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Abstract This paper presents a decentralized algorithm for non-convex op-
timization over tree-structured networks. We assume that each node of this
network can solve small-scale optimization problems and communicate ap-
proximate value functions with its neighbors based on a novel multi-sweep
communication protocol. In contrast to existing parallelizable optimization al-
gorithms for non-convex optimization the nodes of the network are neither
synchronized nor assign any central entity. None of the nodes needs to know
the whole topology of the network, but all nodes know that the network is tree-
structured. We discuss conditions under which locally quadratic convergence
rates can be achieved. The method is illustrated by running the decentralized
asynchronous multi-sweep protocol on a radial AC power network case study.

Keywords Decentralized Optimization · Tree Graph · Dynamic Program-
ming

1 Introduction

Large-scale optimization problems over sparse networks arise in many applica-
tions such as resource allocation problems [1], smart grid control problems [2],
traffic coordination problems [3,4], power system operation problems [5,6],
and statistical learning problems [7]. In terms of existing numerical algorithms,

∗Corresponding author.

Y. Jiang, H. Yin and B. Houska
School of Information Science and Technology
ShanghaiTech University, Shanghai, China
E-mail: jiangyn, yinhy, borish@shanghaitech.edu.cn

D. Kouzoupis and M. Diehl
Department of Microsystems Engineering (IMTEK)
University of Freiburg, Germany
E-mail: dimitris.kouzoupis, moritz.diehl@imtek.uni-freiburg.de

ar
X

iv
:1

91
0.

09
20

6v
2 

 [
m

at
h.

O
C

] 
 3

0 
O

ct
 2

02
0



2 Yuning Jiang et al.

which can solve such large-scale optimization problems, one typically distin-
guishes between distributed and decentralized methods [8], as reviewed below.

Distributed optimization algorithms typically parallelize most of their opera-
tions, but communicate results to a central coordinator. This usually requires
one to synchronize the whole network, as the central operations can often only
be performed after receiving all results from the agents of the network. For
example, many variants of the Alternating Direction Method of Multipliers
(ADMM) [7,8,9] as well as the Augmented Lagrangian Alternating Direction
Inexact Newton (ALADIN) method [10] alternate between solving small-scale
optimization problems, which can be done in parallel by the agents of a net-
work, and solving large scale linear equation systems, which is typically done by
a central coordinator. Here, the central solver runs advanced sparse linear alge-
bra routines, which can, optionally, parallelize part of their operations [11,12,
13]. A complete overview of existing distributed optimization algorithms would
go beyond the scope of this paper, but an overview of distributed optimization
methods, with a particular focus on augmented Lagrangian approaches, can be
found in [14,15,16]. Notice that modern distributed optimization algorithms
are applicable to convex as well as non-convex optimization problems. For ex-
ample, convergence conditions for ADMM to local minimizers of non-convex
optimization problems can be found in [17]. Similarly, ALADIN has been de-
signed for solving non-convex optimization problems and conditions for global
convergence to local minimizers can be found in [10]. In the context of the
current paper, we also mention that there exist distributed variants of interior
point methods for convex optimization that have been tailored for tree sparse
graphs, as analyzed in [18].

In contrast to the above reviewed methods for distributed optimization, de-
centralized optimization methods do not require a central coordination step.
In the most general case, these algorithms are not synchronized and the agents
might not even know the whole network structure. However, one usually re-
quires that all agents can communicate with their neighbors [8]. Classical de-
centralized optimization methods are often based on dual decomposition [19,
20], but there also exist decentralized consensus variants of ADMM [9,21].
However, in contrast to distributed optimization methods, decentralized op-
timization algorithms often converge for convex problems only and have a
linear or even sublinear convergence behavior [7,22,1]. For instance, linear
convergence conditions of a fully decentralized ADMM method for consensus
optimization over networks has been established in [9]. A unified convergence
analysis for decentralized ADMM in dependence on the network structure can
also be found in [21].

In summary, there has been a huge amount of research on distributed op-
timization algorithms, but there are, at the current status of research, no
generic asynchronous decentralized optimization algorithms available that are
i) applicable to large-scale non-convex optimization problems and ii) locally
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equivalent to Newton-type methods such that locally superlinear or quadratic
convergence rates can be expected. Therefore, this paper asks the question
whether such decentralized algorithms can be constructed at all, at least for
special classes of networks. Here, our focus is on networks with tree graphs,
which arise in some (but not all) applications such as traditional optimal con-
trol problems [23] or receding horizon control problems [24], where linear trees
occur, scenario multi-stage MPC problems [25,26,27], which have less triv-
ial tree structures, or radial power grid networks that possess non-trivial tree
structure too [28,29].

Because there exist dynamic programming (DP) methods [30] as well as ap-
proximate DP methods [31,32,33], which can exploit the structure of optimiza-
tion problems over tree-topologies, we briefly review these methods as well
as their closely related min-sum algorithms [34,35] in Section 2. The main
contribution of this paper is then presented in Section 3, where we develop
a multi-sweep algorithm for solving tree-structured optimization problems.
Moreover, Section 4 presents a fully decentralized and asynchronous variant of
this novel multi-sweep method, which can still achieve locally quadratic con-
vergence rates. These theoretical developments are illustrated by a case study
in Section 5, for a non-trivial radial power grid optimization problem.

Notation and Preliminaries

Throughout this paper a couple of existing results from the field of parametric
nonlinear optimization are used [36]. In order to briefly review these existing
results, we consider a general (twice continuously differentiable) parametric
equality constrained optimization problem of the form

F (x) = min
z
f(x, z) s.t. c(x, z) = 0 | λ (1)

Here, f : Rn×Rm → R and c : Rn×Rm → Rnc denote the twice continuously
differentiable objective and constraint functions, x ∈ Rn a parameter, and z ∈
Rm the primal optimization variable. Notice that we use the syntax “| λ” after
an equality constraint to say that λ denotes the multiplier of this constraint.
Consequently, in the context of (1), we have λ ∈ Rnc .

