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Abstract During the past two decades, multi-agent optimization problems

have drawn increased attention from the research community. When multiple

objective functions are present among agents, many works optimize the sum

of these objective functions. However, this formulation implies a decision re-

garding the relative importance of each objective function. In fact, optimizing

the sum is a special case of a multi-objective problem in which all objectives

are prioritized equally. In this paper, a distributed optimization algorithm

that explores Pareto optimal solutions for non-homogeneously weighted sums
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Université de Sherbrooke

Sherbrooke, Canada

maude.josee.blondin@usherbrooke.ca

Matthew Hale

University of Florida

Gainesville, Florida

matthewhale@ufl.edu

http://arxiv.org/abs/2010.04781v1


2 Maude J. Blondin, Matthew Hale

of objective functions is proposed. This exploration is performed through a

new rule based on agents’ priorities that generates edge weights in agents’

communication graph. These weights determine how agents update their de-

cision variables with information received from other agents in the network.

Agents initially disagree on the priorities of the objective functions though

they are driven to agree upon them as they optimize. As a result, agents still

reach a common solution. The network-level weight matrix is (non-doubly)

stochastic, which contrasts with many works on the subject in which it is

doubly-stochastic. New theoretical analyses are therefore developed to ensure

convergence of the proposed algorithm. This paper provides a gradient-based

optimization algorithm, proof of convergence to solutions, and convergence

rates of the proposed algorithm. It is shown that agents’ initial priorities in-

fluence the convergence rate of the proposed algorithm and that these initial

choices affect its long-run behavior. Numerical results performed with different

numbers of agents illustrate the performance and efficiency of the proposed

algorithm.

Keywords Multi-agent systems · Distributed Optimization · Pareto Front ·

Multi-objective Optimization

1 Introduction

Over the last two decades, multi-agent systems have attracted significant in-

terest [1]-[3]. In particular, the study of the consensus problem, where agents

have to agree on a common value, has been motivated by emerging applica-
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tions such as formation control [4]. The consensus problem has been extended

to multi-agent optimization, i.e., agents collectively work towards minimizing

a sum of objective functions by minimizing a local objective and repeatedly

averaging their iterates to reach agreement on a final answer. One common

approach in problems with many objectives is optimizing their sum with each

agent independently optimizing only one of the objective functions [6]-[19].

However, optimizing the sum carries an implicit decision about the problem

formulation, namely that all the objectives have the same priority and that all

agents agree on these priorities.

Equal prioritization among functions represents a special case of a multi-

objective problem, and applications in which objectives may have different

importance are easy to envision. For instance, in a fleet of self-driving cars,

agents may have different priorities in trajectory planning such as minimizing

fuel usage vs. travel time, or in a collection of smart buildings, agents may

have different preferences regarding the management of their energy [20].

A large body of work on multi-objective optimization to solve problems

of this kind has emerged for centralized cases. The Tchebycheff method, the

weighting method, and the ǫ-Constraint method [21] are examples of algo-

rithms for centralized multi-objective optimization problems. More algorithms

of this category are surveyed in [21][22]. Such algorithms explore the Pareto

optimal set using different prioritizations of the objective functions of the

problem. With regard to these techniques, minimizing the sum of objective

functions leads to a single element of the Pareto Front. Further exploring this
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front can provide additional optimal solutions in different senses. For multi-

agent systems, exploring the Pareto Front would provide a larger range of

operating conditions for systems based on agents’ needs, which can be en-

coded in heterogeneous weights on objectives. To the best of our knowledge,

such methods remain largely unexplored in a multi-agent context.

This paper proposes a distributed algorithm for multi-agent multi-objective

set-constrained problems, and the proposed algorithm enables the exploration

of the Pareto Front. In particular, a team of m agents optimizes the weighted

sum of convex cost functions f(x) =
∑m

i=1 wifi(x), where agent i minimizes

fi. A common convex set constrains the agents. At the beginning of the opti-

mization process, agents have an initial vector of priorities encoded as weights

and an initial vector of decision variables. The proposed algorithm performs

four steps at each iteration: i) agent i updates its vector of priorities using

those received from other agents in the network, ii) the vectors of priorities

are used to generate the matrix of information weights for the decision variable

update, iii) agent i updates its vector of decision variables with the generated

matrix and the decision variables received from its neighbors, and iv) agent i

takes a gradient descent step and projects its estimates on the constraint set.

The proposed algorithm belongs to a class of averaging-based distributed

optimization algorithms, e.g., [6][8]-[13]. The existing literature considers pre-

dominantly problems with doubly-stochastic weights on agents’ information

exchanges. Indeed, many works rely on the doubly-stochasticity assumption in

their model to provide convergence rates and proofs of convergence [6][7][8][14]-
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[17]. Computing the infinite product of doubly-stochastic matrices simplifies

the analysis of agents’ computations, and there exist several rules that ensure

the information matrix is doubly-stochastic, such as Metropolis-based weights

[23] and the equal-neighbor model [24][25]. These rules restrict communication

among agents and do not allow agents to individually prioritize information

received from other agents in the network. In addition, these rules require

coordination among agents to selected admissible information weights, which

can be difficult to achieve if communicating is difficult or costly. The pro-

posed algorithm addresses the limitations related to the doubly-stochasticity

assumption in addition to giving agents increased flexibility in their choices.

In particular, the following aspects distinguish our algorithm from the existing

literature:

– Agents independently prioritize the information received from their neigh-

bors. The sum of each agent’s preferences must be 1. While individual

agents can easily ensure that their preferences sums to 1, this implies that

agents do not have know or consider other agents’ preferences. Therefore,

preferences of all agents for a particular objective function need not to sum

to 1.

– This independence regarding prioritization of objective functions leads to a

network-level information exchange matrix that is (non-doubly) stochastic.

– While the agents are reaching an agreement on preferences, they explore the

Pareto Front of objective functions. This front exploration leads to optimal
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solutions in different senses, which provides broader operating conditions

for systems in conformity with agents’ needs/preferences.

