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Abstract

Tests of fit to exact models in statistical analysis often lead to rejections even when the
model is a useful approximate description of the random generator of the data. Among possible
relaxations of a fixed model, the one defined by contamination neighbourhoods, namely, Vα(P0) =
{(1−α)P0+αQ : Q ∈ P}, where P is the set of all probabilities in the sample space, has received
much attention, from its central role in Robust Statistics. For probabilities on the real line,
consistent tests of fit to Vα(P0) can be based on dK(P0, Rα(P )), the minimal Kolmogorov distance

between P0 and the set of trimmings of P , Rα(P ) =
{

P̃ ∈ P : P̃ ≪ P, dP̃

dP
≤ 1

1−α
P -a.s.

}

. We
show that this functional admits equivalent formulations in terms of, either best approximation
in uniform norm by L-Lipschitz functions satisfying a box constraint, or as the best monotone
approximation in uniform norm to the L-Lipschitz regularization, which is seen to be expressable
in terms of the average of the Pasch-Hausdorff envelopes. This representation for the solution of
the variational problem allows to obtain results showing stability of the functional dK(P0, Rα(P )),
as well as directional differentiability, providing the basis for a Central Limit Theorem for that
functional.

Keywords: Contamination neighbourhoods, Kolmogorov distance, uniform norm, Lipschitz-continuous
approximations, distribution functions, trimmed probabilities, Pasch-Hausdorff envelopes, Lipschitz
regularization, robustness, directional differentiability.
A.M.S. classification: Primary: 49J30. Secondary: 26A16, 62G35, 41A29.

1 Introduction.

A repeated joker phrase in Statistics says that all models are wrong, but some are useful. This
celebrated aphorism, attributed to the statistician G. Box, on the one hand cautions that all models
are approximations, while, on the other, stresses the usefulness of good approximate models. Here,
approximation should be interpreted, in words of Davies [11], as “some formal admission of the fact
that the statistical models are not true representations of the data”. From this perspective, within
the research objectives of Mathematical Statistics, it becomes natural the permanent interest in the
design and analysis of well-behaved procedures under small variations in the model. This includes
the reconsideration of excessively restrictive concepts in Statistics, such as exact fit to models (say
in homogeneity, regression or time series settings). The interest is not exact equality, but only
“similarity” or, alternatively, to find a “relevant” difference. Also notice that this concept is of great
relevance in some applications, such as bioequivalence in Biostatistics (see, for example, [29]). Some
recent references sharing this spirit are ([23], [20], [13], [14], [15], [4], [5]). That is also the perspective
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of our recent work [7], while the present paper addresses the mathematical bases giving support to
the approach.

Let us begin some historical notes on approximate model checking. A pioneer work in that sense is
[18]. There, Hodges and Lehmann pointed out that “when testing statistical hypotheses, we usually
do not wish to take the action of rejection unless the hypothesis being tested is false to an extent
sufficient to matter”. This fact led them to establish a distinction between statistical significance
and material significance in hypotheses testing and to suggest modifications of the customary tests,
in order to test for the absence of material significance. Their approach was based on assuming
a distance in the parametric space and to allow some little deviation in the null hypothesis of the
model.

Ten years later, in his seminal paper [19], Huber introduced the contamination neighbourhood
of a probability, namely,

Vα(P0) = {(1 − α)P0 + αQ : Q ∈ P}, (1)

where P is the set of all probability distributions in the space. Thus the probabilities in the neigh-
bourhood are mixtures of level α of P0 with other probabilities. Although it can be defined in a
wholly general setting, throughout the paper P will be the set of probabilities on the (Borel) sets, β,
of the real line R). In this way, given an “ideal” model P0, the vicinity includes those probabilities
which are distorted versions of the model through gross errors: given a particular value α0 ∈ [0, 1),
a probability P in Vα0

(P0) would generate samples with an approximate (1 − α0) × 100 percentage
of data coming from P0.

Contamination neighbourhoods become one of the very basis of Robust Statistics: a general
attempt to provide methods with good performance when there are small departures from the as-
sumed model. Not surprisingly, its simple interpretation in terms of mixtures, motivated their use
in different settings. In particular, Rudas et al [25] introduced a new index of fit in the framework
of contingency tables. Now the goal is to evaluate how well the contaminated version of the model
describes the data, so statistical evidence of a “small α” should be considered as almost agreement
with the model. The reconsideration of the problem in [21], also in the multinomial setting, allowed
little deviations of the model that are measured by the Kullback–Leibler divergence.

The setup considered in both [25] or [21] is constrained to the case when P0 is a probability
with a finite support. It should be noted at this point that testing fit to a neighbourhood of a fixed
probability is not always a feasible task, depending on the metric or divergence which determines the
neighbourhoods. Barron [8] considered the problem testing fit to approximate models and argued,
while consistent tests were available for some weak metrics, it would desirable that from the statistical
assessment that P and P0 are close in a certain metric one could conclude that P and P0 are close
from every point of view. In plain words, he advocated for the use of strong metrics, such as the total
variation metric dTV (P,P0) = supA∈A |P (A)−P0|, where A denotes the class of all measurable sets.
Unfortunately, he also showed that if the probability P0 is not discrete then there is no uniformly
consistent test of fit to P0 against alternatives at a certain distance in dTV and the same result
remains true if the alternatives are bounded from P0 in a distance or divergence that dominates the
total variation metric. With these limitations in mind one may wonder if uniformly consistent testing
to a meaningful relaxation of total variation neighbourhoods is possible beyond the discrete setting.
In fact, contamination neighbourhoods are related to total variation neighbourhoods: dTV (P,Q) ≤ α
if and only if there exists a probability P0 such that P ∈ Vα(P0) and Q ∈ Vα(P0) (see [3]).

In [7] we showed that it is possible indeed to build a uniformly consistent test of fit to a contam-
ination neighbourhood against increasingly closer alternatives. We addressed the problem through
the dual approach of trimmed probabilities, an idea that goes back at least to [17]. A probability
P̃ ∈ R is said to be a trimming of level α ∈ [0, 1) of P whenever there exists a down-weighting
function w such that 0 ≤ w ≤ 1 and P̃ (B) = 1

1−α

∫

B
w(x)P (dx) for all the sets B ∈ β. Equivalently,

it must be absolutely continuous w.r.t. P , with Radon-Nykodim derivative bounded by 1
1−α

. The
set of α-trimmings of the probability distribution P will be denoted by Rα(P ):

Rα(P ) =
{

P̃ ∈ P : P̃ ≪ P, dP̃
dP

≤ 1
1−α

P -a.s.
}

. (2)
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The key link between (1) and (2), obtained in [2], is given by

P ∈ Vα(P0) ⇐⇒ P0 ∈ Rα(P ). (3)