Definition 1.1 We say that a (local) minimizer z?(x) of (1) satisfies the linear
independence constraint qualification (LICQ) at a given point x ∈ Rn, if the
constraint Jacobian matrix

∂c(x, z?(x))

∂z

has full-rank.

At this point, we recall that the LICQ condition is sufficient to ensure that
minimizers of (1) are KKT points. That is, if z?(x) is a local minimizer of (1)
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at x at which LICQ holds, then there exists a unique multiplier λ?(x) ∈ Rnc

such that (see [36, Thm. 12.1])

0 = ∇zL(x, z?(x), λ?(x)) (2)

0 = c(x, z?(x)) , (3)

where L : Rn × Rm × Rnc → R denotes the Lagrangian function,

L(x, z, λ) = f(x, z) + λ>c(x, z) .

In this context, another important regularity conditions is the so-called second
order sufficient condition:

Definition 1.2 We say that a (local) primal-dual minimizer (z?(x), λ?(x))
of (1) satisfies the second order sufficient condition (SOSC) at x, if for any
vector v ∈ Rn with v 6= 0 and

∂c(x, z?(x))

∂z
v = 0

it follows that v>∇2
zL(x, z?(x), λ?(x))v > 0.

In some of the technical derivations of this paper, we assume that both LICQ
and SOSC hold at a given point of an optimization problem. This motivates
the following definition.

Definition 1.3 We say that a local minimizer z?(x) of (1), together with the
multiplier λ?(x), is a regular minimizer at x, if it satisfies the LICQ and the
SOSC conditions.

The above definition is useful, because it allows us to establish the following
regularity result for the value function F , which follows by applying the im-
plicit function theorem [36, Thm. A2] (or its generalized version [37]) to the
first order necessary KKT conditions (2)-(3); see also [38] for details.

Lemma 1.1 If (z?(x), λ?(x)) denotes a regular minimizer and multiplier of (1)
at x, then F is twice continuously differentiable at x and we have

∇xF (x) = Lx(x) and ∇2
xF (x) = Lxx(x)− Lxu(x)Luu(x)−1Lux(x)

with shorthands Lx(x) = ∂L
∂x (x, z?(x), λ?(x)) as well as

Lxx(x) =
∂2L

∂x2
(x, z?(x), λ?(x)) ,

Lux(x) = Lxu(x)> =

(
∂2L
∂z∂x (x, z?(x), λ?(x))

∂c
∂x (x, z?(x))

)
,

and Luu(x) =

(
∂2L
∂z2 (x, z?(x), λ?(x)) ∂c

∂z (x, z?(x))>

∂c
∂z (x, z?(x)) 0

)
, (4)
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where Luu(x) is invertible at x. Moreover, there exists an open neighborhood
N ⊆ Rn of x ∈ int(N ) such that F is twice differentiable on N and such that
(z?(x), λ?(x)) is a regular solution of (1) at y for all y ∈ N .

Notice that the statement of this lemma can be strengthened further under
the additional assumption that the second derivatives of f and c are Lipschitz
continuous; see [38,37] for details.

Corollary 1.1 Let (z?(x), λ?(x)) be a regular minimizer and multiplier of (1)
at x. If the second derivatives of f and c are locally Lipschitz continuous, then
there exists an open neighborhood N of x? such that the second derivatives of
F are locally Lipschitz continuous on N .

Throughout this paper we construct algorithms for solving nonlinear equality
constrained problems of the form

min
x

F (x) s.t. C(x) = 0 | κ , (5)

where C typically denotes a twice Lipschitz-continuously differentiable (in the
applications of this paper even affine) consensus constraint. Let

Φ(x, y) = F (y) + O(‖x− y‖3)

denote a local model of F at x and consider an iteration of the form

xk+1 = argmin
y

Φ(xk, y) s.t. C(y) = 0 | κk+1 (6)

started at an initial point x0 ∈ Rn. The following theorem is—at least in very
similar versions—known and well-established [36, Thm. 18.4]. However, for the
sake of completeness, we provide a short proof in Appendix A.

Theorem 1.1 Let x? be a regular minimizer of (5); that is, such that LICQ
and SOSC are satisfied. If F,C and Φ(x, ·) are twice differentiable functions
with locally Lipschitz continuous second derivatives with uniform Lipschitz con-
stant for all x in a neighborhood of x?, then the iterates xk of (6) converge
locally to x? with quadratic convergence rate; that is,

‖xk+1 − x?‖ ≤ O
(
‖xk − x?‖2

)
for all k ∈ N whenever the initialization x0 is in a sufficiently small neighbor-
hood of x?.

2 Optimization over tree graphs

This section introduces optimization problems over tree graphs and briefly
discusses the advantages and disadvantages of existing dynamic programming
methods, which can be used to solve them numerically.
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2.1 Tree graphs

Let (N , E) denote a graph with node set N = {1, ..., N} and edge set E ⊆
N × N . In the following, we assume that this graph is undirected; that is, E
is symmetric: (i, j) ∈ E if and only if (j, i) ∈ E . We call (N , E) a tree graph if
there exists for every i ∈ N \ {1} exactly one way to walk from the first node
to the i-th node via the edges of the graph without passing any node more
than once. Here, the first node is called the root of the tree graph. However,
it is important to keep in mind that the definition of a tree graph does not
depend on how the nodes are enumerated. In particular, any node in a tree
can be a root as long as we re-enumerate the nodes accordingly. An example
for a simple tree structure is shown in the sketch below.

Fig. 1 Example for a tree graph with N = 6 nodes.

In the following, we denote by Ni = {j ∈ N | (i, j) ∈ E} the set of neighbors
and by L = {i ∈ N | |Ni| ≤ 1} the set of nodes with at most one neighbor. For
example, for the network in Figure 1, we have L = {1, 3, 5, 6}. In the following,
we additionally use the notation

L• = L \ {1} ,

which is called the set of leaves. Notice that the definition of L does not depend
on which node is assigned as root. This is in contrast to the set L• of leaves,
which may not contain the root node.

