
Accepted for publication in Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-021-01820-3

Quartic First-Order Methods for Low-Rank Minimization

Radu-Alexandru Dragomir · Alexandre d’Aspremont ·
Jérôme Bolte

Last revised on January 18, 2021

Abstract We study a general nonconvex formulation for low-rank minimization problems. We use recent
results on non-Euclidean first-order methods to provide efficient and scalable algorithms. Our approach
uses the geometry induced by the Bregman divergence of well-chosen kernel functions; for unconstrained
problems we introduce a novel family of Gram quartic kernels that improve numerical performance.

Numerical experiments on Euclidean distance matrix completion and symmetric nonnegative matrix
factorization show that our algorithms scale well and reach state of the art performance when compared
to specialized methods.

Keywords Bregman first-order methods · Low-rank minimization · Burer-Monteiro · Matrix factoriza-
tion · Euclidean Distance matrix completion

Mathematics Subject Classification (2000) 90C06 · 90C26

1 Introduction

We consider the problem of minimizing a smooth convex function over the set of low-rank positive
semidefinite matrices. Fundamental applications of this problem arise in various areas of data analysis
including matrix completion [1–3], matrix sensing [4], Euclidean matrix completion [5,6], phase retrieval
[7], robust principal component analysis [8], to name a few.

A popular approach to low-rank semidefinite minimization, known as the Burer-Monteiro formulation
[9], consists in explicitly modeling the rank constraint by writing the matrix in a factorized form. This
method is especially appealing for large-scale instances, since it requires storing much less variables than
the standard semidefinite programming approaches; see [8, 10–15] and references therein.

This formulation comes however with an important drawback, as the problem becomes nonconvex,
even if the original objective is convex. Therefore, local optimization methods can generally only hope to
find a stationary point, or at best a local minimum. Nevertheless, recent work shows convergence towards
a global optimum for a close enough initialization [10,11,15], or under additional statistical assumptions
about the problem [8,16,17]. Although these global optimality results often impose restrictive assumptions
that may not be satisfied in practice, they help to explain why using local algorithms to solve Burer-
Monteiro problem formulations often leads to satisfactory solutions in practice.

The most commonly used algorithm to solve these problem formulations is some variant of the
proximal gradient method. However, a critical issue with gradient schemes is the choice of step sizes,

Radu-Alexandru Dragomir, corresponding author
Université Toulouse 1 Capitole & D.I. École Normale Supérieure, Paris, France
radu-alexandru.dragomir@inria.fr

Alexandre d’Aspremont
CNRS & D.I. École Normale Supérieure, Paris, France
aspremon@ens.fr.

Jérôme Bolte
Université Toulouse 1 Capitole, Toulouse, France
jerome.bolte@ut-capitole.fr

ar
X

iv
:1

90
1.

10
79

1v
3

 [
m

at
h.

O
C

]
 1

7
Fe

b
20

21

which significantly impacts performance. This step size choice is closely related to the smoothness of the
objective. In particular, when it has a L-Lipschitz continuous gradient with respect to the Euclidean
norm, standard gradient methods can be applied with a step size lying in]0, 1/L]. This smoothness
assumption is used in the broad majority of theoretical analyses of gradient algorithms, yet there are
many cases where it is not satisfied [18,19]. In particular, it does not hold for the general Burer-Monteiro
low-rank problem, as we will show in what follows.

Of course, there is a way to circumvent this issue in classical Euclidean methods, by using an Armijo
line search [20]. However, in some cases, this naive line search strategy generates very small step sizes
which in turn involve costly subroutines. Other approaches impose a step size that is only proven to be
valid in a small neighborhood of the optimum [11,15].

Non-Euclidean gradient methods. We adopt an original approach based on a recent line of work on non-
Euclidean gradient methods [18,19,21] and subsequent work [22]. Unlike standard gradient descent that
uses the uniform Euclidean geometry, the NoLips method, also known as Bregman/Mirror descent, uses
the Bregman divergence induced by a well-chosen convex kernel function. This allows the algorithm to
take gradient steps that are more adapted to the geometry of the problem, advancing faster in directions
where the gradient of the objective changes slowly, thus improving convergence speed. The kernel function
is chosen so that the objective function satisfies a compatibility condition called relative smoothness
[18, 22], which is a generalization of the usual smoothness assumption mentioned earlier.

In our setting, the objective has a quartic growth, hence choosing the geometry induced by a quartic
polynomial will prove to be efficient.

Contributions. In this work, we focus on deriving efficient algorithms to find stationary points of non-
convex low-rank problems. Our main contribution is to identify favorable non-Euclidean geometries for
these problems, induced by well-chosen quartic kernels.

We first study a simple quartic norm kernel that is compatible with various regularization terms.
We then introduce a novel family of quartic kernels that we call Gram kernels, which can be applied to
unregularized problems. They provide richer geometries which greatly improve convergence speed with
little impact on the iteration complexity. We also extend the NoLips scheme to Dyn-NoLips, allowing
for adaptive step size strategies.

To highlight the benefits of our approach, we study applications to symmetric nonnegative matrix
factorization and Euclidean distance matrix completion and show competitive numerical performance
compared to specialized algorithms for these problems.

Notations For a square matrix M , we denote its trace TrM =
∑n
i=1Mii. For two matrices X and

Y of same size, we denote the standard Euclidean inner product and norm by 〈X,Y 〉 = Tr(XTY)
and ‖X‖ =

√
Tr(XTX). For a function f : Rn×r → R, we denote by ∇F (X) its gradient matrix

∇F (X)ij = ∂F (X)
∂xij

and by ∇2F (X)[U, V] the second derivative at X in the directions U, V ∈ Rn×r. Ir
denotes the identity matrix of size r × r. For two square matrices X,Y , we write X � Y if the matrix
Y −X is positive semidefinite. We write ‖A‖op for the operator norm of a linear application A.

2 Quartic Geometries for Low-Rank Minimization

2.1 Problem Setup

Let n ≥ 1 and consider a low-rank semidefinite program, written

minF (Y) subject to Y � 0, rank(Y) ≤ r (SDP-r)

in the variable Y ∈ Rn×n, where F is a smooth convex function and r ≤ n is the target rank. The
Burer-Monteiro formulation [9] consists in representing Y as Y = XXT to solve instead

minΨ(X) := F (XXT) + g(X) (P)

in the variable X ∈ Rn×r, where g is a simple convex regularization function. F is typically a quadratic
loss function, and g enforces penalties on the factor X such as sparsity when choosing the `1 norm, or

2

nonnegativity when choosing the indicator function of the nonnegative orthant. We will write f : Rn×r →
R the factorized function defined by

f(X) := F (XXT).

Throughout the paper, we make the following standing assumptions.

Assumption 2.1 (a) F : Rn×n → R is a twice continuously differentiable function which is µF -strongly
convex and LF -smooth, i.e.,

〈∇F (X)−∇F (Y), X − Y 〉 ≥ µF ‖X − Y ‖2,
‖∇F (X)−∇F (Y)‖ ≤ LF ‖X − Y ‖ ∀X,Y ∈ Rn×n,

(b) g : Rn×n → R ∪ {+∞} is a closed convex proper function,
(c) minRn×r Ψ > −∞.