Because of these distinctions, new theoretical analysis is required to ensure

algorithm convergence. In this paper, the proposed algorithm operates over

an undirected graph with time-varying weights, and the constraint set is the

same for all agents. Theoretical analysis shows that the proposed algorithm

drives agents to a common solution. Agents simultaneously reach an agree-

ment on their preferences and compute the optimum with respect to these

agents’ preferences. Also, we develop convergence rates for the proposed algo-

rithm, which are shown to be significantly influenced by agents’ preferences.

Numerical simulations show the convergence of the proposed algorithm to the

optimal solution along with its convergence rate. The agents’ agreement on

preferences is also illustrated. Simulations further show that agents’ initial

preferences directly influence the final results of their computations. This pa-

per is an extension of [26] and it adds proof of convergence and convergence

rates, in addition to new simulation results.

The rest of the paper is organized as follows. Section 2 presents background

on graph theory and multi-agent interactions. The multi-agent optimization

model and the proposed distributed optimization algorithm are provided in

Section 3. Section 4 provides proofs of convergence and convergence rates of

the proposed algorithm. Section 5 presents numerical results, and Section 6

concludes the paper.
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2 Graph theory and multi-agent interactions

In this paper, agents’ interactions are represented by a connected and undi-

rected graph G = (V,E), where V = [m] := {1, 2, . . . ,m} is the set of agents

and E ⊂ V ×V is the set of edges. An edge exists between agent i and j, i.e.,

(i, j) ∈ E, if agent i communicates with agent j. By convention, (i, i) /∈ E for

all i. The degree of agent i is the total number of agents that agent i commu-

nicates with, denoted deg(i). The degree matrix, denoted ∆(G), is a diagonal

n×nmatrix, with deg(i) on its diagonal for i = 1, . . . , n. The maximum vertex

degree of G is ∆max = max
i∈[m]

deg(i).

The adjacency matrix is an n × n matrix denoted H(G), where hi
j is the

entry in the j-th row and i-th column, defined as

hi
j =



















1 if (i, j) ∈ E

0 otherwise

.

Since G is an undirected graph without self-loops, H(G) is symmetric with

zeros on its main diagonal. The Laplacian matrix associated with G is also

symmetric, and is defined as

L(G) = ∆(G)−H(G). (1)

In this paper, we consider an arbitrary graph G, and, because G is unam-

biguous, we will simply write its Laplacian as L.
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3 Multi-agent optimization model

In this section, we formally define the class of problems to be solved. Then we

propose a multi-objective multi-agent update law for solving them.

3.1 Problem Formulation

In this paper, problems in which agents minimize a prioritized sum of convex

objective functions are considered. Agent i minimizes only the function fi,

about which we make the following assumption.

Assumption 1 For all i ∈ {1, . . . ,m}, the function fi : R
n → R is continu-

ously differentiable and convex. △

All agents’ decision variables are constrained to lie in the set X , about

which we assume the following.

Assumption 2 X is non-empty, compact, and convex. △

We next consider the following optimization problem.

Problem 3.1 Given functions {fi}i∈{1,...,m} satisfying Assumption 1,

minimize

m
∑

i=1

wifi(x), (2)

subject to x ∈ X
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where x is the vector of decision variables, wi is a priority assigned to fi,

∑m
i=1 wi = 1, and 0 < wi < 1 for all i. Agent i knows only its objective func-

tion fi. The constraint set X is identical for all agents. ⋄

For centralized problems, the priorities {wi}i∈{1,...,m} are fixed. Therefore,

a standard convex optimization method could solve Problem 1 in a centralized

way. However, for decentralized cases, agents may choose different priorities.

Agent i may choose {wi
l}l∈{1,...,m} while agent j chooses {wj

l }l∈{1,...,m}, with

wi
l 6= wj

l for all l.

As this occurs, these priorities provide each agent with the flexibility to

have preferences. For instance, mobile autonomous agents generating a tra-

jectory may want to optimize fuel usage and travel time, and each agent can

prioritize these two objectives according to their own needs. If agents’ priorities

differ, agents are solving different problems because they minimize different

overall objective functions. As a result, reaching a common solution requires

devising an optimization algorithm and driving agent priorities to a common

value.

Changing agents’ priorities from their initial values implies that no sin-

gle agents’ preferences are obeyed exactly. However, the net change across all

agents can be done fairly. One such way is to drive all agent’s priorities to

their average value. While one could envision first computing the average pri-

orities and then optimizing, this is undesirable because it requires solving two

separate problems sequentially. Instead, we devise an update law that drives
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agents to a common solution by interlacing optimization steps with priority

averaging steps. Also, this interlacing enables agents to continuously modify

their preferences based on the task at hand.

3.2 Proposed Update Law

At iteration k, agent i updates its priority vector wi. Agent i assigns a priority

to all agents (corresponding to the objective function updated by that agent),

even though agent i does not communicate with all agents. This provides agent

i with a way to influence all final priorities, and, as will be shown below, affect

the final results agents attain. Agent i also updates its decision vector xi by

adding the weighted estimates received from its neighbors, then minimizing

its objective function fi through gradient step, and then projecting its new

estimate on its constraint set X . We have

wi(k + 1) = wi(k) + c

n
∑

j=1

hj
i (w

j(k)− wi(k)) (3)

aij(k + 1) = qijw
i
j(k) +

m
∑

j=i
j=1

wi
j q̃

i
j (4)

vi(k) =

n
∑

j=1

aij(k)x
j(k) (5)

xi(k + 1) = PX [vi(k)− αkdi(k)], (6)
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where 0 < c < 1/∆max, h
i
j(k) is the j

th ith entry of H(G), aij(k) is the weight

that agent i assigns to the data provided by agent j at iteration k, qij is the j
th

ith entry of Q, where Q = H+I and I is the identity matrix, q̃ij = 1−qij , αk is

the gradient step size for all agents at time k, PXi
is the projection operation,

and di is the gradient vector of agent i at x
i(k). Formally, di(k) = ∇fi(x

i(k)).

The equivalent network-level representation of (3)-(10) is

W (k + 1) = PW (k), (7)

where P = I − cL(G) and W (k) is the column matrix of agents’ priorities,

along with A(k) in which its column vectors are ai(k) for i = {1, . . . ,m}, and

V (k) in which its column vectors are vi(k) for i = {1, . . . ,m}.