Proposition 2.1 The nodes of a tree graph (N , E) can be enumerated in such
a way that the graph (N , E+), with

E+ = {(i, j) ∈ E | i < j} ,

is still a tree graph.

The proof of the above proposition is constructive: we can start at any node
and call it the root by assigning the label 1. Next, the root enumerates its
children in increasing order, the children enumerate their children, and so on,
until all nodes have a number and such that the set

Ci = {j ∈ Ni | j ≥ i}
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corresponds to the set of children of the i-th node. Notice that this enumeration
procedure also ensures that the equation

L• = {i ∈ N | |Ci| = 0}

holds; that is, leaves have no children. Last but not least, every node with
number i ≥ 2 has a unique parent node πi ∈ Ni\Ci.

2.2 Tree-structured optimization problems

This paper concerns structured optimization problems of the form

V ∗ = min
x

∑
i∈N

Fi(xi) s.t.

{
∀(i, j) ∈ E+,
Si,jxi = Sj,ixj .

(7)

Here, the functions Fi : Rni → R denote objective functions, Si,j ∈ Rni,j×ni

and Sj,i ∈ Rni,j×nj given connectivity matrices and (N , E) a tree graph, where
E+ is defined as in Proposition 2.1. Notice that in the most general case, there
are no further assumptions on the functions Fi needed as long as the minimizer
of (7) exists, although for some of the algorithmic developments below, we will
work with stronger local regularity assumptions on the functions Fi, such as
twice Lipschitz-continuous differentiability. Notice that in the context of (7)
the function Fi could denote the minimum value of a parametric optimization
problem [39,40] that is solved by the i-th node in order to evaluate Fi at the
parameter xi,

Fi(xi) = min
zi

fi(xi, zi) s.t. ci(xi, zi) , (8)

where the function ci can be used to enforce nonlinear equality constraints.
As long as the regularity assumptions from Lemma 1.1 and Corollary 1.1 are
satisfied for the functions fi and ci, these results can be used to ensure that
Fi is locally twice continuously differentiable.

Now, the goal of this paper is to develop decentralized optimization al-
gorithms for solving (7) allowing neighbor-to-neighbor communication only.
Here, we are particularly interested in algorithms that specify decentralized
communication protocols that are independent of the particular structure of
the tree (N , E). This means that none of nodes should be required to know
the complete structure of the tree.

2.3 Dynamic programming

Problem (7) can be solved by implementing the dynamic programming recur-
sion [23,41]

Vi(p) = min
xi

Fi(xi) +
∑
j∈Ci

Vj(Si,jxi) s.t. Si,πix = p (9)
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for all i 6= 1. Notice that this optimization problem can be solved by the i-th
node as soon as it has received the value functions Vj from all its children.
Moreover, the recursion starts at the leaves i ∈ L•, because these nodes do
not have children. In the last backward recursion step, the root node solves
the optimization problem

V ∗ = min
x1

F1(x1) +
∑
j∈C1

Vj(S1,jx1) (10)

finding the optimal value V ∗ of (7). Finally, the root initializes a so-called for-
ward sweep by sending linear combinations, S1,jx

?
1, to its children such that

they can find their solutions x?j , send linear combinations of these solutions
to their children, and so on, until all nodes know the optimal solution. No-
tice that a desirable advantage of dynamic programming is that the globally
optimal solution is found. Moreover, the number of communication steps of
dynamic programming is relatively low: we need only one backward sweep
from the leaves to the root and one forward sweep from the root to the leaves.
However, one disadvantage of dynamic programming is that one needs to con-
struct the functions Vi, which is only possible with high numerical precision
if further regularity assumptions on the functions Fi are introduced [42,43]. If
the dimension ni,j of the coupling variables is small, this is not a big problem,
but, in general, dynamic programming is affected by the so-called curse of
dimensionality.

Remark 2.1 Variants of dynamic programming for general tree structured net-
works have been developed in [34] under the name min-sum algorithms. An
approximate variant of these min-sum algorithms for piecewise quadratic op-
timization problems can be found in [35], which is related to the developments
in this paper, although we consider a much more general class of non-convex
optimization problems.

2.4 Run-time considerations

In order to briefly discuss the run-time properties of dynamic programming,
we introduce the following definition.

Definition 2.1 We denote with d(i, j) the minimum number of edges over
which one has to walk in order to get from any node i ∈ N to a node j ∈ N .

Proposition 2.2 The function d : N × N → N, as introduced in Defini-
tion 2.1, is a metric on (N , E). Moreover, d is invariant under re-enumeration
of the nodes.

Proof It is easy to check that d(i, j) = 0 if and only if i = j, d(i, j) = d(j, i),
and d(i, k) ≤ d(i, j) + d(j, k) for all i, j, k ∈ N and d is indeed a metric.
The additional invariance statement follows trivially from the fact that the
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definition of d depends only on how the nodes are connected by edges—not
on how they are enumerated. ut

Now, if the dynamic programming method is run in synchronous mode; that
is, such that every node executes at most one dynamic programming step per
sampling time δ > 0, then the root node 1 receives all value functions after
time δD, where

D = max
j

d(1, j)

denotes the depth of the enumerated tree. Because the forward sweep takes
equally long, the total run-time of a synchronized dynamic programming method
with sampling time δ is given by

T = 2δD , (11)

where D denotes the depth of the tree. This implies in particular that the run-
time of dynamic programming (DP) is not invariant under re-enumeration of
the nodes, because the depth of a tree depends on which node is assigned as
the root node 1.

Example 2.1 Let us come back to the network from Figure 1, whose depth is
given by

max
j

d(1, j) = 3.

Equation (11) implies that the synchronized DP run-time of this network is
6δ. However, if we would re-enumerate the nodes of this network, such that
the node with label 2 becomes the new root, the synchronized DP run-time
improves to 4δ.