Our analysis will involve the following lemma.

Lemma 2.1 Let F : Rn×n → R be a twice differentiable µF -strongly convex and LF -smooth function.
Then, the function G := F − µF

2 ‖ · ‖
2 is convex and (LF − µF)-smooth.

Proof It suffices to use the second-order characterization [23] and notice that, for Y, U ∈ Rn×n, we have
∇2G(Y)[U,U] = ∇2F (Y)[U,U]− µF ‖U‖2 and hence

µF ‖U‖2 ≤ ∇2F (Y)[U,U] ≤ LF ‖U‖2 =⇒ 0 ≤ ∇2G(Y)[U,U] ≤ (LF − µF)‖U‖2.

ut

2.2 Relative Smoothness and the Bregman Iteration Map

In this section, we recall the framework of [18,19] to derive non-Euclidean gradient methods.

The first essential step is the choice of a distance kernel. In our context, we choose a differentiable
strictly convex function h : Rn×r → R, with domh = Rn×r (although more general distance kernels can
be used). The distance kernel h induces in turn a Bregman distance

Dh(X,Y) = h(X)− h(Y)− 〈∇h(Y), X − Y 〉. (1)

Note that Dh is not a proper distance, it is sometimes referred to as a Bregman divergence. However Dh

enjoys a distance-like separation property: Dh(X,X) = 0 and Dh(X,Y) > 0 for X 6= Y . The choice of
a distance kernel suited to the function f is guided by the following relative smoothness condition, also
called generalized Lipschitz property.

Definition 2.1 (Relative smoothness [18]) We say that a differentiable function f : Rn×r → R is
L-smooth relatively to the distance kernel h if there exists L > 0 such that for every X,Y ∈ Rn×r,

f(X) ≤ f(Y) + 〈∇f(Y), X − Y 〉+ LDh(X,Y). (RelSmooth)

For twice differentiable functions, relative smoothness has an elementary characterization: f is L-smooth
relatively to h if and only if

∇2f(X)[U,U] ≤ L∇2h(X)[U,U], ∀X,U ∈ Rn×r (2)

where ∇2f(X)[U,U] denotes the second derivative of f at X in the direction U . Notice that if h(X) =
1
2‖X‖

2, then Dh(X,Y) = 1
2‖X − Y ‖

2 and we recover the standard Euclidean descent lemma that would
be implied by Lipschitz continuity of the gradient of f .

3

Bregman iteration map Now that we are equipped with a non-Euclidean geometry generated by h, we
define the Bregman proximal iteration map with step size λ as follows.

Tλ(X) = argmin
U∈Rn×r

{
g(U) + f(X) + 〈∇f(X), U −X〉+

1

λ
Dh(U,X)

}
, (3)

which consists in minimizing a surrogate for Ψ where f has been replaced by the upper approximation
given by (RelSmooth) and the nonsmooth part g is kept intact, generalizing thus the approach used in
the proximal gradient method. The relative smoothness condition ensures that this operation decreases
the objective Ψ when λ ∈]0, 1/L]. This iteration map is the basic brick for non-Euclidean methods à la
Bregman. The simplest method is NoLips [18] and its extension Dyn-NoLips (Algorithm 1), which simply
amounts to iterating Xk+1 = Tλk

(Xk), but other possibilities exist using momentum ideas [24–26].

2.3 The Quartic Geometry

In order to provide some insight into the quartic geometry of our problem, let us consider the example
where F is a quadratic function, i.e.,

F (Y) =
1

2
〈AY, Y 〉+ 〈B, Y 〉 ∀Y ∈ Rn×n, (4)

where B ∈ Rn×n and A : Rn×n → Rn×n is some linear map. Then, f writes

f(X) = F (XXT) =
1

2
〈A(XXT), XXT 〉+ 〈BX,X〉 ∀X ∈ Rn×r.

Clearly, f is a quartic function and its gradient is not Lipschitz continuous on Rn×r, as the Hessian
“grows” to infinity when ‖X‖ → ∞. In other words, (RelSmooth) does not hold with the Euclidean
kernel h = 1

2‖ · ‖
2. We now show that relative smoothness holds with a family of well-chosen quartic

kernels, which are more adapted to the geometry of f .

2.3.1 The Quartic Norm Kernel

We begin with the simplest quartic kernel, which depends solely on the Frobenius norm of X. Define the
norm kernel hN as

hN (X) =
α

4
‖X‖4 +

σ

2
‖X‖2 ∀X ∈ Rn×r, (5)

where α, σ > 0 are fixed parameters. Note that this kernel is not new by itself, as it has been already
studied in [19] for vectors in Rn. Our first contribution is to show that it is adapted to every function of
our class of problems.

Proposition 2.1 (Norm kernel) The function f is 1-smooth relative to the norm kernel hN for α ≥
6LF and σ ≥ 2‖∇F (0)‖.

Proof As F is twice differentiable, then so if f and we can use the Hessian characterization (2). For
X,U ∈ Rn×r, the second derivative of hN is written

∇2hN (X)[U,U] = α
(
‖X‖2‖U‖2 + 2〈X,U〉2

)
+ σ‖U‖2

≥ α‖X‖2‖U‖2 + σ‖U‖2.
(6)

On the other hand, the second derivative of f is

∇2f(X)[U,U] = ∇2F (XXT)[UXT +XUT , UXT +XUT] + 2〈∇F (XXT), UUT 〉. (7)

Since F has a Lipschitz continuous gradient, the standard second derivative inequality yields

∇2F (XXT)[UXT +XUT , UXT +XUT] ≤ LF ‖UXT +XUT ‖2.

4

Now, the second term can be bounded by using the triangle inequality, the Cauchy-Schwarz inequality
and the gradient Lipschitz property, to get

〈∇F (XXT), UUT 〉 = 〈∇F (0), UUT 〉+ 〈∇F (XXT)−∇F (0), UUT 〉
≤ ‖∇F (0)‖ ‖U‖2 + ‖∇F (XXT)−∇F (0)‖ ‖UUT ‖

≤
(
‖∇F (0)‖+ LF ‖XXT ‖

)
‖U‖2

hence

∇2f(X)[U,U] ≤ LF ‖UXT +XUT ‖2 + 2
(
LF ‖XXT ‖+ ‖∇F (0)‖

)
‖U‖2

≤ 2LF
(
‖UXT ‖2 + ‖XUT ‖2

)
+ 2

(
LF ‖XXT ‖+ ‖∇F (0)‖

)
‖U‖2

≤ 6LF ‖X‖2‖U‖2 + 2‖∇F (0)‖‖U‖2

≤ α‖X‖2‖U‖2 + σ‖U‖2

(8)

where we used the submultiplicative property of the Frobenius norm, and our choice of parameters α, σ.
Combining (6) and (8) gives that

∇2f(X)[U,U] ≤ ∇2hN (X)[U,U]

for all X,U ∈ Rn×r, hence that f is 1-smooth relatively to h [18]. ut

The Bregman iteration map (3) associated with the kernel hN can be computed easily in closed form.
We give its expression in the unconstrained case [19].

