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Abstract. We introduce StoDCuP (Stochastic Dynamic Cutting Plane), an extension of the Stochastic

Dual Dynamic Programming (SDDP) algorithm to solve multistage stochastic convex optimization problems.

At each iteration, the algorithm builds lower bounding affine functions not only for the cost-to-go functions,
as SDDP does, but also for some or all nonlinear cost and constraint functions. We show the almost sure

convergence of StoDCuP. We also introduce an inexact variant of StoDCuP where all subproblems are solved
approximately (with bounded errors) and show the almost sure convergence of this variant for vanishing

errors. Finally, numerical experiments are presented on nondifferentiable multistage stochastic programs

where Inexact StoDCuP computes a good approximate policy quicker than StoDCuP while SDDP and the
previous inexact variant of SDDP combined with Mosek library to solve subproblems were not able to solve

the differentiable reformulation of the problem.
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1. Introduction

Risk-neutral multistage stochastic programs (MSPs) aim at minimizing the expected value of the total cost
over a given optimization period of T stages while satisfying almost surely for every stage some constraints
depending on an underlying stochastic process. These optimization problems are useful for many real-life
applications but are challenging to solve, see for instance [33] and references therein for a thorough discussion
on MSPs. Popular solution methods for MSPs are based on decomposition techniques such as Approximate
Dynamic Programming [27], Lagrangian relaxation, or Stochastic Dual Dynamic Programming (SDDP) [23].
SDDP is a sampling-based extension of [3], itself a multistage extension of the L-shaped method [35]. The
SDDP method builds linearizations of the convex cost-to-go functions at trial points computed on scenarios of
the underlying stochastic process generated randomly along iterations. The use of such cutting plane models
for the objective function in the context of deterministic convex optimization dates back to Kelley’s cutting
plane method [16] and has later been extended in many variants such as subgradient [17], bundle [18, 20],
and level [21] variants. Kelley’s algorithm was also generalized by Benders to solve [2] mixed-variables
programming problems. Recently, several enhancements of SDDP have been proposed, see for instance [32],
[12], [24], [19] for risk-averse variants, [26], [5], [6] for convergence analysis, [34] for the application of SDDP
to periodic stochastic programs, and [22], [8] to speed up the convergence of the method. In particular, in
[8], Inexact SDDP was proposed, which incorporates inexact cuts in SDDP (for both linear and nonlinear
programs). The idea of Inexact SDDP is to allow us to solve approximately some or all primal and dual
subproblems in the forward and backward passes of SDDP. This extension and the study of Inexact SDDP
was motivated by the following reasons:

(i) solving to a very high accuracy nonlinear programs can take a significant amount of time or may even
be impossible whereas linear programs (of similar sizes) can be solved exactly or to high accuracy
quicker. Examples of convex but challenging to solve subproblems include semidefinite programs [36],
quadratically constrained quadratic programs with degenerate quadratic forms (see the numerical
experiments of Section 5), or some high dimensional nondifferentiable problems. For subproblems
where it is difficult or impossible to get optimal solutions, if we are able to provide a feasible primal-
dual solution, we should be able to derive an extension of SDDP, i.e., cuts for the cost-to-go functions,
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from approximate subproblem primal-dual solutions. Therefore one has to study how to extend the
SDDP algorithm to still derive valid cuts and a converging Inexact SDDP or an Inexact SDDP with
controlled accuracy when only approximate primal and dual solutions are computed for nonlinear
MSPs.

(ii) As explained in [8], numerical experiments (see for instance [7, 10, 15]) indicate that very loose cuts
are computed in the first iterations of SDDP and it may be useful to compute with less accuracy
these cuts for the first iterations. Using this strategy, it was shown in [8] that for several instances
of a portfolio problem, Inexact SDDP can converge (i.e., satisfy the stopping criterion) quicker than
SDDP.

In this paper, we extend [8] in two ways:

• a natural way of taking advantage of observation (i) above in the context of SDDP applied to
nonlinear problems, consists in linearizing some or all nonlinear objective and constraint functions
of the subproblems solved along the iterations of the method at the optimal solutions of these
subproblems. When all nonlinear functions are linearized, all subproblems solved in the iterations
of SDDP are linear programs which allows us to avoid having to solve difficult problems that cannot
be solved with high accuracy. However, to the best of our knowledge, this variant of SDDP, that we
term as StoDCuP (Stochastic Dynamic Cutting Plane) has not been proposed and studied so far in
the literature (SDDP does build linearizations for the cost-to-go functions but not for some or all of
the remaining nonlinear objective and constraint functions). In this context, the goal of this paper
is to propose and study StoDCuP.

• As far as (ii) is concerned, it is interesting to notice that it is easy to incorporate inexact cuts
in StoDCuP (i.e., to derive an inexact variant of StoDCuP), control the quality of these cuts (see
Lemma 4.1), and show the convergence of this method (see Theorem 4.3 below). This comes from
the fact that we can easily compute a cut for the value function of a linear program (and in StoDCuP
all subproblems solved are linear programs) from any feasible primal-dual solution since the corre-
sponding dual objective is linear, see Proposition 2.1 in [8]. On the contrary, deriving valid (inexact)
cuts from approximate primal-dual solutions of the subproblems solved in SDDP applied to nonlinear
problems and showing the convergence of the corresponding variant of Inexact SDDP is technical
and the computation of inexact cuts may require solving additional subproblems, see [8] for details.
Moreover, Inexact SDDP from [8] applies to differentiable multistage convex stochastic programs
while both StoDCuP and Inexact StoDCuP apply to more general differentiable or nondifferentiable
multistage convex stochastic programs.

The outline of the paper is the following. To ease the presentation and analysis of StoDCuP, we start
in Section 2 with its deterministic counterpart, called DCuP (Dynamic Cutting Plane) which solves convex
Dynamic Programming equations linearizing cost-to-go, constraint, and objective functions. Starting with
the deterministic case allows us to focus on the differences between traditional Dual Dynamic Programming
and its convergence analysis with DCuP and its convergence analysis. In Section 3, we introduce forward
StoDCuP and prove the almost sure convergence of the method. In Section 4, we present Inexact StoDCuP,
an inexact variant of StoDCuP which builds inexact cuts on the basis of approximate primal-dual solutions
of the subproblems solved along the iterations of the method. We also prove the almost sure convergence
of Inexact StoDCuP for vanishing noises. Our convergence proofs of DCuP and StoDCuP are based on the
convergence analysis of SDDP for nonlinear problems in [6] but additional technical results are needed due
to the linearizations of cost and constraint functions, see Lemma 2.1-(c),(d), Lemma 2.2, Lemma 2.4-(b),
Theorem 2.6-(i),(ii), Lemma 3.4-(c), Lemmas 3.7, 3.8, and Theorem 3.9. Finally, numerical experiments
are presented in Section 5 on nondifferentiable multistage stochastic programs. Two variants of Inexact
StoDCuP are presented: with and without cut selection strategies. In all instances tested, at least one
inexact variant computes a good approximate policy quicker than StoDCuP while SDDP and the previous
inexact variant of SDDP from [8] combined with Mosek library to solve subproblems were not able to solve
a differentiable reformulation of the problem (recall that such reformulation is necessary to use the inexact
variant of SDDP from [8] which applies to differentiable stochastic programs).

We will use the following notation:
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• For a real-valued convex function f , we denote by `f (·;x0) an arbitrary lower bounding linearization
of f at x0, i.e., `f (·;x0) = f(x0) + sf (x0)>(· − x0) where sf (x0) is an arbitrary subgradient of f at
x0.

• The domain of a point to set operator T : A⇒ B is given by Dom(T )= {a ∈ A : T (a) 6= ∅}.
• For vectors x, y ∈ Rn, 〈x, y〉 = x>y is the usual scalar product between x and y.
• For a ∈ Rn, B̄(a; ε) = {x ∈ Rn : ‖x− a‖2 ≤ ε}.
• The domain of a convex function f : X → (−∞,∞] is dom(f) = {x ∈ X : f(x) <∞}.
• The relative interior ri X of a set X is the set {x ∈ X : ∃ε > 0 : B̄(x; ε) ∩Aff(X) ⊂ X}.
• The subdifferential of the convex function f : X → (−∞,∞] at x is

∂f(x) = {s : f(y) ≥ f(x) + 〈s, y − x〉 ∀y ∈ X}.
• The indicator function δX(·) of the set X is given by δX(x) = 0 if x ∈ X and δX(x) =∞ otherwise.
• A function f : Rn → (−∞,∞] is proper if there is x such that f(x) is finite.
• e is a vector of ones whose dimension depends on the context.