This duality has been exploited for analysis of similarity between samples in a fully nonparametric
context ([3]), or for the consideration of a testable almost stochastic dominance model ([4], [5]). There
is a subtle, but important consequence of the duality (3). In a realistic statistical setting we do not
know either the value α or the “contaminated” distribution P but we only have an approximation
P̂ to P (usually P̂ will be the empirical measure associated to a data set), and our goal is to search
for statistical evidence, based on P̂ , for or against the hypothesis P ∈ Vα(P0). It turns out that sets
of trimmings are often well behaved with respect to some of the most useful metrics in Statistics,
while contamination neighbourhoods are not. If d is a metric on P and Rα(P ) is closed for d then
both conditions in (3) are equivalent to

d(P0, Rα(P )) = 0. (4)

With a suitable choice of d we could also ensure that d(P0, Rα(P̂ )) is a consistent estimator of
d(P0, Rα(P )). The success of this strategy will strongly depend on the suitability of the metric for
this task. Our choice here is the Kolmogorov distance, dK , that for two probabilities P,Q ∈ P is
defined by the L∞-distance between their distribution functions FP and FQ. Davies [11] claims that
the Kolmogorov distance induces the natural topology for statistics. Firstly, random variables are
generated at the level of distribution functions . . . Secondly all diagnostic checks and model validation
techniques operate at the level of distribution functions and not at the level of density functions . . .
We show in this work that for dK the equivalent characterization (4) holds. Also, it follows from [6]
that it is posible to use the empirical version of d(P0, Rα(P )) to build a consistent estimator of α0, the
minimal contamination level such that P ∈ Vα(P0) (see subsection 4.2 in [7]). However, suitability of
dK in this setting depends also on the feasibility of the generated procedures. In fact, some difficulties
related this metric are well known, both for its mathematical analysis (lack of Fréchet or Hadamard
differentiability) and for its computational aspect (lack of convergent algorithms).

The motivation of this work is to provide sound mathematical support to our approach in [7]
focusing in tools for diagnostics, comparison and validation of an approximate statistical model. We
will show (see Lemma 2.4) that the minimal Kolmogorov distance to a set of trimmings can be
represented in terms of a variational problem, as follows. We set Γ = F0(F

−1), F0 and F being the
distribution functions of P0 and P . Then, with great generality, the following identity holds:

dK(P0, Rα(P )) = min{‖h − Γ‖, h ∈ Cα}, (5)

where

Cα := {h : [0, 1] → [0, 1] nondecreasing, with h(0) = 0, h(1) = 1, and ‖h‖Lip ≤ 1/1 − α}. (6)

Here, as will be used throughout, for any real valued mapping f : ℵ → R defined on a metric space
(ℵ, d), with ‖f‖ and ‖f‖Lip we will denote the L∞ and the Lipschitz norms:

‖f‖ = sup
x∈ℵ

|f(x)|, ‖f‖Lip = sup
x,y∈ℵ

|f(x)− f(y)|

d(x, y)
.

The representation in (5) translates the problem of best trimmed approximation in Kolmogorov
distance into finding a useful expression for a best L∞-approximation to a monotone function by
monotone, Lipschitz-continuous functions satisfying the boundary conditions h(0) = 0, h(1) = 1.
We will show (see Theorem 2.5) that the solution to this problem can be expressed in terms of
Pasch-Hausdorff envelopes (see [24]). We will also relate this process with the alternative way of
obtaining Ubhaya’s monotone L∞-best approximation (see [27, 28]) to the Lipschitz regularization
of the objective function.

There are two main implications of our analysis of the variational problem in (5) in statistical
applications. First, it proves the validity of a simple, fast algorithm introduced in [7] for the com-
putation of the empirical estimator dK(P0, Rα(P̂ )). Additionally, we use it to prove a result on
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directional differentiability of the L∞-distance to the regularized version (see Corollary 4.4). The
relevance of this type of results on directional differentiability has been pointed out in [26], and
recently highlighted in relation with statistical applications in [9]. In fact, these results provide the
mathematical foundation allowing a Central Limit Theorem (see Theorem 4.1 in [7]), thus incoming
statistical applications of the proposed methodology. We should note that, under the false-model
paradigm, this Central Limit Theorem yielded some tools for comparing models or for determining
the usefulness of particular models following lines related to [20],[10] or [12]. In particular we should
highlight the applications in the False-Discovery-Rate (FDR) setting (as considered e.g. in [16] or
[22]). In [7] (see Section 5 there) we discuss on the applicability of our approach to that setting.

The rest of this work is organized as follows. In Section 2 we will present some alternative
characterization of the set Rα(P ) as well as its main topological properties in the L∞ setting. We
include a key result on the stability of the constrained regularizations (see Proposition 2.2) as well as
the announced variational representation (Lemma 2.4) and the solution of the variational problem
(Theorem 2.5). The proof of this result will follow from that of Theorem 3.3 in Section 3, which
discusses best L∞ approximation by Lipschitz functions with box constraints. The key link here is
that Pasch-Hausdorff envelopes preserve monotonicity. Under continuity (Theorem 3.4) we provide
a more convenient representation of the minimal distance between a nondecreasing function and its
best Lipsichtz approximation. Section 4 considers the related problem of best L∞ approximation by
monotone functions with box constraints, generalizing Ubhaya’s results. Finally, Section 4 contains
also the announced results on directional differentiability (Theorem 4.3 and Corollary 4.4).

2 The set of trimmings in the L∞-topological setting

Since probabilities on (R, β) are determined by their distribution functions (d.f.’s in the sequel) and
(1) and (2) can be equivalently stated in terms of the corresponding distribution functions, we will
use the same notation Rα(F ) and Vα(F0), with the same meanings as before, but defined in terms of
distribution functions. On the other hand, the Kolmogorov distance between probabilities is defined
just through the L∞-distance between the corresponding d.f.’s, but we will often keep the notation
dK for this distance.

The set Rα(F ) can be also characterized, as shown in [1] (see also Proposition 2.2 in [2] for a more
general result), in terms of the set of α-trimmed versions of the uniform probability U(0, 1). Notice
that this set is just Cα, as defined in (6). The parameterization, obtained through the composition
of the functions h and F : Fh = h ◦ F gives

Rα(F ) = {Fh : h ∈ Cα}. (7)

We note that, as a consequence, the “trimmed Kolmogorov distance” from F to F0 is

dK(F0, Rα(F )) := inf
F̃∈Rα(F )

‖F̃ − F0‖ = inf
h∈Cα

‖h ◦ F − F0‖.

The set Rα(F ) is convex and also well behaved w.r.t. weak convergence of probabilities and
widely employed probability metrics (see Section 2 in [2]). We show next that this also holds for dK .

Proposition 2.1 For α ∈ (0, 1) and distribution functions F , F0, F1, F2, G1 and G2, we have:

(a) Rα(F ) is compact w.r.t. dK .

