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Abstract This paper deals with the existence of solutions to equilibrium and quasi-
equilibrium problems without any convexity assumption. Coverage includes some
equivalences to the Ekeland variational principle for bifunctions and basic facts about
transfer lower continuity. An application is given to systems of quasi-equilibrium
problems.

Keywords Quasi-equilibrium problem, System of quasi-equilibrium problem,
Ekeland variational principle, Transfer lower continuity.

Mathematics Subject Classification (2000) 58E30 · 54E50 · 49J40 · 49J27

1 Introduction

To the best of our knowledge, the first appearance of equilibrium problems as we
understand them now is due to Muu and Oettli [1] and it was further developed by
Blum and Oettli [2]. They are conceptually connected to Ky Fan’s minimax inequality
[3] which goes back to the equality result of von Neumann [4].
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The term “equilibrium” emphasizes the broad applications that can be analyzed
under this framework, such as optimization, variational inequalities, fixed point theory,
Nash equilibria, among others, see for instance [5]. Motivated by these applications,
many authors have been increasingly interested in studying conditions for the exis-
tence of solutions of equilibrium problems. Also, there exists a large literature about
existence involving generalized convexity and generalized monotonicity assumptions,
see for instance [6–13] and their references therein. The main concepts used in these
problems involve the famous minimax inequality due to Ky Fan [3] and the Fan-KKM
lemma [14], or the Brézis-Browder-Stampacchia result [15].

Most of the results concerning existence of solutions of equilibrium problems
without any convexity assumptions use Ekeland’s variational principle, see [16, 17].
Indeed, this principle or its equivalents (see [18]) is a key tool in the theory of varia-
tional analysis. Ekeland’s result uses completeness of the space as well as the lower
semicontinuity of the function under consideration to establish the existence of ap-
proximate solutions of minimization problems.

Our main interest concerns quasi-equilibrium problems, that is equilibrium prob-
lems with a constraint set depending on the current point. These problems originate
from quasi-variational inequalities, that were introduced by Bensoussan and Lions as
mentioned by Mosco [19]. Quasi-equilibrium problems have gained more attention
lately, perhaps because they model generalized Nash equilibrium problems, which
in turn model a large number of real life problems, see e.g. [20] and its references
therein. Recent works on the existence of solutions for this kind of problem involving
convexity assumptions are given in [21–25]. In [26] an existence result was provided
for quasi-equilibrium problems, without any convexity condition, via Ekeland’s vari-
ational principle.

We aim to move beyond lower semicontinuity by using a weaker notion called
transfer lower continuity introduced by Tian and Zhou [27] in the field of mathemat-
ical analysis for the study of generalizations of the Weierstrass and maximum theo-
rems.

The rest of this article is organized in five main sections. The next section is de-
voted to the concept of transfer lower continuity, while in Section 3 we establish, for
non necessarily lower semicontinuous functions, an Ekeland-type theorem which in-
volves the lower semicontinuous regularization of the given functional. We show that
this theorem is equivalent to a theorem by Bianchi et al [16] established for equilib-
rium problems.

Section 4 is concerned with new existence results of equilibria and quasi-equilibria.
In Section 5 we specialize on systems of quasi-equilibrium problems in complete

metric spaces. The origins of the interest for this kind of systems go back to general-
ized games and the work by Debreu (see [28]). These systems interact with various
fields such as economics where they have concrete applications. This is the reason
why their study has been developed by several authors, including for instance [29,30],
in connection with systems of quasi-variational inequalities or with systems of vec-
tor quasi-equilibrium problems. Our main result in this section is Theorem 5.3 that
guarantees the existence of a solution to a system of quasi-equilibrium problems in
complete metric spaces.
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2 Definitions, Notation and Preliminaries Results

In this section we introduce and remind tools that will be useful throughout the paper
and we will use standard notations and terminology from real analysis.

Given a nonempty subset C of a topological space X , a function h : C→ R is said
to be lower semicontinuous1 (lsc for short) if, for each x ∈C and each λ ∈R such that
h(x)> λ , there exists a neighbourhood Vx of x such that h(x′)> λ , for all x′ ∈Vx∩C.

Tian and Zhou ( [27] ) introduced the notion of transfer lower continuity (tls, for
short). We say that f is tlc if for each x,y ∈C such that h(x)> h(y), there exist y′ ∈C
and Vx a neighbourhood of x such that h(x′) > h(y′), for all x′ ∈ Vx ∩C. Trivially, lsc
implies tlc.

Given h and λ ∈ R, we denote by Epi h and Sh(λ ) the epigraph and the lower
sub-level set at level λ of h, respectively, i.e.,

Epi h := {(x,λ ) ∈C×R : h(x)≤ λ} and Sh(λ ) := {x ∈C : h(x)≤ λ}.