3 Multi-sweep method

In order to avoid the curse of dimensionality of standard dynamic program-
ming, we replace (9) by an approximate dynamic programming recursion. For
this aim, we introduce parametric auxiliary optimization problems of the form

Ωi,k(p) = min
xi

Fi(xi) +
∑

j∈Ni\{k}
Wj,i(Si,jxi)

s.t. Si,kxi = p
(12)

for any k ∈ Ni and recursively constructed approximation functions Wi,k ≈
Ωi,k. At this point, one can, in principle, admit all kinds of approximation
functions, but the main limitation is that the functions Wi,k should be repre-
sentable in a suitable storage format, such that they can be sent over the net-
work links with reasonable effort. For example, one could construct quadratic
approximations that can be stored in the form of Hessian matrix, gradient
vector and a scalar. Notice that if we set k = πi in (12) and propagate the
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approximation in backward mode from the leaves to the root, then this con-
struction is such that

Wi,πi
≈ Ωi,πi

≈ Vi ;

that is, Wi,πi
can be interpreted as an approximation of the function Vi. Notice

that one can repeat the approximate dynamic programming recursion multiple
times in order to refine the accuracy of the approximation. In order to develop
such a multi-sweep variant, we assume that the i-th node has two modes: a
backward and a forward mode. Moreover, the i-th node (with i 6= 1) is initially
set to backward mode and it is initialized with a model Wπi,i of its parent. If
no such model is available, we may, for example, set Wπi,i = 0. Now, if the
i-th node is in backward mode, it waits until it receives models Wj,i from all
children j ∈ Ci, and then solves the auxiliary optimization problem

min
yi

Fi(yi) +
∑
j∈Ni

Wj,i(Si,jyi) . (13)

Let y?i denote a minimizer of this problem. Next, the approximation Wi,πi ≈
Ωi,πi in (12) is constructed in such a way that we have

Wi,πi
(p) = Ωi,πi

(p) + O(‖Si,πi
y?i − p‖

q+1
) , (14)

where q denotes the order of the approximation, and sent to the parent node
πi. After this, the i-th node is set to forward mode. In this mode, it waits until
a new model Wπi,i is sent from the parent node, then (13) is solved once more
in order to update y?. The corresponding updated models Wi,j ≈ Ωi,j , with

Wi,j(p) = Ωi,j(p) + O(‖Si,jy?i − p‖
q+1

) , (15)

are sent to all children j ∈ Ci. Notice that the protocol for the root node, i = 1,
is completely analogous with the only difference being that this node imme-
diately switches to forward mode as soon as the models from all children are
received. The complete multi-sweep procedure is summarized in Algorithm 1.

3.1 Termination conditions

Notice that once the protocols on all nodes are “switched on”, Algorithm 1
keeps on updating its model functions forwever. If one wishes to introduce a
termination condition, this can be done by modifying Line 9 of Algorithm 1 as
follows: if the j-th node does not only send the model function Wj,πj but also
the projected solution Sj,πj

y?j to its parent after solving (13), then its parent
can evaluate the residual

ri = max
j∈Ci

∥∥Si,jy?i − Sj,πjy
?
j

∥∥
∞ .
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Algorithm 1 Multi-sweep method of order q

1: Initialization:

2: Set all nodes to backward mode.

3: If i 6= 1, choose an initial model function Wπi,i.

4: Repeat the following protocol on every node i ∈ N :

5: IF the node is in backward mode:

6: Wait for model updates Wj,i from all children j ∈ Ci.
7: If i = 1, switch to forward mode and BREAK

8: Solve (13) and construct Wi,πi
≈ Ωi,πi

such that (14) holds.

9: Send Wi,πi
to the parent and switch to forward mode.

10: ELSE (the node is in forward mode):

11: If i 6= 1, wait for the model update Wπi,i from the parent.

12: Solve (13) and construct Wi,j ≈ Ωi,j such that (15) holds.

13: Send Wi,j to all nodes j ∈ Ci, switch to backward mode.

14: ENDIF

Thus, if all these residual values are forwarded, the root node can evaluate the
infinity norm, r, of the primal equality constraint violation as

r = max
i∈N\L

ri . (16)

If this constraint violation is small, r ≤ ε, for a small numerical tolerance
ε > 0, the root can send out a termination message that can be forwarded by
the children until all nodes terminate. Notice that this termination condition
merely ensures that the primal consensus constraint violation is small, but, in
general, this is not sufficient to ensure that the solutions y?i of the nodes are
close to a minimizer x?i of (7) upon termination. Nevertheless, if one assumes
that further regularity assumptions hold, for example if all minimizers of (7)
are regular KKT points, one can show that the termination condition r ≤ ε
ensures

‖x? − y?‖ ≤ O(ε),

see [40,36] for details.

3.2 Construction of model functions

As mentioned in the previous section, Algorithm 1 can, in the most general
case, be applied without further assumptions on the functions Fi as long as
one ensures that all minimizers are well-defined. However, if one is interested
in constructing practical algorithms with q ≥ 1, one might be interested in
matching the first q derivatives of the functions Wi,k and Ωi,k, which is only
possible if the Fis are sufficiently often differentiable and if the minimizers
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of (12) are regular KKT points for all possible evaluation points p. A practical
example is summarized below.

Example 3.1 Let us assume that F is three times continuously differentiable
and has bounded third derivatives and that (12) has a regular parametric
minimizer such that Ωi,k is twice differentiable with bounded third order weak
derivatives (see Corollary 1.1). In this case, the models

Wi,k(p) =
1

2
p>Hi,kp+ g>i,kp+ σi,k‖p− Si,ky?i ‖3 + const.

can be constructed by setting

Hi,k = ∇2Ωi,k(Si,ky
?
i )

and

gi,k = ∇Ωi,k(Si,ky
?
i )−Hi,kSi,ky

?
i .