2. The DCuP (Dynamic Cutting Plane) algorithm

2.1. Problem formulation and assumptions. Given x0 ∈ Rn, consider the optimization problem

(2.1)


inf

x1,...,xT∈Rn

T∑
t=1

ft(xt, xt−1)

gt(xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt, t = 1, . . . , T,
xt ∈ Xt, t = 1, . . . , T,

where At and Bt are matrices of appropriate dimensions, ft : Rn × Rn → (−∞,∞] and gt : Rn × Rn →
(−∞,∞]p. In this problem, for each step t, we have nonlinear and linear coupling constraints, gt(xt, xt−1) ≤ 0
and Atxt + Btxt−1 = bt respectively, and set constraints xt ∈ Xt. Without loss of generality, nonlinear
noncoupling constraints ht(xt) ≤ 0 can be dealt with by incorporating them into the constraint gt(xt, xt−1) ≤
0. For convenience, we use the short notation

(2.2) Xt(xt−1) := {xt ∈ Xt : gt(xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt}
and

(2.3) X0
t (xt−1) = Xt(xt−1) ∩ riXt.

With this notation, the dynamic programming equations corresponding to problem (2.1) are

(2.4) Qt(xt−1) =

{
inf

xt∈Rn
Ft(xt, xt−1) := ft(xt, xt−1) +Qt+1(xt)

xt ∈ Xt(xt−1),

for t = 1, . . . , T , and QT+1 ≡ 0. The cost-to-go function Qt+1(xt) represents the optimal total cost for time
steps t + 1, . . . , T , starting from state xt at the beginning of step t + 1. Clearly, it follows from the above
definition that

(2.5) Dom(X0
t ) ⊂ Dom(Xt) ∀t = 1, . . . , T.

Setting X0 = {x0}, the following assumptions are made throughout this section.

Assumption (H1):

1) For t = 1, . . . , T :
a) Xt ⊂ Rn is nonempty, convex, and compact;
b) ft is a proper lower-semicontinuous convex function such that Xt×Xt−1 ⊂ int (dom(ft));
c) each of the p components gti, i = 1, . . . , p, of gt is a proper lower-semicontinuous convex function

such that Xt×Xt−1 ⊂ int (dom(gti)).
2) X1(x0) 6= ∅ and Xt−1 ⊂ int

[
Dom(X0

t )
]

for every t = 2, . . . , T .

The following simple lemma states a few consequences of the above assumptions.

Lemma 2.1. The following statements hold:
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(a) for every t = 1, . . . , T , Qt+1 is a convex function such that

Xt ⊂ int (dom(Qt+1)) ;

(b) for every t = 1, . . . , T , Qt+1 is Lipschitz continuous on Xt;
(c) for every t = 1, . . . , T , i = 1, . . . , p, and (xt, xt−1) ∈ Xt×Xt−1,

∂ft(xt, xt−1) 6= ∅, ∂gti(xt, xt−1) 6= ∅;
(d) for every t = 1, . . . , T , i = 1, . . . , p, the sets⋃

{∂ft(xt, xt−1) : (xt, xt−1) ∈ Xt×Xt−1} ,
⋃
{∂gti(xt, xt−1) : (xt, xt−1) ∈ Xt×Xt−1}

are bounded.

Proof: (a) The proof is by backward induction on t. The result clearly holds for t = T since QT+1 ≡ 0.
Assume now that Qt+1 is a convex function such that Xt ⊂ int (dom(Qt+1)) for some 2 ≤ t ≤ T . Then,
condition 1) of Assumption (H1) implies that the function (xt, xt−1) 7→ Ft(xt, xt−1)+δXt(xt−1)(xt) is convex.
This conclusion together with the definition of Qt and the discussion following Theorem 5.7 of [28] then imply
that Qt is a convex function. Moreover, conditions 1)b) and 2) of Assumption (H1) and relation (2.5) imply
that there exists ε > 0 such that for every xt−1 ∈ Xt−1 + B̄(0, ε),

dom(ft(·, xt−1)) ⊃ Xt, Xt(xt−1) 6= ∅.
The induction hypothesis, the latter observation, and relations (2.2) and (2.4), then imply that

Xt(xt−1) ∩ dom(Ft(·, xt−1)) = Xt(xt−1) ∩ dom(ft(·, xt−1)) ∩ dom(Qt+1) ⊃ Xt(xt−1) ∩ Xt = Xt(xt−1) 6= ∅
for every xt−1 ∈ Xt−1 + B̄(0, ε). Since by (2.4),

dom(Qt) = {xt−1 ∈ Rn : Xt(xt−1) ∩ dom(Ft(·, xt−1)) 6= ∅},

we then conclude that Xt−1 + B̄(0, ε) ⊂ dom(Qt), and hence that Xt−1 ⊂ int (dom(Qt)). We have thus
proved that (a) holds.

b) This statement follows from statement a) and Theorem 10.4 of [28].
c-d) These two statements follow from conditions 1)a), 1)b) and 1)c) of Assumption (H1) together with

Theorem 23.4 and 24.7 of [28].

2.2. Forward DCuP. Before formally describing the DCuP algorithm, we give some motivation for it. At
iteration k ≥ 1 and stage t = 1, . . . , T , the algorithm uses the following approximation to the function Qt(·)
defined in (2.4):

(2.6) Qk−1
t (xt−1) = min

{
fk−1
t (xt, xt−1) +Qk−1

t+1 (xt) : xt ∈ Xk−1
t (xt−1)

}
where

(2.7) Xk−1
t (xt−1) = {xt ∈ Xt : gk−1

t (xt, xt−1) ≤ 0, Atxt +Btxt−1 = bt}
and fk−1

t , gk−1
t , and Qk−1

t+1 are polyhedral functions minorizing ft, gt and Qt+1, respectively, i.e.,

(2.8) fk−1
t ≤ ft, gk−1

t ≤ gt, Qk−1
t+1 ≤ Qt+1.

For t = T + 1, we actually assume that Qk−1
T+1 ≡ 0, and hence that QkT+1 = QT+1. Moreover, we also assume

that Qk−1
T+1 ≡ 0, and hence Qk−1

T+1 = QT+1.

Observe that for every k ≥ 0, t = 1, · · · , T , and xt−1 ∈ Xt−1, relations (2.7) and (2.8) imply that

(2.9) Xt(xt−1) ⊂ Xk
t (xt−1) ⊂ Xt

and
fkt (·, xt−1) +Qkt+1(·) ≤ ft(·, xt−1) +Qt+1(·),

and hence that

(2.10) Qkt ≤ Qt, ∀ t = 1, 2, . . . , T, ∀ k ≥ 0.

At iteration k, feasible points xk1 , . . . , x
k
T are computed recursively as follows: for t = 1, . . . , T , xkt is set to be

an optimal solution of subproblem (2.6) with xt−1 = xkt−1 with the convention that xk0 = x0. These points in
turn are used to compute new affine functions minorizing ft, gt and Qt which are then added to the bundle
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of affine functions describing fk−1
t , gk−1

t , and Qk−1
t to obtain new lower bounding approximations fkt , g

k
t ,

and Qkt for ft, gt and Qt, respectively.
The precise description of DCuP algorithm is as follows.

DCuP (Dynamic Cutting Plane) with linearizations computed in a forward pass.

Step 0. Initialization. For every t = 1, . . . , T , let affine functions f0
t and g0

t such that f0
t ≤ ft and

g0
t ≤ gt, and a piecewise linear function Q0

t : Xt−1 → R such that Q0
t ≤ Qt be given. We write Q0

t as
Q0
t (xt−1) = θ0

t + 〈β0
t , xt−1〉, set Q0

T+1 ≡ 0, and k = 1.

Step 1. Forward pass. Set CkT+1 = QkT+1 ≡ 0 and xk0 = x0. For t = 1, 2, . . . , T , do:

a) find an optimal solution xkt of

(2.11) Qk−1
t (xkt−1) =

{
inf

xt∈Rn
fk−1
t (xt, x

k
t−1) +Qk−1

t+1 (xt)

xt ∈ Xk−1
t (xkt−1),

where Xk
t (·) is as in (2.7);

b) compute function values and subgradients of ft and gti, i = 1, . . . , p, at (xkt , x
k
t−1), and let `ft(·; (xkt , x

k
t−1))

and `gti(·; (xkt , x
k
t−1)) denote the corresponding linearizations;

c) set

fkt = max
(
fk−1
t , `ft

(
(·, ·); (xkt , x

k
t−1)

) )
,(2.12)

gkti = max
(
gk−1
ti , `gti

(
(·, ·); (xkt , x

k
t−1)

) )
, ∀i = 1, . . . , p,(2.13)

and define gkt := (gkt1, . . . , g
k
tp);

d) if t ≥ 2, then compute βkt ∈ ∂Q
k−1
t (xkt−1) and denote the corresponding linearization of Qk−1

t as

Ckt (·) := Qk−1
t (xkt−1) + 〈βkt , · − xkt−1〉;

moreover, set

(2.14) Qkt = max{Qk−1
t , Ckt };

Step 2. Set k ← k + 1 and go to Step 1.

We now make a few remarks about DCuP. First, Lemma 2.1(c) guarantees the existence of the subgradi-
ents, and hence the linearizations, of the functions ft and gti, i = 1, . . . , p, at any point (xt, xt−1) ∈ Xt×Xt−1,
and hence that the functions fkt and gkt in Step 1 are well-defined. Second, in view of the definition of xkt
in Step a), we have that xkt ∈ Xk−1

t (xkt−1) ⊂ Xt for every t = 1, . . . , T and k ≥ 0. Third, Lemma 2.2(b)

below and the previous remark guarantee the existence of the subgradient βkt in Step d). Fourth, we dicuss
in Subsection 2.3 ways of computing this subgradient.