It is well known that a function is lsc if and only if Epi h is closed in C×R or equiva-
lently, if and only if Sh(λ ) is closed in C, for all λ ∈ R, see for instance [32].

We will write Sh(x) instead of Sh(h(x)) in order to simplify the notation. Thanks
to [27, Lemma 1 and Remark 7] a function h is tlc if and only if⋂

x∈C

Sh(x) =
⋂
x∈C

Sh(x), (1)

where Sh(x) is the closure of Sh(x) in C.

Note that contrary to lower semicontinuity, transfer lower continuity is not closed
under addition as the following simple example shows.

Example 2.1 Let h,g : R→ R be two functions defined as

h(x) :=


x+1, x < 0

2, x = 0
x+3, x > 0

and g(x) :=−x.

It is not hard to observe that both functions are transfer lower continuous. However,
h+g fails to be transfer lower continuous. Indeed, the sum function is given by

(h+g)(x) =


1, x < 0
2, x = 0
3, x > 0

whose graph is represented in Figure 1.
From Figure 1 the function h+g is not transfer lower continuous at 0.

1 Introduced by R. Baire, see [31] and the references therein.
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Fig. 1 graph of h+g

Given a nonempty subset C of a topological space X and a function h : C→R, we
consider the minimization problem:

Find x ∈C such that h(x)≤ h(y), for all y ∈C.

We denote by argminC h the solution set of the minimization problem associated to h
and C, i.e., argminC h = {x∈C : such that h(x) = infC h}. It is important to notice that

argmin
C

h =
⋂
x∈C

Sh(x) =
⋂

λ>α

Sh(λ ), (2)

where α = infx∈C h(x). Additionally, If argminC h = /0, then⋂
x∈C

Sh(x) =
⋂

λ>α

Sh(λ ). (3)

The following result is an extension of the celebrated Weierstrass theorem.

Theorem 2.1 ( [27, Theorem 2]) Let C be a compact and nonempty subset of a topo-
logical space X, and h : C→R be a function. Then, the set argminC h is nonempty and
compact if and only if h is tlc.

Given a nonempty subset C of a topological space X , it is a basic fact from real
analysis that every function h : C→R (not necessarily lsc) admits a lower semicontin-
uous regularization h : C→R∪{−∞} defined by Epi h := Epi h, the closure in C×R,
or equivalently by h̄(x) = liminfy→x h(y) = supU infy∈U h(y), where U runs over all
neighbourhoods of x.

It is well known that for any x ∈C and any λ ∈ R

(i) h(x) = inf{λ ∈ R : x ∈ Sλ (h)};
(ii) h(x)≤ h(x);

(iii) Sh(x)⊂ Sh(x);
(iv) Sh(λ ) =

⋂
µ>λ Sh(µ);
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We will say that a lower semicontinuous regularization is well-defined if it is real
valued, that means h(x) > −∞, for all x ∈ C, or in other words, if h admits a lsc
minorant.

We present now some basic results on transfer lower continuity and on lower semi-
continuous regularizations.

Proposition 2.1 Let C be a nonempty subset of a topological space X and h : C→ R
be a function. If h is tlc, then its lower semicontinuous regularization is well-defined.

Proof It is enough to consider the case when h is not bounded from below. Then, for
each x ∈ C there exists y ∈ C such that h(x) > h(y). Since h is tlc there exist Vx a
neighbourhood of x and y′ ∈ C such that h(x′) > h(y′), for all x′ ∈ Vx, which in turn
implies h(x)≥ h(y′). Therefore, h is well-defined. ut

Proposition 2.2 Let C be a nonempty subset of a topological space X and h : C→ R
be a function. Then, the following holds

inf
x∈C

h(x) = inf
x∈C

h(x).

Proof It is clear that infx∈C h(x)≥ infx∈C h(x). If we suppose that

inf
x∈C

h(x)> inf
x∈C

h(x),

then, there exists x0 ∈C such that h(x0) < infx∈C h(x). Thus, there exists λ ∈ R such
that λ < infx∈C h(x) and x0 ∈ Sh(λ ). Now, for each Vx0 neighbourhood of x0 there
exists x′ ∈Vx0 ∩Sh(λ ), so h(x′)≤ λ , which is a contradiction. ut

Proposition 2.3 Let C be a nonempty subset of a topological space X and h : C→ R
be a function. If argminC h = argminC h, then h is tlc. The converse holds, provided
that argminC h = /0.

Proof Since Sh(x)⊂ Sh(x), for all x ∈C, by (2) we have⋂
x∈C

Sh(x)⊂
⋂
x∈C

Sh(x) = argmin
C

h = argmin
C

h =
⋂
x∈C

Sh(x).

