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1 Introduction

Semi-infinite programming (SIP) problems [1–3] arise in many areas such as
engineering design and game theory. There are various algorithms developed
in the literature for solving SIP problems. They include discretization methods
[2,3], gradient based methods [4], cutting plane methods [5,6] and exchange
methods [7].

In certain applications such as [8,9] for filter or beamformer design, the
objective function is related to some frequency response functions which in
turn depend on the filter length. It is observed that when the filter length is
sufficiently long, the optimal value could approach zero in some cases. However,
this might not be generally true. It will be very useful to know and analyze
the limit of the optimal value series as filter length increases. This will provide
guidance to determine if a problem is posed properly and to set the filter
length in order to achieve a desired performance. In view of this, a class of
semi-infinite programming problems with one parameter L is considered in
this paper. We aim at proposing an efficient method to find the limit of the
optimal values for all possible L’s.

The paper is organized as follows. In Section 2, a class of SIP problems is
stated. In Section 3, we analyze the monotonicity of the optimal values and
introduce a decomposition method to find the limit of the optimal values.
A fixed-point theorem is applied to verify the limit. Numerical examples are
provided in Section 4 and conclusions are summarized in Section 5.

2 Problem Formulation

We consider a class of SIP problems:

P (L)
min
y,x

y

gi(H(x, t))− y ≤ 0, ∀t ∈ Ω, i = 1, 2, · · · ,m,

where Hj(x, t) =
L∑

k=1

xjkφk(t), j = 1, 2, · · · , N , and

x = (x1,x2, · · · ,xN )T , xj = (xj1, xj2, · · · , xjL),

H(x, t) = (H1(x, t), · · · ,HN (x, t))T , φ(t) = (φ1(t), · · · , φL(t))
T .

The functions {φk(t), k = 1, 2, · · · } form a basis, L is the number of selected
functions in the basis and Ω is a given nonempty compact set in R. The
functions gi are bounded from below and belong to C2(RN ,R). Problem P (L)
is related to the parameter L. If the parameter L changes, the optimal value
will also vary. In the following Section, the functional relationship between
optimal value and the parameter L will be analyzed, and the best optimal
value for all possible L’s is sought.
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3 Optimal Value Analysis

3.1 Optimal Value of the Problem

Let y∗L and x∗L denote the optimal value and the optimal solution of Problem
P (L) with parameter L, respectively. We have

y∗L = max
t∈Ω

max
i∈{1,2,··· ,m}

gi(H(x∗L, t)).

First of all, the optimal value series satisfies monotonicity as shown below.

Theorem 3.1 The optimal value series {y∗L : L = 1, 2, · · · } is monotonically
decreasing and there exists a limit as L tends to infinity.

Proof Define span(∆L) as the linear space spanned by the set ∆L, where
∆L := {φ1(t), φ2(t), · · · , φL(t)}. Then, we have span(∆L) ⊂ span(∆L+1) and
Hj(x, t) ∈ span(∆L), ∀j ∈ {1, 2, · · · , N}.

If L increases, the feasible set of (y,H) increases monotonically. Hence,
the optimal value series is monotonically decreasing. Moreover, for any i in
{1, 2, · · · ,m}, gi has a lower bound, therefore the optimal value series has a
lower bound. Thus, the limit of the series {y∗L : L = 1, 2, · · · } exists. ⊓⊔

By Theorem 3.1, we denote the limit of {y∗L : L = 1, 2, · · · } by

y∗ = lim
L→∞

y∗L = inf
L
y∗L.

Note that the limit y∗ is the best value for all possible L. It can be used
as the guidance in real application design. The target value of the design
must be set to be poorer than y∗, and we can find a suitable L to satisfy
the requirement. On the other hand, if the target value of the design is set
to be better than y∗, we can not find any L to satisfy the requirement. In
estimating the limit, a large L is always required. However, it also means
that the implementation complexity and computational cost will also increase
significantly. In the following, we propose an efficient method to tackle this
problem.