In the remaining part of this subsection, we provide the convergence analysis of DCuP. The following
result states some basic properties about the functions involved in DCuP.

Lemma 2.2. The following statements hold:

(a) for every k ≥ 1 and t = 1, . . . , T , we have

fkt ≤ fk+1
t ≤ ft, gkt ≤ gk+1

t ≤ gt,(2.15)

Xt(xt−1) ⊂ Xk+1
t (xt−1) ⊂ Xk

t (xt−1) ⊂ Xt−1 ∀xt−1 ∈ Rn,(2.16)

Qkt+1 ≤ Qk+1
t+1 ≤ Qt+1,(2.17)

Qkt ≤ Q
k+1
t ≤ Qt.(2.18)

(b) For every k ≥ 1 and t = 2, . . . , T , function Qkt is convex and int (dom(Qkt )) ⊃ Xt−1; as a consequence,

∂Qkt (xt−1) 6= ∅ for every xt−1 ∈ Xt−1.
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Proof: (a) Relations (2.15) and (2.16) follow immediately from the initialization of DCuP described in step
0, the recursive definitions of fkt and gkt in (2.12) and (2.13), respectively, the definition of Xk

t (·) in (2.7),
and the fact that

`ft((·, ·); (xkt , x
k
t−1)) ≤ ft(·, ·), `gti((·.·); (xkt , x

k
t−1)) ≤ gti(·.·).

Next note that the inequalities in (2.18) follow immediately from the respective ones in (2.15), (2.16) and
(2.17), together with relations (2.4) and (2.11). It then remains to show that the inequalities in (2.17) hold.

Indeed, the inequality Qkt+1 ≤ Qk+1
t+1 follows immediately from (2.14) with t = t + 1. We will now show

that inequalities Qkt ≤ Qt for every t = 2, . . . , T + 1 implies that Qk+1
t ≤ Qt for every t = 2, . . . , T + 1,

and hence that the second inequality in (2.17) follows from a simple inductive argument on k. Indeed, first

observe that the inequality Qkt+1 ≤ Qt+1 implies that Qkt ≤ Qt. Next observe that the construction of Ck+1
t

in Step d) of DCuP implies that Ck+1
t ≤ Qkt , and hence that Ck+1

t ≤ Qt. It then follows from (2.14) and

the inequality Qkt ≤ Qt that Qk+1
t ≤ Qt. We have thus shown that Qkt ≤ Qt for every t = 2, . . . , T + 1

implies that Qk+1
t ≤ Qt for every t = 2, . . . , T . Since the latter inequality for t = T + 1 is straightforward

and Q0
t ≤ Qt for t = 2, . . . , T , (2.17) follows.

(b) The assertion that Qkt is a convex function follows from the fact that Qkt+1 is convex and the same

arguments used in Lemma 2.1 to show that Qt is convex. The assertion that dom(Qkt ) ⊃ Xt−1 follows from

the fact that by (2.18) we have Qkt ≤ Qt, and hence that

int
(

dom(Qkt )
)
⊃ int (dom(Qt)) ⊃ Xt−1,

where the last inclusion is due to Lemma 2.1(a).
The following technical result is useful to establish uniform Lipschitz continuity of convex functions.

Lemma 2.3. Assume that φ− and φ+ are proper convex functions such that φ− ≤ φ+. Then, for any
nonempty compact set K ⊂ int (dom(φ+)), there exists a scalar L = L(K) ≥ 0 satisfying the following
property: any convex function φ such that φ− ≤ φ ≤ φ+ is L-Lipschitz continuous on K.

Proof: Let φ be a convex function such that φ− ≤ φ ≤ φ+ and let K ⊂ int (dom(φ+)) be a nonempty
compact set. Since φ− and φ+ are proper, it then follows that φ is proper and dom(φ) ⊃ dom(φ+), and
hence that int (dom(φ−)) ⊃ int (dom(φ)) ⊃ int (dom(φ+)) ⊃ K. Hence, in view of Theorem 23.4 of [28], we
conclude that ∂φ(x) 6= ∅ for every x ∈ K. We now claim that there exists L such that ‖β‖ ≤ L for every
β ∈ ∂φ(x) and x ∈ K. This claim in turn can be easily seen to imply that the conclusion of the lemma
holds. To show the claim, let x ∈ K and 0 6= β ∈ ∂φ(x) be given. The inclusion K ⊂ int (dom(φ+)) implies
the existence of ε > 0 such that Kε := K + B̄(0; ε) ⊂ int (dom(φ+)). Let

yε := x+ ε
β

‖β‖
, θ+ := max

y∈Kε

φ+(y), θ− := min
y∈K

φ−(y).

Clearly, yε ∈ Kε due to the definition of Kε and the facts that x ∈ K and ‖yε−x‖ ≤ ε. Moreover, using the
fact that every proper convex function is continuous in the interior of its domain, we then conclude that the
proper convex functions φ+ and φ− are continuous on Kε and K, respectively, since these two sets lie in the
interior of their domains, respectively. Hence, it follows from Weierstrass’ theorem that θ+ and θ− are both
finite due to the compactness of K and Kε, respectively. Using the facts that x ∈ K, yε ∈ Kε, β ∈ ∂φ(x)
and φ+ ≥ φ, the definitions of θ+ and θ−, and the definition of subgradient, it then follows that

θ+ ≥ φ+(yε) ≥ φ(yε) ≥ φ(x) + 〈β, yε − x〉 = φ(x) + ε‖β‖ ≥ θ− + ε‖β‖

and hence that the claim holds with L = (θ+ − θ−)/ε.

Lemma 2.4. The following statements hold:

(a) For each t = 2, . . . , T , there exist Lt ≥ 0 such that the functions Qkt and Qkt are Lt-Lipschitz
continuous on Xt−1 for every k ≥ 1;

(b) For each t = 1, . . . , T , there exist L̂t ≥ 0 such that the functions fkt and gkti are L̂t-Lipschitz contin-
uous functions on Xt ×Xt−1 for every k ≥ 1 and i = 1, . . . , p.

Proof: Let t ∈ {2, . . . , T} be given. The existence of Lt satisfying (a) follows from Lemmas 2.1 and 2.2, and
applying Lemma 2.3 twice, the first time with K = Xt−1, φ+ = Qt and φ− = Q0

t , and the second time with
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K = Xt−1, φ+ = Qt and φ− = Q0
t . Moreover, the existence of L̂t satisfying (b) follows from Lemma 2.2,

and applying Lemma 2.3 twice, the first time with K = Xt × Xt−1, φ+ = ft and φ− = f0
t , and the second

time with K = Xt ×Xt−1, φ+ = gti and φ− = g0
ti for i = 1, . . . , p.

We now state a result whose proof is given in Lemma 5.2 of [5]. Even though the latter result assumes
convexity of the functions involved in its statement, its proof does not make use of this assumption. For this
reason, we state the result here in a slightly more general way than it is stated in Lemma 5.2 of [5].

Lemma 2.5. Lemma 5.2 in [5]. Assume that Y ⊂ Rn is a compact set, f : Rn → (−∞,∞] is a function
and {fk : Rn → (∞,∞]}∞k=1 is a sequence of functions such that, for some integer k0 > 0 and scalar L > 0,
we have:

(a) fk−k0(y) ≤ fk(y) ≤ f(y) <∞ for every k ≥ k0 + 1 and y ∈ Y ;
(b) fk is L-Lipschitz continuous on Y for every k ≥ 1.

Then, for any infinite sequence {yk}∞k=1 ⊂ Y , we have

lim
k→+∞

[f(yk)− fk(yk)] = 0⇐⇒ lim
k→+∞

[f(yk)− fk−k0(yk)] = 0.

We are now ready to provide the main result of this subsection, i.e., the convergence analysis of DCuP.

Theorem 2.6. Let Assumption (H1) hold. Define

H(t)



(i) lim
k→+∞

gti(x
k
t , x

k
t−1) ≤ 0, i = 1, . . . , p,

(ii) lim
k→+∞

Qt(xkt−1)−Qk−1

t
(xkt−1) = lim

k→+∞
Qt(xkt−1)−Qk

t
(xkt−1) = 0,

(iii) lim
k→+∞

Qt(xkt−1)−
T∑
τ=t

fτ (xkτ , x
k
τ−1) = 0,

(iv) lim
k→+∞

Qt(xkt−1)−Qkt (xkt−1) = 0.

Then H(t)-(i) holds for t = 1, . . . , T , H(t)-(ii),(iii) hold for t = 1, . . . , T + 1, and H(t)-(iv) holds for

t = 2, . . . , T +1. In particular, the limit of the sequence of upper bounds (
∑T
t=1 ft(x

k
t , x

k
t−1))k≥1 and of lower

bounds (Qk−1
1 (x0))k≥1 is the optimal value Q1(x0) of (2.1) and any accumulation point of the sequence

(xk1 , . . . , x
k
T ) is an optimal solution to (2.1).