A(k) = Q ◦W (k) + (W (k) ◦ Q̃)J ◦ I, (8)

V (k) = A(k)X(k), (9)

X(k + 1) = PXc
[V (k)− αkD(k)]. (10)

where ◦ denotes the Hadamard product, PXc
is the projection operation

that projects each column of V (k)− αkD(k) individually, D(k) is the column

matrix of di(k) for i = {1, . . . ,m}, and X(k) is the column matrix of xi(k)

for i = {1, . . . ,m} . In line with the multi-objective optimization concept, our

algorithm uses the priority vectors, wi for i = {1, . . . ,m}, to quantify the im-

portance of information received to update xi for i = {1, . . . ,m}. Contrary to
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most existing works, the A(k) matrix is a function of W (k) and A(k) matrix

is stochastic, instead of doubly-stochastic. This occurs because an agent can

ensure that its weights sum to 1, though different agents’ weights for a partic-

ular objective need not to sum to 1. This implies that A(k)’s row sums need

not to equal 1.

In (8), Q ◦ W (k) computes the Hadamard product between Q and W (k),

where the resulting matrix contains wi
j(k) for (i, j) ∈ E, wi

i(k) for all i, and

the remaining terms are set to zero. Therefore, if agent i does not communicate

with agent j, a zero is assigned to that agent. Regarding the second term of

(8), (W (k) ◦ Q̃)J ◦ I creates a diagonal matrix, where the diagonal terms are

the sum of each row. The first term summed to the second term in (8) means

that agent i assigns to itself the weights wi
j if (i, j) /∈ E and assigns a zero

value to the entries of the i-th row and j -th colum for (i, j) /∈ E.

The next lemma pertains to the weights of the A matrix and the commu-

nication between agents.

Lemma 3.1 Since aij(k) is obtained from (3) and (4), we have

1. aii(k) ≥ min
j∈[n]

min
i∈[n]

wi
j(0) for all k ≥ 0 and all i.

2. aij(k) ≥ min
j∈[n]

min
i∈[n]

wi
j(0) for all k ≥ 0 and all (i, j) ∈ E.

3. aij(k) = 0 for all k if (i, j) /∈ E.

Proof See Appendix.

To simplify the forthcoming development, Eq. (10) can be written as follows

[5],
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xi(k + 1) = vi(k)− αkdi(k) + φi(k), (11)

φi(k) = PX [vi(k)− αkdi(k)]− vi(k) + αkkdi(k). (12)

For all i and for all k and s where k > s, the above equivalent form allows us

to express the decision variable update over time as:

xi(k + 1) =
m
∑

j=1

[Φ(k, s)]ijx
j(s)−

k−1
∑

r=s

m
∑

j=1

[Φ(k, r + 1)]ijαrdj(r)

−αkdi(k) +

k−1
∑

r=s

m
∑

j=1

[Φ(k, r + 1)]ijφ
j(r) + φi(k),

(13)

where the transition matrix Φ(k, s) = A(k)A(k − 1), . . . , A(s) [6].

4 Convergence of the proposed algorithm

This section provides the convergence analysis for the proposed algorithm (3)-

(10).

The following well-known lemma confirms that the priority update (3) does

indeed compute average priorities.

Lemma 4.1 limk→∞ wi(k) = w =
∑m

j=1

wj(0)

m
for j = 1, . . . ,m. At the

network level, W (k) = W , where ,W = 1w⊺.

Proof See [27][28].
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From Assumption 1, the gradient is continuous and from Assumption 2 X

is compact. Therefore, we have ||di(k)|| ≤ L for all i. From that statement,

Lemma 4.2 follows.

Lemma 4.2 The errors φi(k) satisfy ||φi(k)|| ≤ αkL for all i and k.

Proof See [5].

The next Lemma describes the convergence behavior of Φ(k, s).

Lemma 4.3 From Lemma 3.1, the convergence of Φ(k, s) is geometric accord-

ing to

|[Φ(k, s)]ji − γj(s)| ≤ Cβk−s, (14)

where B0 = m − 1, m is the number of agents, γj(s) = limk→∞[Φ(k, s)]ji ,

C = 2

(1 + min
j∈[m]

min
i∈[m]

wj
i (0)

−B0)

1− min
j∈[m]

min
i∈[m]

wj
i (0)

B0

, and β = (1− min
j∈[m]

min
i∈[m]

wj
i (0)

B0)1/B0 .

Proof See Lemma 3 and Lemma 4 in [6] and Lemma 3.1 above.

To prove the convergence results, we use the following lemmas [5].

Lemma 4.4 Assume that 0 < ρ < 1, {λk}k∈N be a positive scalar sequence,

and limk→∞ λk = 0. Then,

lim
k→∞

k
∑

l=0

ρk−lλl. = 0

Moreover, if
∑∞

k λk < ∞, we have

∞
∑

k=1

k
∑

l=0

ρk−lλl < ∞

.
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Proof See proof for Lemma 7 in [5].

Lemma 4.5 Assume that X is a nonempty closed convex set in R
n. Thus, we

obtain for any x ∈ R
n, ||PX [x]−y||2 ≤ ||x−y||2−||PX [x]−x||2 for all y ∈ X.

Proof See proof for Lemma 1(b) in [5].

Lemma 4.6 Let xi(k) be generated by (9)-(10). We have for any z ∈ X and

all k ≥ 0,

m
∑

i=1

||xi(k + 1)− z||2 ≤

m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− z||2+

α2
k

m
∑

i=1

||di(k)||
2 − 2αk

m
∑

i=1

(fi(v
i(k))− fi(z))−

m
∑

i=1

||φi(k)||2.

Proof See Appendix.

The following lemma demonstrates that disagreements between agents go to

0, namely that ||xi(k)− xj(k)|| as k → ∞. To assess agent disagreements, we

consider agents’ disagreements with the average of their decision variables,

y(k) =
1

m

m
∑

j=1

xj(k). (15)

In view of (9) and (11), we have

y(k + 1) =
1

m

m
∑

i=1

m
∑

j=1

aij(w
i(k))xj(k)−

αk

m

m
∑

i=1

di(k) +
1

m

m
∑

i=1

φi(k). (16)
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Lemma 4.7 Let the algorithm generate iterates of xi(k) by the algorithm (9)-

(10) and consider {y(k)}k∈N defined in (16).