Hence, h is transfer lower continuous.
Conversely, by (3) we have

⋂
x∈C

Sh(x) =
⋂

λ>α

Sh(λ ) =
⋂

λ>α

⋂
µ>λ

Sh(µ)

=
⋂

λ>α

Sh(λ ) =
⋂
x∈C

Sh(x),

where α = infx∈C h(x). The result follows from (2) and the transfer lower continuity
of h. ut

The following example shows that the converse of the previous result is not true
in general.
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Example 2.2 Let C =Q+, and h : C→ R be defined as

h(x) :=

 0, x = 0
1
q
, x =

p
q

with p,q ∈ N coprime .

Since Sh(0) = {0} and 0 ∈ Sh(x), for all x ∈C, we can deduce that h is tlc. Moreover,
argminC h = {0}. On the other hand, the lower semicontinuous regularization of h is
the constant function h(x) = 0, and this implies argminC h =C.

It is clear that argminC h = argminC h when h is lower semicontinuous. However, as
the following example shows, the converse is not true in general.

Example 2.3 Let C = [0,1], and h : C→ R be defined as

h(x) :=
{

x, x is a rational number,
x+1, otherwise .

Clearly, h is not lower semicontinuous and its lower semicontinuous regularization is
given by h(x) = x. Moreover, argminC h = argminC h = {0}.

Proposition 2.4 Let C be a nonempty subset of a topological space X and h : C→ R
be a function such that argminC h = argminC h. If there exists x ∈C such that

h(x)≤ h(y), for all y ∈C;

then x ∈ argminC h.

Proof By Proposition 2.3, h is tlc, and by Proposition 2.1 its lower semicontinuous
regularization h is well-defined. Now, it is clear that Epi (h)⊂C×

[
h(x),+∞

[
. Thus,

we deduce that x ∈ argminC h. The result follows. ut

Now, we recall some definitions for bifunctions. Given a topological space X and
C ⊂ X , a bifunction f : C×C→ R is said:

– to have the triangle inequality property on C if, for all x,y,z ∈ C the following
holds

f (x,y)≤ f (x,z)+ f (z,y);

– to be cyclically monotone on C if, for all n ∈ N and all x0,x1, . . . ,xn ∈C the fol-
lowing holds ,

n∑
i=0

f (xi,xi+1)≤ 0,

with xn+1 = x0;
– to be monotone on C if, for all x,y ∈C the following holds

f (x,y)+ f (y,x)≤ 0;

– to be pseudo-monotone on C if, for all x,y ∈C the following implication holds

f (x,y)≥ 0 =⇒ f (y,x)≤ 0;
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The concept of cyclic monotonicity for bifunctions appeared first in [16]. Many
authors studied its properties, see for instance [26, 33, 34]. Recently in [26, 35] the
authors used cyclic monotonicity in order to solve equilibrium and quasi-equilibrium
problems.

It is clear that cyclic monotonicity implies monotonicity which in turn implies
pseudo-monotonicity. Important instances of these kinds of bifunctions are given be-
low.

Example 2.4 Let C be a nonempty subset of a topological space X and h : C→ R be
a function with a well-defined lower semicontinuous regularization. Let us consider
two bifunctions g, f : C×C→ R defined as

g(x,y) := h(y)−h(x) and f (x,y) := h(y)−h(x). (4)

Clearly, f is cyclically monotone and g satisfies the triangular inequality property.
Moreover, the following inequality holds: g ≥ f , that means g(x,y) ≥ f (x,y), for all
x,y ∈C.

Given a bifunction f : C×C→R, we consider the bifunction f̂ : C×C→R given
by

f̂ (x,y) :=− f (y,x).

Due to [16, Remark 2.2], we note that if f verifies the triangle inequality property,
then f̂ is cyclically monotone. By [33, Proposition 5.1] cyclic monotonicity of f̂ is
equivalent to the existence of a function h : C→ R such that

f̂ (x,y)≤ h(y)−h(x), ∀x,y ∈C.

For such a function, it is not difficult to check that

f (x,y)≥ h(y)−h(x)≥ f̂ (x,y).

Additionally, if f is monotone, then f (x,y) = h(y)−h(x), for all x,y ∈C. Hence, f is
cyclically monotone.

The following result says that there is a strong relationship between monotonicity
and pseudo-monotonicity.

Proposition 2.5 Let C be a subset of a topological space X and f : C×C→ R be
a bifunction from C×C into R. Then, f is pseudo-monotone if and only if there are
bifunctions f1, f2 : C×C→ R satisfying

f (x,y) = f1(x,y) f2(x,y), (5)

where f1 is strictly positive and f2 is monotone.