Proposition 2.2 (Bregman iteration map for hN , unconstrained case) Assume that there is no
penalty term, i.e., that g ≡ 0. The Bregman iteration map of the norm kernel hN with step size λ > 0 is
given by

Tλ(X) =
1

τσ(α‖U‖2)
U

where

U = ∇hN (X)− λ∇f(X) = (α‖X‖2 + σ)X − λ∇f(X)

and τσ(c) denotes the unique real solution z to the cubic equation z2(z − σ) = c.

Note that τσ(c) can be computed in closed form using Cardano’s method

τσ(c) =
σ

3
+

3

√
c+
√
∆

2
+
σ3

27
+

3

√
c−
√
∆

2
+
σ3

27
where ∆ = c2 +

4

27
cσ3. (9)

Compared to a standard gradient iteration, the additional operations are elementary and have a minimal
impact on the arithmetic complexity.

Constraints and regularization terms. Following the ideas in [19], the Bregman iteration map of hN can
also be easily computed in closed form when g is the `1 norm or the `0 pseudonorm. As we will show in
Section 4.1, this is also elementary when g is the indicator function of the nonnegative orthant.

2.3.2 A More Refined Kernel for Unregularized Problems: the Gram Kernel

While the kernel hN is simple and compatible with many penalties g, a better kernel can be derived for
unconstrained instances by considering a richer geometry involving the Gram matrix. Define the Gram
kernel as

hG(X) =
α

4
‖X‖4 +

β

4
‖XTX‖2 +

σ

2
‖X‖2 ∀X ∈ Rn×r, (10)

where α, β ≥ 0, σ > 0 are given parameters. The Gram kernel is more refined than the previous norm
kernel since it incorporates some nonisotropic information with the ‖XTX‖2 term. To show where this

5

term stems from, observe that following Lemma 2.1, F can be decomposed as F = µF

2 ‖ · ‖
2 + F̃ where

F̃ is (LF − µF)-smooth. Hence f writes

f(X) = F (XXT) =
µF
2
‖XXT ‖2 + F̃ (XXT). (11)

Since ‖XXT ‖2 = ‖XTX‖2, the first term can be directly incorporated into the kernel, which allows to
prove a tighter relative smoothness inequality.

Proposition 2.3 (Gram kernel) f is 1-smooth relatively to the Gram kernel hG for α ≥ 2(LF − µF),
β ≥ 2LF and σ ≥ 2‖∇F (0)‖.

Proof This amounts to refine the analysis of the proof of Proposition 2.1. Let X,U ∈ Rn×r. The second
derivative of hG at X in the direction U writes

∇2hG(X)[U,U] = α
(
‖X‖2‖U‖2 + 2〈X,U〉2

)
+ β

(
1

2
‖UXT +XUT ‖2 + ‖UTX‖2

)
+ σ‖U‖2

≥ α‖X‖2‖U‖2 + β

(
1

2
‖UXT +XUT ‖2 + ‖UTX‖2

)
+ σ‖U‖2.

(12)

On the other hand, following (7) the second derivative of f satisfies

∇2f(X)[U,U] ≤ LF ‖UXT +XUT ‖2 + 2〈∇F (XXT), UUT 〉

To bound the second term, we use Lemma 2.1 which states that the function G(Y) := F (Y)−µF ‖Y ‖2/2
is convex and smooth with constant LF − µF . Using the gradient Lipschitz property of G yields

〈∇F (XXT), UUT 〉 = 〈∇F (0), UUT 〉+ µF 〈XXT , UUT 〉
+ 〈∇F (XXT)−∇F (0)− µF (XXT − 0), UUT 〉

= 〈∇F (0), UUT 〉+ µF ‖UTX‖2 + 〈∇G(XXT)−∇G(0), UUT 〉
≤ ‖∇F (0)‖ ‖U‖2 + µF ‖UTX‖2 + (LF − µF)‖XXT ‖ ‖UUT ‖
≤ ‖∇F (0)‖ ‖U‖2 + LF ‖UTX‖2 + (LF − µF)‖X‖2‖U‖2,

using that µF ≤ LF , and so we have

∇2f(X)[U,U] ≤ 2(LF − µF)‖X‖2‖U2‖+ LF ‖UXT +XUT ‖2 + 2LF ‖UTX‖2

+ 2‖∇F (0)‖ ‖U‖2

≤ α‖X‖2‖U‖2 +
β

2
‖UXT +XUT ‖2 + β‖UTX‖2 + σ‖U‖2

≤ ∇2hG(X)[U,U]

which shows that, for the prescribed choice of α, β, σ, the function f is 1-smooth relatively to hG. ut

Approximation quality for well-conditioned F . Let us illustrate the advantage of the Gram kernel when
F is well-conditioned. For simplicity, assume here that F is a quadratic function, as in (4), i.e., F (Y) =
1
2 〈AY, Y 〉+ 〈B, Y 〉 where A is a positive semidefinite linear operator on Rn×r, and hence f has a quartic
and a quadratic term

f(X) =
1

2
〈A(XXT), XXT 〉+ 〈B,XXT 〉.

6

The gap between f and hG with the choice of coefficients prescribed by Proposition 2.3 writes, for
X ∈ Rn×r,

hG(X)− f(X) =
(LF − µF)

2
‖X‖4 +

LF
2
‖XTX‖2 + ‖∇F (0)‖ ‖X‖2

− 1

2
〈A(XXT), XXT 〉 − 〈BX,X〉

=
(LF − µF)

2
‖X‖4 +

1

2
〈(LF I −A)(XXT), XXT 〉︸ ︷︷ ︸
d4(X)

+ 〈(‖∇F (0)‖I −B)X,X〉︸ ︷︷ ︸
d2(X)

(13)

where we separated the gap into a quartic term d4 and a quadratic term d2. It can be seen from (2) that
the quality of approximation of the kernel is given by the difference of the Hessians. Focusing on the
quartic part, the Hessian difference is

∇2d4(X)[U,U] = 2(LF − µF)
(
‖X‖2‖U‖2 + 2〈X,U〉2

)
+ 2〈(LF I −A)(XXT), UUT 〉

+ 〈(LF I −A)(UXT +XUT), UXT +XUT 〉
≤ 6(LF − µF)‖X‖2‖U‖2

+ ‖LF I −A‖op
(
2‖XXT ‖ ‖UUT ‖+ ‖UXT +XUT ‖2

)
for X,U ∈ Rn×r. Recalling that F is LF -smooth and µF -strongly convex, we have that ‖LF I −A‖op ≤
(LF − µF), therefore

∇2d4(X)[U,U] ≤ (LF − µF)
(
6‖X‖2‖U‖2 + 2‖XXT ‖ ‖UUT ‖+ ‖UXT +XUT ‖2

)
≤ 12LF (1− µF

LF
)‖X‖2‖U‖2

which shows that the quality of approximation of the quartic part of f by the Gram kernel depends on
the condition number κF := LF /µF of F . Note that one could actually refine the analysis by replacing
κF with the condition number of F restricted to the set of matrices of rank at most 2r, which can be
much smaller. This is the case when the linear map A satisfies the restricted isometry property (RIP),
which occurs with high probability in matrix sensing applications with a sufficiently large number n of
samples [3, 4, 27].