3.2 Limit Value Analysis

In order to find the limit of Problem P (L), the functional optimization problem
is formulated as

min
y,H(t)∈ΞN

y

gi(H(t))− y ≤ 0, ∀t ∈ Ω, i = 1, 2, · · · ,m,

where H(t) = (H1(t),H2(t), · · · , HN (t)), Ξ is the functional space given by

Ξ := {Q(t) : ∃q(L)(t) ∈ span(∆L), s.t. Q(t) = lim
L→∞

q(L)(t), ∀t ∈ Ω}.
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However, this problem is highly complex. In order to lower the complexity,
we propose the following decomposition method. For each t ∈ Ω, H(t) =
(H1(t), H2(t), · · · ,HN (t)) is treated as the decision vector and a subproblem
can be formulated as

P (t)
min

y,H(t)
y

gi(H(t))− y ≤ 0, i = 1, 2, · · · ,m.

For each t ∈ Ω, Problem P (t) is a general optimization problem. Denote the

optimal solution and the optimal value of Problem P (t) by H
∗
t and y∗t . Then,

H
∗
t can be united as a function H

∗
(t) with respect to t, and

y∗t = max
t∈Ω

y∗t . (1)

In the following, we aim at finding the conditions such that y∗ = y∗t. Consider
the KKT optimality conditions of Problem P (t) as

∇wy +
m∑
i=1

λi∇w

(
gi(H(t))− y

)
= 0,

λi
(
gi(H(t))− y

)
= 0,

gi(H(t))− y ≤ 0, λi ≥ 0,

(2)

where w := (y,H,λ),λ = (λ1, λ2, · · · , λm). Let

Γ := {w = (y,H,λ) : gi(H)− y ≤ 0, λi ≥ 0, ∀i = 1, 2, · · · ,m},

then, (2) is equivalent to the following equations

F (t,w∗) :=



1−
m∑
i=1

λi
m∑
i=1

λi
(
∇Hgi(H, t)

)T
λ1(g1(H, t)− y)

...
λm(gm(H, t)− y)


= 0, w∗ ∈ Γ, (3)

where w∗ = (y∗t ,H
∗
t ,λ

∗
t ) is the optimal solution of Problem P (t). For simplic-

ity, we denote gi = gi(H). Note that F (t,w) is a (N + m + 1)-dimensional
vector function, its gradient can be computed directly as

∇wF = ∇wF (t,w) =


0 0 −1 −1 ··· −1

0
m∑

i=1

λi∇2
H

gi (∇Hg1)
T
(∇Hg2)

T ··· (∇Hgm)
T

−λ1 λ1∇Hg1 g1−y 0 ··· 0
−λ2 λ2∇Hg2 0 g2−y ··· 0

...
...

...
...

...
−λm λm∇Hgm 0 0 ··· gm−y

 ,

where 0 is a zero vector with suitable dimension,∇Hgi = ( ∂gi
∂H1

, ∂gi
∂H2

, · · · , ∂gi
∂HN

).

For Problem P (t), we assume that the linearly independent constraint quali-
fication (LICQ) hold for any t ∈ Ω, that is,
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Assumption 1 ∀t ∈ Ω, the gradients
{
∇w

(
gi(H

∗
t )− y∗t

)
, i ∈ I

}
are linear-

ly independent, where I := {i : gi(H
∗
t )− y∗t = 0}.

Based on the discussion above, we obtain the following lemma and theorem.

Lemma 3.1 If y∗t is the optimal value of Problem P (t) for any t ∈ Ω, then,
there is at least one active constraint.

Proof Assume that all the constraints are not active, that is, gi(H
∗
t )−y∗t < 0,

∀i = 1, 2, · · · ,m. Define a new number y∗0 by

y∗0 = max
i∈{1,2,··· ,m}

gi(H
∗
t ) = gk(H

∗
t ),

where k ∈ {1, 2, · · · ,m} is the index which maximize the function. Then,

y∗t > max
i∈{1,2,··· ,m}

gi(H
∗
t ) = y∗0 .