Notice that these first and second order derivatives can be computed easily by
using Lemma 1.1. Here, σi,k ≥ 0 is a cubic regularization constant, which is
chosen such that σi,k ≥ 1

6‖∇
3Ωi,k(p)‖ is a bound on the third order (weak)

derivatives of Ωi,k on a suitably defined validity domain of the model. Notice
that a Taylor expansion of the function Ωi,k at the point Si,ky

?
i yields the

relation

Ωi,k(p) ≤ Ωi,k(Si,ky
?
i ) + y?i S

>
i,kHi,kSi,ky

?
i︸ ︷︷ ︸

const.

+g>i,kp+
1

2
p>Hi,kp+ σi,k‖p− Si,ky?i ‖3 . (17)

Thus, our particular construction of Wi,k is such that Wi,k(p) ≥ Ωi,k(p) as
long as the constant offset of Wi,k is chosen appropriately. Moreover, the as-
sociated multi-sweep method has order 2, since the above Taylor expansion
based construction implies that

Wi,k(p) = Ωi,k(p) + O(‖p− Si,ky?i ‖
3
) .

Notice that, in the above example, one only needs to send symmetric matri-
ces Hi,k, vectors gi,k and y?i , and the regularization constant σi,k over the
link (i, k), as constant offsets of objective functions do not affect the optimal
solutions of (13). The complexity for storing these three variables, including
the matrix Hi,k, is given by O(n2i,k) recalling that ni,k denotes the number of
coupling variables between the i-th and the k-th node of the network.
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3.3 Conservation laws and convergence

The convergence properties of Algorithm 1 depend on the particular construc-
tion of the approximations Wi,k ≈ Ωi,k and their relation to the exact value
functions Vi,k, which we define recursively as

Vi,k(p) = min
xi

Fi(xi) +
∑

j∈Ni\{k}
Vj,i(Si,jxi)

s.t. Si,kx = p
(18)

for all k ∈ Ni and all i ∈ N . In this context, the following general conservation
laws are useful for the composition of convergence conditions.

Lemma 3.1 Algorithm 1 has the following properties.

1. If all approximations Wi,k ≈ Ωi,k are lower bounds, such that Wi,k(p) ≤
Ωi,k(p) for all p, then

Wi,k(p) ≤ Vi,k(p)

holds globally for all p, for all k ∈ Ni all i ∈ N , and during all iterations.
2. The above statement also holds after replacing all ≤ signs with ≥ signs;

that is, the conservation of upper bounds holds, too.

Proof For the case |N | = 1 the statement of the lemma is trivial and we,
thus, assume |N | > 1. The proof of the first statement of this lemma follows
by a tree-structured induction that starts with i ∈ L• and propagates through
the tree. Here, our induction start uses that the inequality1

Wi,πi
(p) ≤ Ωi,πi

(p) = Vi,πi
(p)

holds for all i ∈ L and their associated parent nodes πi ∈ Ni. Next, our
induction assumption is that

Wk,i(p) ≤ Vk,i(p)

holds at a given node i ∈ N for all children k ∈ Ci. Now, the definition of Ωi,k
and Vi,k in (12) and (18) implies that

Ωi,πi(p) ≤ Vi,πi(p) ⇒ Wi,πi(p) ≤ Vi,πi(p) , (19)

where the latter statement can be interpreted as an intermediate induction
conclusion yielding that the inequality

Wi,πi
(p) ≤ Vi,πi

(p)

holds for all i ∈ N \ {1}. Similarly, the same induction argument can be
repeated in forward mode, which yields that

Wi,k(p) ≤ Vi,k(p)

1 The assumption |N | > 1 ensures that πi exists and is well-defined for all i ∈ L•.
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also holds for all children k ∈ Ci and all i ∈ N \ L•. The proof of the second
statement of the lemma is completely analogous, as we can replace all ≤ signs
with ≥ signs without altering the logic of the proof. ut

The above lemma can be used as a basis for convergence proofs of Algorithm 1.
For example, a locally quadratic convergence statement for second order vari-
ants of Algorithm 1 can be summarized as follows.

Theorem 3.1 Let us assume that the approximation functions in Algorithm 1
satisfy Wi,k(p) ≥ Ωi,k(p). If the functions Fi as well as the functions Wi,k are
all twice differentiable with Lipschitz continuous second derivatives, if Algo-
rithm 1 has order q = 2 and if all leaves are initialized in a local neighborhood
of a regular minimizer x? of (7); that is, such that y?i is in a local neighbor-
hood of x?i for all i ∈ L•, then the iterates of Algorithm 1 converge with locally
quadratic convergence rate.

Proof Because x? is assumed to be regular minimizer of (7) and because we
assume that the functions Fi are twice differentiable with Lipschitz continu-
ous second derivatives, a recursive application of Corollary 1.1 to the dynamic
programming recursion yields that the functions Vi,k are locally twice differen-
tiable with Lipschitz continuous second derivatives. Next, because the second
statement in Lemma 3.1 ensures that

Wi,k(p) ≥ Ωi,k(p) ⇒ Wi,k(p) ≥ Vi,k(p) , (20)

the iterates y?i are stable and remain in a neighborhood of x?i . Moreover,
because we assume that Algorithm 1 has order q = 2, we have

Wi,k(p) ≤ Ωi,k(p) + O(‖p− Si,ky?i ‖3)

and Lemma 3.1 can be used to propagate lower bounds, too, finding

Wi,k(p) ≤ Vi,k(p) + O(‖p− Si,ky?i ‖3) . (21)

Thus, by using inequalities (20) and (21), it follows that

Wi,k(p) = Vi,k(p) + O(‖p− Si,ky?i ‖3)

for all k ∈ Ni all i ∈ N . Consequently, Algorithm 1 is locally equivalent to the
exact dynamic programming method [16] up to terms of order 3. Moreover,
the functions Vi,k and Wi,k are all locally twice differentiable with Lipschitz
continuous second derivatives. Consequently, using once more that x? is a reg-
ular minimizer, we can apply Theorem 1.1 to show that the iterates converge
with locally quadratic convergence rate. ut

Remark 3.1 Notice that the conditions of Theorem 3.1 are satisfied for the
approximation functions that have been constructed in Example 3.1. Moreover
under the additional assumptions that the cubic regularization constants σi,k
are sufficiently large, the third derivatives of Fi are bounded, and all KKT
points of (13) are regular, one can show that Algorithm 1 converges globally
to stationary points of (7)—this convergence result is obtained in analogy to
Nesterov’s cubic regularization method [44].
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4 Simultaneous multi-sweep method

This section develops a variant of Algorithm 1 that is invariant with respect to
permutations of the enumeration of the nodes of the tree graph. Here, the main
idea is to start an approximate dynamic programming recursion at all nodes
i ∈ L simultaneously without assigning a root recalling that the definition of L
does not depend on the enumeration of the nodes. This leads to a simultaneous
multi-sweep method as summarized in Algorithm 2.