Proof Assume that f is pseudo-monotone. We denote by D the subset of C×C where
f vanishes. Define bifunctions f1, f2 : C×C→ R by

f1(x,y) :=
{

1, (x,y) ∈ D
| f (x,y)|, otherwise and f2(x,y) := sign( f (x,y)).
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It is clear that f1 is strictly positive. We affirm that f2 is monotone. Indeed, for each
x,y ∈ C we have f2(x,y) ∈ {−1,0,1}. So, if f2(x,y) = −1, then it is obvious that
f2(x,y)+ f2(y,x)≤ 0. If f2(x,y) = 0 then f (x,y) = 0, which in turn implies f (y,x)≤
0 due the pseudo-monotonicity of f . Thus, f2(y,x) ∈ {−1,0} and this allows us to
conclude that f2(x,y)+ f2(y,x)≤ 0. Finally, if f2(x,y)= 1, that means f (x,y)> 0, then
again by pseudo-monotonicity of f we have f (y,x)< 0, in other words f2(y,x) =−1.
Hence, f2(x,y)+ f2(y,x) = 0.

The converse is not difficult to prove. ut

Remark 2.1 In a similar way to [36, Theorem 2.1], let C be a subset of a topological
space X , and let f : C×C→ R be a bifunction. If f and f̂ are both pseudo-monotone
on C, then for all x,y ∈C the following equivalence holds

f (x,y) = 0 ⇐⇒ f̂ (x,y) = 0.

Hence, (x,y) is an element of the set D, where f vanishes, if and only if (y,x) ∈ D. In
other words, D is symmetric.

However, contrary to [36, Theorem 2.1] , the converse does not hold, even if we
assume the continuity of f . Indeed, consider the bifunction f : R×R→ R defined as

f (x,y) := (y− x)2.

Clearly, f is continuous. Moreover, f (x,y) = 0 if and only if y = x, which in turn is
equivalent to f (y,x) = 0. But, the bifunction f is not pseudo-monotone, due to the fact
that f (1,0) = f (0,1) = 1.

As a direct consequence of the result above, we have the following corollary,
which was inspired from [37, Theorem 1.4] for maps in the setting of finite dimen-
sional spaces.

Corollary 2.1 Let C be a subset of a topological space X and f : C×C → R be
a bifunction. Then, f , f̂ are pseudo-monotone if and only if there are bifunctions
f1, f2 : C×C→ R such that f1 is strictly positive and f2, f̂2 are monotone, satisfying
(5).

3 The Ekeland Variational Principle

We begin this section recalling the celebrated Ekeland variational principle and then
its extension to equilibrium problems.

Theorem 3.1 (The Ekeland variational principle [38]) Let C be a nonempty closed
subset of the complete metric space (X ,d), and h : C→ R be a lsc function bounded
from below. For every ε > 0, and for any x0 ∈C, there exists x̂ ∈C such that

h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.
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Theorem 3.2 ( [16, Theorem 2.1] and [17, Theorem 2.2]) Let C be a nonempty
closed subset of a complete metric space (X ,d) and f : C×C→ R be a bifunction.
Assume that the following conditions hold

(i) f is bounded from below and lsc with respect to its second argument;
(ii) f (x,x) = 0, for all x ∈C;

(iii) f satisfies the triangle inequality property.

Then, for all ε > 0 and all x0 ∈C, there exists x̂ ∈C such that

f (x0, x̂)+ εd(x0, x̂)≤ 0,
f (x̂,x)+ εd(x, x̂)> 0 for every x ∈C \{x̂}.

Let us restate Theorem 3.1 in terms of lower semicontinuous regularizations.

Theorem 3.3 Let C be a nonempty closed subset of the complete metric space (X ,d),
and h : C→R be a function bounded from below. For every ε > 0, and for any x0 ∈C,
there exists x̂ ∈C such that

h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.

For the sake of completeness, we give a self-contained proof of Theorem 3.3 which
mimics the proof of Ekeland’s Theorem.

Proof Since h is bounded from below, its lsc regularization h is well-defined. Without
loss of generality we consider ε = 1. Denote by H(x) the set

H(x) := {y ∈C : h(y)+d(y,x)≤ h(x)}.

Since the distance is continuous and h is lsc, the set H(x) is closed, for every x ∈C.
Moreover, x ∈ H(x). For each y ∈ H(x) and any z ∈ H(y), it is easy to verify that
z∈H(x). Hence y∈H(x) implies H(y)⊂H(x). Define r(x) := infz∈H(x) h(z). For each
z ∈ H(x) we have h(z)+ d(z,x) ≤ h(x), which in turn implies d(x,z) ≤ h(x)− r(x).
So, for any z1,z2 ∈ H(x)

d(z1,z2)≤ d(z1,x)+d(x,z2)≤ 2(h(x)− r(x)).

Thus the diameter diam(H(x)) of H(x) satisfies:

diam(H(x))≤ 2(h(x)− r(x)).

For x0 ∈C, there exists x1 ∈ H(x0) such that

h(x1)≤ r(x0)+
1
2
.