Proof: We first prove H(t)-(i) for t = 1, . . . , T . Let t ∈ {1, . . . , T} be given and define the sequence {ykt } as
ykt = (xkt , x

k
t−1) for every k ≥ 1. In view of Lemma 2.2, we have gti(y

k
t ) ≥ gkti(y

k
t ) ≥ `gti(y

k
t ; ykt ) = gti(y

k
t ),

and hence

(2.19) gkt (ykt ) = gt(y
k
t ), ∀ k ≥ 1.

Due to Lemma 2.4-(b), functions gkti are convex L̂t-Lipschitz continuous on Xt×Xt−1. Therefore, recalling
(2.19), we can apply Lemma 2.5 to f = gti, f

k = gkti, y
k = ykt , Y = Xt×Xt−1 for i = 1, . . . , p, to obtain

(2.20) limk→+∞ gt(x
k
t , x

k
t−1)− gk−1

t (xkt , x
k
t−1) = 0.

The latter conclusion together with the fact that xkt ∈ Xk−1
t (xkt−1), and hence gk−1

t (xkt , x
k
t−1) ≤ 0, for every

k ≥ 1, then implies that H(t)-(i) holds.
Let us now show H(1)-(ii), (iii) and H(t)-(ii)-(iii), (iv) for t = 2, . . . , T + 1 by backward induction

on t. H(T + 1)-(ii), (iii), (iv) trivially holds. Now, fix t ∈ {1, . . . , T} and assume that H(t + 1)-(ii),
(iii), (iv) holds. We will show that H(t)-(ii), (iii) holds and that H(t)-(iv) holds if t ≥ 2. Indeed, since
ft ≥ fkt ≥ `ft(·; ykt ) and ft(y

k
t ) = `ft(y

k
t ; ykt ), we conclude that fkt (ykt ) = ft(y

k
t ) for every k ≥ 1, and

hence that limk→+∞ ft(y
k
t )− fkt (ykt ) = 0. Recalling by Lemma 2.4-(b) that fkt is L̂t-Lipschitz continuous on

Xt×Xt−1 and using Lemma 2.5 with f = ft, f
k = fkt , (yk) = (ykt ), and Y = Xt×Xt−1, we conclude that

(2.21) lim
k→+∞

ft(x
k
t , x

k
t−1)− fk−1

t (xkt , x
k
t−1) = 0.

Moreover, by the induction hypothesis H(t+ 1)-(iv), we have limk→+∞Qkt+1(xkt )−Qt+1(xkt ) = 0. Recalling

by Lemma 2.4-(a) that functions Qkt are Lt-Lipschitz continuous on Xt−1, we can use Lemma 2.5 with k0 = 1,
f = Qt+1, f

k = Qkt+1, y
k = xkt and Y = Xt, to obtain

(2.22) lim
k→+∞

Qk−1
t+1 (xkt )−Qt+1(xkt ) = 0.
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Now, using Lemma 2.2, we easily see that the objective function fk−1
t (·, xkt−1) +Qk−1

t+1 (·) and feasible region

Xk−1
t (xkt−1) of (2.11) satisfies fk−1

t (·, xkt−1) +Qk−1
t+1 (·) ≤ Ft(·, xkt−1) and Xk−1

t (xkt−1) ⊇ Xt(x
k
t−1). Since xkt is

an optimal solution of (2.11) and Qt(xkt−1) is the optimal value of min{Ft(xt, xkt−1) : xt ∈ Xt(x
k
t−1)} due to

(2.4), we then conclude that fk−1
t (xkt , x

k
t−1) +Qk−1

t+1 (xkt ) ≤ Qt(xkt−1). Hence, we conclude that

0 ≥ lim
k→+∞

fk−1
t (xkt , x

k
t−1) +Qk−1

t+1 (xkt )−Qt(xkt−1) = lim
k→+∞

ft(x
k
t , x

k
t−1) +Qt+1(xkt )−Qt(xkt−1)

where the equality is due to (2.21) and (2.22). We now claim that

(2.23) lim
k→+∞

ft(x
k
t , x

k
t−1) +Qt+1(xkt )−Qt(xkt−1) = 0.

Indeed, assume by contradiction that the above claim does not hold. Then, it follows from the last conclusion
before the claim that

(2.24) limk→+∞ ft(x
k
t , x

k
t−1) +Qt+1(xkt )−Qt(xkt−1) < 0.

Since {(xkt , xkt−1)} is a sequence lying in the compact set Xt×Xt−1, it has a subsequence {(xkt , xkt−1)}k∈K
converging to some (x∗t , x

∗
t−1) ∈ Xt×Xt−1. Hence, in view of H(t)-(i), (2.24), and the fact that ft and gt

are lower semi-continuous on Xt×Xt−1 and Qt (resp. Qt+1) is lower semi-continuous on Xt−1 (resp. Xt), we
conclude that

gt(x
∗
t , x
∗
t−1) ≤ 0, ft(x

∗
t , x
∗
t−1) +Qt+1(x∗t )−Qt(x∗t−1) < 0

and hence that x∗t ∈ Xt(x
∗
t−1) (recall that Xt is closed) and Ft(x

∗
t , x
∗
t−1) < Qt(x∗t−1) due to the definition

of Xt and Ft in (2.2) and (2.4), respectively. Since this contradicts the definition of Qt in (2.4), the above
claim follows. Combining

0 ≤ Qt(xkt−1)−Qkt (xkt−1) ≤ Qt(xkt−1)−Qk−1
t (xkt−1),

= Qt(xkt−1)− fk−1
t (xkt , x

k
t−1)−Qk−1

t+1 (xkt ) [by definition of xkt ]

with relations (2.21), (2.22), (2.23) we obtain limk→+∞Qt(xkt−1)−Qkt (xkt−1) = 0. Also observe that

lim
k→+∞

Qt(xkt−1)−
T∑
τ=t

fτ (xkτ , x
k
τ−1)

= lim
k→+∞

Qt(xkt−1)− ft(xkt , xkt−1)−Qt+1(xkt )︸ ︷︷ ︸
=0 by (2.23)

+ lim
k→+∞

Qt+1(xkt )−
T∑

τ=t+1

fτ (xkτ , x
k
τ−1)︸ ︷︷ ︸

=0 using H(t+1)−(iii)

,

= 0,

and we have shown H(t)-(ii),(iii).
Finally, if t ≥ 2, H(t)-(iv) follows from

0 ≤ Qt(xkt−1)−Qkt (xkt−1) ≤ Qt(xkt−1)− Ckt (xkt−1) since Qkt ≥ Ckt ,
= Qt(xkt−1)− fk−1

t (xkt , x
k
t−1)−Qk−1

t+1 (xkt ) [by definition of xkt ]

combined with relations (2.21), (2.22), (2.23).

2.3. Computation of the subgradient in Step d) of DCuP. This subsection explains how to compute

a subgradient βkt of Qk−1
t (·) at xkt−1 in Step d) of DCuP.

Observe that we can express Qk−1
t as

(2.25) Qk−1
t (xt−1) =



min
xt∈Rn,f,θ∈R

f + θ

xt ∈ Xt,
f ≥ `ft(xt, xt−1, (x

j
t , x

j
t−1)), j = 1, . . . , k − 1,

θ ≥ Qi−1
t+1(xit) + 〈βit+1, xt − xit〉, i = 1, . . . , k − 1,

`gti(xt, xt−1, (x
j
t , x

j
t−1)) ≤ 0, j = 1, . . . , k − 1, i = 1, . . . , p,

Atxt +Btxt−1 = bt.
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Due to Assumption (H1)-2), for every xt−1 ∈ Xt−1, there exists xt ∈ ri(Xt) such that Atxt + Btxt−1 = bt
and gt(xt, xt−1) ≤ 0, which implies that for every i = 1, . . . , p, and j = 1, . . . , k − 1, we have

`gti(xt, xt−1, (x
j
t , x

j
t−1)) ≤ gti(xt, xt−1) ≤ 0

and therefore Slater constraint qualification holds for problem (2.25) for every xt−1 ∈ Xt−1. Next observe
that due to the compactness of Xt the objective function of (2.25) bounded from below on the feasible set.
It follows that the optimal value of (2.25) is finite and by the Duality Theorem, we can write problem (2.25)

as the optimal value of the corresponding dual problem. To write this dual, it is convenient to rewrite Qk−1
t

on Xt−1 as

(2.26) Qk−1
t (xt−1) =



min
xt∈Rn,f,θ∈R

f + θ

xt ∈ Xt,
fe ≥ Ak−1

t xt +Bk−1
t xt−1 + Ck−1

t ,

θe ≥ θ0:k−1
t+1 + β0:k−1

t+1 xt,

Dk−1
t xt + Ek−1

t xt−1 +Hk−1
t ≤ 0,

Atxt +Btxt−1 = bt,

where e is a vector of ones of dimension k−1 and Ak−1
t , Bk−1

t , Dk−1
t , Ek−1

t , β1:k−1
t+1 (resp. Ck−1

t , Hk−1
t , θ1:k−1

t+1 )

are matrices (resp. vectors) of appropriate dimensions. In particular, β0:k−1
t+1 is a matrix with k rows with

(i + 1)-th row equal to (βit+1)> and θ0:k−1
t+1 is a vector of size k with first component equal to θ0

t+1 and for

i ≥ 2 component i given by θi−1
t+1 = Qi−2

t+1(xi−1
t )− 〈βi−1

t+1 , x
i−1
t 〉.