Computing the iteration map. We show now that, when there is no penalty term g, the Bregman iteration
map of hG can be computed efficiently, as it involves solving an easy quartic minimization subproblem
of size r.

Proposition 2.4 (Gram’s iteration map) Assume that g ≡ 0. For X ∈ Rn×r, the Bregman iteration
map of f for the Gram kernel hG with step size λ > 0, called Gram’s iteration map, is given by

Tλ(X) = V [αTr(Z)Ir + βZ + σIr]
−1

where the matrices V,Z are computed through the routine:

– Set V = ∇hG(X)− λ∇f(X),
– diagonalize V TV as V TV = PTDP where P ∈ Or and D = diag(η21 , . . . , η

2
r),

– let µ = (µ1, . . . , µr) be the unique solution of the convex minimization problem

min
x∈Rr

φ(x) :=
α

4
‖x‖4 +

β

4

r∑
i=1

x4i +
σ

2
‖x‖2 −

r∑
i=1

ηixi,

– finally set Z = PT diag
[
µ2
1, . . . , µ

2
r

]
P.

7

Proof When g ≡ 0, The Bregman iteration map of hG writes, for X ∈ Rn×r,

Tλ(X) = argmin
U∈Rn×r

{
〈∇f(X), U −X〉+

1

λ
DhG

(U,X)

}
= argmin

U∈Rn×r

{hG(U)− 〈V,U〉}
(14)

where we remove constant terms and defined V := ∇hG(X) − λ∇f(X). Write for the sake of clarity
U? := Tλ(X). The optimization problem (14) is strictly convex and the unique solution U? satisfies
∇hG(U?) = V , meaning that

U?
(
α‖U?‖2Ir + βU?TU? + σIr

)
= V. (15)

Define Z := U?TU? ∈ Rr×r. Then, the knowledge of Z determines U?, since ‖U?‖2 = Tr(Z) and
therefore U? = V (αTr(Z)Ir + βZ + σIr)

−1.
Now, taking (15) and multiplying by its transpose implies that

(α‖U?‖2Ir + βZ + σIr)
2Z = V TV. (16)

This shows that V TV is a polynomial in Z, and therefore that they admit the same eigenvectors. Write
the diagonalization V TV = PT diag(η21 , . . . , η

2
r)P and Z = PT diag(µ2

1, . . . , µ
2
r)P where P ∈ Or and

µi, ηi ≥ 0 for i = 1 . . . r. It follows from diagonalizing (16) and taking the square root thatα
 r∑
j=1

µ2
j

+ βµ2
i + σ

µi = ηi ∀i = 1, . . . , r (17)

This is exactly the first-order optimality condition on µ = (µ1, . . . , µr) for the problem

µ = argmin
x∈Rr

α

4
‖x‖4 +

β

4

r∑
i=1

x4i +
σ

2
‖x‖2 −

r∑
i=1

ηixi. (18)

Note that we do not need to enforce the nonnegativity constraint on x, since we chose ηi ≥ 0 it follows
that the optimal solution will be nonnegative. Hence, we can reconstruct Z from the diagonalization
of V TV and the solution of Problem (18), and thus we get the procedure described in the theorem for
computing U∗ = Tλ(X). ut

Complexity Note that the order of multiplication is important: we only need to compute the eigendecom-
position of V TV , which is of size r × r. We additionally need to solve a small minimization problem of
size r, which can be done efficiently using the quartic NoLips algorithm with norm kernel (see Appendix
A for implementation details). Due to this, the complexity of computing the Bregman iteration map of
hG is O(nr2 + r3 +Kr), where K is the number of iterations needed to solve the subproblem. Since r is
usually much smaller than n by several orders of magnitude, the main computational bottleneck remains
in most applications computing the gradient ∇f(X).

2.3.3 Comparison: how to choose the most appropriate kernel

In order to devise efficient methods, one should search for the kernel h such that the upper approximation
of f in (RelSmooth) is as tight as possible, or, equivalently, such that the Hessian of the residual Lh− f
is small. On the other hand, h has to be simple enough so that the iteration map (3) is easy to compute
(which precludes choosing h = f , as the iteration would be as hard to solve as the initial problem). This
trade-off is key in choosing the appropriate kernel. Let us review these two conflicting criteria in our
situation.

Complexity of the Bregman iteration map. For the norm kernel hN , one iteration involves computing the
gradient of f , then solving a simple scalar equation. The Gram kernel hG involves solving a subproblem
which requires O(nr2+r3) additional operations. This overhead is negligible for the typical regime where
r � n; however, the iterate can be computed easily only for unconstrained problems.

8

Quality of Hessian approximation. We showed in Section 2.3.2 that the quality of the approximation of
the quartic component of f by the Gram kernel is bounded by O(1− µF /LF). Therefore, it is expected
to show good performance when F is sufficiently well-conditioned. The norm kernel, however, has no
such property, as its approximation of f is much coarser. The difference stems from the supplementary
‖XTX‖2 term, which can be much smaller than ‖X‖4, especially when the columns of X are nearly
orthogonal.

Note that even if F is not globally strongly convex or µF is unknown, the Gram kernel can take
advantage of local strong convexity through adaptive step sizes, as we show in the sequel.

3 Algorithms for Quartic Low-Rank Minimization

Now that we are equipped with a non-Euclidean geometry induced by one of the kernels hN and hG,
we are ready to define the minimization scheme Dyn-NoLips in Algorithm 1. It extends the NoLips
algorithm from [19] to allow step sizes larger than the theoretical value 1/L.

Algorithm 1 Dyn-NoLips
Input: A distance kernel h such that f is smooth relatively to h and a maximal step size λmax

Initialize X0 ∈ Rn×r such that Ψ(X0) <∞.
for k = 1,2,. . . do

Choose a step size λk ≤ λmax such that the sufficient decrease condition (19) holds
Set Xk = Tλk

(Xk−1)
end for

Step size choice The step size λk is chosen so that the new iterate Xk = Tλk
(Xk−1) satisfies

f(Xk) ≤ f(Xk−1) + 〈∇f(Xk−1), Xk −Xk−1〉+
1

λk
Dh(Xk, Xk−1). (19)

There are two ways to ensure this condition holds.

– Fixed step size. Since f is L-smooth relatively to h, (19) holds as soon as 0 < λk ≤ 1/L.
– Dynamical step size. In some cases, the relative Lipschitz constant might be too conservative,

and better numerical performance can be achieved by taking larger steps. We therefore can use a
dynamical strategy for extending the step size, ensuring that (19) holds at each iteration. There are
many strategies to efficiently adjust the step size; see, e.g., [28]. In our case, we choose a simple strategy
similar in spirit to the Armijo line search: at iteration k, start with a tentative step size λk, then find
the smallest integer j such that (19) is satisfied with step size 2−jλk. Then, set λk+1 = 2−j+1λk.

Convergence to a stationary point. We now extend the theoretical convergence results from [19] to handle
the dynamical step size strategy.