Now, for this x1 there exists x2 ∈ H(x1) such that

h(x2)≤ r(x1)+
1
22 .
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Inductively, we define a sequence {xn} of points in C such that xn+1 ∈ H(xn) and

h(xn+1)≤ r(xn)+
1

2n+1 . (6)

On the other hand, we note that

r(xn+1) = inf
z∈H(xn+1)

h(z)≥ inf
z∈H(xn)

h(z) = r(xn). (7)

Combining (7) and (6) we obtain

r(xn)≤ r(xn+1)≤ h(xn+1)≤ r(xn)+
1

2n+1 .

Therefore, diam(H(xn+1)) ≤ 2(h(xn+1)− r(xn+1)) ≤
1
2n , for all n ∈ N. As a conse-

quence we deduce that ⋂
n∈N

H(xn) = {x̂}.

Since x̂ ∈H(x0), we have h(x̂)+d(x̂,x0)≤ h(x0)≤ h(x0). Moreover x̂ ∈H(xn) for all
n ∈ N and since H(x̂)⊂ H(xn) we deduce that H(x̂) = {x̂}. As a result,

x /∈ H(x̂) if and only if x 6= x̂.

Therefore, for any x ∈C \{x̂},

h(x̂)< h(x)+d(x, x̂)≤ h(x)+d(x, x̂).

This completes the proof. ut
The next theorem shows that the previous results are equivalent.

Theorem 3.4 Theorems 3.1 through 3.3 are equivalent.

Proof Theorem 3.1⇐⇒ Theorem 3.2.
It is clear that Theorem 3.2 implies Theorem 3.1. Reciprocally, for each ε > 0

and x0 ∈ C, Ekeland’s variational principle applied to the function f (x0, ·) gives the
existence of x̂ ∈C such that

f (x0, x̂)≤ f (x0,x0)− εd(x0, x̂) and (8)

f (x0,x)> f (x0, x̂)− εd(x̂,x), ∀x ∈C \{x̂}. (9)

Since f vanishes on the diagonal of C×C, inequality (8) reduces to

f (x0, x̂)+ εd(x0, x̂)≤ 0.

On the other hand, according to the triangle inequality property we have f (x0,x) ≤
f (x0, x̂)+ f (x̂,x). Thus, inequality (9) reduces to

f (x̂,x)+ εd(x̂,x)> 0, ∀x ∈C \{x̂}.

For the equivalence of Theorem 3.1 and Theorem 3.3, we show that both implica-
tions are true.

The first implication follows from h ≤ h and by applying Theorem 3.1 to h. The
converse follows by applying Theorem 3.3 to the lsc function h, and by remarking that
h = h. ut
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As a direct consequence of Theorem 3.2 we have the following corollary.

Corollary 3.1 Let C be a nonempty closed subset of a complete metric space (X ,d)
and f : C×C→R be a bifunction. Assume that there exists a bifunction g : C×C→R
such that:

(i) f ≥ g;
(ii) g is bounded from below and lsc with respect to its second argument;

(iii) g vanishes on the diagonal of C×C;
(iv) g satisfies the triangle inequality property.

Then, for all ε > 0, and all x0 ∈C, there exists x̂ ∈C such that

g(x0, x̂)+ εd(x0, x̂)≤ 0, and
f (x̂,x)+ εd(x, x̂)> 0, for every x ∈C \{x̂}.

The conclusion of Corollary 3.1 is similar to the one in [26, Theorem 2.4], where
instead of supposing that g satisfies the triangle inequality property, the authors con-
sidered g defined as in (4).

4 New Existence Results of Equilibria and Quasi-Equilibria

We begin this section by recalling the definitions of equilibrium and Minty equilibrium
problems, respectively.

4.1 Equilibrium Problems

Let C be a nonempty subset of a topological space X and f : C×C→ R, be a given
bifunction. We denote by EP( f ,C) the solution set of the equilibrium problem, intro-
duced by Blum and Oettli in [2],

Find x ∈C such that f (x,y)≥ 0, for all y ∈C. (10)

In a similar way, MEP( f ,C) denotes the solution set of the so-called Minty equi-
librium problem

Find x ∈C such that f (y,x)≤ 0, for all y ∈C. (11)

Clearly, they satisfy

EP( f ,C) = MEP( f̂ ,C) and EP( f̂ ,C) = MEP( f ,C).

Provided that f (x,y)≥ h(y)−h(x) for some function h : C→R, which implies that f̂
is cyclically monotone, we may observe that

MEP( f ,C)⊂ argmin
C

h⊂ EP( f ,C). (12)

Moreover, if f is pseudo-monotone, then the above inclusions are actually equalities.
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Remark 4.1 If the bifunction f vanishes on the diagonal of C×C, then

x ∈ EP( f ,C)⇔ x ∈ argmin
C

f (x, ·) and x ∈MEP( f ,C)⇔ x ∈ argmin
C

f̂ (x, ·).