(a) If the stepsize is decreasing such as limk→∞ αk = 0, thus

lim
k→∞

||xi(k)− y(k)|| = 0 for all i.

(b) If
∑∞

k=1 α
2
k < ∞ therefore

∞
∑

k=1

αk||x
i(k)− y(k)|| < ∞ for all i.

Proof See Appendix.

From Lemma 4.7(a), the following theorem is obtained regarding the con-

vergence rate of ||xi(k) − y(k)||. As it has been demonstrated that agents’

disagreements go to 0, as k → ∞ (Lemma 4.7a), this theorem shows the rate

to reach agreement on agents’ decision variable.

Theorem 4.1 Following Assumption 2, there is an M such that
∑m

j=1 ||x
j(0)|| ≤

M . Let ǫ > 0 be given and let K be the first time that αk ≤ ǫ. Let C be de-

fined as in Lemma 4.3. Then 0 < min
j∈[m]

min
i∈[m]

wj
i (0) < 1, α is decreasing, and

limk→∞ αk = 0, and for all k ≥ K + 3, we have

||xi(k)− y(k)|| ≤ 2mCM((1− min
j∈[m]

min
i∈[m]

wj
i (0)

B0)(k−1)/B0)

+ 4mCLα0

((1− min
j∈[m]

min
i∈[m]

wj
i (0)

B0)(k−K)/B0)

1− (1− min
j∈[m]

min
i∈[m]

wj
i (0)

B0)1/B0

+ 4αk−1L+
4mCLα0ǫ

1− β
.
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Proof Recall (56) and β = ((1− min
j∈[m]

min
i∈[m]

wj
i (0)

B0)1/B0):

||xi(k)− y(k)|| ≤ 2mCβk−1
m
∑

j=1

||xj(0)||+ 4mCL
k−2
∑

r=0

βk−rαr + 4αk−1L.

Then, we have

||xi(k)− y(k)|| ≤ 2mCMβk−1 + 4mCL

k−2
∑

r=0

βk−rαr + 4αk−1L. (17)

Suppose we have an arbitrary ǫ > 0 and let K be defined so that αr ≤ ǫ (since

αr → 0) for all k ≥ K + 3. We therefore have

k−2
∑

r=0

βk−rαr ≤
K
∑

r=0

βk−rαr + ǫ
k−2
∑

r=K+1

βk−r ≤ max
0≤t≤K

αt

K
∑

r=0

βk−r + ǫ
k−2
∑

r=K+1

βk−r .

(18)

Because of
∑k−2

r=K+1 β
k−r ≤

1

1− β
, we obtain

k−2
∑

r=0

βk−rαr ≤ max
0≤t≤K

αt

K
∑

r=0

βk−r +
ǫ

1− β
. (19)

Similarly, since
∑K

r=0 β
k−r ≤

βk−K

1− β
, we obtain for all k ≥ K + 3,

k−2
∑

r=0

βk−rαr ≤ max
0≤t≤K

αt
βk−K

1− β
+

ǫ

1− β
. (20)

Inserting (20) into (17), we get for k ≥ K + 3,

||xi(k)− y(k)|| ≤ 2mCMβk−1 + 4mCL
[

max
0≤t≤K

αt
βk−K

1− β
+

ǫ

1− β

]

+ 4αk−1L.

(21)
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Because αt is decreasing, we obtain for all k ≥ K + 3,

||xi(k)− y(k)|| ≤ 2mCMβk−1 + 4mCLα0

[βk−K

1− β
+

ǫ

1− β

]

+ 4αk−1L. (22)

�

The convergence rate is affected by the value of β. Recall β = (1 −

min
j∈[n]

min
i∈[n]

wj
i (0)

B0)1/B0 , meaning the value of β is a function of the mini-

mum initial priority and the number of agents. The convergence rate slows

down as the minimum initial agent weight decreases and the number of agents

increases. Agents should therefore carefully choose their preferences. A small

initial priority would make the convergence rate very slow, which can harm

algorithm performance. This suggests that agents’ priorities must be balanced

with need for attaining a high-quality final result with a reasonable conver-

gence rate. Along the same lines, an extremely large team of agents would

increase the limit of the convergence rate; as the number of agents increases

agents’ preferences associated to objective functions tend to be smaller since

agents’ preferences sum to 1.

Based on Lemmas 4.6 and 4.7, the next theorem presents the asymptotic

convergence of the proposed algorithm. In distinction to [5], it is shown that

the iterates xi(k) converge to an optimal solution for an information exchange

matrix A that is (non-doubly) stochastic, which weights are obtained from

agents’ priorities (8).
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Theorem 4.2 The iterates xi(k) are generated by (7)-(10) with stepsize sat-

isfying conditions of Lemma 4.7. Assume that the optimal solutions set X∗ is

nonempty. Therefore, an optimal point x∗ ∈ X∗ exists such that

lim
k→∞

||xi(k)− x∗|| = 0 for all i.

Proof From Lemma 4.6, we have

m
∑

i=1

||xi(k + 1)− z||2 ≤

m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− z||2+

α2
k

m
∑

i=1

||di(k)||
2 − 2αk

m
∑

i=1

(fi(v
i(k))− fi(z))−

m
∑

i=1

||φi(k)||2.

Using the gradient bound and by removing the last nonpositive term on the

right hand side, we get

m
∑

i=1

||xi(k + 1)− z||2 ≤

m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− z||2 + α2

kmL2

−2αk

m
∑

i=1

(fi(v
i(k))− fi(y(k)))− 2αk(f(y(k))− f(z)).

(23)

Considering the gradient boundedness and the stochasticity of weights, we

have

|fi(v
i(k))− fi(y(k))| ≤L||vi(k)− y(k)|| ≤ L

m
∑

j=1

aij(w
i(k))||xj(k)− y(k)||.