Theorem 3.1 (Convergence results) Let {Xk}k≥0 be the sequence generated by Algorithm 1. Assume
that

1. f is L-smooth relatively to a distance kernel h such that h is strongly convex and twice continuously
differentiable on Rn×r, and the penalty function g is convex.

2. The function Ψ = f+g is coercive (meaning that Ψ(X)→ +∞ when ‖X‖ → +∞) and semialgebraic.

Then, the sequence {Ψ(Xk)}k≥0 is nonincreasing, and the sequence {Xk}k≥0 converges towards a critical
point X∗ of problem (P).

Proof First, the step size λk can be bounded for k ≥ 0 as

1

2L
≤ λk ≤ λmax. (20)

Indeed, the upper bound holds by construction of the algorithm. The lower bound comes from the relative
smoothness property: condition (19) is true for every λ ∈ (0, 1

L], so the inner loop will stop whenever λ
gets below 1/L.

9

Let us now prove the result. Since Condition (19) holds at each iteration k, we can write

f(Xk+1) ≤ f(Xk) + 〈∇f(Xk), Xk+1 −Xk〉+
1

λk
Dh(Xk+1, Xk). (21)

On the other hand, the optimality condition characterizing Xk+1 = Tλk
(Xk) writes

0 ∈ λk
(
∂g(Xk+1) +∇f(Xk)

)
+∇h(Xk+1)−∇h(Xk), (22)

where ∂g denotes the subdifferential of the convex function g. Combining (22) with the subgradient
inequality for g yields

g(Xk+1) ≤ g(Xk) +
1

λk
〈∇h(Xk)−∇h(Xk+1), Xk+1 −Xk〉

− 〈∇f(Xk), Xk+1 −Xk〉. (23)

Summing (21) and (23) gives

Ψ(Xk+1) ≤ Ψ(Xk) +
1

λk

[
Dh(Xk+1, Xk) + 〈∇h(Xk)−∇h(Xk+1), Xk+1 −Xk〉

]
,

which yields

Ψ(Xk+1) ≤ Ψ(Xk)− 1

λk
Dh(Xk, Xk+1). (24)

From this inequality, we can now prove the same convergence properties as for the standard NoLips
scheme. Indeed, the monotonicity of the sequence {Ψ(Xk)}k≥0 is a direct consequence of the above.
Since λk ≤ λmax, it follows that at every iteration k ≥ 0,

Ψ(Xk)− Ψ(Xk+1) ≥ 1

λmax
Dh(Xk, Xk+1).

Now, this inequality is the same as the one needed to prove convergence in the case of the fixed step
size in [19]. Thus, global convergence towards a critical point is a consequence of [19, Th. 4.1], since all
the assumptions are met: the kernel h is defined over the entire space Rn×r, it is strongly convex, and
∇h is Lipschitz continuous on bounded subsets of Rn×r (because we assumed it is C2). We also need the
fact that the sequence {Xk}k≥0 is bounded, which is a consequence of the monotonicity of {Ψ(Xk)}k≥0
and the fact that the function Ψ is coercive. ut

The semialgebraicity assumption is needed to establish the crucial nonsmooth Lojasiewicz property
[29], required to show convergence to a critical point. It holds for all the applications we cited, since the
class of semialgebraic functions includes polynomial functions, `1 and `2 norms, the `0 seminorm and
indicators of polynomial sets.

4 Applications

We now illustrate applications of our methodology to two different low-rank problems, symmetric non-
negative matrix factorization and Euclidean distance matrix completion. We show that good numerical
performance can be reached using the dynamical step strategy, and that, for Euclidean matrix comple-
tion, it can be further improved by using the Gram kernel.

4.1 Symmetric Nonnegative Matrix Factorization

Symmetric Nonnegative Matrix Factorization (SymNMF) is the task of finding, given a symmetric non-
negative matrix M ∈ Rn×n, a nonnegative matrix X ∈ Rn×r such that M ≈ XXT . This is done by
solving

min 1
2‖M −XX

T ‖2F
subject to X ≥ 0

(SymNMF)

in the variable X ∈ Rn×r, where the inequality constraint is meant componentwise and r ≤ n is the
target rank.

(SymNMF) is used as a probabilistic clustering or graph clustering technique [30, 31]. Numerical
experiments by [32] have shown that it achieves state-of-the-art clustering accuracy on several text and
image datasets.

10

4.1.1 Solving SymNMF.

While (SymNMF) looks similar to the well-known asymmetric NMF problem minX,Y
1
2‖M −XY

T ‖, it
is actually harder. This is because NMF has a favorable block structure that allows the application of
efficient alternating algorithms [33, 34]. SymNMF, however, does not enjoy the same block structure.
Current solvers fall into two categories:

Direct solvers. There have been several attempts at solving the original problem, including mul-
tiplicative update rules [31], projected gradient algorithm quasi-Newton schemes [32], and coordinate
descent [35].

Nonsymmetric relaxations. Another idea is to use a mere penalty method [32,36,37], relaxing (SymNMF)
to the following penalized nonsymmetric problem

minimize 1
2‖M −XY

T ‖2F + µ‖X − Y ‖2F
subject to X,Y ≥ 0,

(P-NMF)

in the variables X,Y ∈ Rn×r, with parameter µ ≥ 0. This formulation is very similar to asymmetric
NMF and can be solved by the same fast alternating algorithms that exploit the block structure, such as
Alternating Nonnegative Least Squares (ANLS) and Hierarchical Alternating Least Squares [37] (HALS),
which are arguably the fastest SymNMF solvers.

Applying NoLips We propose to apply NoLips for optimizing the original objective function. Problem
(SymNMF) falls within our framework with F (Y) = 1

2‖M − Y ‖
2, which has a Lipschitz gradient with

constant 1, and g(X) = i{X≥0} the indicator function of the nonnegative orthant. Therefore, Proposition

2.1 implies that f(X) := 1
2‖M − XXT ‖2 is 1-smooth relatively to the kernel hN with α = 6 and

σ = 2‖∇F (0)‖ = 2‖M‖. Since, in addition, f is polynomial and g is the indicator of a polynomial set,
f + g is semialgebraic, and it is also coercive, so Theorem 3.1 guarantees that NoLips will converge
towards a stationary point of problem (SymNMF).

In this problem, the Bregman iteration map is solved by simply adding a projection step

Tλ(X) =
1

τσ(α‖Π+(U)‖2)
Π+(U),

where U = ∇hN (X)− λ∇f(X), τσ has been defined in Proposition 2.2 and Π+ is the projection on the
nonnegative orthant: Π+(U) = max(U, 0) (entrywise).

Computational complexity for NoLips. The computational complexity of an iteration is dominated by
gradient computations and objective function evaluations, as all other operations are linear in the size
of the variable.

If M is a n×n dense matrix, each gradient and function evaluation uses O(n2r+nr2) floating point
operations. If M is represented as a sparse matrix with p << n2 nonzero elements, then we can take
advantage of this structure [35, Rmk. 2] by using

f(X) =
1

2
‖XXT −M‖2 =

1

2
‖M‖2 +

1

2
‖XTX‖2 − 〈MX,X〉

∇f(X) = 2X(XTX)− 2MX
(25)

which yields a much improved O
(
(r2 + p)n

)
complexity per iteration.