Hence, we have

gp(H
∗
t )− y∗0 = gp(H

∗
t )− max

i∈{1,··· ,m}
gi(H

∗
t ) ≤ 0, ∀p ∈ {1, 2, · · · ,m},

gk(H
∗
t )− y∗0 =gk(H

∗
t )− max

i∈{1,··· ,m}
gi(H

∗
t ) = gk(H

∗
t )− gk(H

∗
t ) = 0.

It means that (y∗0 ,H
∗
t ) is also a feasible solution of Problem P (t). However,

y∗0 < y∗t , which contradicts the optimality of y∗t . Hence, the assumption does
not hold and there is at least one active constraint. This completes the proof.

⊓⊔

Theorem 3.2 Suppose that Assumption 1 holds, and det

(
m∑
i=1

λi∇2
H
gi

)
̸= 0

at (t,w∗) = (t, y∗t ,H
∗
t ,λ

∗
t ), then det (∇wF (t,w∗)) ̸= 0.

Proof (i) First, we simplify the determinant det (∇wF (t,w∗)).

For λi(gi(H
∗
t )− y∗t ) = 0, i ∈ {1, 2, · · · ,m}, there are two cases:

1). gi(H
∗
t )− y∗t < 0, λi = 0; 2). gi(H

∗
t )− y∗t = 0, λi > 0.

Without loss of generality, we suppose that the first r (r ≥ 1) constraints are
active while the other m − r constraints are inactive. Then we can rewrite
∇wF as

∇wF =



0 0 −1 ··· −1 −1 ··· −1

0
m∑

i=1
λi∇2

H
gi (∇Hg1)

T ··· (∇Hgr)
T
(∇Hgr+1)

T ··· (∇Hgm)
T

−λ1 λ1∇Hg1 0 ··· 0 0 ··· 0

...
...

...
...

...
...

−λr λr∇Hgr 0 ··· 0 0 ··· 0
0 0 0 ··· 0 gr+1−y ··· 0

...
...

...
...

...
...

0 0 0 ··· 0 0 ··· gm−y


.
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The determinant det(∇wF (t,w∗)) can be simplified as an upper triangular

determinant

∣∣∣∣A ∗
0 B

∣∣∣∣, where

|A| =

∣∣∣∣∣∣∣∣∣
0 0 −1 ··· −1

0
m∑

i=1

λi∇2
H

gi (∇Hg1)
T ··· (∇Hgr)

T

−λ1 λ1∇Hg1 0 ··· 0

...
...

...
...

−λr λr∇Hgr 0 ··· 0

∣∣∣∣∣∣∣∣∣ , |B| =

∣∣∣∣∣∣∣
gr+1 − y · · · 0

...
. . .

...
0 · · · gm − y

∣∣∣∣∣∣∣ .
(4)

As a result, we have det(∇wF (t,w∗)) = |A| · |B|. Obviously, |B| ̸= 0. Further-
more, we decompose |A| by r ≥ 1 and elementary row operations to obtain

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 −1 ··· −1

0
m∑

i=1
λi∇2

H
gi (∇H

g1)
T ··· (∇H

gr)
T

−λ1 λ1∇H
g1 0 ··· 0

..

.
..
.

..

.
..
.

−
r∑

i=1
λi

r∑
i=1

λi∇H
gi 0 ··· 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

0 0 −1 ··· −1

0
m∑

i=1
λi∇2

H
gi (∇H

g1)
T ··· (∇H

gr)
T

−λ1 λ1∇H
g1 0 ··· 0

..

.
..
.

..

.
..
.

−1 0 0 ··· 0

∣∣∣∣∣∣∣∣∣∣

=(−1)N+r+1

∣∣∣∣∣∣∣∣∣∣∣

0 −1 ··· −1
m∑

i=1
λi∇2

H
gi (∇H

g1)
T ··· (∇H

gr)
T

λ1∇H
g1 0 ··· 0

.

..
.
..

.

..
λr−1∇H

gr−1 0 ··· 0

∣∣∣∣∣∣∣∣∣∣∣
.