(b) dK(F0, Rα(F )) = minF̃∈Rα(F ) ‖F̃ − F0‖ = minh∈Cα ‖h ◦ F − F0‖.

(c) |dK(G1, Rα(F1))− dK(G2, Rα(F2))| ≤ ‖G1 −G2‖+
1

1−α
‖F1 − F2‖.

Proof. By the Ascoli-Arzelà Theorem, Cα is a compact subset of the space of continuous functions
on [0, 1] endowed with the uniform norm. Hence, from any sequence of elements in Rα(F ), say
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{hn ◦ F} (recall (7)), we can extract a uniformly convergent subsequence hnj
→ h0 ∈ Cα. But then,

obviously, hnj
◦ F → h0 ◦ F in dK , which proves (a). Since, on the other hand,

∣

∣‖h1 ◦ F − F0‖ − ‖h2 ◦ F − F0‖
∣

∣ ≤ ‖h1 ◦ F − h2 ◦ F‖ ≤ ‖h1 − h2‖,

we see that the map h 7→ ‖h ◦ F − F0‖ is continuous and, consequently, it attains its minimum in
Rα(F ), as claimed in (b). Finally, to check (c) we note that

∣

∣dK(G1, Rα(F1))− dK(G1, Rα(F2))
∣

∣ ≤ sup
h∈Cα

∣

∣‖G1 − h ◦ F1‖ − ‖G1 − h ◦ F2‖
∣

∣ (8)

≤ sup
h∈Cα

‖h ◦ F1 − h ◦ F2‖ ≤ 1
1−α

‖F1 − F2‖

and
∣

∣dK(G1, Rα(F2))− dK(G2, Rα(F2))
∣

∣ ≤ sup
h∈Cα

∣

∣‖G1 − h ◦ F2‖ − ‖G2 − h ◦ F2‖
∣

∣ ≤ ‖G1 −G2‖. (9)

Now, (8) and (9) yield (c). �

Proposition 2.1 guarantees the existence of optimal L∞-approximations to every distribution
function F0 by α-trimmed versions of F :

There exists F̃ ∈ Rα(F ) such that ‖F0 − F̃‖ = dK(F0, Rα(F )). (10)

It also shows, through (3), that for α ∈ [0, 1)

F ∈ Vα(F0) if and only if dK(F0, Rα(F )) = 0. (11)

Moreover, by convexity of Rα(F ), the set of optimally trimmed versions of F associated to problem
(10) is also convex. However, guarantying uniqueness of the minimizer (as it holds w.r.t. L2-
Wasserstein metric by Corollary 2.10 in [2]) is not possible here.

An additional consequence of Proposition 2.1 is the continuity of dK(F0, Rα(F )) in F0 and F .
We quote this and some additional facts in our next result.

Proposition 2.2 For α ∈ [0, 1), if {Fn} and F are d.f.’s such that dK(Fn, F ) → 0, then:

a) for every F̃ ∈ Rα(F ), there exist F̃n ∈ Rα(Fn), n ∈ N such that dK(F̃n, F̃ ) → 0.

b) if F̃n ∈ Rα(Fn), n ≥ 1, then there exists some dK-convergent subsequence {F̃nk
}. If F̃ is the

limit of such a subsequence, necessarily F̃ ∈ Rα(F ).

c) if, additionally, {Gn} and G are d.f.’s such that dK(Gn, G) → 0, then dK(Gn, Rα(Fm)) →
dK(G,Rα(F )) as n,m → ∞.

Proof. To prove a), since F̃ = h ◦ F , with h ∈ Cα, it suffices to consider F̃n := h ◦ Fn ∈ Rα(Fn) and
recall that h is Lipschitz. For b), we write F̃n = hn ◦Fn and argue as in the proof of Proposition 2.1
to get a dK -convergent subsequence hnk

→ h ∈ Cα from which we easily get dK(hnk
◦Fnk

, h◦F ) → 0.
Finally c) is a direct consequence of Proposition 2.1 (c). �

By Polya’s uniform convergence theorem, if F and G are continuous and {Fn}, {Gn} are sequences
of d.f.’s which, respectively, weakly converge to F,G, then they also converge in the dK-sense,
therefore dK(Gn, Rα(Fm)) → dK(G,Rα(F )) holds. Also, a direct application of the Glivenko-Cantelli
theorem and item c) above guarantee the following strong consistency result.

Proposition 2.3 Let α ∈ [0, 1) and {Fn} be the sequence of empirical d.f.’s based on a sequence
{Xn} of independent random variables with distribution function F . If {Gn} is any sequence of
distribution functions dK-approximating the d.f. G (i.e. dK(Gn, G) → 0), then:

dK(Gn, Rα(Fm)) → dK(G,Rα(F )), as n,m → ∞, with probability one.
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Given a d.f. F , we write F−1 for the associated quantile function (or left continuous inverse
function), namely, F−1(t) := inf{x| t ≤ F (x)}. We recall that if U is a uniformly distributed U(0, 1)
random variable, F−1(U) has d.f. F . Similarly, if X has a continuous d.f. F , the composed function
F0 ◦ F

−1 is the quantile function associated to the r.v. Y = F0(X) . As we show next, under some
regularity assumptions dK(F0, Rα(F )) can be expressed in terms of the function F0 ◦ F

−1. We will
see later the usefulness of this fact both for the asymptotic analysis and the practical computation
of dK(F0, Rα(Fn)) when Fn is an empirical d.f. based on a data sample x1, . . . , xn. Recall that then
Fn(x) :=

1
n

∑n
i=1 I(−∞,x](xi).

Lemma 2.4 Let α ∈ [0, 1). If F,F0 are continuous d.f.’s and F is additionally strictly increasing
then

dK(F0, Rα(F )) = min
h∈Cα

‖h− F0 ◦ F
−1‖ and dK(F0, Rα(Fn)) = min

h∈Cα
‖h− F0 ◦ F

−1
n ‖.

Proof. For the first identity observe that

‖h ◦ F − F0‖ = sup
x∈R |h(F (x)) − F0(x)| = supF (x)∈[0,1] |h(F (x)) − F0(F

−1(F (x)))|

= supt∈[0,1] |h(t)− F0(F
−1(t))| = ‖h− F0(F

−1)‖.

On the other hand, if x(i), i = 1, . . . , n, denote the ordered sample associated to x1, . . . , xn (the same
set of values but ordered in nondecreasing sense) and

t0 = 0, ti =
i

n
, hi = h(Fn(x(i))) = h(ti), and F0,i = F0(x(i)), 1 ≤ i ≤ n.