Algorithm 2 Simultaneous multi-sweep method

1: Initialization of node i: Set R = ∅ and ` = 0.

2: Repeat the following protocol on every node i ∈ N :

3: If ` = 0, denote with J ⊆ Ni the indices of all neighbors that have sent

updates Wj,i after the last reset of the collection R and update

R ← R∪ J .

If |R| = |Ni| set ` = i.

4: If ` > 0 and ` 6= i, wait until a model update W`,i from the `-th node is

arriving.

5: If ` > 0, solve (13) and construct Wi,j ≈ Ωi,j for all indices j ∈ Ni such

that

Wi,j(p) = Ωi,j(p) + O(‖Si,jy?i − p‖q+1) .

If ` 6= i, send Wi,j to all neighbors j ∈ Ni \ {`}. Otherwise, send Wi,j to

all neighbors j ∈ N . Set ` = 0, and reset R = ∅.

6: If |R| = |Ni| − 1 with {k} = Ni \ R, solve (13) and construct Wi,k ≈ Ωi,k
such that

Wi,k(p) = Ωi,k(p) + O(‖Si,ky?i − p‖q+1) .

If k 6= i, apply a short randomly chosen time delay: if the the line (i, k) is

not blocked, block the line (k, i) and send Wi,k to node k, set ` = k and

unblock all lines again. Otherwise, if the line (i, k) is blocked, skip.

Notice that the communication protocol for the nodes i ∈ N does not specify
a-priori which neighbors act as children and which as parent. Here, every
node keeps a local integer variable `, which is set to 0 whenever the node is
in backward mode. While being in backward mode, Line 3 allows this node
to collect updated models from all of its neighbors. This step assumes that
Node i has a buffer such that local copies of all arriving models can be stored
temporarily. The required maximum storage capacity of this buffer can be
determined a-priori and for each node separately, as long as every node knows
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its number of neighbors. Notice that Step 3 assigns the value ` = i, if it receives
updates from all neighbors. In this case, the i-th node decides spontaneously
to act as root. Moreover, Step 6 ensures that the node forwards an updated
model to a spontaneously assigned parent as soon as it receives model updates
from at least |Ni| − 1 neighbors. Last but not least, Step 5 ensures that the
node performs updates and sends out new models to all children whenever it
is switched to forward mode.

Because the protocol in Algorithm 2 does not specify which node is assigned
as root, it is possible that different nodes spontaneously act as a root while
the algorithm is running. Thus, there arises the question how many nodes can
act as a root at the same time and, more generally, what the precise differ-
ences between Algorithm 2 and Algorithm 1 are. In order to give answers to
these questions, we first analyze Algorithm 2 under the additional assumption
that all nodes act synchronously, based on a global clock and equal sampling
time. However, a completely asynchronous implementation of Algorithm 2 is
possible, too, as discussed further below (see Section 4.2).

Fig. 2 Visualization of the first 8 iterations of Algorithm 2 for a tutorial network with 6
nodes.

Example 4.1 Figure 2 visualizes the first 8 iterations that are obtained when
executing Algorithm 2 on all 6 nodes of our tutorial network. In the first iter-
ation, because we initialize with R = ∅, the condition |R| = |Ni|−1 in Step 6
of Algorithm 2 is satisfied for all nodes i ∈ L = {1, 3, 5, 6}. Thus, these nodes
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solve optimization problems in parallel (indicated by circles) and send approx-
imate value functions to the central nodes (indicated by arrows). In the second
iteration, the nodes with labels 2 and 4 are solving their optimization prob-
lems. Here, we assume that Node 4 happens to be quicker and sends its result
to Node 2 (indicated by a solid arrow), but blocks the reverse line (indicated
by a dashed arrow). Thus, in the third iteration, Node 2 acts spontaneously
as root (see Step 5 of Algorithm 2) and sends its updated approximate value
functions to all neighbors, N2 = {1, 3, 4}. Notice that the iterations continue
with some nodes acting in forward mode while others are in backward mode.
There is no preassigned root. For example, in the sixth iteration Node 4 hap-
pens to act has root, while in the third iteration the second node had taken
this role.

4.1 Synchronous multi-sweeps

If the protocols of Algorithm 2 are executed synchronously, the global behavior
of this algorithm can be classified in dependence on the cardinality of the set
of central nodes, which is defined as follows.

Definition 4.1 Let Γ ⊆ N+ denote the set of central nodes,

Γ = argmin
i∈N

max
j∈N

d(i, j) .

We call |Γ | the parity of the (undirected) graph (N , E).

Notice that the set Γ can be interpreted as the set of nodes, which, if assigned
as root, leads to a dynamic programming implementation with minimal run-
time, since Γ is the set of all nodes i, whose depth is minimal. For example,
for the tree structured network in Figure 1, we have Γ = {2, 4} with parity
|Γ | = 2.

Lemma 4.1 The parity of a tree structured graph is either even, |Γ | = 2, or
odd, |Γ | = 1. Moreover, if it is even, then the two central nodes are neighbors.