(24)

Summing (24) over m and using it in (23), we obtain,
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m
∑

i=1

||xi(k + 1)− z||2 ≤
m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− z||2 + α2

kmL2

+2αkL

m
∑

i=1

m
∑

j=1

aij(k)||x
j(k)− y(k)|| − 2αk(f(y(k))− f(z)).

(25)

Considering z = x∗ ∈ X∗, and by restructuring the terms we get,

m
∑

i=1

||xi(k + 1)− x∗||2 + 2αk(f(y(k))− f(x∗)) ≤

m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− x∗||2 + α2

kmL2+

2αkL

m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− y(k)||.

(26)

By summing (26) over an arbitrary window from some positive integer K to

N with K < N , we obtain,

m
∑

i=1

||xi(N + 1)− x∗||2 + 2

N
∑

k=K

αk(f(y(k))− f(x∗)) ≤

m
∑

i=1

m
∑

j=1

aij(w
i(K))||xj(K)− x∗||2+

mL2
N
∑

k=K

α2
k + 2L

N
∑

k=K

αk

m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− y(k)||.

(27)

WithK = 1 andN → ∞ in (27), using
∑∞

k=1 α
2
k < ∞ and

∑∞
k=1 αk

∑m
j=1 ||x

j(k)−

y(k)|| < ∞, which is a result of Lemma 4.7, we have

∞
∑

k=1

αk(f(y(k))− f(x∗)) < ∞.
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Because xj(k) ∈ X for all j, y(k) ∈ X for all k. Given that x∗ ∈ X∗, f(y(k))−

f∗ ≥ 0 for all k. As a result of this relation and the assumption that
∑∞

k=1 αk =

∞, and
∑∞

k=1 αk(f(y(k))− f(x∗)) < ∞, we obtain,

lim inf
k→∞

(f(y(k))− f(x∗)) = 0. (28)

The forthcoming development demonstrates that agents converge to the

optimal point x∗. The nonnegative term in left side hand of (27) can be re-

moved. Therefore, we have

m
∑

i=1

||xi(N + 1)− x∗||2 ≤

m
∑

i=1

m
∑

j=1

aij(w
i(K))||xj(K)− x∗||2+

mL2
N
∑

k=K

α2
k + 2L

N
∑

k=K

αk

m
∑

i=1

m
∑

j=1

aij(w
i(K))||xj(k)− y(k)||.

(29)

Given that
∑

k α
2
k < ∞ and

∑∞
k=1 αk

∑m
i=1

∑m
j=1 a

i
j(w

i(k))||xi(k) − y(k)|| <

∞, it results that xi(k) is bounded for each i, and

lim sup
N→∞

m
∑

i=1

||xi(N + 1)− x∗||2 ≤ lim inf
K→∞

m
∑

i=1

m
∑

j=1

aij(w
i(K))||xj(K)− x∗||2.

This implies that the scalar sequence
∑m

i=1 ||x
i(k)− x∗|| converges for every

x∗ ∈ X∗.

Given that limk→∞ ||xi(k) − y(k)|| = 0 (Lemma 4.7), {y(k)}k∈N is bounded

and the scalar sequence ||y(k)− x∗|| is convergent for x∗ ∈ X∗.
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Because y(k) is bounded, y(k) has a limit point. From (28), we have

lim infk→∞ f(y(k)) = f∗. Considering the previous equality and the conti-

nuity of f , one of the limit points of {y(k)} must be in X∗, which is denoted

by x∗. Therefore, ||y(k) − x∗|| is convergent. Thus, limk→∞ y(k) = x∗ and

limk→∞ ||xi(k) − y(k)|| = 0, which implies that each sequence {xi(k)} con-

verges to the same x∗ ∈ X∗. �

From Theorem 4.2 and Lemma 4, the following convergence rate is ob-

tained.

Theorem 4.3 Let ǫ > 0 be given and let K be the first time that αk ≤ ǫ.

Using Lemma 4 and Theorem 4.1, we have for s ≥ K + 3,

m
∑

i=1

||xi(k + 1)− x∗||2 ≤

m
∑

i=1

m
∑

j=1

qijω
(k+1)
max ||xj(s)− x∗||2

+

k
∑

r=s

m
∑

i=1

m
∑

j=1

qijω
(k+1−r)
max αrL

[

αrL+ 4mCMβr−1

+8mCLα0

[βr−K

1− β
+

ǫ

1− β

]

+ 8αr−1L].

(30)

Proof From (25), we have

m
∑

i=1

||xi(k + 1)− z||2 ≤
m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− z||2 + α2

kmL2

+2αkL

m
∑

i=1

m
∑

j=1

aij(k)||x
j(k)− y(k)|| − 2αk(f(y(k))− f(z)).

(31)

Dropping the last negative term, we find
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m
∑

i=1

||xi(k + 1)− x∗||2 ≤
m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k)− x∗||2 + α2

kmL2

+2αkL

m
∑

i=1

m
∑

j=1

aij(k)||x
j(k)− y(k)||.

(32)

Re-arranging the terms, we have

m
∑

i=1

||xi(k + 1)− x∗||2 ≤

m
∑

i=1

m
∑

j=1

aij(w
i(k))

[

||xj(k)− x∗||2

+α2
kL

2 + 2αkL||x
j(k)− y(k)||

]

.

(33)

Define ω(k) = max
j∈[n]

max
i∈[n]

aij(k). Therefore, the maximum value that ω(k) can

take is ωmax = 1− min
j∈[n]

min
i∈[n]

wj
i (0)). We therefore obtain

m
∑

i=1

||xi(k + 1)− x∗||2 ≤

m
∑

i=1

m
∑

j=1

qijωmax

[

||xj(k)− x∗||2+

α2
kL

2 + 2αkL||x
j(k)− y(k)||

]

.

(34)

Using Theorem 4.1, we obtain

m
∑

i=1

||xi(k + 1)− x∗||2 ≤

m
∑

i=1

m
∑

j=1

qijω
(k+1)
max ||xj(s)− x∗||2

+

k
∑

r=s

m
∑

i=1

m
∑

j=1

qijω
(k+1−r)
max αrL

[

αrL+ 4mCMβr−1

+8mCLα0

[βr−K

1− β
+

ǫ

1− β

]

+ 8αr−1L].