Taking into account that h(Fn) and F0(F
−1
n ) are piecewise constant while F0 and h are non decreasing

and continuous, we obtain

‖h(Fn)− F0‖ = max
1≤i≤n

max
(

F0,i − hi−1, hi − F0,i

)

= ‖h− F0(F
−1
n )‖,

and the other identity follows from Proposition 2.1, part (b). �

Our final result in this section provides a simple representation of minh∈Cα ‖h−F0 ◦F
−1‖ (hence,

of dK(F0, Rα(F ))). In this statement we assume that Γ is a nondecreasing function taking values
in [0, 1] (which is always the case if Γ = F0 ◦ F

−1). Note that taking right and left limits at 0 and
1, respectively, we can assume that F0 ◦ F

−1 is a nondecreasing (and left continuous) function from
[0, 1] to [0, 1].

Theorem 2.5 Let α ∈ [0, 1). Assume Γ : [0, 1] → [0, 1] is a nondecreasing function. Define G(t) =
Γ(t)− t

1−α
, U(t) = supt≤s≤1G(s), L(t) = inf0≤s≤tG(s) and

h̃α(t) = max
(

min
(

U(t)+L(t)
2 , 0

)

, −α
1−α

)

.

Then,
min
h∈Cα

‖h− Γ‖ = ‖h̃α −G‖.

The proof of this result will be developed in Section 3. In fact Theorem 3.3 is just a rephrasing
of this result. A look at that Theorem shows that hα = h̃α + ·

1−α
is an element of Cα such that

‖hα − Γ‖ = minh∈Cα ‖h − Γ‖, that is, hα is an optimal trimming function in the sense described
above. We recall that we do not claim uniqueness of this minimizer, but this particular choice allows
to compute dK(F0, Rα(Fn)) for sample d.f.’s. Moreover, Theorem 2.5 even provides a simple way for
the computation of dK(F0, Rα(F )) for theoretical distributions. Let us see an illustration of this use.
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Example 2.1 (Trimmed Kolmogorov distances in the Gaussian model.) Consider the case
F0 = Φ, F = Φ((· − µ)/σ), where Φ denotes the standard normal d.f., µ ∈ R and σ > 0. Here we
have H−1(t) := F0 ◦ F

−1(t) = Φ(µ + σΦ−1(t)). We note that w(t) := (H−1)′(t) ≤ 1/(1 − α) if and
only if p(Φ−1(t)) ≥ 0, where

p(x) = (σ2 − 1)x2 + 2µσx+ µ2 − 2 log((1 − α)σ). (12)

To avoid cumbersome computations we focus on the cases σ = 1, µ 6= 0 and µ = 0, σ 6= 1.

If σ = 1 and µ > 0 then p is linear with positive slope and we see that w(t) ≤ 1/(1 − α) if and
only if t ≥ t0 = Φ

(

− µ
2 + 1

µ
log(1 − α)

)

. This means that G(s) = H−1(s) − s/(1 − α) is increasing

in [0, t0] and decreasing in [t0, 1]. Since, H−1(0) = G(0) = 0, we have that, h̃α(t) = 0 for t ∈ [0, t1],
where t1 ∈ (t0, 1) is (the unique) solution to G(t1) = 0, and h̃α(t) = G(t) for t ∈ [t1, 1]. We conclude
that dK(Rα(N(µ, 1)), N(0, 1)) = G(t0). The case µ < 0 can be handled similarly to obtain

dK(Rα(N(µ, 1)), N(0, 1)) = Φ
( |µ|

2 + 1
|µ| log(1− α)

)

− 1
1−α

Φ
(

− |µ|
2 + 1

|µ| log(1− α)
)

, µ 6= 0. (13)

We focus now on the case µ = 0. If σ2 < 1, p is a parabola with negative leading coefficient
and discriminant ∆2 = 8(σ2 − 1) log(σ(1 − α)) > 0. Hence, p(x) is positive for x ∈ (xa, xb) with
xa = − ∆

2(1−σ2)
, xb = ∆

2(1−σ2)
. Equivalently, w(t) ≤ 1/(1 − α) if and only if ta := Φ(xa) ≤ t ≤

tb := Φ(xb). This means that G is increasing in [0, ta), decreasing in [ta, tb], increasing in (tb, 1],
G(0) = 0 and G(1) = −α/(1 − α). Arguing as above, we have h̃α(t) = min(G(t), 0) for 0 ≤ t ≤
1
2 , h̃α(t) = max(G(t),− α

1−α
) for 1

2 ≤ t ≤ 1, h̃α(ta) = 0 and h̃α(tb) = −α
1−α

. We conclude that

dK(Rα(N(µ, σ2)), N(0, 1)) = G(ta)− h̃α(ta) = h̃α(tb)−G(tb). Hence,

dK(Rα(N(0, σ2)), N(0, 1)) = Φ
(

−σ∆

2

1−σ2

)

− 1
1−α

Φ
(

−∆

2

1−σ2

)

, if σ < 1.

If 1 ≤ σ ≤ 1/(1 − α) then we have that w(t) ≤ 1/(1 − α) for all t and h0 = H−1 ∈ Cα. In
particular, dK(Rα(N(0, σ2)), N(0, 1)) = 0.

Finally, we consider the case σ > 1/(1 − α). In this case p is positive for x /∈ [xa, xb] with
xa = − ∆

2(σ2−1)
, xb =

∆
2(σ2−1)

. This means that (H−1)′(t) > 1
1−α

for t ∈ (ta, tb) with ta = Φ(xa), tb =

Φ(xb). Therefore, G is decreasing in [0, ta), increasing in [ta, tb], decreasing in (tb, 1], G(0) = 0

and G(1) = −α/(1 − α). Hence, h̃α(t) = max(G(t), G(t)+G(tb)
2 ), 0 ≤ t ≤ ta, h̃α(t) = G(ta)+G(tb)

2 ,

ta ≤ t ≤ tb, h̃α(t) = min(G(t), G(ta)+G(t)
2 ), tb ≤ t ≤ 1. In particular, dK(Rα(N(0, σ2)), N(0, 1)) =

h̃α(ta)−G(ta) = G(tb)− h̃α(tb) =
1
2 (G(tb)−G(ta)), that is,

dK(Rα(N(0, σ2)), N(0, 1)) = Φ
(

σ∆

2

σ2−1

)

−
Φ

(

∆
2

σ2
−1

)

−α
2

1−α
, if σ > 1

1−α
.

�

3 Best L∞-approximations by Lipschitz-continuous functions with

box constraints

In this section we refresh the notation. The role of 1/(1−α) will be played now by a generic Lipschitz
constant L; our Γ will be substituted by a bounded function f : ℵ → R, where (ℵ, d) is (at least
at the beginning) a general metric space, while we maintain [0, 1] as the range of values. We will
also use the notation x ∨ y (resp. x ∧ y) for the maximum (resp. minimum) of both numbers (or
functions). Regarding the Lipschitz norm, recall the trivial inequalities

‖f ∧ g‖Lip, ‖f ∨ g‖Lip ≤ ‖f‖Lip ∨ ‖g‖Lip. (14)

The first lemma collects some basic properties on the role of the Pasch-Hausdorff envelopes
of a function to obtain a Lipschitz-continuous best L∞-approximation with constrained Lipschitz
constant. For the sake of completeness, we will also include a simple proof.
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Lemma 3.1 For a function f : ℵ → [0, 1], given a constant L ≥ 0, let us consider

fL,1(x) := inf
y∈ℵ

(f(y) + Ld(x, y)), fL,2(x) := sup
y∈ℵ

(f(y)− Ld(x, y)).