4.1.2 Numerical experiments

We implemented the following algorithms: Algorithm 1 with dynamical step size and the norm kernel
(Dyn-NoLips), the β-SNMF scheme from [31], where we set β = 0.99 as advised by the authors, the pro-
jected gradient algorithm (PG) with Armijo line search from [32], where we use the line search parameters
β = 0.1 and σ = 0.01, the coordinate descent scheme (CD) from [35], the ADMM algorithm [36], and the
two fast algorithms from [37] for solving the penalized problem (P-NMF): SymANLS and SymHALS. For
the last two, we tuned the µ penalization parameter for best performance. We left out the quasi-Newton
algorithm from [32] because of its prohibitive O(n3) complexity for large datasets.

11

Table 1 CPU time (in seconds) needed to reach a decrease of ε = 10−3 in projected gradient norm (see (26) for definition).
Results have been averaged over 10 random initializations. Hyperparameters for SymHALS, SymANLS and ADMM have
been tuned for best performance. Missing values indicate failure of convergence.

Dataset r NoLips PG Beta CD SymHALS SymANLS ADMM

Coil-20

10 24.7 51.4 - 26.2 7.0 32.3 -
20 23.7 36.8 - 21.3 4.0 18.2 -
30 20.7 40.8 - 35.4 6.5 20.2 -
40 21.7 49.5 - 57.6 7.5 28.4 -

CBCL

10 38.2 42.7 44.0 35.6 13.6 35.2 42.8
20 57.7 88.4 - 93.9 17.8 47.8 -
30 60.9 134.3 - 135.0 15.1 43.4 -
40 50.8 126.4 - 90.0 23.7 52.5 -

TDT2

10 35.2 54.2 - 97.5 11.0 - -
20 52.4 76.1 - 109.9 20.1 - -
30 29.4 45.1 - - 12.1 - -
40 28.0 49.8 - - 17.7 - -

Reuters

10 6.5 10.0 - 33.0 3.0 54.2 -
20 28.7 32.8 - 71.7 9.5 74.7 -
30 24.3 45.5 - 69.4 6.5 91.0 -
40 40.2 68.5 - 83.2 10.6 108.3 -

All algorithms were implemented in Julia [38] which is a highly-optimized numerical computing
language. Since our algorithms have different complexity per iteration, it is essential to compare them
in terms of running time, and Julia provides a fairly accurate way to do so as there is little interpreter
overhead in loops.1

We used two image and two text datasets.

– Image.
– CBCL2: 2,429 images of faces of size 19× 19
– Coil-203: 1440 images of size 128× 128 representing 20 objects under various angles.

– Text.
– TDT24: dataset of 11,201 news articles classified in 96 semantic categories. We used the version

provided by Cai et al. [39–42], which has been restricted to the largest 30 categories, leaving a
total of 9,394 documents.

– Reuters4: dataset of news articles, which we restricted to the largest 25 categories, leaving a total
of 7,963 documents.

For all image and text datasets, we construct a sparse similarity matrix M following the procedure
described in [32, Section 7.1]. We begin by computing the similarity graph between data points, using
cosine similarity on term frequency vectors for text, and a Gaussian kernel for image (with the self-
tuning method for the scale). The graph obtained is sparsified by keeping only the edges connecting
the k-nearest neighbors, with k = blog2 nc + 1. Then, M is taken as a normalized version of the graph
adjacency matrix.

We use the usual convergence criterion for constrained nonconvex problems

‖∇P f(Xk)‖
‖∇P f(X0)‖

≤ ε (26)

where ∇P f(X) is the projected gradient defined as

(∇P f(X))ij =

{
∇f(X)ij if Xij > 0,

min (∇f(X)ij , 0) if Xij = 0.

Table 1 reports the average time needed to reach a convergence criterion of ε = 10−3, for 10 random
initializations. For each dataset, we test several values for the rank parameter r. In addition, Figure 1

1 Tests were run on a PC Intel CORE i7-4910MQ CPU @ 2.90 GHz x 8 with 32 Go RAM.
2 http://cbcl.mit.edu/software-datasets/FaceData2.html
3 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

12

(a) COIL-20 (image) n = 1440, r = 20 (b) CBCL (image) n = 2429, r = 20

(c) TDT2 (text) n = 9394, r = 30 (d) Reuters (text) n = 7963, r = 30

Fig. 1 SymNMF normalized objective gap
(
f(Xk)− fmin

)
/‖M‖2 averaged over 10 random initializations, for various

sparse similarity matrices M ∈ Rn×n. Hyperparameters for SymHALS, SymANLS were tuned for best performance, while
Dyn-NoLips is parameter-free.

shows the average evolution of the normalized objective gap
(
f(Xk)− fmin

)
/‖M‖2, where fmin is the

minimal objective value encountered in all initializations.
Overall, the algorithm that shows the best convergence speed is SymHALS, but it has the disadvantage

of needing to tune the penalization parameter µ. In the experiments we report, small values of µ yielded
optimal performance, while the convergence theory of [43] only holds for large values for which the
algorithm is much slower. By contrast, Dyn-NoLips is hyperparameter-free and has the second best
overall performance. The gap with the other methods is particularly significant on the larger TDT2 and
Reuters datasets, showing that the method scales well with problem dimension.

4.2 Euclidean Distance Matrix Completion

Euclidean distance matrix completion (EDMC) is the task of recovering the position of n points x∗1, . . . , x
∗
n ∈

Rr, given the knowledge of a partial set of pairwise distances dij = ‖x∗i − x∗j‖2 for (i, j) ∈ Ω, where
Ω ⊂ [1, n]× [1, n]. It is a fundamental problem with applications in sensor network localization and the
study of conformation of molecules; see [6,44,45] and references therein. The Burer-Monteiro nonconvex
formulation for solving this problem writes

min f(X) :=
1

2

∑
(i,j)∈Ω

(
‖Xi −Xj‖2 − dij

)2
(EDMC)

in the variable X ∈ Rn×r. It can be rewritten f(X) = 1
2‖PΩ(κ(XXT) − D)‖2 where D is the matrix

of known distances, PΩ denotes the projection operator such that PΩ(Y)ij = Yij if (i, j) ∈ Ω, and

13

(a) n = 2000, r = 3 (b) n = 5000, r = 3

Fig. 2 Euclidean matrix completion problems on the Helix dataset, with 10% known distances and two different problem
sizes. We present the normalized RMSE over the full distance matrix versus CPU time. The results are averaged over 10
random initializations.

PΩ(Y)ij = 0 elsewhere, and κ is the linear operator defined for Y ∈ Rn×n by

κ(Y)ij = Yii + Yjj − 2Yij for 1 ≤ i, j ≤ n (27)

Applying NoLips with the norm kernel. Problem (EDMC) falls within our framework with F (Y) =
1
2‖PΩ(κ(Y)−D)‖2, which can be shown to have a Lipschitz gradient with constant

LEDM := 9 max
i=1...n

|{j|(i, j) ∈ Ω}|.

Therefore, as in the case of SymNMF, the norm kernel hN can be used with an initial step size 1 and
parameters α = 6LEDM and σ = 1

3‖∇F (0)‖ = 2‖PΩ(D)‖.