Since λr ̸= 0, by elementary column operations, we have

|A| =
(−1)N+r+1

λr

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 ··· −
r∑

i=1
λr

m∑
i=1

λi∇2
H

gi (∇H
g1)

T ···
r∑

i=1
λr(∇H

gr)
T

λ1∇H
g1 0 ··· 0

.

..
.
..

.

..
λr−1∇H

gr−1 0 ··· 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=−

1

λr

∣∣∣∣∣∣∣∣∣

m∑
i=1

λi∇2
H

gi (∇H
g1)

T ··· (∇H
gr−1)

T

λ1∇H
g1 0 ··· 0

.

..
.
..

.

..
λr−1∇H

gr−1 0 ··· 0

∣∣∣∣∣∣∣∣∣
=−

1

λr

r−1∏
i=1

λi

∣∣∣∣∣∣∣∣∣

m∑
i=1

λi∇2
H

gi (∇H
g1)

T ··· (∇H
gr−1)

T

∇
H

g1 0 ··· 0

.

..
.
..

.

..
∇

H
gr−1 0 ··· 0

∣∣∣∣∣∣∣∣∣ = −
1

λr

r−1∏
i=1

λi ·
∣∣∣∣C1 CT

2
C2 0

∣∣∣∣ ,
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where C1 =
m∑
i=1

λi∇2
H
gi, and CT

2 = ((∇Hg1)
T , · · · , (∇Hgr−1)

T ). It follows

by the condition that C1 is invertible, and |A| becomes

|A| =− 1

λr

r−1∏
i=1

λi ·
∣∣∣∣ IN 0
C2C

−1
1 Ir−1

∣∣∣∣ · ∣∣∣∣C1 0
0 −C2C

−1
1 CT

2

∣∣∣∣ · ∣∣∣∣IN C−1
1 CT

2

O Ir−1

∣∣∣∣
=− 1

λr

r−1∏
i=1

λi ·
∣∣∣∣C1 0
0 −C2C

−1
1 CT

2

∣∣∣∣ = − 1

λr

r−1∏
i=1

λi ·
∣∣C1

∣∣ · ∣∣−C2C
−1
1 CT

2

∣∣ ,
where IN and Ir−1 are N -th and (r − 1)-th identity matrices. Hence, the
determinant det (∇wF (t,w∗)) is simplified as

det(∇wF (t,w∗)) = − 1

λr

r−1∏
i=1

λi · |C1| ·
∣∣−C2C

−1
1 CT

2

∣∣ · |B|. (5)

(ii) Next, we show that the rank of C2C
−1
1 CT

2 is r − 1.
By LICQ, the number of active constraints must be less than or equals to the
number of variables, that is, r ≤ N + 1, which implies r − 1 ≤ N . Hence, if
rank(C2) = r− 1, we can have rank(C2C

−1
1 CT

2 ) = r− 1. For this purpose, we
prove that {∇Hg1,∇Hg2, · · · ,∇Hgr−1} are linearly independent. Since the

gradients {∇(y,H)(gi(H
∗
t )− y∗t ), i = 1, 2, · · · , r} are linearly independent, the

rank of the matrix

D =

( −1 −1 · · · −1(
∇Hg1

)T (
∇Hg2

)T · · ·
(
∇Hgr

)T)
is r. By a series of elementary column operations, we obtain

D

 1 ··· 0 0
...

...
...

0 ··· 1 0
0 ··· 0 λr

 1 0 ··· λ1
0 1 ··· 0
...
...

...
0 0 ··· 1

 1 0 ··· 0
0 1 ··· λ2

...
...

...
0 0 ··· 1

 · · ·

 1 ··· 0 0
...

...
...

0 ··· 1 λr−1

0 ··· 0 1


=
( −1 ··· −1 −1

(∇Hg1)
T ··· (∇Hgr−1)

T
0

)
. (6)

Similarly, by a series of elementary column operations, we obtain( −1 ··· −1 −1

(∇Hg1)
T ··· (∇Hgr−1)

T
0

) 1 ··· 0 0
...

...
...