(i) This defines functions fL,1, fL,2 : ℵ → R such that 0 ≤ fL,1 ≤ fL,2 ≤ 1.

(ii) fL,1 is the pointwise largest function g : ℵ → R satisfying g ≤ f and ‖g‖Lip ≤ L. Likewise fL,2
is the pointwise smallest function g : ℵ → R satisfying g ≥ f and ‖g‖Lip ≤ L.

(iii) The average fL := (fL,1 + fL,2)/2 satisfies ‖fL‖Lip ≤ L and

‖g − f‖ ≥ ‖fL − f‖ = ‖fL,2 − fL,1‖

for any function g : ℵ → R such that ‖g‖Lip ≤ L.

Proof. Part (i) follows directly from the definitions of fL,1 and fL,2, because, for every x ∈ ℵ:

inf
y∈ℵ

f(y) ≤ fL,1(x) ≤ f(x) + Ld(x, x) = f(x) = f(x)− Ld(x, x) ≤ fL,2(x) ≤ sup
y∈ℵ

f(y).

To address part (ii) observe that, for arbitrary x1, x2, y ∈ ℵ, the triangle inequality for the
distance implies |Ld(x1, y)− Ld(x2, y)| ≤ Ld(x1, x2), leading to the inequalities

|fL,j(x2)− fL,j(x1)| ≤ Ld(x1, x2) for j = 1, 2,

thus to ‖fL,j‖Lip ≤ L, j = 1, 2. Now, if g : ℵ → R satisfies g ≤ f and ‖g‖Lip ≤ L, then for x, y ∈ ℵ:
g(x) ≤ g(y) + Ld(x, y) with equality if x = y. Hence

g(x) = inf
y∈ℵ

(g(y) + Ld(x, y)) ≤ inf
y∈ℵ

(f(y) + Ld(x, y)) = fL,1(x).

Analogously, it follows from g ≥ f and ‖g‖Lip ≤ L that g ≥ fL,2, proving (ii).
As to part (iii), let ǫ := ‖g − f‖. Then ‖g ± ǫ‖Lip = ‖g‖Lip and g − ǫ ≤ f ≤ g + ǫ. Consequently,

by part (ii),
g − ǫ ≤ fL,1 ≤ f ≤ fL,2 ≤ g + ǫ

This implies that

|fL − f | = (f − fL) ∨ (fL − f) ≤ (fL,2 − fL) ∨ (fL − fL,1) =
fL,2 − fL,1

2
≤ ǫ,

whence

‖fL − f‖ ≤
‖fL,2 − fL,1‖

2
≤ ‖g − f‖.

Since ‖fL‖Lip ≤ ‖fL,1‖Lip/2+‖fL,2‖Lip/2 ≤ L, taking g = fL gives the announced equality ‖fL−f‖ =
‖fL,2 − fL,1‖/2. �

When ℵ is a real interval and f is non-decreasing, the functions fL,1 and fL,2 in Lemma 3.1
share also that property and can be alternatively expressed in terms of the the Ubhaya’s monotone
envelopes of the function f(x)− Lx. This is the content of the following lemma.

Lemma 3.2 Let ℵ be a real interval, equipped with the usual distance d(x, y) = |x−y|. If f : ℵ → [0, 1]
is non-decreasing, then the functions fL,1, fL,2 in Lemma 3.1 are non-decreasing too, and for arbitrary
x ∈ ℵ and j = 1, 2,

fL,j(x) = γL,j(x) + Lx,

where γL,j, j = 1, 2 are the non-increasing functions

γL,1(x) := inf
y∈ℵ:y≤x

(f(y)− Ly) and γL,2(x) := sup
y∈ℵ:y≥x

(f(y)− Ly).

In particular,

‖fL,2 − fL,1‖ = ‖γL,2 − γL,1‖ = sup
y,x∈ℵ:y≤x

(f(x)− f(y)− L(x− y)). (15)
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Proof. The representations of fL,1 and fL,2 in terms of γL,1 and γL,2 follow from the fact that for
arbitrary x, y ∈ ℵ,

f(y) + Ld(x, y)

{

= f(y) + L(x− y) = f(y)− Ly + Lx if y ≤ x

≥ f(x) = f(x)− Lx+ Lx if y ≥ x,

f(y)− Ld(x, y)

{

= f(y)− L(y − x) = f(y)− Ly + Lx if y ≥ x

≤ f(x) = f(x)− Lx+ Lx if y ≤ x,

where the inequalities follow from f being non-decreasing. Note that both functions γL,1 and γL,2
are non-increasing, but adding the term Lx to them leads to non-decreasing functions: For x1, x2 ∈ ℵ
with x1 < x2, isotonicity of f implies that

fL,2(x1) = sup
y≥x2

(f(y)− Ly + Lx1) ∨ sup
x1≤y≤x2

(f(y)− Ly + Lx1)

≤ (fL,2(x2)− Lx2 + Lx1) ∨ f(x2)

≤ fL,2(x2),

and

fL,1(x2) = inf
y≤x1

(f(y)− Ly + Lx2) ∧ sup
x1≤y≤x2

(f(y)− Ly + Lx2)

≥ (fL,1(x2) + Lx2 − Lx1) ∧ f(x1)

≥ fL,1(x1),

because fL,1 ≤ f ≤ fL,2. �

Finally, let us include in the problem the boundary restrictions.

Theorem 3.3 Let f : [0, 1] → [0, 1] be non-decreasing. For L ≥ 1 consider the function

f̃L(x) := (fL(x) ∨ (1− L+ Lx)) ∧ Lx

= ((γL(x) ∨ (1− L)) ∧ 0) + Lx,

where γL := (γL,1 + γL,2)/2, and fL, γL,1, γL,2 are defined as in Lemmas 3.1 and 3.2. Then f̃L :
[0, 1] → R is non-decreasing and verifies f̃L(0) = 0 and f̃L(1) = 1 and ‖f̃L‖Lip ≤ L, and for arbitrary
functions g : [0, 1] → R with g(0) = 0 and g(1) = 1 and ‖g‖Lip ≤ L,

‖g − f‖ ≥ ‖f̃L − f‖

= max
{

fL,2(0), 1 − fL,1(1), sup
0≤y≤x≤1

(f(x)− f(y)− L(x− y))/2
}

(16)

Proof. Let us begin noting that both expressions for f̃L are trivially equivalent from the relations
between γL,j and fL,j.