Moreover,

EP( f ,C)⊂
⋃
x∈C

argmin
C

f (x, ·) and MEP( f ,C)⊂
⋃
y∈C

argmin
C

f̂ (y, ·).

Theorem 4.1 Let C be a compact and nonempty subset of a topological space X, and
f : C×C→ R be a bifunction. If there exists a tlc function h : C→ R with

f (x,y)≥ h(y)−h(x), for all x,y ∈C;

then, the set EP( f ,C) is nonempty.

Proof From Theorem 2.1, the set argminC h is nonempty. The result follows from
(12). ut

The previous result was given in [26, Theorem 3.4], but instead of considering the
transfer lower continuity of h, the authors assumed lower semicontinuity.

Example 4.1 Let h : [0,2]→ R be defined as

h(x) :=


x, 0≤ x < 1
2, x = 1

x+2, 1 < x≤ 2

Its graph is shown in Figure 2.

1 2

2

4

Fig. 2 graph of h

Clearly, h is not lsc. However, it is tlc. Indeed, since S(x) = [0,x], for any x ∈
[0,2], relation (1) implies that h is tlc. As the interval [0,2] is a compact set, for any
bifunction f : [0,2]× [0,2]→ R, which satisfies

f (x,y)≥ h(y)−h(x),
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the set EP( f , [0,2]) is nonempty, due to Theorem 4.1. It is important to notice that we
cannot apply [26, Theorem 3.4]. Moreover, it is important to note that Theorem 4.1 is
not a consequence of [39, Theorem 4.1], due to the lack of any continuity assumption
for f .

As a direct consequence we have the following corollary, which is a generalization
of [35, Theorem 3.1].

Corollary 4.1 Let C be a compact and nonempty subset of a topological space X, and
f : C×C→ R be a bifunction. If there exists a tlc function h : C→ R with

f (x,y)≤ h(y)−h(x), for all x,y ∈C;

then, the set MEP( f ,C) is nonempty.

4.2 Quasi-Equilibrium Problems

Given a subset C of a complete metric space (X ,d), a bifunction f : C×C→ R and
a set-valued mapping K : C ⇒ C, we denote by QEP( f ,K) the solution set of the
so-called quasi-equilibrium problem:

Find x ∈C such that x ∈ K(x) ∧ f (x,y)≥ 0, for all y ∈ K(x). (13)

Lemma 4.1 Let C be a nonempty closed subset of a complete metric space (X ,d),
K : C ⇒C be a set-valued mapping and h : C→R be a function bounded from below.
We assume that for every ε > 0, and for any x0 ∈C the following implication holds:
for all x ∈C

h(x)+ εd(x,x0)≤ h(x0) =⇒ ∃y ∈ K(x), h(y)+ εd(x,y)≤ h(x).

Then, there exists x̂ ∈ Fix(K)2 satisfying

h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.

Proof By Theorem 3.3, for each ε > 0 and x0, there exists x̂ ∈C such that

h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.

It is enough to show that x̂ is a fixed point of K. From the first inequality and the
assumed implication, there exists y ∈ K(x̂) such that

h(y)+ εd(x̂,y)≤ h(x̂).

Supposing y 6= x̂ leads to a contradiction with the second inequality, and therefore, we
derive that y = x̂ ∈ K(x̂). ut

2 Fix(K) denotes the set of fixed points of K.
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Given f and K, we notice that if there exists a function h : C → R such that
f (x,y)≥ h(y)−h(x) (in other words, f̂ is cyclically monotone), then

argmin
C

h∩Fix(K)⊂ QEP( f ,K). (14)

The following result is an extension of [26, Theorem 3.11].

Theorem 4.2 Let C be a nonempty closed subset of a complete metric space (X ,d),
let K : C ⇒C be a set-valued mapping, and let f : C×C→ R be a bifunction. Let us
assume that the following conditions hold.

(i) Fix(K) is compact and nonempty;
(ii) there exists a bounded from below function h : C→ R such that

argmin
C

h = argmin
C

h and f (x,y)≥ h(y)−h(x), for all x,y ∈C.

Suppose that for each ε > 0 and each x0 ∈ X the following implication holds: for all
x ∈C

h(x)+ εd(x,x0)≤ h(x0) =⇒ ∃y ∈ K(x), h(y)+ εd(x,y)≤ h(x).

Then, the set QEP( f ,K) is nonempty.

Proof Fix x0 ∈C. By Lemma 4.1, for each n ∈ N, there exists xn ∈ Fix(K) such that

h(x)+
1
n

d(x,xn)≥ h(xn), for all x ∈C.

Since Fix(K) is compact, without loss of generality, we can assume that (xn)n∈N con-
verges to x̂ ∈ Fix(K). We claim that x̂ ∈ argminC h. Indeed, as the distance function is
continuous and h is lsc, we have

h(x)≥ h(x̂), for all x ∈C.