0 ··· 1 0
−1 ··· 0 1

 1 0 ··· 0
0 1 ··· 0
...
...

...
0 −1 ··· 1

 · · ·

 1 ··· 0 0
0 ··· 0 0
...

...
...

0 ··· −1 1


=
(

0 ··· 0 −1

(∇Hg1)
T ··· (∇Hgr−1)

T
0

)
. (7)

It follows by (6) and (7) that the rank of
((

∇Hg1
)T
,
(
∇Hg2

)T
, · · · ,

(
∇Hgr−1

)T)
is r − 1, which is full rank. Hence, the rank of C1 is N ≥ r − 1, and then the
rank of the matrix C2C

−1
1 CT

2 is also r − 1, which is full rank. Thus,

|C2C
−1
1 CT

2 | ̸= 0. (8)

(iii) Consequently, by (4), (5) and (8), we have |∇wF (t,w∗)| ̸= 0. This com-
pletes the proof. ⊓⊔
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Based on the discussion above, the optimality condition is a group of e-
quations in the set Γ for each t. Hence, the optimal w is a function of t. To
discuss whether this function is continuous, we have the following theorem.

Theorem 3.3 Assume that the conditions in Theorem 3.2 hold for any t in
Ω, and F and ∇wF are continuous in U × V ⊂ R × RN+m+1, which is a
neighborhood of the point (t,w). Then, there exists a neighborhood U0 × V0 of
(t∗,w∗) in U × V , and a unique continuous function ψ : U0 → V0 such that
F (t,ψ(t)) = 0, t ∈ U0.

Proof First, we denote the closed interval with center t∗ and distance d by
B(t∗, d), and the closed ball with center w∗ and distance δ by B(w∗, δ). Then,
the set of continuous vector functions which are defined in B(t∗, d) and take
value in B(w∗, δ) is denoted by C(B(t∗, d), B(w∗, δ)).

By Theorem 3.1, the matrix ∇wF (t∗,w∗) is invertible. Hence, we have

(∇wF (t∗,w∗))
−1 ∇wF (t∗,w∗) = I. (9)

Define a mapping T : ψ → Tψ as:

(Tψ)(t) := ψ(t)− (∇wF (t∗,w∗))
−1
F (t,ψ(t)), t ∈ B(t∗, d).

For any ψ(t),ϕ(t) ∈ C(B(t∗, d), B(w∗, δ)), we define its norm as

∥ψ(t)− ϕ(t)∥∞ := max
q∈{1,2,··· ,N+m+1}

max
t∈B(t∗,d)

|ψq(t)− ϕq(t)|.

Since∇wF is continuous, it follows by (9) that ∀ϵ > 0, there exist d > 0, δ > 0,
and φ1, · · · ,φN+m+1 ∈ C(B(t∗, d), B(w∗, δ)), such that∥∥∥I − (∇wF (t∗,w∗))

−1
G(φ1, · · · ,φN+m+1)

∥∥∥
∞
< ϵ,

where ∥.∥∞ is the maximum norm of matrix, and

G(φ1, · · · ,φN+m+1) :=

 ∇wF1(t,φ
1)

...
∇wFN+m+1(t,φ

N+m+1)

 .

Hence, for any two vector functions ψ(t),ϕ(t) in C(B(t∗, d), B(w, δ)), we have

Tψ − Tϕ = ψ(t)− ϕ(t)−
[
(∇wF (t∗,w∗))

−1
(F (t,ψ(t))− F (t,ϕ(t)))

]
.