That f̃L verifies the required properties easily follows from the preceding lemmas (recall also
inequalities (14)). Let then g : [0, 1] → R with ‖g‖Lip ≤ L. Also by the precedent lemmas,

‖g − f‖ ≥ ‖fL − f‖ = sup
0≤y≤x≤1

(f(x)− f(y)− L(x− y))/2.

Under the additional constraint that g(0) = 0, for arbitrary x ∈ [0, 1],

f(x)− g(x) = f(x)− (g(x) − g(0)) ≥ f(x)− Lx,

whence
‖g − f‖ ≥ sup

0≤x≤1
(f(x)− Lx) = fL,2(0).

9



Analogously, the additional constraint g(1) = 1 implies that

f(x)− g(x) = f(x) + (g(1) − g(x)) − 1 ≤ f(x) + L(1− x)− 1,

whence
−‖g − f‖ ≤ inf

0≤x≤1
(f(x) + L(1− x))− 1 = fL,1(1)− 1.

These considerations show that for any function g : [0, 1] → R verifying the conditions g(0) = 0,
g(1) = 1 and ‖g‖Lip ≤ L,

‖g − f‖ ≥ ‖fL − f‖ ∨ fL,2(0) ∨ (1− fL,1(1)).

The function f̃L satisfies the previous constraints on g, too, so

‖f̃L − f‖ ≥ ‖fL − f‖ ∨ fL,2(0) ∨ (1− fL,1(1)).

It remains to prove the reverse inequality. For x ∈ [0, 1], we have to distinguish three cases: If
1 − L + Lx ≤ fL(x) ≤ Lx, then f̃L(x) = fL(x), so |f̃L(x) − f(x)| ≤ ‖fL − f‖. If fL(x) > Lx, then
f̃L(x) = Lx, and

f(x)− f̃L(x)

{

= f(x)− Lx ≤ fL,2(0),

> f(x)− fL(x) ≥ −‖fL − f‖.

Similarly, if fL(x) < 1− L+ Lx, then f̃L(x) = Lx, and

f(x)− f̃L(x)

{

= f(x) + L(1− x)− 1 ≥ fL,1(1) − 1,

< f(x)− fL(x) ≤ ‖fL − f‖.

�

In the case, considered in Theorem 3.3, of a non-decreasing function f , since the functions fL,j
are absolutely continuous and the relations γL,j = fL,j − Lx hold, all the functions fL, γL, γL,j are
absolutely continuous so {γL ≤ 1− L}, {γL ≥ 0}, {γL ∈ [1− L, 0]} are compact sets and continuous
functions attain their maximum values on these sets. This allows to get alternative expressions for
(16) as given in the following theorem. We note that here and throughout we use the convention
that the max over an empty set equals −∞.

Theorem 3.4 Let f : [0, 1] → [0, 1] be non-decreasing and continuous and assume the notation in
Theorem 3.3. Then the following alternative expressions for (16) hold:

‖f − f̃L‖ = max

(

max
x∈T1

(f(x)− Lx) ,max
x∈T2

(1− L+ Lx− f(x)) ,
1

2
max

1−L≤γL(x)≤0
(γL,2(x)− γL,1(x))

)

(17)

= max

(

max
x∈T1

(f(x)− Lx) ,max
x∈T2

(1− L+ Lx− f(x)) ,
1

2
max

(y,x)∈T3
(f(x)− f(y)− L(x− y))

)

.(18)

Here, we used the notation T1 = {x ∈ [0, 1] : γL(x) ≥ 0}, T2 = {x ∈ [0, 1] : γL(x) ≤ 1 − L},
T3 = {(y, x) : 0 ≤ y ≤ x ≤ 1, 1 − L ≤ 1

2(f(y) + f(x)− L(y + x)) ≤ 0}.

Once we know Theorem 3.3, a proof of this result would take advantage of the fact that the right-
hand side in (17) is upper bounded by the same expression with the unrestricted maxima, which,
by (15) is just the right-hand side in (16) when f is continuous. However, with some additional
effort we can obtain a more general result that does not requires the monotonicity assumption on
the objective function and opens a way to address the directional differentiability of the functional
f → ‖f − f̃L‖. Both goals will be carried through the following section.
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4 Best L∞-approximations by monotone functions with box con-

straints

The following theorem gives appropriate characterizations of the best approximation of a bounded
function (in uniform norm) by monotone functions with a box constraint. Without this constraint,
best approximation by monotone functions in the L∞-norm has been considered in [27, 28], with
results that cover the case A = −∞, B = ∞ in Theorem 4.1 below. Notice that this theorem,
based on Ubhaya’s envelopes, would also provide an (arguably more involved) alternative proof for
Theorem 3.3. Notice that the function G plays the role of the transformed function, f(x)− Lx (the
difference of two nondecreasing functions) in the previous section, while the scope here is general.

Theorem 4.1 Assume G : [0, 1] → R is a bounded function and −∞ ≤ A ≤ B ≤ ∞. Define
U(x) = supx≤y≤1G(y), L(x) = inf0≤y≤xG(y), Ḡ(x) = (L(x) + U(x))/2 and

ḠA,B(x) = max(min(Ḡ(x), B), A).

Then U,L, Ḡ and ḠA,B are nonincreasing, L(x) ≤ G(x) ≤ U(x) and for every nonincreasing h :
[0, 1] → [A,B] we have

‖G− ḠA,B‖ ≤ ‖G− h‖. (19)

Furthermore, if G is continuous then U,L, Ḡ and ḠA,B are also continuous and

‖G − ḠA,B‖ = max

(

max
Ḡ(x)≥B

(G(x)−B), max
Ḡ(x)≤A

(A−G(x)), 12 max
A≤Ḡ(x)≤B

(U(x) − L(x))

)

= max

(

max
x∈T1

(G(x)−B),max
x∈T2

(A−G(x)), 12 max
(y,x)∈T3

(G(x) −G(y))

)

, (20)

where T1 = {x ∈ [0, 1] : Ḡ(x) ≥ B}, T2 = {x ∈ [0, 1] : Ḡ(x) ≤ A} and T3 = {(y, x) : 0 ≤ y ≤ x ≤
1, A ≤ 1

2(G(y) +G(x)) ≤ B}.

Proof. The bounds L(x) ≤ G(x) ≤ U(x) are obvious, and also the fact that U and L are nonin-
creasing (hence, also Ḡ and ḠA,B).
• Next, consider some nonincreasing h : [0, 1] → [A,B] and x ∈ [0, 1]. Since L(x) ≤ G(x) ≤ U(x),
we have that G(x) = Ḡ(x) whenever U(x) = L(x). Hence, if U(x) = L(x) ∈ [A,B] we have
ḠA,B(x) = G(x) and, consequently,

0 = |ḠA,B(x)−G(x)| ≤ ‖h−G‖.