By Proposition 2.4, x̂ ∈ argminC h. The result follows from (14). ut

It is important to note that the previous result is not a consequence of [39, Theorem
4.3], because neither h is lower semicontinouous, nor K is upper semicontinuous.

As a direct consequence of Theorem 4.2 we derive the following.

Corollary 4.2 Let C be a nonempty closed subset of a complete metric space (X ,d),
K : C ⇒ C be a set-valued mapping, and let h : C→ R be a function. Let us assume
that the following conditions hold.

(i) Fix(K) is compact and nonempty;
(ii) h is a function bounded from below such that argminC h = argminC h.

Suppose that for each ε > 0, and each x0 ∈ X the following implication holds: for all
x ∈C

h(x)+ εd(x,x0)≤ h(x0) =⇒ ∃y ∈ K(x), h(y)+ εd(x,y)≤ h(x).

Then, there exists x̂ ∈ Fix(K) such that

h(x̂)≤ h(x), for all x ∈ K(x̂).
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The previous result is known as the existence of solutions to a quasi-optimization
problem. Important results about the existence of solution of this kind of problem were
presented in [40, Propositions 4.2 and 4.5] and [25, Corollary 3.2] under continuity
and quasi-convexity assumptions.

5 System of Quasi-Equilibrium Problems

Let I be an index set. For each i ∈ I, we consider a complete metric space (Xi,di), a
nonempty closed subset Ci of Xi and a set-valued mapping Ki : Ci ⇒Ci. We define the
set-valued mapping K : C ⇒C by

K(x) :=
∏
i∈I

Ki(xi),

where C =
∏

Ci and x = (xi)i∈I . By a system of quasi-equilibrium problems we under-
stand the problem of finding

x̂ ∈ Fix(K) such that fi(x̂,yi)≥ 0 for all y ∈ K(x̂), (15)

where the fi : C×Ci→ R are given. It is important to see that

Fix(K) =
∏
i∈I

Fix(Ki).

In the particular case when for each i ∈ I, Ki(xi) = Ci, for all xi ∈ Ci, we obtain the
known system of equilibrium problems.

The following result generalizes [26, Theorem 4.2], [17, Proposition 4.2] and [16,
Proposition 2].

Theorem 5.1 For each i ∈ I, let Ci be a nonempty compact subset of a topological
space Xi, and let each fi : C×Ci→ R be a bifunction such that

fi(x,yi)≥ hi(yi)−hi(xi), ∀x,y ∈C (16)

holds for some transfer lower continuous function hi : Ci → R that is also bounded
from below. Then, the system of equilibrium problems admits at least one solution.

Proof For each i ∈ I, we apply Theorem 2.1 and obtain x̂i ∈ argminCi
hi. Thus, from

(16), x̂ = (x̂i) is a solution of the system of equilibrium problems. ut

Remark 5.1 Condition (16) is equivalent to the following: for any i from I and any
positive integer m and any x1,x2, . . . ,xm ∈C it holds

m∑
j=1

fi(x j,xi
j+1)≥ 0 (17)

where xm+1 = x1. It follows from the same steps of the proof of [33, Proposition 5.1].



16 John Cotrina et al.

We denote by SEP( fi,Ci, I) the solution set of (15), when Ki(xi) = Ci, for all xi ∈Ci.
If I is a finite index set, as a particular case, we define the bifunction f : C×C→R by

f (x,y) :=
∑
i∈I

fi(x,yi). (18)

The next result says that a system of equilibrium problems is equivalent to a par-
ticular equilibrium problem under suitable assumptions.

Proposition 5.1 Assume that I is a finite index set and f is defined as (18). Then
SEP( fi,Ci, I)⊂ EP( f ,C). The equality holds provided that fi(x,xi) = 0, for all i ∈ I.

Proof Let x ∈ SEP( fi,Ci, I) and y ∈C. For each i ∈ I, we have

fi(x,yi)≥ 0.

Thus f (x,y)≥ 0. Hence x ∈ EP( f ,C).
Conversely, let x ∈ EP( f ,C), i ∈ I and yi ∈Ci. We take z ∈C such that zi = yi and

z j = x j, for all j ∈ I \{i}. So,

0≤ f (x,y) =
∑
j∈I

f j(x,z j) = fi(x,yi).

Therefore, x ∈ SEP( fi,Ci, I). ut

Given a finite index set I and for each i ∈ I, we consider a compact subset Ci of a
topological space and a function fi : C×Ci→ R. We say that the family of functions
{ fi}i∈I has the transfer lower continuity property if there exists a tlc function h :C→R
such that the bifunction f defined in (18) satisfies

f (x,y)≥ h(y)−h(x). (19)

Remark 5.2 Two remarks are needed.

(i) Let f be defined by (18), where the family { fi}i∈I has the transfer lower continuity
property. Then, the bifunction f̂ is cyclically monotone.