Proof Let L = max
i,j

d(i, j) denote the length of a longest path in (N , E) and

L = {(i, j) | d(i, j) = L}

the set of pairs (i, j) with maximum distance. We distinguish two cases.

Case 1: L is even. In this case, there exists for every (i, j) ∈ L an odd number
of nodes on the shortest path from i and j, which implies that there is a
(unique) central node k on this path with

d(i, k) = d(j, k) =
L

2
.
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Let us assume that there is another pair (i′, j′) ∈ L, whose central node k′ is
not equal to k. Then, we must have

d(i, k′) + d(k′, j) > d(i, j) = L , (22)

since k′ is not on the shortest path from i to j. But this means that either
d(i, k′) > L/2 or d(j, k′) > L/2, which is a contradiction, as d(i, k′) ≤ L/2
and d(j, k′) ≤ L/2 must hold due to the construction of the central node k′.
Thus, in summary, all pairs (i, j) ∈ L share the same central node k and we
must have Γ = {k} by construction.

Case 2: L is odd. In this case, there exist for every (i, j) ∈ L two central
nodes k1, k2 with d(k1, k2) = 1 and such that

d(k1, i) = (L− 1)/2 and d(k2, j) = (L+ 1)/2 .

Now, one can use a similar argument as in Case 1 to show that all (i, j) ∈ L
share the same central nodes, finding that Γ = {k1, k2}.
Both cases together yield the statement of this lemma. ut

An immediate consequence of the above lemma is that the synchronized version
of Algorithm 2 is actually equivalent to Algorithm 1 with one of the central
nodes acting as root. For the case that the graph is odd, |Γ | = 1, the central
root node is unique. Otherwise, for |Γ | = 2, one of the central nodes acts
as root during every complete backward-forward sweep. However, in general,
it cannot be predicted a-priori which of these central nodes act as root, as
we have introduced the short random time delay in Step 6 of the protocol in
Algorithm 2.

Corollary 4.1 Algorithm 2 is equivalent to a variant of Algorithm 1, where
one of the central nodes acts as root during one complete backward-forward
sweep. In particular, Algorithm 2 converges under the same assumptions as Al-
gorithm 1.

Proof Notice that the proof of Lemma 3.1 uses an induction argument under
the assumption that the root node is fixed. In Algorithm 2 the root is assigned
dynamically, but there is one unique root during each backward-forward sweep,
which means that the induction argument from the Lemma 3.1 remains valid
during every such complete sweep. But this means that the implications

Wi,k(p) ≥ Ωi,k(p) ⇒ Wi,k(p) ≥ Vi,k(p)

and Wi,k(p) ≤ Ωi,k(p) ⇒ Wi,k(p) ≤ Vi,k(p) (23)

also hold for Algorithm 2 observing that these relations are independent of
which node is assigned as root. By using once more that Algorithm 2 has a
unique root during each sweep, the local convergence rate estimate argument
from the proof of Theorem 3.1 remains valid, too. Thus, the statement of this
corollary is a direct consequence of Theorem 3.1. ut
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4.2 Asynchronous multi-sweeps

An important observation of the previous section is that the root node is not
assigned a-priori, but online while the algorithm is running. This allows us
to run Algorithm 2 in asynchronous mode. In this case, every node executes
the protocol from Algorithm 2 repeatedly, without coordinating the sampling
time with other nodes. The analysis of this asynchronous variant is basically
analogous to the synchronous case, but any node can act as the root node—
not only the central nodes. The convergence analysis is, however, unaffected;
that is, running Algorithm 2 in asynchronous mode has no disadvantages in
terms of its convergence properties.

5 Application to a radial AC power network

This section applies Algorithm 2 to a state estimation problem for a radial
AC power network. We use MATPOWER v7.0 [45] to generate an IEEE 33-bus
benchmark radial AC power network as shown in Figure 3.
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Fig. 3 Topology of IEEE 33-bus benchmark.

For this network we have N = {1, . . . , 33} and E is defined precisely as visual-
ized in the figure. The following section briefly reviews the model equations for
power networks [5] and the related least-squares state estimation problem [46],
which is here used as a benchmark problem for decentralized optimization.

5.1 Model equations

Let vi denote the voltage magnitude and θi the phase shift at the i-th node
of the power network. The active and reactive power at this node is given by
the power flow equations [5],

pi(v, θ) = vi
∑
j∈Ni

vj(Gij cos(θi − θj) +Bij sin(θi − θj))

qi(v, θ) = vi
∑
j∈Ni

vj(Gij sin(θi − θj) +Bij cos(θi − θj)) .

The line conductance and susceptance matrices G and B are here assumed
to be constant. The specific parameter values for these matrices can be found
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in [45]. In the following, we are additionally interested in the current Ii,j(v, θ)
at the transmission line (i, j) ∈ E , which can be worked out explicitly in
dependence on the voltages vj and phase shifts θj ,

Iij(v, θ) =

√
Pij(v, θ)2 +Qij(v, θ)2

v2i
,

where Pij(v, θ) and Qij(v, θ) denote the active and reactive power in the trans-
mission line,

Pij(v, θ) = v2iGij − vivj [Gij cos(θi − θj) +Bij sin(θi − θj)]
Qij(v, θ) = vivj [Gij sin(θi − θj) +Bij cos(θi − θj)]− v2iBij

for all (i, j) ∈ E+. The above model equation will next be used to formulate
an AC power system state estimation problem.

5.2 Power system state estimation

Let v̂i, θ̂i, p̂i, and q̂i, denote measurements of the voltages, phase shifts and
active- and reactive powers at the nodes and let Îij denote measurements
for the currents in the transmission lines (i, j) ∈ E+. Next, we consider the
least-squares state estimation problem

min
v,θ

∑
i∈N


∥∥∥∥∥∥∥∥


vi − v̂i
θi − θ̂i

pi(v, θ)− p̂i
qi(v, θ)− q̂i


∥∥∥∥∥∥∥∥
2

Σi

+
∑
j∈Ni

∥∥∥Iij(v, θ)− Îij∥∥∥2
Θi

 .
This problem is not yet in standard form, but it can easily be written in the
form (7) by introducing auxiliary variables, where each node keeps copies of
the voltage and phase shifts of its neighbors. In order to set up a realistic
case study, the measurements are obtained by running a realistic scenario
simulation in MATPOWER adding randomly generated process noise. Notice that
the details of this problem formulation, including the details about how to
introduce auxiliary variables and consensus constraints, as well as values for
the weighting matrices Σi and Θi can all be found in [46].