• Obviously, ḠA,B(x) = B if U(x) = L(x) > B and we still have that

|ḠA,B(x)−G(x)| ≤ |h(x) −G(x)| ≤ ‖h−G‖

and similarly for the case U(x) = L(x) < A.
• It remains to deal with the case U(x) > L(x). For every ε > 0 there exist xa ∈ [0, x], xb ∈ [x, 1]
such that G(xa) < L(x)+ε and G(xb) > U(x)−ε. If Ḡ(x) > B then ḠA,B(x) = B. Using again that
L(x) ≤ G(x) ≤ U(x) we see that |ḠA,B(x)−G(x)| ≤ U(x)−B < G(xb)−B+ε ≤ |G(xb)−h(xb)|+ε
for small enough ε, showing that |ḠA,B(x)−G(x)| ≤ ‖h−G‖.

Similarly, if Ḡ(x) < A we conclude that |ḠA,B(x)−G(x)| ≤ ‖h−G‖.
Finally, assume that U(x) > L(x) and Ḡ(x) ∈ [A,B]. Since h is nonincreasing we have that

h(xa) ≥ h(xb) and, consequently,

‖h−G‖ ≥ max(|h(xa)−G(xa)|, |h(xb)−G(xb)|) ≥
G(xb)−G(xa)

2
≥ |ḠA,B(x)−G(x)| − 2ε

for ε small enough. This completes the proof of (19).
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To check continuity of U note that for 0 ≤ y < x ≤ 1 U(y) = max(U(x),maxy≤z≤xG(z)).
Now, given ε > 0 we can fix δ > 0 such that |G(x) − G(y)| ≤ ε whenever |y − x| ≤ δ. But then
|U(y)−U(x)| ≤ ε if |y−x| ≤ δ, proving continuity of U . L can be handled similarly. As a consequence
we see that Ḡ and ḠA,B are also continuous.

Now, to prove the first equality in the statement we take x ∈ [0, 1] and consider first the case
x ∈ T1. Note that, necessarily, U(x) ≥ B, U(x)−B ≥ B − L(x) and ḠA,B(x) = B.
• If G(x) ≥ B then |G(t) − ḠA,B(x)| = G(x)−B.
• Assume, on the contrary, that G(x) < B. Set x+ = inf{y ≤ x : G(y) = U(x)}. By continuity,
G(x+) = U(x) = U(x+).

Now, if Ḡ(x+) ≥ B then G(x+)−B = U(x)−B ≥ B−L(x) ≥ B−G(x) = |G(x)− ḠA,B(x)|. If,
on the contrary, Ḡ(x+) < B, then there exists x′ ∈ [x, x+] such that Ḡ(x′) ∈ (A,B). But we must
have U(x′) = U(x) = U(x+) and L(x′) < L(x) and, consequently, we have that

|G(x) − ḠA,B(x)| = B −G(x) ≤ B − L(x) ≤
U(x)− L(x)

2
<

U(x′)− L(x′)

2
.

Summarizing, we see that

max
Ḡ(x)≥B

|G(x) − ḠA,B(x)| ≤ max

(

max
Ḡ(x)≥B

(G(x) −B), 12 max
A≤Ḡ(xt)≤B

(U(x)− L(x))

)

. (21)

Similarly,

max
Ḡ(x)≤A

|G(x)− ḠA,B(x)| ≤ max

(

max
Ḡ(x)≤A

(A−G(x)), 12 max
A≤Ḡ(x)≤B

(U(x)− L(x))

)

(22)

and, obviously, if Ḡ(x) ∈ [A,B] then ḠA,B(x) = Ḡ(x) and |G(x)−ḠA,B(x)| ≤
1
2(U(x)−L(x)), which

implies that
max

A≤Ḡ(x)≤B
|G(x) − ḠA,B(t)| ≤

1
2 max
A≤Ḡ(x)≤B

(U(x) − L(x)). (23)

Now combining (21), (22) and (23) we see that

‖G− ḠA,B‖ ≤ max

(

max
Ḡ(x)≥B

(G(x) −B), max
Ḡ(x)≤A

(A−G(x)), 12 max
A≤Ḡ(x)≤B

(U(x)− L(x))

)

.

Assume now that x0 is such that Ḡ(x0) ≥ B. Then ḠA,B(x0) = B and G(x0) − B ≤ |G(x0) −
ḠA,B(x0)|. This implies maxḠ(x)≥B(G(x) −B) ≤ ‖G− ḠA,B‖.

Similarly, maxḠ(t)≤A(A−G(x)) ≤ ‖G− ḠA,B‖.

Finally, suppose x0 is such that Ḡ(x0) ∈ [A,B] and

U(x0)− L(x0) = max
Ḡ(x)∈[1,B]

(U(x)− L(x)) ≥ max

(

max
Ḡ(x)≥B

(G(x)−B), max
Ḡ(x)≤A

(A−G(x))

)

.

• If U(x0) = L(x0) then

‖G− ḠA,B‖ = max

(

max
Ḡ(x)≥B

(G(x) −B), max
Ḡ(x)≤A

(A−G(x)), 12 max
A≤Ḡ(x)≤B

(U(x)− L(x))

)

= 0.

• If U(x0) > L(x0) then we set x+ = inf{y ∈ [x0, 1] : G(y) = U(x0)}. Then U(y) = U(x0) for
y ∈ [x0, x+] and

G(x+) = U(x+) = U(x0).

Set x+ = sup{y ∈ [0, x0] : G(y) = L(x0)}. We have L(y) = L(x0) = G(x−) for y ∈ [x−, x0]. We
claim that

L(y) = L(x0) for y ∈ [x0, x+]. (24)
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To check (24) note that, if Ḡ(x0) > A and (24) fails then we could find y ∈ [x0, x+] with L(y) < L(x0),
Ḡ(y) ∈ (A,B] and U(y)−L(y) > U(x0)−L(x0), while if Ḡ(x0) = A and (24) fails then G(y) < L(x0)
for some y ∈ (x0, x+), Ḡ(y) < A and A−L(y) > A−L(x0) =

1
2(U(x0−L(x0), against the assumption

on x0.
Hence, from (24) we conclude that Ḡ(x+) = Ḡ(x0) ∈ [A,B] and |G(x+)−ḠA,B(x+)| =

1
2(U(x0)−

L(x0)), showing that 1
2(U(x0)−L(x0)) ≤ ‖G− ḠA,B‖. Combining the last estimates we see that the

first equality in (20) holds.

For the second identity we note that arguing as above we see that U(x0)−L(x0) = G(x)−G(y)
for some (y, x) ∈ T3 if Ḡ(x0) ∈ [A,B]. Assume, on the other hand, that (y0, x0) ∈ T3 satisfies

1

2
(G(x0)−G(y0)) ≥ max

(

max
Ḡ(x)≥B

(G(x) −B), max
Ḡ(x)≤A

(A−G(x))

)

.