(35)

�

The convergence rate is determined by ωmax. Since ωmax = 1 −

min
j∈[n]

min
i∈[n]

wj
i (0), the initial agents’ weights influence the convergence rate. If
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the smallest initial weight is extremely small, it could be detrimental for the al-

gorithm performance as it would slow down significantly the convergence rate.

Agents should consider balancing their need for reaching a high-quality final

result and reasonable convergence rate. Agents should avoid extreme difference

in their highest and lowest priorities.

5 Numerical results

Three simulation scenarios are run to illustrate the performance of the pro-

posed algorithm. The numerical studies considers quadratic functions defined

as,

fi(x) =
1

2
xTQix+ rTi x+ ci, (36)

where x ∈ R
n is the decision vector,Q ∈ R

n×n is a symmetric positive definite

matrix, r ∈ R
n, and i = 1, . . . , n. The matrix Qi and the vector ri and ci are

generated randomly and unique for each agent. An agent i knows exclusively

the objective function fi. The agents goal is to solve the following problem

using (3)-(10):

minimize

m
∑

i=1

wifi(x). (37)

subject to x ∈ [−1, 000 to 1, 000].

For all scenario, the initial gradient step size is α0 = 0.2 and we let αk =
α0

k
.
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Fig. 1 f2(x) in terms of f1(x) for a team of 2 agents. It can be seen that the proposed

algorithm reaches various optimal solutions. Some of agents’ priorities are shown. As the

priority of f1 diminishes, the value of f1 increases and the value of f2 decreases.

5.1 First simulation scenario

The first simulation aims to show the exploration of the Pareto Front by the

algorithm. For illustrative purposes, the team has two agents and the number

of decision variables is 10. Simulations with different initial agent priorities

have been performed with identical initial states. Agents exchange information

100,000 times. Fig. 1 presents points on the Pareto Front obtained.

Optimal solutions in different senses are reached by the agents. The network

controls the exploration of the Front through the assignment of priorities,

providing a wider range of ”optimal” solutions in different senses.
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Table 1 Initial priorities and priorities value for consensus

Agent

1 2 3 w̄

w1 0.3495 0.2232 0.6315 0.4014

w2 0.3027 0.3838 0.2494 0.3119

w3 0.3478 0.3930 0.1191 0.2866

5.2 Second simulation scenario

The second scenario aims to show graphically the convergence rate towards

the optimal solution, i.e., (35). The team consists of three agents, m = 3,

and the decision vector has 10 variables, i.e., n = 10. The team minimizes 10

quadratic functions as defined by (36) to solve (37). The network exchanges

information 100,000 times. Table 1 shows the initial agent preferences, wi,

and the convergence of the priority vector, w̄. The sum of each agent priorities

equals 1, i.e.,
∑3

i=1 w
j
i = 1.

Table 2 presents the results obtained by the proposed algorithm. The first

three columns correspond to the initial decision vector of each agent. The

fourth column presents the final average estimate reached by the agents, i.e.,

y(k) for k → ∞. The last column shows the optimal solution.

The results obtained by the proposed algorithm closely approach the opti-

mal value, x∗. Fig. 2 presents the algorithm’s convergence rate calculated with

(35) and K = 1.
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Table 2 Result obtained by the proposed algorithm for Scenario 1

x1 x2 x3 x̂ x∗

-728.77 -284.03 -981.79 16.72 16.71

-94.90 406.18 951.03 -0.53 -0.53

429.65 792.26 -532.88 -9.03 -9.02

14.82 -360.08 73.41 5.52 5.52

846.91 -797.02 147.99 -4.74 -4.74

-789.88 986.15 -602.51 8.16 8.15

-285.74 723.87 -584.77 1.01 1.01

-820.97 39.10 -30.25 -5.07 -5.07

634.15 -431.47 888.04 -13.59 -13.58

-352.03 361.52 -10.59 -8.68 -8.67

f(x) -6.1094e+03 -6.1094e+03

0 2 4 6 8 10

104

10-5

100

105

1010

Fig. 2 Convergence rate of the proposed algorithm - Team of 3 agents. The agents converge

towards the optimal solution.

5.3 Third simulation scenario

The third simulation scenario objective is to demonstrate the proposed algo-

rithm’s efficiency on a larger team of agents and higher number of decision
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Fig. 3 Convergence rate of the proposed algorithm for a team of 100 agents. During the

first iterations, agents’ decision variables are close to the boundary of the constraint set,

which explains the values
∑m

i=1 ||x
i(k + 1) − x∗||2 obtained during the first iterations. It

takes several iterations to move agents away from the boundaries. However, once agents are

far from the boundaries, agents converge quickly towards the optimal solution.

variables. The team consists of 100 agents with quadratic functions defined

by (36) of 100 variables. Therefore, the agent teams solve Problem 3.1 where

m = 100. The set of constraints is the same as scenario 1 and the quadratic

functions are also created randomly. Fig. 3 displays
∑m

i=1 ||x
i(k + 1) − x∗||2

over the course of the algorithm. As k → ∞, the
∑m

i=1 ||x
i(k + 1) − x∗||2

→ 0, which means the agent team approximately reach the optimal solution.

Indeed, f(x∗) = −50.11 and f(x̂) = −49.64.

A plateau followed by sharp drop is observed in the curve. The high bound

for the gradient compared to the constraint set explains this phenomenon.

Since the gradient can take large values, the decision variables may take large

values too. However, the xi is subject to the constraint set [−1, 000 to 1, 000].

Therefore, during the first iterations, most of the decision variables are pro-
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jected onto the limits of the constraint set. It takes several iterations before a

significant number of agents move away from the boundary of the constraint

set. However, once this number is reached, the algorithm converges quickly

towards the optimal solution.