Using the Gram kernel As the problem is unconstrained, we can also apply minimization using the Gram
kernel hG. We use the parameters α = 2LEDM , β = LEDM and σ = 2‖PΩ(D)‖, which ensure that f is
1-smooth relatively to hG by Proposition 2.3.

Computational complexity for NoLips. As before, the main computational bottleneck for an iteration
consists in computing the value and gradient of the objective function. If p = |Ω| denotes the number of
known distances, then the computational complexity is O(pr). If the Gram kernel is used, each iteration
requires an additional O(nr2 + r3) flops (see Section 2.3.2), which is negligible compared to the latter in
the usual setting where p >> n and r is small.

Numerical experiments We implement the following algorithms: NoLips with a dynamical step size and
the norm kernel (Dyn-NoLips), NoLips with a dynamical step size and the Gram kernel (Dyn-NoLips-Gram),
gradient descent with Armijo line search (GD), the Riemannian trust region algorithm from [5] (TR). We
leave out semidefinite relaxations because of their memory requirement which is prohibitive on large
data. As the implementation for TR is provided in Matlab, we run our experiments on Matlab as well,
with the same setup as in Section 4.1.

We try the algorithms on a standard EDMC problem, the 3-dimensional Helix dataset [5] which is
generated as Xi = (cos(3ti), sin(3ti), 2ti) where {ti}ni=1 are sampled uniformly in [0, 2π]. We randomly
keep only 10 % on the pairwise distances, and test on two different problem sizes: n = 2000 and n = 5000.
Figure 2 reports the normalized root mean squared error (RMSE) over all distances (known and unknown)
averaged on 10 random initializations. All the algorithms manage to recover the ground truth; the
Dyn-NoLips-Gram algorithm shows the best numerical performance, which demonstrates the advantage
of using the Gram geometry.

14

5 Conclusion

We proposed a generic approach for solving Burer-Monteiro formulations of low-rank minimization prob-
lems using the methodology of Bregman gradient methods and relative smoothness. We studied two
quartic kernels, including a new Gram kernel, and demonstrated their benefits on numerical experi-
ments. In future work, performance could be improved further by studying inertial variants [25, 26].
New kernels could also be explored beyond the class of quartic functions to tackle other problems with
inherent non-Euclidean geometries.

Code

The code for reproducing experiments for SymNMF and Euclidean Distance Matrix Completion can be
downloaded from the public repository
https://github.com/RaduAlexandruDragomir/QuarticLowRankOptimization

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments.

Radu-Alexandru Dragomir would like to acknowledge support from an AMX fellowship, the Air Force Office of Scientific
Research, Air Force Material Command, USAF, under grant number FA9550-18-1-0226, as well as from Sébastien Gadat.

Jérôme Bolte was partially supported by ANR-3IA Artificial and Natural Intelligence Toulouse Institute, and Air
Force Office of Scientific Research, and Air Force Material Command, USAF, under grant numbers FA9550-18-1-0226 &
FA9550-19-1-7026.

AA is at CNRS & département d’informatique, École normale supérieure, UMR CNRS 8548, 45 rue d’Ulm 75005 Paris,

France, INRIA and PSL Research University. AA acknowledges support from the French government under management

of Agence Nationale de la Recherche as part of the ”Investissements d’avenir” program, reference ANR-19-P3IA-0001

(PRAIRIE 3IA Institute), the ML & Optimisation joint research initiative with the fonds AXA pour la recherche and

Kamet Ventures, as well as a Google focused award.

Appendix

A Solving the Subproblem for Computing the Bregman Iteration Map of the Gram
Kernel

While it seems that computing the Bregman iteration map of the Gram kernel involves solving another difficult quartic
subproblem, it is actually of small size (r is typically not larger than a few dozens) and can be solved efficiently with the
NoLips scheme.

Indeed, the objective function φ of problem (18) is 1-smooth relatively to the norm kernel in Rr hN (x) = αu
4
‖x‖4 +

σu
2
‖x‖2 with a choice of parameters αu = α+ 3β and σu = σ.

Algorithm 2 details the procedure. We initialize µ with the values for the previous iteration of the outer procedure.
This proves to be efficient as the values will not vary much from one iteration to another. For the stopping criterion, we
use the scaled gradient norm ‖∇φ(v)‖/‖η‖ and a tolerance value ε = 10−6.

The subproblem being very well conditionned, it is minimized easily; in numerical experiments, it usually convergences
in no more than 20 iterations.

15

https://github.com/RaduAlexandruDragomir/QuarticLowRankOptimization

Algorithm 2 Computing the Bregman iteration map of the Gram kernel

Input: Matrix X ∈ Rn×r, gradient of the objective ∇f(X), step size λ > 0, parameters α, β, σ > 0, subproblem tolerance
ε, and (optionally), values µ− of µ computed at the previous iteration.

Form V = ∇hG(X)− λ∇f(X) =
(
α‖X‖2Ir + βXTX + σIr

)
X − λ∇f(X)

Compute V TV
Form the eigendecomposition of V TV = PTDP where P ∈ Or and D = diag(η21 , . . . , η

2
r)

Initialize µ as µ− if provided, and as (0, . . . , 0) otherwise.
repeat

Compute ∇φ(µ) where ∇φ(µ)i = α‖µ‖2µi + βµ3i + σµi − ηi
Compute ∇hN (µ) where ∇hN (µ)i = (α+ 3β)‖µ‖2µi + σµi
Form v = ∇hN (µ)−∇φ(u)

Set µ←
[
τσ

(
(α+ 3β)‖v‖2

)]−1
v where τσ has been defined in Proposition 2.2

until stopping criterion has been satisfied, i.e., ‖∇φ(v)‖/‖η‖ < ε
Form Z = PT diag(µ21, . . . , µ

2
r)P

Compute Tλ(X) = V [αTr(Z)Ir + βZ + σIr]
−1

Output: Bregman gradient iterate Tλ(X)

References

1. Emmanuel J. Candès and Benjamin Recht. Exact Matrix Completion Via Convex Optimization. Found Comput Math,
9(6), 2009.

2. Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A Singular Value Tresholding Algorithm for Matrix Completion.
SIAM Journal on Optimization, 20(4):1956–1982, 2010.

3. Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank Matrix Completion using Alternating Minimization.
In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, pages 665—-674, 2013.

4. Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed Minimum-Rank Solutions of Linear Matrix Equa-
tions via Nuclear Norm Minimization. SIAM Review, 52(3):471–501, 2007.

5. Bandev Mishra, Gilles Meyer, and Rodolphe Sepulchre. Low-rank optimization for distance matrix completion. In
Proceedings of the IEEE Conference on Decision and Control, pages 4455–4460, 2011.

6. Haw Ren Fang and Dianne P. O’Leary. Euclidean distance matrix completion problems. Optimization Methods and
Software, 27(4):695–717, 2012.

7. Emmanuel J. Candès, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via wirtinger flow: Theory and algo-
rithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

8. Yudong Chen and Martin J. Wainwright. Fast low-rank estimation by projected gradient descent: General statistical
and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

9. Samuel Burer and Renato D C Monteiro. Local Minima and Convergence in Low-Rank Semidefinite Programming.
Mathematical Programming, 103(3):427–444, 2005.

10. Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht. Low-rank Solutions of Lin-
ear Matrix Equations via Procrustes Flow. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning, pages 964–973, 2016.

11. Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Dropping Convexity for Faster Semi-definite Opti-
mization. JMLR: Workshop and Conference Proceedings, 40:1–53, 2016.

12. Tuo Zhao, Zhaoran Wang, and Han Liu. A Nonconvex Optimization Framework for Low Rank Matrix Estimation. In
Advances in Neural Information Processing Systems 28, pages 559–567, 2015.

13. Ruoyu Sun and Zhi-Quan Luo. Guaranteed Matrix Completion via Nonconvex Factorization. IEEE Transactions on
Information Theory, 62(11):6535–6579, 2016.

14. Qinqing Zheng and John Lafferty. Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro
Factorization and Gradient Descent. arXiv preprint arXiv:1605.07051, 2016.

15. Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, and Sujay Sanghavi. Finding low-rank solutions to
matrix problems , efficiently and provably. arXiv preprint arXiv:1606.03168v1, 2016.

16. Qinqing Zheng and John Lafferty. A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite
Programming from Random Linear Measurements. In Advances in Neural Information Processing Systems 28, 2015.

17. Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix Completion has No Spurious Local Minimum. Advances in Neural-
Information Processing Systems, pages 2973–2981, 2016.

18. Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A Descent Lemma Beyond Lipschitz Gradient Continuity:
First-Order Methods Revisited and Applications. Mathematics of Operations Research, 42(2):330–348, 2017.

19. Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd. First order methods beyond convexity and lips-
chitz gradient continuity with applications to quadratic inverse problems. SIAM Journal on Optimization, 28(3):2131–
2151, 2018.

20. Chih-Jen Lin. Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Computation, 2007.
21. Quang Van Nguyen. Forward-backward splitting with bregman distances. Vietnam Journal of Mathematics, 45(3):519–

539, 2017.
22. Haihao Lu, Robert M. Freund, and Yurii Nesterov. Relatively-Smooth Convex Optimization by First-Order Methods,

and Applications. SIAM Journal on Optimization, 28(1):333–354, 2018.
23. Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer US, 2003.
24. Alfred Auslender and Marc Teboulle. Interior gradient and proximal methods for convex and conic optimization. SIAM

Journal on Optimization, 16(3):697–725, 2006.

16

25. Filip Hanzely, Peter Richt, and Lin Xiao. Accelerated Bregman proximal gradient methods for relatively smooth convex
optimization. ArXiv preprint arXiv:1808.03045v1, 2018.

26. Mahesh Chandra Mukkamala, Peter Ochs, Thomas Pock, and Shoham Sabach. Convex-Concave Backtracking for
Inertial Bregman Proximal Gradient Algorithms in Non-Convex Optimization. arXiv preprint arXiv:1904.03537,
2019.

27. Raghu Meka, Prateek Jain, and Inderjit S. Dhillon. Guaranteed Rank Minimization via Singular Value Projection.
NIPS, 2010.

28. Yurii Nesterov. Gradient methods for minimizing composite objective function. CORE Report, 2007.
29. Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The Lojasiewicz Inequality for Nonsmooth Subanalytic Functions

with Applications to Subgradient Dynamical Systems. SIAM Journal on Optimization, 17(4):1205–1223, 2007.
30. Chris Ding, Xiaofeng He, and Horst Simon. On the Equivalence of Nonnegative Matrix Factorization and Spectral

Clustering. In Proceedings of the 2005 SIAM ICDM, number 4, pages 126–135, 2005.
31. Zhaoshui He, Shengli Xie, Rafal Zdunek, Guoxu Zhou, and Andrzej Cichocki. Symmetric nonnegative matrix factor-

ization: Algorithms and applications to probabilistic clustering. IEEE Transactions on Neural Networks, 22(12):2117–
2131, 2011.

32. Da Kuang, Sangwoon Yun, and Haesun Park. SymNMF: nonnegative low-rank approximation of a similarity matrix
for graph clustering. Journal of Global Optimization, 62(3):545–574, 2015.

33. Jingu Kim and Haesun Park. Fast Nonnegative Matrix Factorization: An Active-set-like Method and Comparisons.
SIAM Journal on Scientific Computing, 33(6):3261–3281, 2013.

34. Andrzej Cichocki and Anh Huy Phan. Fast local algorithms for large scale nonnegative matrix and tensor factorizations.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2009.

35. Arnaud Vandaele, Nicolas Gillis, Qi Lei, Kai Zhong, and Inderjit Dhillon. Efficient and non-convex coordinate descent
for symmetric nonnegative matrix factorization. IEEE Transactions on Signal Processing, 64(21):5571–5584, 2016.

36. Songtao Lu, Mingyi Hong, and Zhengdao Wang. A Nonconvex Splitting Method for Symmetric Nonnegative Matrix
Factorization : Convergence Analysis and Optimality. IEEE Transactions on Signal Processing, 65(12):2572–2576,
2017.

37. Zhihui Zhu, Xiao Li, Kai Liu, and Qiuwei Li. Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factoriza-
tion. In Advances in Neural Information Processing Systems 31, 2018.

38. Stefan Karpinski Jeff Bezanson, Alan Edelman and Viral B. Shah. Julia : A Fresh Approach to Numerical Computing.
SIAM Review, 59(1):65–98, 2017.

39. Deng Cai, Xuanhui Wang, and Xiaofei He. Probabilistic dyadic data analysis with local and global consistency. In
Proceedings of the 26th Annual International Conference on Machine Learning (ICML’09), pages 105–112, 2009.

40. Deng Cai, Qiaozhu Mei, Jiawei Han, and Chengxiang Zhai. Modeling hidden topics on document manifold. In
Proceeding of the 17th ACM conference on Information and knowledge management (CIKM’08), pages 911–920, 2008.

41. Deng Cai, Xiaofei He, Wei Vivian Zhang, and Jiawei Han. Regularized locality preserving indexing via spectral
regression. In Proceedings of the 16th ACM conference on Conference on information and knowledge management
(CIKM’07), pages 741–750, 2007.

42. Deng Cai, Xiaofei He, and Jiawei Han. Document clustering using locality preserving indexing. IEEE Transactions
on Knowledge and Data Engineering, 17(12):1624–1637, December 2005.

43. Zhihui Zhu, Xiao Li, Kai Liu, and Qiuwei Li. Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factoriza-
tion. NIPS, 2018.

44. Hou Duo Qi and Xiaoming Yuan. Computing the nearest Euclidean distance matrix with low embedding dimensions.
Mathematical Programming, 147(1-2):351–389, 2013.

45. Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean Distance Matrices: Essential theory,
algorithms, and applications. IEEE Signal Processing Magazine, 32(6):12–30, 2015.

17

	1 Introduction
	2 Quartic Geometries for Low-Rank Minimization
	3 Algorithms for Quartic Low-Rank Minimization
	4 Applications
	5 Conclusion
	A Solving the Subproblem for Computing the Bregman Iteration Map of the Gram Kernel