• We consider first the case 1
2(G(y0) +G(x0)) ∈ (A,B).

We claim that U(x0) = G(x0) since, otherwise, there exists x
′ > x0 such that 1

2(G(y0)+G(x′)) ∈
(A,B) and G(x′) > G(x0) and this would imply G(x′) − G(y0) > G(x0) − G(y0), against the
assumption.

Similarly, we see that G(y0) = L(x0).
Furthermore, L(x) = L(y0) for x ∈ [y0, x0]. If G(x0) < U(x0) then there exists x′ > x0 such

that 1
2(G(y0) + G(x′)) ∈ (A,B) and G(x′) > G(x0), but then G(x′) − G(y0) > G(x0) − G(y0),

contradicting maximality of (y0, x0). Similarly we see that G(y0) = L(y0) and also that L(x) = L(y0)
for x ∈ [y0, x0]. Hence, G(x0)−G(y0) = U(x0)− L(x0) and Ḡ(x0) ∈ (A,B).
• In the case 1

2(G(y0)+G(x0)) = B we have that necessarily G(x0) ≥ B and, arguing as above, we see
that G(y0) = L(y) for all y ∈ [y0, x0]. This implies that Ḡ(x0) ≥ B and 1

2(G(x0)−G(y0)) = G(x0)−B.
• Arguing similarly for the case 1

2(G(y0)+G(x0)) = A we conclude that the second equality in (20)
holds. �

Remark 4.2 The sets of optimizers within T1,T2 and T3 in Lemma 4.1 play an important role
in the next results. For convenience, we denote T1 = {x0 ∈ T1 : G(x0) − B = ‖G − ḠA,B‖},
T2 = {x0 ∈ T2 : A−G(x0) = ‖G−ḠA,B‖} and T3 = {(y0, x0) ∈ T3 :

1
2(G(x0)−G(y0)) = ‖G−ḠA,B‖}.

A look at the proof of Lemma 4.1 shows that if x0 ∈ T1 then G has a local maximum at x0 and a local
minimum if x0 ∈ T2. Also, if (y0, x0) ∈ T3 then G has a local maximum at x0 and a local minimum
at y0.

Our next result addresses the directional differentiability of the functional G → ‖G− ḠA,B‖ that
appeared in the last theorem. This kind of result typically allows to obtain efficiency and asymptotic
distributional behaviour of functionals in the statistical setting (see e.g. [9]). In fact it allows to
prove the Central Limit Theorem for the statistical functional dK(F0, Rα(Fn)) (see Theorem 4.1 in
[7]).

Theorem 4.3 Assume G, J : [0, 1] → R are continuous functions and rn > 0 is a sequence of real
numbers such that rn → ∞. Define Gn = G + J

rn
and consider Ḡ, ḠA,B as in Theorem 4.1 and

ḠA,B,n built in the same way as GA,B but from Gn. Assume further that T1, T2 and T3 are as in
Remark 4.2 and that there is no x ∈ T1 with Ḡ(x) = B, no x ∈ T2 with Ḡ(x) = A and no (y, x) ∈ T3

with 1
2 (G(x) +G(y)) ∈ {A,B}. Then

rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) → max

(

max
x∈T1

J(x),max
t∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x)− J(y))

)

.

Proof. We use the notation U,L from Theorem 4.1 and write Un, Ln, Ḡn, Tn,i for the corresponding
objects coming from Gn. Observe that ‖Un − U‖ ≤ ‖J‖/rn → 0 and, similarly, ‖Ḡn − Ḡ‖ → 0.
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Assume that x ∈ T1. By assumption and the last convergence we have that Ḡn(x) > B for large
enough n and, therefore, ‖Gn − ḠA,B,n‖ ≥ (Gn(t)−B). But this implies

rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) ≥ rn((Gn(x)−B)− (G(x) −B)) = J(x).

Arguing similarly for T2 and T3 we conclude that

lim inf rn(‖Gn − ḠA,B,n‖ − ‖G − ḠA,B‖) (25)

≥ max

(

max
x∈T1

J(x),max
x∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x)− J(y))

)

.

For the upper bound assume xn ∈ Tn,1 (that is, xn ∈ Tn,1 such that Gn(xn)−B = ‖Gn − ḠA,B,n‖).
By compactness, taking subsequences if necessary, we can assume that xn → x0 for some x0 ∈ [0, 1]
with Ḡ(x0) ≥ B and G(x0)−B = ‖G− ḠA,B‖. But this means that x0 ∈ T1. Hence, by assumption
G(x0) > B and, consequently, G(xn) > B for large enough n. In this case ‖G−ḠA,B‖ ≥ (G(xn)−B),
which implies that

rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) ≤ rn((Gn(xn)−B)− (G(xn)−B)) = J(xn) → J(x0).

With the same argument applied to T2 and T3 we conclude that

lim sup rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) (26)

≤ max

(

max
x∈T1

J(x),max
x∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x) − J(y))

)

and complete the proof. �

Specializing the last results for G(x) = f(x) − Lx, where f is nondecreasing, L ≥ 1 a constant,
and A = 1−L,B = 0, we can obtain a first result on the directional differentiability of the functional
f → ‖f − f̃L‖ considered in Section 3. Note that now, recovering the notation in that section, the
relevant sets are T1,T2 and T3 as defined in Theorem 3.4, and T1 = {x0 ∈ T1 : f(x0)−Lx0 = ‖f−f̃L‖},
T2 = {x0 ∈ T2 : 1−L+Lx0− f(x0) = ‖f − f̃L‖} and T3 = {(y0, x0) ∈ T3 :

1
2 (f(x0)− f(y0)−L(x0−

y0)) = ‖f − f̃L‖}. Theorem 4.3 translates then to the following immediate corollary.

Corollary 4.4 (Directional differentiability.) Let f, fn : [0, 1] → R be nondecreasing functions,
rn > 0 a sequence of real numbers such that rn → ∞ and rn(fn − f) → J pointwise, where J :
[0, 1] → R is a continuous function. Assume further that f is continuous, that T1, T2 and T3 are
as above and that there is no x ∈ T1 with γL(x) = 0, no x ∈ T2 with γL(x) = 1 − L and no
(y, x) ∈ T3 with 1

2(f(x) + f(y) − L(x + y)) ∈ {1 − L, 0}. Let f̃n,L, f̃L respectively denote the best
L∞-approximations to fn and f by Lipschitz-continuous functions h : [0, 1] → R with ‖h‖Lip ≤ L
and verifying h(0) = 0, h(1) = 1, as in Theorem 3.3. Then

rn(‖fn − f̃L,n‖ − ‖f − f̃L‖) → max

(

max
x∈T1

J(x),max
x∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x)− J(y))

)

.
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