We now write the dual of (2.26) as

(2.27) Qk−1
t (xt−1) =

{
max
α,µ,δ,λ

ht,xt−1(α, λ, µ, δ)

α ≥ 0, µ ≥ 0, δ ≥ 0, λ,

where dual function ht,xt−1
is given by

(2.28) ht,xt−1
(α, λ, µ, δ) =

{
min

xt∈Rn,f,θ∈R
Lt,xt−1

(xt, f, θ;α, λ, µ, δ)

xt ∈ Xt,

with Lagrangian Lt,xt−1
(xt, f, θ;α, λ, µ, δ) given by

Lt,xt−1
(xt, f, θ;α, λ, µ, δ) = f + θ + 〈α,Ak−1

t xt +Bk−1
t xt−1 + Ck−1

t − fe〉+ 〈λ,Atxt +Btxt−1 − bt〉
+〈µ,Dk−1

t xt + Ek−1
t xt−1 +Hk−1

t 〉+ 〈δ, θ1:k−1
t+1 + β1:k−1

t+1 xt − θe〉.

With this notation, we have the following characterization of ∂Qk−1
t (xkt−1):

Lemma 2.7. Let Assumption (H1) hold. Then the subdifferential of Qk−1
t at xkt−1 is the set of points of

form

(2.29) B>t λ+ (Bk−1
t )>α+ (Ek−1

t )>µ

where (α, λ, µ) is such that there is δ satisfying (α, λ, µ, δ) is an optimal solution of dual problem (2.27)
written for xt−1 = xkt−1.

Proof: Defining
Sk = Xt×R×R×Rn ∩ Ck ∩D,

where

Ck =

(xt, f, θ, xt−1) :


Ak−1
t xt +Bk−1

t xt−1 + Ck−1
t ≤ fe,

θ0:k−1
t+1 + β0:k−1

t+1 xt ≤ θe,
Dk−1
t xt + Ek−1

t xt−1 +Hk−1
t ≤ 0


D = {(xt, f, θ, xt−1) : Atxt +Btxt−1 = bt},

we have

(2.30) Qk−1
t (xkt−1) =

{
inf f + θ + ISk(xt, f, θ, x

k
t−1)

xt ∈ Rn, f, θ ∈ R.

9



Using Theorem 24(a) in Rockafellar [29], we have

(2.31)
βkt ∈ ∂Q

k−1
t (xkt−1) ⇔ (0, 0, 0, βkt ) ∈ ∂(f + θ + ISk)(xkt , ftk, θtk, x

k
t−1)

⇔ (0, 0, 0, βkt ) ∈ [0; 1; 1; 0] +NSk(xkt , ftk, θtk, x
k
t−1), (a)

where ftk and θtk are the optimal values of respectively f and θ in (2.26) written for xt−1 = xkt−1. For
equivalence (2.31)-(a), we have used the fact that (xt, f, θ, xt−1) → f + θ and ISk are proper, finite at
(xkt , ftk, θtk, x

k
t−1), and the intersection of the relative interior of the domain of these functions, i.e., set

ri(Sk), is nonempty. Next,
(2.32)
NSk(xkt , ftk, θtk, x

k
t−1) = NCk

(xkt , ftk, θtk, x
k
t−1) +ND(xkt , ftk, θtk, x

k
t−1) +NXt×R×R×Rn(xkt , ftk, θtk, x

k
t−1),

and standard calculus on normal cones gives

(2.33)
NXt×R×R×Rn(xkt , ftk, θtk, x

k
t−1) = NXt(x

k
t )×{0}×{0}×{0},

ND(xkt , ftk, θtk, x
k
t−1) =

{
[A>t ; 0; 0;B>t ]λ : λ ∈ Rq

}
,

and NCk
(xkt , ftk, θtk, x

k
t−1) is the set of points of form

(2.34)


(Ak−1

t )>α+ (β0:k−1
t+1 )>δ + (Dk−1

t )>µ
−e>α
−e>δ

(Bk−1
t )>α+ (Ek−1

t )>µ


where α, δ, µ satisfy

(2.35)

α, δ, µ ≥ 0, α
δ
µ

> Ak−1
t xkt +Bk−1

t xkt−1 + Ck−1
t − ftke

θ0:k−1
t+1 + β0:k−1

t+1 xkt − θtke
Dk−1
t xkt + Ek−1

t xkt−1 +Hk−1
t

 = 0.

Combining (2.31), (2.32), (2.33), (2.34), we see that βkt ∈ ∂Q
k
t (xkt−1) if and only if βkt is of form (2.29) where

α, λ, µ satisfies (2.35) and

(2.36)
0 ∈ NXt

(xkt ) +A>t λ+ (Ak−1
t )>α+ (β0:k−1

t+1 )δ + (Dk−1
t )>µ,

0 = 1− e>α,
0 = 1− e>δ.

Finally, it suffices to observe that α, λ, µ satisfies (2.35) and (2.36) if and only if α, λ, µ, δ is an optimal
solution of dual problem (2.27).

Using the previous lemma and denoting by (αkt , λ
k
t , µ

k
t , δ

k
t ) an optimal solution of (2.27) written for

xt−1 = xkt−1, we have that

(2.37) βkt = (Bk−1
t )>αkt +B>t λ

k
t + (Ek−1

t )>µkt ∈ ∂Q
k−1
t (xkt−1).

Remark: When Xt is polyhedral, formula (2.37) follows from Duality for linear programming. For a more

general convex set Xt, formula (2.37) directly follows from applying to value function Qk−1
t Lemma 2.1 in [6]

or Proposition 3.2 in [9] which respectively provide a characterization of the subdifferential and subgradients
for value functions of general convex optimization problems (whose argument is in the objective function
and in linear and nonlinear coupling constraints of the corresponding optimization problem). The proof of

Lemma 2.7 is a proof of relation (2.37) specializing to the particular case of value function Qk−1
t the proof

of Lemma 2.1 in [6].

3. The StoDCuP (Stochastic Dynamic Cutting Plane) algorithm

3.1. Problem formulation and assumptions. We consider multistage stochastic nonlinear optimization
problems of the form
(3.38)

min
x1∈X1(x0,ξ1)

f1(x1, x0, ξ1) + E
[

min
x2∈X2(x1,ξ2)

f2(x2, x1, ξ2) + E
[
. . .+ E

[
min

xT∈XT (xT−1,ξT )
fT (xT , xT−1, ξT )

]]]
,
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where x0 is given, (ξt)
T
t=2 is a stochastic process, ξ1 is deterministic, and

Xt(xt−1, ξt) = {xt ∈ Rn : Atxt +Btxt−1 = bt, gt(xt, xt−1, ξt) ≤ 0, xt ∈ Xt}.

In the constraint set above, Xt is polyhedral and ξt contains in particular the random elements in matrices
At, Bt, and vector bt.

We make the following assumption on (ξt):

(H0) (ξt) is interstage independent and for t = 2, . . . , T , ξt is a random vector taking values in RK with
a discrete distribution and a finite support Θt = {ξt1, . . . , ξtMt} with pti = P(ξt = ξti), i = 1, . . . ,Mt, while
ξ1 is deterministic.

For this problem, we can write Dynamic Programming equations: the first stage problem is

(3.39) Q1(x0) =

{
minx1∈Rn f1(x1, x0, ξ1) +Q2(x1)
x1 ∈ X1(x0, ξ1)

for x0 given and for t = 2, . . . , T , Qt(xt−1) = Eξt [Qt(xt−1, ξt)] with

(3.40) Qt(xt−1, ξt) =

{
minxt∈Rn ft(xt, xt−1, ξt) +Qt+1(xt)
xt ∈ Xt(xt−1, ξt),

with the convention that QT+1 is identically zero.
We set X0 = {x0} and make the following assumptions (H1)-Sto on the problem data:
(H1)-Sto: for t = 1, . . . , T ,

1) Xt is a nonempty, compact, and polyhedral set.
2) For every j = 1, . . . ,Mt, the function ft(·, ·, ξtj) is convex, proper, lower semicontinuous on Xt×Xt−1

and Xt×Xt−1 ⊂ int (dom(ft(·, ·, ξtj))).
3) For every j = 1, . . . ,Mt, each component gti(·, ·, ξtj), i = 1, . . . , p, of function gt(·, ·, ξtj) is convex,

proper, lower semicontinuous such that Xt×Xt−1 ⊂ int (dom(gti(·, ·, ξtj))).
4) X1(x0, ξ1) 6= ∅ and for every t = 2, . . . , T , for every j = 1, . . . ,Mt, Xt−1 ⊂ int (dom(Xt(·, ξtj))).

