distance of x to any point of D can be computed
as

m := min
p∈D ‖x − p‖ = min

t1,t2∈[0,1] , t1+t2≤1
‖x − (v + t1 · u1 + t2 · u2)‖ .

Let (t̂1, t̂2) be the solution of the unconstrained linear least squares problem
mint1,t2∈R ‖x − (v + t1 · u1 + t2 · u2)‖2. If it fulfills t̂1, t̂2 ∈ [0, 1] and t̂1 + t̂2 ≤ 1,
then the minimum distance m is attained at p̂ := v + t̂1 · u1 + t̂2 · u2; otherwise, it is
attained at one of the edges of D (which are line segments as above).

This also shows that the roundness function can be evaluated in time O(n), where
n is the number of vertices of S.

In the first example, the vertices v1, . . . , v6 of the polygonal chain S in Fig. 8
lie exactly on the circle with radius 1 around the origin, and have coordinates vi =(
cos(φi ), sin(φi )

)
with φi ∈ {0, π

8 , π
4 , π

2 , 5π
8 , 13π

16 } for i = 1, . . . , 6. We run our
algorithmwith initial center x0 = (0.3, 0.3) and initial edge length h0 = r0 = 0.8459.
The initial roundness is rdS(x0) = 0.6281. With accuracy ε = 10−6 we obtain the
approximate minimizer x̂ = (−0.0239,−0.0578) with roundness rdS(x̂) = 0.0716
after 168 roundness function evaluations in about 0.02 s.

In the second example, the 63 vertices vi, j of the triangulation S shown in Fig. 9
lie exactly on the sphere with radius 1 around the origin, and have coordinates vi, j =(
cos(φi ) · sin(θ j ), sin(φi ) · sin(θ j ), cos(θ j )

)
with φi = i · π

24 for i = 0, . . . , 8, and
θ j = π

4 + j · π
24 for j = 0, . . . , 6. We run our algorithm with initial center x0 =

(0.3, 0.3, 0.3) and initial edge length h0 = r0 = 0.6482. The initial roundness is
rdS(x0) = 0.3406. With accuracy ε = 10−6 we obtain the origin as approximate
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Fig. 9 The vertices of the triangulation S lie exactly on a sphere

minimizer x̂ = 0 (rounded to 4 decimal digits) with roundness rdS(x̂) = 0.0043 after
698 roundness function evaluations in about 0.4 s.

These examples further demonstrate that the algorithm also copes well in cases
where data are given only on a part of a sphere (circle), so that Assumption (A1) is
not fulfilled.

5 Conclusions

We have analyzed a global search algorithm for the solution of the roundness problem.
In each iteration, it uses two tests to reduce the search region. For almost round sets the
first test leads to relatively small upper bounds on the number of roundness function
evaluations that are needed to find an approximate global minimizer, whose roundness
function value is not larger than twice the minimal value. The second test is shown to
improve the performance in the final iterations to reach a better accuracy. Since our
numerical experiments indicate that the improvement in practice is even much better
then predicted by the theoretical analysis, it would be interesting to know whether the
theoretical result can be strengthened. Furthermore, similar strategies might be used to
formulate and analyze global search algorithms for related problems like cylindricity
or flatness problems under appropriate assumptions on the data.

Funding Open access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123



190 Journal of Optimization Theory and Applications

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Dimensioning and Tolerancing, ANSI Standard Y14.5. The American Society of Mechanical Engi-
neers, New York (1982)

2. Technical Drawings—Geometrical Tolerancing, ISO 1101 (1983)
3. Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using the Voronoi dia-

grams. In: First Canadadian Conference on Computational Geometry, p. 41 (1989)
4. Huang, J.: An exact solution for the roundness evaluation problems. Precis. Eng. 23(1), 2–8 (1999)
5. Huang, J.: An exact minimum zone solution for sphericity evaluation. Comput. Aided Des. 31(13),

845–853 (1999)
6. Kim, K., Lee, S., Jung, H.B.: Assessing roundness errors using discrete Voronoi diagrams. Int. J. Adv.

Manuf. Technol. 16(8), 559–563 (2000)
7. Roy, U., Zhang, X.: Development and application of Voronoi diagrams in the assessment of roundness

error in an industrial environment. Comput. Ind. Eng. 26(1), 11–26 (1994)
8. Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric optimization problems.

Discrete Comput. Geom. 16(4), 317–337 (1996)
9. Devillers, O., Ramos, P.A.: Computing roundness is easy if the set is almost round. Int. J. Comput.

Geom. Appl. 12(03), 229–248 (2002)
10. Späth, H., Watson, G.: On a sequential linear programming approach to finding the smallest circum-

scribed, largest inscribed, and minimum zone circle or sphere. Math. Commun. 6(1), 29–38 (2001)
11. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width

annulus. Int. J. Comput. Geom. Appl. 12(01n02), 67–85 (2002)
12. Agarwal, P.K., Aronov, B., Har-Peled, S., Sharir, M.: Approximation algorithms for minimum-width

annuli and shells. Discrete Comput. Geom. 24(4), 687–705 (2000)
13. Swanson, K., Lee, D.T., Wu, V.L.: An optimal algorithm for roundness determination on convex

polygons. Comput. Geom. 5(4), 225–235 (1995)
14. Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization.

Application to concave minimization and d.c. optimization problems. Math. Program. 41, 161–183
(1988)

15. Rivlin, T.J.: Approximation by circles. Computing 21(2), 93–104 (1979)
16. Smid, M., Janardhan, R.: On the width and roundness of a set of points in the plane. Int. J. Comput.

Geom. Appl. 9(01), 97–108 (1999)
17. García-López, J., Ramos, P.A., Snoeyink, J.: Fitting a set of points by a circle. Discrete Comput. Geom.

20(3), 389–402 (1998)
18. Coope, I.D.: Circle fitting by linear and nonlinear least squares. J. Optim. Theory Appl. 76(2), 381–388

(1993)
19. Rhinithaa, P., Selvakumar, P., Sudhakaran, N., Anirudh, V., Deepak, L.K., Mathew, J.: Comparative

study of roundness evaluation algorithms for coordinate measurement and form data. Precis. Eng. 51,
458–467 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Certified Efficient Global Roundness Evaluation
	Abstract
	1 Introduction
	2 Global Solutions of the Roundness Problem
	3 Roundness Evaluation Algorithm
	3.1 Basic Global Search
	3.2 Acceleration of the Basic Global Search
	3.3 Initial Center

	4 Numerical Experiments
	4.1 Random Sets with Predefined Roundness and Unique Optimal Center
	4.2 Publicly Available Test Data
	4.3 Polygonal Chains and Triangulations

	5 Conclusions
	References