Based on the mean value theorem, for any q ∈ {1, 2, . . . , N + m + 1}, there
exists ηq ∈ (0, 1), such that

Fq(t,ψ(t))− Fq(t,ϕ(t)) = ∇wFq(t,φ
q(t)(ψ(t)− ϕ(t)),

where φq(t) = ηqψ(t) + (1− ηq)ϕ(t). Note that

∥φq(t)−w∗∥∞ = ∥ηq(ψ(t)−w∗) + (1− ηq)(ϕ(t)−w∗)∥∞
≤ηq∥ψ(t)−w∗∥∞ + (1− ηq)∥ϕ(t)−w∗)∥∞ ≤ ηqδ + (1− ηq)δ = δ,
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we obtain φq(t) ∈ C(B(t∗, d), B(w∗, δ)), ∀q = 1, 2, · · · , N +m+ 1. Then,

(∇wF (t∗,w∗))
−1

(F (t,ψ(t))− F (t,ϕ(t)))

= (∇wF (t∗,w∗))
−1

 ∇wF1(t,φ
1)

...
∇wFN+m+1(t,φ

N+m+1)

 (ψ(t)− ϕ(t))

= (∇wF (t∗,w∗))
−1
G(φ1, · · · ,φN+m+1)(ψ(t)− ϕ(t)).

Hence, we have

∥Tψ − Tϕ∥∞

=
∥∥∥(I − (∇wF (t∗,w∗))

−1
G(φ1, · · · ,φN+m+1)

)
(ψ(t)− ϕ(t))

∥∥∥
∞

≤(N +m+ 1)
∥∥∥I − (∇wF (t∗,w∗))

−1
G(φ1, · · · ,φN+m+1)

∥∥∥
∞

∥(ψ(t)− ϕ(t))∥∞
≤(N +m+ 1) · ϵ · ∥(ψ(t)− ϕ(t))∥∞.

Set ϵ < 1
2(N+m+1) , it implies that

∥Tψ − Tϕ∥∞ <
1

2
∥ψ − ϕ∥∞.

Therefore, T is a compression mapping in the space C(B(t∗, d), B(w∗, δ)).
Furthermore, it follows from (9) and the continuity of F (t,w) that there

exists d1 > 0, such that if 0 < d < d1, then∥∥∥(∇wF (t∗,w∗))
−1
F (t,w∗)

∥∥∥
∞

=
∥∥∥(∇wF (t∗,w∗))

−1
F (t,w∗)− F (t∗,w∗)

∥∥∥
∞
<
δ

2
, ∀t ∈ B(t∗, d). (10)

For the simplicity of notation, let w∗ denote the constant function defined by
B(t∗, d) = w∗. Then, w∗ ∈ C(B(t∗, d), B(w∗, δ)), and

Tw∗ = w∗ − (∇wF (t∗,w∗))
−1
F (t,w∗). (11)

By (10) and (11), we have

∥Tw∗ −w∗∥∞ =
∥∥∥(∇wF (t∗,w∗))

−1
F (t,w∗)

∥∥∥
∞
<
δ

2
.

Thus, for any function ψ ∈ C(B(t∗, d), B(w∗, δ)) which satisfies ψ(t∗) = w∗,
if 0 < d < d1, we obtain

∥Tψ −w∗∥∞ ≤ ∥Tψ − Tw∗∥∞ + ∥Tw∗ −w∗∥∞

≤ 1

2
∥ψ −w∗∥∞ +

δ

2
≤ δ

2
+
δ

2
= δ.
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Let X := C(B(t∗, d), B(w∗, δ)), then (X, ∥.∥∞) is a Banach space, which
is complete. Since T is a compression mapping and TX ⊂ X, it follows from
fixed-point theorem that there exists a unique ψ ∈ X such that Tψ = ψ, i.e.,

ψ(t)− (∇wF (t∗,w∗))
−1
F (t,ψ(t)) = ψ(t), ∀t ∈ B(t∗, d).

Then,

(∇wF (t∗,w∗))
−1
F (t,ψ(t)) = 0, ∀t ∈ B(t∗, d).

F (t,ψ(t)) = (∇wF (t∗,w∗)) · 0 = 0, ∀t ∈ B(t∗, d).

Note that ψ(t) is unique, we obtain ψ(t∗) = w∗. This completes the proof. ⊓⊔

By Theorem 3.3, the function ψ(t), t ∈ B(t∗, d) is defined only in a neigh-
borhood of t∗, which is not Ω. It can be generalized to Ω by the uniqueness
of ψ(t) and finite covering theorem easily, which is stated by the following
theorem.