Remark 3.1. Nonlinear constraints of form hti(xt, ξt) ≤ 0 or hti(xt) ≤ 0 at stage t can be handled, adding
the corresponding component functions hti in gt, as long as (H1)-Sto is satisfied. In particular, convexity of
hti(·, ξtj) is required for j = 1, . . . ,Mt.

It is easy to show that under Assumption (H1)-Sto, functions Qt are convex and Lipschitz continuous on
Xt−1:

Lemma 3.2. Let Assumption (H1)-Sto hold. Then Qt is convex Lipschitz continuous on Xt−1 for t =
2, . . . , T + 1.

Proof: The proof is analogue to the proof of Lemma 2.1.

3.2. Forward StoDCuP. The algorithm to be presented in this section for solving (3.38) is an extension
of the DCuP algorithm to the stochastic case. All inequalities and equalities between random variables in
the rest of the paper hold almost surely with respect to the sampling of the algorithm.

Due to Assumption (H0), the

T∏
t=2

Mt realizations of (ξt)
T
t=1 form a scenario tree of depth T + 1 where the

root node n0 associated to a stage 0 (with decision x0 taken at that node) has one child node n1 associated
to the first stage (with ξ1 deterministic).

We denote by N the set of nodes, by Nodes(t) the set of nodes for stage t and for a node n of the tree,
we define:

• C(n): the set of children nodes (the empty set for the leaves);
• xn: a decision taken at that node;
• pn: the transition probability from the parent node of n to n;
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• ξn: the realization of process (ξt) at node n1: for a node n of stage t, this realization ξn contains in
particular the realizations bn of bt, An of At, and Bn of Bt.

• ξ[n]: the history of the realizations of process (ξt) from the first stage node n1 to node n: for a node
n of stage t, the i-th component of ξ[n] is ξPt−i(n) for i = 1, . . . , t, where P : N → N is the function
associating to a node its parent node (the empty set for the root node).

At each iteration of the algorithm, trial points are computed on a sampled scenario and lower bounding
affine functions, called cuts in the sequel, are built for convex functions Qt, t = 2, . . . , T + 1, at these trial
points. More precisely, at iteration k denoting by xkt−1 the trial point for stage t− 1, the cut

(3.41) Ckt (xt−1) = θkt + 〈βkt , xt−1〉
is built for Qt with the convention that CkT+1 is the null function (see below for the computation of θkt , βkt ).

As in SDDP, we end up in iteration k with an approximation Qkt of Qt which is a maximum of k + 1 affine

functions: Qkt (xt−1) = max0≤j≤k Cjt (xt−1).
Additionally, the variant we propose builds cutting plane approximations of convex functions ft(·, ·, ξtj)

and gti(·, ·, ξtj), t = 1, . . . , T, i = 1, . . . , p, j = 1, . . . ,Mt, computing linearizations of these functions. At
the end of iteration k, these approximations will be denoted by fktj and gktij for ft(·, ·, ξtj) and gti(·, ·, ξtj)
respectively, and take the form of a maximum of k + 1 affine functions. We use the notation

fktj(xt, xt−1) = max
`=0,...,k

a`tjxt + b`tjxt−1 + c`tj ,

gktij(xt, xt−1) = max
`=0,...,k

d`tijxt + e`tijxt−1 + h`tij ,

where a`tj , b
`
tj , d

`
tij , and e`tij are n-dimensional row vectors. The trial points of iteration k are computed before

updating these functions, therefore using approximations fk−1
tj , gk−1

tij , and Qk−1
t+1 of ft(·, ·, ξtj), gti(·, ·, ξtj), and

Qt+1 available at the end of iteration k−1. These trial points are decisions computed at nodes (nk1 , n
k
2 , . . . , n

k
T )

using these approximations, knowing that nk1 = n1, and for t ≥ 2, nkt is a node of stage t, child of node nkt−1,

i.e., these nodes correspond to a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) of (ξ1, ξ2, . . . , ξT ). At iteration k, the linearizations

for ft(·, ·, ξtj), gti(·, ·, ξtj) (resp. Qt) are computed at (xkm, x
k
n) (resp. xkn) where n = nkt−1, and m is the child

node of node n such that ξm = ξtj . For convenience, for any node m of stage t, we will denote by jt(m) the
unique index jt(m) such that ξm = ξtjt(m). Before detailing the steps of StoDCuP, we need more notation:

for all k ≥ 1, t = 1, . . . , T, j = 1, . . . ,Mt, let Xk
tj : Xt−1 ⇒ Xt be the multifunction given by

(3.42) Xk
tj(xt−1) = {xt ∈ Xt : gktij(xt, xt−1) ≤ 0, i = 1, . . . , p, Atjxt +Btjxt−1 = btj},

where Atj , Btj , btj are respectively the realizations of At, Bt, and bt in ξtj and let Qk
tj : Xt−1 → R be the

function

(3.43) Qk
tj(xt−1) =

{
min
xt

fktj(xt, xt−1) +Qkt+1(xt)

xt ∈ Xk
tj(xt−1).

The detailed steps of the algorithm are described below (see the correspondence with DCuP). We refer
to Figure 1 for the representation of the variables updated in iteration k of StoDCuP.

Forward StoDCuP (Stochastic Dynamic Cutting Plane) with linearizations computed in a
forward pass.

Step 0) Initialization. For t = 1, . . . , T , j = 1, . . . ,Mt, i = 1, . . . , p, take f0
tj , g

0
tij : Xt×Xt−1 → R affine

functions satisfying f0
tj ≤ ft(·, ·, ξtj), g0

tij ≤ gti(·, ·, ξtj), and for t = 2, . . . , T , Q0
t : Xt−1 → R is an

affine function satisfying Q0
t ≤ Qt. Set xn0

= x0, set the iteration count k to 1, and Q0
T+1 ≡ 0.

Step 1) Forward pass. Set CkT+1 = QkT+1 ≡ 0 and xk0 = x0.

Generate a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) of (ξ1, ξ2, . . . , ξT ) corresponding to a set of nodes (nk1 , n

k
2 , . . . , n

k
T )

where nk1 = n1, and for t ≥ 2, nkt is a node of stage t, child of node nkt−1. Set nk0 = n0.

1The same notation ξIndex is used to denote the realization of the process at node Index of the scenario tree and the value
of the process (ξt) for stage Index. The context will allow us to know which concept is being referred to. In particular, letters

n and m will only be used to refer to nodes while t will be used to refer to stages.
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k
T1; g
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T i1 xk

T2; f
k
T2; g

k
T i2

xk
T3; f

k
T3; g

k
T i3

Stage t = 2

Stage t = 1

Stage t

xk
23; f

k
23; g

k
2i3

Inputs

xk
t!12; f

k!1
tj ; gk!1

tij

Stage T

Qk
2

Cost-to-go
computed

Qk
t

xk
22; f

k
22; g

k
2i2

xk
t2; f

k
t2; g

k
ti2

xk
T!12; f

k!1
Tj ; gk!1

T ij Qk
T

xk
1 ; f

k!1
2j ; gk!1

2ij

xk
1 ; f

k
11; g

k
1i1

x0; f
k!1
11 ; gk!1

1i1

Figure 1. Variables updated in iteration k of StoDCuP. In this representation, for simplic-
ity, every node had 3 child nodes and the sampled scenario is (ξ1, ξ22, . . . , ξt2, . . . , ξT2) with
corresponding decisions (xk1 , x

k
22, . . . , x

k
t2, . . . , x

k
T2). The decisions computed for the nodes of

stage t on this scenario are denoted on this figure by xkt1, x
k
t2, x

k
t3 for nodes with realization

of ξt given by respectively ξt1, ξt2, ξt3. For a given stage t, the inputs are xkt−12 (trial point),

fk−1
tj , gk−1

tij (for all i, j) while the outputs are Qkt and for node with realization

ξtj of ξt decision xktj and functions fktj , g
k
tij .

For t = 1, . . . , T , do:
Let n = nkt−1.
For every m ∈ C(n),

a) compute an optimal solution xkm of

(3.44) Qk−1
tjt(m)(x

k
n) =

{
min
xm

fk−1
tjt(m)(xm, x

k
n) +Qk−1

t+1 (xm)

xm ∈ Xk−1
tjt(m)(x

k
n)

where we recall that

fk−1
tjt(m)(xm, x

k
n) = max

`=0,...,k−1
a`tjt(m)xm + b`tjt(m)x

k
n + c`tjt(m),

Qk−1
t+1 (xm) = max0≤`≤k−1 C`t+1(xm).

b) Compute function values and subgradients of convex functions ft(·, ·, ξm) and gti(·, ·, ξm)
at (xkm, x

k
n) and let `ft(·,·,ξm)((·, ·); (xkm, x

k
n)) and `gti(·,·,ξm)((·, ·); (xkm, x

k
n)) denote the

corresponding linearizations.
c) Set

fktjt(m) = max
(
fk−1
tjt(m) , `ft(·,·,ξm)((·, ·); (xkm, x

k
n))
)
,

gkti = max
(
gk−1
ti , `gti(·,·,ξm)((·, ·); (xkm, x

k
n))
)
, ∀i = 1, . . . , p.

d) If t ≥ 2 then compute βktm ∈ ∂Q
k−1
tjt(m)(x

k
n).
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End For
If t ≥ 2 compute:

(3.45)

βkt =
∑

m∈C(n)

pmβ
k
tm,

θkt =
∑

m∈C(n)

pm

[
Qk−1
tjt(m)(x

k
n)− 〈βktm, xkn〉

]
,

yielding the new cut Ckt (xt−1) = θkt + 〈βkt , xt−1〉 and Qkt = max{Qk−1
t , Ckt }.