6 Conclusions

In this paper, a distributed algorithm to optimize a prioritized sum of con-

vex objective functions was proposed. The proposed algorithm allows agents

to have different priorities regarding other agents’ objective functions. These

agents’ priorities enable the exploration of the Pareto Front, which provides

optimal solutions in different senses. A rule based on agents’ priority generates

the information exchange matrix used to update agents’ estimates. In the pro-

posed algorithm, this matrix is stochastic, whereas, in most other distributed

algorithms, the information exchange matrix is doubly-stochastic. Therefore,

new theoretical analyses were needed because of the difference in the network-

level set-up. It has been proved that the proposed algorithm converged towards

the optimal solution. Also, convergence rates were obtained, which are influ-

enced by agents’ initial weights. Numerical results illustrated the performance

of the proposed algorithm. Future works include time-varying topology and

implementing the algorithm on a team of robots.
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recherche Nature et technologies postdoctoral fellowship.
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Appendix:

This appendix contains the proofs for some lemmas presented in the paper.

Proof of Lemma 3.1 [26]

Define µ(k) := min
j∈[m]

min
i∈[m]

w
j
i (k). Then, W (k + 1) = PW (k) can be expressed as
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(38)

where δ
j
i (k) = w

j
i (k)− µ(k) ≥ 0 for i, j = {1, . . . , n}. Then, we have

w
j
i (k + 1) =

m
∑

n=1

pni [µ(k) + δjn(k)] =
m
∑

n=1

pni µ(k) +
m
∑

n=1

pni δ
j
n(k)

= µ(k)
m
∑

n=1

pni +
m
∑

n=1

pni δ
j
n(k).

(39)

By definition, we know that
∑n

m=1 p
m
i = 1. Therefore, we get

w
j
i (k + 1) = µ(k) +

m
∑

n=1

pni δ
j
n(k). (40)

Since δ
j
n ≥ 0 and pni ≥ 0 for i, j, n = {1, . . . , m}, wj

i (k + 1) ≥ µ(k) = min
j∈[m]

min
i∈[m]

w
j
i (k) for

i, j = {1, . . . , m} and all k. This establishes that the minimum of W (k) is non-decreasing

and other agents cannot go below the previous minimum at the next time step.

Therefore, since (8) defines A(k), the smallest non-zero element of A(k), denoted

min+
i∈[m]

min+
j∈[m]

[A(k)]ji , is at least min
i∈[m]

min
j∈[m]

w
j
i (k). This directly implies that the lower bound

can be set as min
j∈[m]

min
i∈[m]

w
j
i (0). �
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Proof of Lemma 4.6

From Lemma 4.5 and since xi(k + 1) = PXi
[vi(k)− αkdi(k)], we have

||xi(k + 1)− z||2 ≤ ||vi(k)− αkdi(k)− z||2−

||PXi
[vi(k) − αkdi(k)]− vi(k)− αkdi(k)||

2.

From the definition of φi(k) in (12), the previous relation becomes,

||xi(k + 1)− z||2 ≤ ||vi(k)− αkdi(k)− z||2 − ||φi(k)||2.

By expanding ||vi(k)− αkdi(k)− z||2, we have

||vi(k)− αkdi(k) − z||2 = ||vi(k)− z||2 + α2
k ||di(k)||

2

−2αkdi(k)
′(vi(k)− z).

(41)

Because di(k) is the gradient of fi(x) at x = vi(k), we obtain from convexity that

di(k)
′(vi(k)− z) ≥ fi(v

i(k))− fi(z). (42)

By bringing together (41) and (42), we get

||xi(k + 1)− z||2 ≤ ||vi(k)− z||2 + α2
k||di(k)||

2

−2αk [fi(v
i(k)− fi(z))]− ||φi(k)||2.

(43)

Given the definition of vi(k), using the convexity of the norm squared function and the

stochasticity of the ai(wi(k)), we find that

||vi(k) − z||2 ≤
m
∑

j=1

aij(w
i(k))||xj(k)− z||2. (44)

It then follows from (43) and (44) that

||xi(k + 1)− z||2 =
m
∑

j=1

aij(w
i(k))||xj(k)− z||2 + α2

k ||di(k)||
2

−2αk[fi(v
i(k))− fi(z)]− ||φi(k)||2.

(45)

By summing (45) over i = 1, . . . ,m, we obtain the desired relation:
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m
∑

i=1

||xi(k + 1)− z||2 ≤
m
∑

i=1

m
∑

j=1

aij(w
i(k))||xj(k) − z||2+

α2
k

m
∑

i=1

||di(k)||
2 − 2αk

m
∑

i=1

[fi(v
i(k))− fi(z)]−

m
∑

i=1

||φi(k)||2.

�

Proof of Lemma 4.7

(a) From (13), we have,

xi(k) =
m
∑

j=1

[Φ(k − 1, s)]ijx
j(s) −

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijαrdj(r)−

αk−1di(k − 1) +

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijφ
j(r) + φi(k − 1).

(46)

Using the following transition matrices

Φ(k, s) = A(W (k))A(W (k − 1)), . . . , A(W (s)) (47)

and following the same logic to obtain (13) [6], (16) can be re-written for all k and s with

k > s as,

y(k) =
1

m

m
∑

i=1

m
∑

j=1

[Φ(k − 1, s)]ijx
j(s)−

1

m

m
∑

i=1

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijαrdi(r)+

1

m

m
∑

i=1

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijφ
i(r)−

αk

m

m
∑

i=1

di(k − 1) +
1

m

m
∑

i=1

φi(k − 1).

(48)

By subtracting (48) from (46), we obtain,

xi(k)− y(k) =
m
∑

j=1

[Φ(k − 1, s)]ijx
j(s)−

1

m

m
∑

i=1

m
∑

j=1

[Φ(k − 1, s)]ijx
j(s)

−

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijαrdj(r) +
1

m

m
∑

i=1

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijαrdj(r)

− αk−1di(k − 1) +
αk−1

m

m
∑

i=1

di(k − 1) +

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijφ
j(r)

−
1

m

m
∑

i=1

k−2
∑

r=s

m
∑

j=1

[Φ(k − 1, r + 1)]ijφ
j(r) + φi(k − 1)−

1

m

m
∑

i=1

φi(k − 1).