5.3 Numerical results

The diamonds in Figure 4 show the numerical results that were obtained by
running Algorithm 2 for the above IEEE 33-bus benchmark case study using
models Wi,j that are locally accurate up to order 2, as elaborated in Exam-
ple 3.1. The black crosses show results for the same algorithm, but with Gauss-
Newton Hessian approximations instead of exact Hessians. These results must
be compared to the red circles, which show the iterates of the centralized solver
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Fig. 4 Distance of current iterates to the optimal solution: Ipopt (red circles), Algorithm 2
with exact Hessians (blue diamonds), and Algorithm 2 with Gauss-Newton Hessians (black
crosses).

Ipopt [47]. Here, it should be mentioned that, in this figure, one ”iteration”
of Algorithm 2 refers to a full backward-forward sweep. As predicted by The-
orem 3.1, we can observe either linear or quadratic local convergence rates of
Algorithm 2 depending on the accuracy of the communicated model functions.

6 Conclusions

This paper has presented a novel multi-sweep algorithm for asynchronous de-
centralized optimization over networks with tree graph structure. A first pro-
totype for this method has been presented in the form of Algorithm 1, which
has then been developed further arriving at a fully decentralized multi-sweep
communication protocol for non-convex optimization, as presented in Algo-
rithm 2. We have established conditions under which the proposed method
has locally quadratic convergence rate, which have been summarized in Theo-
rem 3.1. This theoretical result has been confirmed numerically by testing the
method on a radial AC power network.
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(0324125B) and DyConPV (0324166B), and by DFG via Research Unit FOR 2401.

A Proof of Theorem 1.1

Let us introduce the shorthands

zk+1 =

(
zk+1
1

zk+1
2

)
=

(
xk+1

κk+1

)
and z? =

(
x?

κ?

)

to denote, respectively, the primal dual minimizer of (6) at the k-th iteration of the algorithm
and the primal-dual minimizer of (5). Due to the regularity of x? the LICQ condition must
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be satisfied in a neighborhood of x?, which implies that the first order necessary KKT
conditions

R(xk, zk+1) = 0 and R(x?, z?) = R̃(z?) = 0 (24)

with shorthands

R(ξ, ζ) = ∇z

[
Φ(ξ, ζ1) + ζ>2 C(ζ1)

]
and R̃(ζ) = R(ζ1, ζ) = ∇z

[
F (ζ1) + ζ>2 C(ζ1)

]
are satisfied recalling that Φ is a locally accurate approximation of F . Now, because the
derivative of R with respect to its second argument, ∇zR(x, ·), is uniformly Lipschitz con-
tinuous function in a neighborhood of z?, the first equation in (24) yields

0 = R(xk, zk+1) = R(xk, zk) +

∫ 1

0
∇zR(xk, zk + s(zk+1 − zk))(zk+1 − zk) ds (25)

= R̃(zk) +M(zk)(zk+1 − zk) + O
(
‖zk+1 − zk‖2

)
, (26)

where we have set M(zk) = ∇zR(xk, zk) = ∇zR̃(zk) and used that R̃(zk) = R(xk, zk).
Notice that the KKT matrix M(zk) is invertible for all zk in an open neighborhood of z?

as we assume that the LICQ and SOSC condition are satisfied at z?. Consequently, because
we have R̃(zk) = O(‖zk − z?‖), the above equation implies that

zk+1 = zk −M(zk)−1R̃(zk) + O(‖zk − z?‖2) . (27)

From here on, the proof is very similar to the standard proof of quadratic convergence of
Newton’s method (see, e.g. [36, Thm. 3.5]); that is we use (27) to establish the inequality

‖zk+1 − z?‖ =
∥∥∥zk − z? −M(zk)−1R̃(zk)

∥∥∥+ O(‖zk − z?‖2)

=
∥∥∥zk − z? −M(zk)−1

(
R̃(zk)− R̃(z?)

)∥∥∥+ O(‖zk − z?‖2)

=

∥∥∥∥(I −M(zk)−1

∫ 1

0
∇zR̃(zk + s(zk − z?)) ds

)
(zk − z?)

∥∥∥∥
+O(‖zk − z?‖2)

=
∥∥∥I −M(zk)−1∇zR̃(zk)

∥∥∥︸ ︷︷ ︸
=0

‖zk − z?‖+ O(‖zk − z?‖2) . (28)

Because the LICQ condition holds the iterates of the multiplier sequence κk is uniquely
determined by the sequence xk (since xk+1 depends only on xk, but not on κk), the above
equation also implies that

‖xk+1 − x?‖ = O(‖xk − x?‖2) .

The latter equation corresponds to the statement of the theorem establishing local quadratic
convergence.
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2. Braun, P., Grüne, L., Kellett, C.M., Weller, S.R., Worthmann, K.: A distributed op-
timization algorithm for the predictive control of smart grids. IEEE Transactions on
Automatic Control 61(12), 3898–3911 (2016)



Decentralized Optimization over Tree Graphs 23

3. Hult, R., Zanon, M., Gros, S., Falcone, P.: Primal decomposition of the optimal coor-
dination of vehicles at traffic intersections. In: 2016 IEEE 55th Conference on Decision
and Control (CDC), pp. 2567–2573. IEEE (2016)

4. Jiang, Y., Zanon, M., Hult, R., Houska, B.: Distributed algorithm for optimal vehicle
coordination at traffic intersections. IFAC-PapersOnLine 50(1), 11,577–11,582 (2017)
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