End If
End For

Step 2) Do k ← k + 1 and go to Step 2).

The following assumption will be made on the sampling process in StoDCuP:

(H2) The samples of (ξt) generated in StoDCuP are independent: (ξ̃k2 , . . . , ξ̃
k
T ) is a realization of ξk =

(ξk2 , . . . , ξ
k
T ) ∼ (ξ2, . . . , ξT ) and ξk, k ≥ 1, are independent.

Recall that there are

T∏
t=2

Mt possible scenarios (realizations) for (ξ2, . . . , ξT ). Moreoever, by (H2), for

every such scenario sj , j = 1, . . . ,

T∏
t=2

Mt, the events En = {ξn = sj}, n ≥ 1, are independent and have a

positive probability that only depends on j. This gives
∑
n≥1 P(En) =∞ and by the Borel-Cantelli lemma,

this implies that P( lim
n→∞

En) = 1. In what follows, several relations hold almost surely. In this case, the

corresponding event of probability 1 is limn→∞En corresponding to those realizations of StoDCuP where
every scenario sj is sampled an infinite number of times.

Remark 3.3. As a consequence of the previous observation, for every realization of StoDCuP, and every
node n of the scenario tree, an infinite number of scenarios sampled in StoDCuP pass through that node n.

We have for StoDCuP the following analogue of Lemma 2.4 for DCuP (the proof is similar to the proof
of Lemma 2.4):

Lemma 3.4. Let Assumptions (H0) and (H1)-Sto hold. Then, the following statements hold for StoDCuP:

(a) For t = 2, . . . , T , the sequence {βkt }∞k=1 is almost surely bounded.
(b) There exists L ≥ 0 such that for each t = 2, . . . , T , Qkt is L-Lipschitz continuous on Xt−1 for every

k ≥ 1.
(c) There exists L̂ ≥ 0 such that for each t = 1, . . . , T , j = 1, . . . ,Mt, functions fktj and gktij are L̂-

Lipschitz continuous on Xt ×Xt−1 for every k ≥ 1 and i = 1, . . . , p.

Remark 3.5 (On the cuts and linearizations computed). Assumption (H0) is fundamental for StoDCuP,
due to the following claim:

(C) StoDCuP builds a cut for Qt, t = 2, . . . , T , on any sampled scenario and a single cut for each of the
functions ft(·, ·, ξtj), gti(·, ·, ξtj), t = 1, . . . , T, j = 1, . . . ,Mt, i = 1, . . . , p, at each iteration.

The validity of the formulas of the cuts for Qt will be checked in Lemma 3.8. The fact that a single cut is
built for functions ft(·, ·, ξtj), gti(·, ·, ξtj), i = 1, . . . , p, t = 1, . . . , T, j = 1, . . . ,Mt, comes from the fact that
at iteration k and stage t a cut is built for each of functions ft(·, ·, ξm), gti(·, ·, ξm), i = 1, . . . , p, m ∈ C(n),
where n = nkt−1, and due to Assumption (H0), to each m ∈ C(n), corresponds one and only one index
j = jt(m) such that ξm = ξtj = ξtjt(m).

Remark 3.6. The algorithm can be extended to solve risk-averse problems. It was shown in [12] that
dynamic programming equations can be written and that SDDP can be applied for multistage stochastic
linear optimization problems which minimize some extended polyhedral risk measure of the cost. As a special
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case, spectral risk measures are considered in [13] where analytic formulas for some cut coefficients computed
by SDDP are available. Similarly, StoDCuP can be extended to solve multistage nonlinear optimization
problems with objective and constraint functions as in (3.38) if instead of minimizing the expected cost we
minimize an extended polyhedral risk measure of the cost, as long as Assumptions (H0) and (H1)-Sto are
satisfied. It is also possible to apply StoDCuP to solve risk-averse dynamic programming equations with
nested conditional risk measures (see [30], [31] for details on conditional risk mappings) and objective and
constraint functions as in (3.38), again, as long as Assumptions (H0) and (H1)-Sto are satisfied. Using
SDDP in this risk-averse setting was proposed in [32].

We can simulate the policy obtained after k − 1 iterations of StoDCuP and define decisions xkn at each
node n of the scenario tree as follows:

Simulation of StoDCuP after k − 1 iterations.

Set xkn0
= x0.

For t = 1, . . . , T ,
For every node n ∈ Nodes(t− 1),

For every m ∈ C(n),
compute an optimal solution xkm of

(3.46) Qk−1
tjt(m)(x

k
n) =

{
min
xm

fk−1
tjt(m)(xm, x

k
n) +Qk−1

t+1 (xm)

xm ∈ Xk−1
tjt(m)(x

k
n).

End For
End For

End For

We close this section providing in Lemma 3.7 below simple relations involving the linearizations of the
objective and constraint functions that will be used for the convergence analysis of StoDCuP.

Lemma 3.7. Let Assumption (H1)-Sto hold. For every t = 1, . . . , T , j = 1, . . . ,Mt, i = 1, . . . , p, we have
almost surely

(3.47) ft(xt, xt−1, ξtj) ≥ fktj(xt, xt−1), gti(xt, xt−1, ξtj) ≥ gktij(xt, xt−1), ∀k ≥ 0,∀xt ∈ Xt,∀xt−1 ∈ Xt−1,

and for every k ≥ 1,

(3.48) Xt(xt−1, ξtj) ⊂ Xk
tj(xt−1), ∀ xt−1 ∈ Xt−1.

For all t = 1, . . . , T , i = 1, . . . , p, for all n ∈ Nodes(t− 1), for all k ∈ Sn, we have for all m ∈ C(n):

(3.49) ft(x
k
m, x

k
n, ξm) = fktjt(m)(x

k
m, x

k
n) and gti(x

k
m, x

k
n, ξm) = gktijt(m)(x

k
m, x

k
n), almost surely

For all t = 1, . . . , T , i = 1, . . . , p, for all n ∈ Nodes(t− 1), for all k ≥ 1, for all m ∈ C(n), we have

(3.50) gk−1
tijt(m)(x

k
m, x

k
n) ≤ 0, almost surely,

(3.51) 0 ≤ max(gti(x
k
m, x

k
n, ξm), 0) ≤ gti(xkm, xkn, ξm)− gk−1

tijt(m)(x
k
m, x

k
n), almost surely

Proof: Let us show (3.47). The relation holds for k = 0. Now let us fix t ∈ {1, . . . , T}, j ∈ {1, . . . ,Mt},
k ≥ 1 and ` ∈ {1, . . . , k}. At iteration `, setting n = n`t−1, there exists one and only one node m in the
set C(n) such that ξm = ξtj with j = jt(m) and by the subgradient inequality for every xt ∈ Xt, for every
xt−1 ∈ Xt−1, we have

(3.52)
ft(xt, xt−1, ξtj) = ft(xt, xt−1, ξm) ≥ `ft(·,·,ξm)(xt, xt−1; (x`m, x

`
n))

gti(xt, xt−1, ξtj) = gti(xt, xt−1, ξm) ≥ `gti(·,·,ξm)(xt, xt−1; (x`m, x
`
n)),

which, by Step c) of StoDCuP, immediately implies (3.47) and clearly inclusion (3.48) is a consequence of
(3.47).
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Take t ∈ {1, . . . , T}, i ∈ {1, . . . , p}, take a node n ∈ Nodes(t− 1) and k ∈ Sn. Then for any m ∈ C(n), a
linearization is built for ft(·, ·, ξm) and gti(·, ·, ξm) at (xkm, x

k
n). Therefore,

ft(x
k
m, x

k
n, ξm)

(3.47)

≥ fktjt(m)(x
k
m, x

k
n)

≥ `ft(·,·,ξm)(x
k
m, x

k
n; (xkm, x

k
n)) = ft(x

k
m, x

k
n, ξm) since nkt−1 = n,

gti(x
k
m, x

k
n, ξm)

(3.47)

≥ gktijt(m)(x
k
m, x

k
n)

≥ `gti(·,·,ξm)(x
k
m, x

k
n; (xkm, x

k
n)) = gti(x

k
m, x

k
n, ξm), since nkt−1 = n,

and (3.49) follows.