(49)
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Taking the norm of (49), we get

||xi(k)− y(k)|| ≤
m
∑

j=1

∣

∣

∣

∣

∣

[Φ(k − 1, s)]ij −
1

m

m
∑

i=1

[Φ(k − 1, s)]ij

∣

∣

∣

∣

∣

||xj(s)||

+

k−2
∑

r=s

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

αr ||dj(r)||

]

+αk−1||di(k − 1)||+
αk−1

m

m
∑

i=1

||di(k − 1)||

+

k−2
∑

r=s

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

||φj(r)||

]

+||φi(k − 1)||+
1

m

m
∑

i=1

||φi(k − 1)||.

(50)

Using Lemma 4.3 and for s = 0, and k → ∞, the first right-hand term of (50) is

||xi(k)− y(k)|| ≤

m
∑

j=1

[

∣

∣[Φ(k − 1, 0)]ij − γj(0)
∣

∣ +

∣

∣

∣

∣

∣

1

m

m
∑

i=1

[Φ(k − 1, 0)]ij − γj(0)

∣

∣

∣

∣

∣

]

||xj(0)||

+

k−2
∑

r=0

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

αr ||dj(r)||

]

+αk−1||di(k − 1)||+
αk−1

m

m
∑

i=1

||di(k − 1)||

+

k−2
∑

r=0

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

||φj(r)||

]

+||φi(k − 1)||+
1

m

m
∑

i=1

||φi(k − 1)||,

(51)

which can be simplified as,
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||xi(k)− y(k)|| ≤ 2mCβk−1
m
∑

j=1

||xj(0)||

+

k−2
∑

r=0

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

αr ||dj(r)||

]

+αk−1||di(k − 1)||+
αk−1

m

m
∑

i=1

||di(k − 1)||

+

k−2
∑

r=0

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

||φj(r)||

]

+||φi(k − 1)||+
1

m

m
∑

i=1

||φi(k − 1)||.

(52)

Similarly, using Lemma 4.3, the second right-hand term is

||xi(k)− y(k)|| ≤ 2mCβk−1
m
∑

j=1

||xj(0)||+ 2mCL

k−2
∑

r=0

βk−rαr

+αk−1||di(k − 1)||+
αk−1

m

m
∑

i=1

||di(k − 1)||

+

k−2
∑

r=0

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

||φj(r)||

]

+||φi(k − 1)||+
1

m

m
∑

i=1

||φi(k − 1)||.

(53)

Using Lemma 4.2 and the gradient bound, the third-hand right term is

||xi(k)− y(k)|| ≤ 2mCβk−1
m
∑

j=1

||xj(0)||+ 2mCL

k−2
∑

r=0

βk−rαr + 2αk−1L

+

k−2
∑

r=0

m
∑

j=1

[
∣

∣

∣

∣

∣

[Φ(k − 1, r + 1)]ij −
1

m

m
∑

i=1

[Φ(k − 1, r + 1)]ij

∣

∣

∣

∣

∣

||φj(r)||

]

+||φi(k − 1)||+
1

m

m
∑

i=1

||φi(k − 1)||.

(54)

Using again Lemma 4.2 and 4.3, we obtain for the last two terms,

||xi(k)− y(k)|| ≤ 2mCβk−1
m
∑

j=1

||xj(0)||+ 2mCL

k−2
∑

r=0

βk−rαr + 2αk−1L

+2mCL

k−2
∑

r=0

βk−rαr + 2αk−1L.

(55)
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We therefore obtain,

||xi(k)− y(k)|| ≤ 2mCβk−1
m
∑

j=1

||xj(0)|| + 4mCL

k−2
∑

r=0

βk−rαr + 4αk−1L. (56)

Since 0 < β < 1, βk → 0 as k → ∞. Assuming that αk → 0 and taking the limit superior,

we have for all i,

lim sup
k→∞

||xi(k)− y(k)|| ≤ 4mCL lim sup
k→∞

k−2
∑

r=0

βk−rαr . (57)

By Lemma 4.4, we have

lim
k→∞

k−2
∑

r=0

βk−rαr = 0.

Therefore, limk→∞ ||xi(k)− y(k)|| = 0 for all i.

(b) By multiplying (56) with αk , we get

αk ||x
i(k)− y(k)|| ≤ 2mCαkβ

k−1
m
∑

j=1

||xj(0)|| + 4mCL

k−2
∑

r=0

βk−rαkαr + 4αkαk−1L.

Using 2αkαr ≤ α2
k
+ α2

r and αkβ
k−1 ≤ α2

k
+ β2(k−1) for any k and r, we obtain

αk||x
i(k)− y(k)|| ≤ 2mCβ2(k−1)

m
∑

j=1

||xj(0)||+ 2mCα2
k

m
∑

j=1

||xj(0)||

+2mCLα2
k

k−2
∑

r=0

βk−r + 2mCL

k−2
∑

r=0

βk−rα2
r + 2L(α2

k + α2
k−1).

Since
∑k−2

r=0 βk−r ≤
1

1− β
, we have

αk||x
i(k)− y(k)|| ≤ 2mCβ2(k−1)

m
∑

j=1

||xj(0)||+ 2mCα2
k

m
∑

j=1

||xj(0)||

+2mCLα2
k

1

1− β
+ 2mCL

k−2
∑

r=0

βk−rα2
r + 2L(α2

k + α2
k−1).

By summing from k = 1 to k = ∞, we obtain
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∞
∑

k=1

αk ||x
i(k)− y(k)|| ≤ 2mC

∞
∑

k=1

β2(k−1)
m
∑

j=1

||xj(0)||+

2mC

∞
∑

k=1

α2
k

m
∑

j=1

||xj(0)||+ 2mCL
1

1− β

∞
∑

k=1

α2
k+

2mCL

∞
∑

k=1

k−2
∑

r=0

βk−rα2
r + 2L

∞
∑

k=1

(α2
k + α2

k−1).

(58)

In (58), the first term is summable since 0 < β < 1. The second and third, and fifth

terms are also summable since
∑

k→∞
α2
k
< ∞. By Lemma 4.4, the fourth term is summable.

Thus,
∑

∞

k=1 αk||x
i(k) − y(k)|| < ∞ for all i. �
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