(ii) If for each i ∈ I, the function fi is usc in its second argument, and the relation
(19) holds, then the family of functions { fi}i∈I has the transfer lower continuity
property. This is due to [26, Theorem 2.16].

Below we present a result similar to Theorem 5.1.

Theorem 5.2 Assume that I is a finite index set and the family of functions { fi}i∈I has
the transfer lower continuity property. If fi(x,xi) = 0, for all x ∈C and all i ∈ I, then
the set SEP( fi,Ci, I) admits at least one element.

Proof It follows from Theorem 4.1 and Proposition 5.1. ut

After proving the existence of solutions to systems of equilibrium problems, we
can conclude this section by turning our attention to systems of quasi-equilibrium
problems. The proof of the next result follows the one in [26, Theorem 3.11].
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Theorem 5.3 For each i ∈ I, let Ci be a nonempty closed subset of a complete metric
space (Xi,di), Ki : Ci ⇒ Ci be a set-valued mapping, and let fi : C×Ci → R be a
function such that (16) holds for some hi : Ci → R, bounded from below such that
argminCi

hi = argminCi
hi. If Fix(K) is compact and, for any ε > 0, any x0 ∈ C, and

any i ∈ I the following implication holds

hi(xi)+ εdi(xi,xi
0)≤ hi(xi

0) =⇒ ∃yi ∈ Ki(xi), hi(yi)+ εdi(xi,yi)≤ hi(xi),

then (15) has a solution.

Proof For each i ∈ I, x0 ∈ C, and n ∈ N, we apply Lemma 4.1 and we obtain the
existence of a fixed point of Ki, say x̂i

n, such that

hi(xi)+
1
n

di(xi, x̂i
n)≥ hi(x̂i

n), for all xi ∈Ci.

Since Fix(Ki) is compact, without loss of generality, assume that (x̂i
n)n∈N converges

to x̂i ∈ Fix(Ki). By continuity of di and lower semicontinuity of hi, we have

hi(xi)≥ hi(x̂i), for all xi ∈Ci.

Due to Proposition 2.4, we deduce that x̂i ∈ argminCi
hi,. The result follows from

considering x̂ = (x̂i) ∈ Fix(K) and (16). ut

6 Conclusions

Our aim in the present paper was to study the existence of equilibria and quasi-
equilibria, in the setting of metric spaces. We achieved this goal by using the Ekeland
variational principle and by dropping usual convexity assumptions. Our results extend
many results that can be found in the literature (e.g. [26]). We also proved the exis-
tence of solutions for systems of quasi-equilibrium problems in the setting of metric
spaces.

Further research could be done regarding other types of transfer continuities such
as transfer weakly lower continuity and quasi transfer lower continuity (see [27]).
Natural extension of this work to generalized Nash equilibrium problems and quasi-
variational inequalities could also be considered in the future.
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25. Cotrina, J., Zúñiga, J.: A note on quasi-equilibrium problems. Oper Res Lett. 46, 138–140 (2018)

http://www.sciencedirect.com/science/article/pii/0362546X9290159C
http://www.sciencedirect.com/science/article/pii/0362546X9290159C
https://doi.org/10.1007/BF01448847
https://doi.org/10.1017/S0004972700015847
https://doi.org/10.1017/S0004972700015847
https://doi.org/10.1007/s10288-007-0054-4
https://doi.org/10.1007/s10898-019-00762-5
https://doi.org/10.1080/02331934.2020.1778690
https://doi.org/10.1080/02331934.2020.1778690


An Existence Result for Quasi-Equilibrium Problems via Ekeland’s Variational Principle 19

26. Castellani, M., Giuli, M.: Ekeland’s principle for cyclically monotone equilibrium problems.
Nonlinear Anal. RWA 32, 213–228 (2016)

27. Tian, G.Q., Zhou, J.: Transfer continuities, generalizations of the Weierstrass and maximum the-
orems: a full characterization. J. Math. Econ. 24, 281–303 (1995)

28. Debreu, G.: A social equilibrium existence theorem. Proceedings of the National Academy of
Sciences 38(10), 886–893 (1952). DOI 10.1073/pnas.38.10.886. URL https://www.pnas.
org/content/38/10/886

29. Ansari, Q.H., Idzik, A., Yao, J.C.: Coincidence and fixed point theorems with applications. Topol.
Methods Nonlinear Anal. 15(1), 191–202 (2000). URL https://projecteuclid.org:443/
euclid.tmna/1471873918

30. Ansari, Q.H., Chan, W.K., Yang, X.Q.: The system of vector quasi-equilibrium problems with
applications. Journal of Global Optimization 29(1), 45–57 (2004). DOI 10.1023/B:JOGO.
0000035018.46514.ca. URL https://doi.org/10.1023/B:JOGO.0000035018.46514.ca
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