Theorem 3.4 Assume that the conditions in Theorem 3.3 hold for any t ∈ Ω,
then, there exists a unique continuous function ψ(t) which is defined in Ω, such
that F (t,ψ(t)) = 0, ∀t ∈ Ω.

By using the above two theorems, we finally arrive at the following theorem.

Theorem 3.5 Assume that the conditions in Theorem 3.3 hold for any t in
Ω, then,

y∗ = lim
L→∞

y∗L = max
t∈Ω

y∗t = y∗t. (12)

Proof By Lemma 3.1, y∗t and H
∗
(t) satisfy

max
i∈{1,...,m}

gi(H
∗
(t))− y∗t = 0, ∀t ∈ Ω.

By Theorem 3.4, the function H
∗
(t) is continuous at Ω. Thus, there exists a

series {H(L)(t) : L = 1, 2, · · · } with each H(L)(t) in spanN (∆L) such that

lim
L→∞

H(L)(t) =H
∗
(t), ∀t ∈ Ω.

Define

yL = max
t∈Ω

max
i
gi(H

(L)(t)).

Then, by the optimality of Problem P (L), we must have yL ≥ y∗L. By the
continuity of the functions gi, i = 1, . . . ,m, we have

y∗ = lim
L→∞

yL = lim
L→∞

max
t∈Ω

max
i
gi(H

(L)(t)) = max
t∈Ω

max
i
gi(H

∗
(t)) = max

t∈Ω
y∗t .

Note that yL ≥ y∗L, we have

lim
L→∞

y∗L ≤ lim
L→∞

yL = max
t∈Ω

y∗t . (13)
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On the other hand, sinceH
∗L

(t) ∈ spanN (∆L) is continuous, andH
∗
(t) is

continuous and optimal, we have y∗L ≥ max
t∈Ω

y∗t . Take the limit and we obtain

lim
L→∞

y∗L ≥ max
t∈Ω

y∗t . (14)

Thus, by (13) and (14), the equation (12) holds. This completes the proof. ⊓⊔

By Theorem 3.5, we can compute the limit of the optimal values by solv-
ing Problem P (t) for every t. Note that the parameter L is not present and
therefore the computational complexity can be reduced, compared with the
general method for choosing a sufficiently large L.

4 Numerical Experiments

In this section, we verify Theorem 3.5 by the following two examples, where
the computations were implemented in Matlab.

Example 4.1: We consider Problem P (L), where the constraints are

∣∣∣∣∣
N∑

k=1

Aik(t, ri)Hk(x, t)−Gd(t)

∣∣∣∣∣
2

+
N∑

k=1

H2
k(x, t)− y ≤ 0, ∀t ∈ Ω, i = 1, · · · , 21,

where Ω = Ω1 ∪Ω2, Gd(t) equals to 1 when t ∈ Ω1 and 0 when t ∈ Ω2, and

Aik(t, ri) = cos((2k − 1)t+ ri),Hk(x, t) =
L∑

j=1

xkjt
j−1, k = 1, 2, · · · , N.

Note that the power function series are used as the basis functions. We
set N = 4 , ri = 1 + 0.05 ∗ (i − 1), Ω1 = [0.1π, 0.3π], Ω2 = [0.5π, π], and
choose the parameter L from 1 to 10. By choosing a sufficiently dense grid as
0.1π : 0.02 : 0.3π and 0.5π : 0.02 : π, we solve the problem and the optimal
values are depicted in Figure 1. It can be seen that the optimal value series is
monotonically decreasing and the limit exists.

Moreover, it is not difficult to verify that the conditions in Theorem 3.2
hold. Then, we apply the proposed method to find the limit. By choosing the
same grid as above, we solve Problem P (t) for each t and obtain y∗ = 0.4449.
The corresponding optimal solution isH∗ = [−0.1135,−0.3826,−0.2815, 0.0919]T .

Obviously,

∣∣∣∣∣∇2
H

(∣∣AT
m(t, rm)H(x, t)−Gd(t)

∣∣2 +
N∑

k=1
H2

k(x, t)

)∣∣∣∣∣ > 0 at point H∗.

It can be seen from Figure 1 that the optimal value series approaches
y∗, and the relation (12) has been verified. Moreover, the running time of
the proposed method is only 2.90 seconds, while it costs 377.44 seconds in
discretization method when L = 6. Thus, the proposed is very efficient.
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Fig. 1 The optimal values with different parameter L.

Example 4.2: We consider a far field microphone array beamformer design
problem in [9]. The constraints of Problem P (L) are(

N∑
k=1

Ar
k(θ, f)H

r
k(x, f) +

∑N
k=1 A

i
k(θ, f)H

i
k(x, f)−Gr

0(θ, f)

)2

+(
N∑

k=1

Ar
k(θ, f)H

i
k(x, f) +

∑N
k=1 A

i
k(θ, f)H

r
k(x, f)−Gi

0(θ, f)

)2

− y ≤ 0, ∀(θ, f) ∈ Ω,

where N = 9, ri = −0.4+ (i− 1)/10, i = 1, · · · , N , fs = 8kHz, c = 340.9m/s,
τ = (L − 1)/2, L = 1 + 2p, p = 0, · · · , 20, Ωs = Ωs1 ∪ Ωs2 , Ω = Ωp ∪ Ωs,
(Gr

0(θ, f), G
i
0(θ, f)) equals to (cos(2πfτ/fs),− sin(2πfτ/fs)) when (θ, f) ∈ Ωp

and zero vector when (θ, f) ∈ Ωs. For each k = 1, 2, · · · , N ,

Ar
k(θ, f) = cos(2πfrk cos θ/c), A

i
k(θ, f) = − sin(2πfrk cos θ/c),

Hr
k(x, f) = x

T
k d

r
0(f),H

i
k(x, f) = x

T
k d

i
0(f),xk = [xk(0), xk(1), · · · , xk(L− 1)]T ,

dr0(f) = [1, cos(2πf/fs), · · · , cos(2πf(L− 1)/fs)]
T
,

di0(f) = [0,− sin(2πf/fs), · · · ,− sin(2πf(L− 1)/fs)]
T
.

Ωp = {(f, θ) : f = [0.7kHz, 2.0kHz], θ ∈ {85◦ : 2.5◦ : 95◦}},
Ωs1 = {(f, θ) : f = [0.7kHz, 2.0kHz], θ ∈ {0◦ : 2.5◦ : 50◦} ∪ {130◦ : 2.5◦ : 180◦}},
Ωs2 = {(f, θ) : θ ∈ {0◦ : 2.5◦ : 50◦} ∪ {85◦ : 2.5◦ : 95◦} ∪ {130◦ : 2.5◦ : 180◦},

f = [2.5kHz, 4.0kHz]}.

First of all, we can verify that the conditions in Theorem 3.2 hold. Then,
by choosing a sufficiently dense grid 0.7 : 0.02 : 2 and 2.5 : 0.02 : 4, we
apply the proposed method to obtain the maximum as y∗ = 3.40× 10−4. The
parameter L is then varied from 1 to 41 with increment by 2, we solve for
the optimal values and y∗ are depicted in Figure 2. It can be seen that the
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optimal value series is monotonically decreasing and approaches to y∗. Hence,
the relation (12) is true. Furthermore, the running time of the discretization
method is 1229.70 seconds when L = 29, while it only costs 4.66 seconds by
the proposed method. Thus, the proposed method is very efficient.
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Fig. 2 The optimal values with different parameter L.

5 Conclusions

In this paper, we have considered a class of SIP problems with a parameter
L. We have analyzed the limit of the optimal value series as the parameter L
tends to infinity. To compute the limit efficiently, we proposed a novel method
which decomposes the problem into a series of simplified subproblems. By
taking the maximum of these optimal values, the final limit can be obtained.
Furthermore, we have derived the conditions and have applied a fixed-point
theorem to support the theoretical basis of the proposed method. Finally, we
have verified the efficiency of the proposed method by numerical examples.
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