Relation (3.50) comes from the fact that xkm ∈ Xk−1
tjt(m)(x

k
n) by definition of xkm (see the simulation of

StoDCuP).
Finally take a realization ω of StoDCuP. We show that

(3.53) 0 ≤ max(gti(x
k
m(ω), xkn(ω), ξm), 0) ≤ gti(xkm(ω), xkn(ω), ξm)− gk−1

tijt(m)(ω)(xkm(ω), xkn(ω)).

If gti(x
k
m(ω), xkn(ω), ξm) ≤ 0 then (3.53) holds because gti(·, ·, ξm) ≥ gk−1

tijt(m)(ω) and if gti(x
k
m(ω), xkn(ω), ξm) >

0 then (3.53) holds too because of inequality (3.50). Therefore, (3.53) holds.

3.3. Implementation details for Steps b) and d) of StoDCuP. In this section, we explain how to
compute variables a`tj , b

`
tj , c

`
tj , d

`
tij , e

`
tij , h

`
tij , as well as cut coefficients βktm in StoDCuP.

In Step b) of StoDCuP, we compute an arbitrary subgradient [s1; s2] of convex function ft(·, ·, ξm) at
(xkm, x

k
n) where s1, s2 ∈ Rn and set aktjt(m) = s>1 and bktjt(m) = s>2 . For i = 1, . . . , p, we also compute

an arbitrary subgradient [s1i; s2i] of convex function gti(·, ·, ξm) at (xkm, x
k
n) where s1i, s2i ∈ Rn; we set

dktijt(m) = s>1i, e
k
tijt(m) = s>2i, and compute

cktjt(m) = ft(x
k
m, x

k
n, ξm)− aktjt(m)x

k
m − bktjt(m)x

k
n,

hktijt(m) = gti(x
k
m, x

k
n, ξm)− dktijt(m)x

k
m − ektijt(m)x

k
n.

For the computation of βktm, it is convenient to introduce k × n matrices

(3.54) Aktj =


a0
tj

a1
tj
...
aktj

 , Bktj =


b0tj
b1tj
...
bktj

 , Dk
tij =


d0
tij

d1
tij
...
dktij

 , Ektij =


e0
tij

e1
tij
...
ektij

 , β0:k
t =


(β0
t )>

(β1
t )>

...
(βkt )>

 ,
k dimensional vectors,

(3.55) Cktj =


c0tj
c1tj
...
cktj

 , Hk
tij =


h0
tij

h1
tij
...

hktij

 , and θ0:k
t =


θ0
t

θ1
t
...
θkt

 ,
and matrices and vectors

(3.56) Dk
tj =


Dk
t1j

Dk
t2j
...

Dk
tpj

 , Ektj =


Ekt1j
Ekt2j

...
Ektpj

 , Hk
tj =


Hk
t1j

Hk
t2j
...

Hk
tpj

 .
If Xt = {xt : Xtxt ≥ x̄t}, we can write problem (3.43) as

(3.57) Qk
tj(xt−1) =



min
xt,f,θ

f + θ

fe ≥ Aktjxt +Bktjxt−1 + Cktj ,
Atjxt +Btjxt−1 = btj ,
Dk
tjxt + Ektjxt−1 +Hk

tj ≤ 0,
θe ≥ θ0:k

t+1 + β0:k
t+1xt, Xtxt ≥ x̄t.
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Due to Assumption (H1)-Sto-4), for every xt−1 ∈ Xt−1 and j = 1, . . . ,Mt, there exists xt ∈ Xt such that
Atjxt + Btjxt−1 = btj , and gti(xt, xt−1, ξtj) ≤ 0, i = 1, . . . , p, which implies gktij(xt, xt−1) ≤ 0, i = 1, . . . , p,

Dk
tjxt + Ektjxt−1 + Hk

tj ≤ 0 and therefore the above problem (3.57) is feasible. Recalling (H1)-Sto-1), this
linear program has a finite optimal value. Therefore this optimal value is the optimal value of the dual
problem and can be expressed as:

Qk
tj(xt−1) =


max

α,µ,δ,ν,λ
α>(Bktjxt−1 + Cktj) + µ>(Ektjxt−1 +Hk

tj) + δ>θ0:k
t+1 + λ>(btj −Btjxt−1) + ν>x̄t

(Aktj)
>α+ (Dk

tj)
>µ+ (β0:k

t+1)>δ − X>t ν − (Atj)
>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0.

The above representation of Qk
tj allows us to obtain the formulas for βktm, β

k
t , θ

k
t . More precisely, con-

sider iteration k and stage t ≥ 2 of the forward pass of StoDCuP. Setting n = nkt−1 and m ∈ C(n), let

(αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) be an optimal solution of the dual problem

(3.58)

max
α,µ,δ,ν,λ

α>(Bk−1
tjt(m)x

k
n + Ck−1

tjt(m)) + µ>(Ek−1
tjt(m)x

k
n +Hk−1

tjt(m)) + δ>θ0:k−1
t+1 + λ>(btjt(m) −Btjt(m)x

k
n) + ν>x̄t

(Ak−1
tjt(m))

>α+ (Dk−1
tjt(m))

>µ+ (β0:k−1
t+1 )>δ − X>t ν − (Atjt(m))

>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0.

By the discussion above, the optimal value of (3.58) is Qk
tj(x

k
n). We now show in Lemma 3.8 below that we

can choose in StoDCuP,

(3.59)

βktm =
∑

m∈C(n)

(Bk−1
tjt(m))

>αkm + (Ek−1
tjt(m))

>µkm −B>tjt(m)λ
k
m,

βkt =
∑

m∈C(n)

pm

[
(Bk−1

tjt(m))
>αkm + (Ek−1

tjt(m))
>µkm −B>tjt(m)λ

k
m

]
,

θkt =
∑

m∈C(n)

pm

[
〈αkm, Ck−1

tjt(m)〉+ 〈µkm, Hk−1
tjt(m)〉+ 〈δkm, θ0:k−1

t+1 〉+ 〈λkm, btjt(m)〉+ 〈νkm, x̄t〉
]
.

More precisely, we show in Lemma 3.8 that computations (3.59) provide valid cuts (lower bounding functions

Ckt ) for Qt, in particular that βktm ∈ ∂Q
k−1
tjt(m)(x

k
n), as required by Step d) of StoDCuP, and βkt ∈ ∂Qt(xkn):

Lemma 3.8. Let Assumptions (H0) and (H1)-Sto hold. For every t = 2, . . . , T + 1, for every k ≥ 1, we
have almost surely

(3.60) Qt(xt−1) ≥ Ckt (xt−1) and Qt(xt−1) ≥ Qkt (xt−1), ∀xt−1 ∈ Xt−1.

For all t = 1, . . . , T , j = 1, . . . ,Mt, for every k ≥ 1, we have almost surely

(3.61) Qk
tj(xt−1) ≤ Qt(xt−1, ξtj) for all xt−1 ∈ Xt−1.

For all t = 2, . . . , T , for every k ≥ 1, defining Qk−1
t (xkn) =

∑Mt

j=1 ptjQ
k−1
tj (xkn), we have for every n ∈

Nodes(t− 1) and for all k ∈ Sn:

(3.62) Qk−1
t (xkn) = Ckt (xkn), almost surely

Proof: Let us show (3.60)-(3.61) by backward induction on t. Relation (3.60) clearly holds for t = T + 1.
Now assume that for some t ∈ {1, . . . , T}, we have Qt+1(xt) ≥ Qkt+1(xt) for all xt ∈ Xt and all k ≥ 1. Using

Lemma 3.7, we have for all k ≥ 1, for all j = 1, . . . ,Mt, for all xt ∈ Xt, xt−1 ∈ Xt−1, that fktj(xt, xt−1) ≤
ft(xt, xt−1, ξtj) and Xt(xt−1, ξtj) ⊂ Xk

tj(xt−1), which, together with the induction hypothesis Qkt+1 ≤ Qt+1,
implies

(3.63) Qk
tj(xt−1) ≤ Qt(xt−1, ξtj) for all xt−1 ∈ Xt−1,

i.e., (3.61). Now observe that due to Assumption (H1)-Sto, for every xt−1 ∈ Xt−1, the optimization problem

Qk−1
tj (xt−1) =

{
min
xt

fk−1
tj (xt, xt−1) +Qk−1

t+1 (xt)

xt ∈ Xk−1
tj (xt−1),
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is a linear program with feasible set that is bounded (since Xt is compact) and nonempty (it contains the
nonempty set Xt(xt−1)). Therefore it has a finite optimal value which is also the optimal value of the dual
problem given by

(3.64) Qk−1
tj (xt−1) =


max

α,µ,δ,ν,λ
Dk−1
tj (α, µ, δ, ν, λ;xt−1)

(Ak−1
tj )>α+ (Dk−1

tj )>µ+ (β0:k−1
t+1 )>δ − X>t ν − (Atj)

>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0,

where

Dk−1
tj (α, µ, δ, ν, λ;xt−1) = α>(Bk−1

tj xt−1 + Ck−1
tj ) + µ>(Ek−1

tj xt−1 +Hk−1
tj ) + δ>θ0:k−1

t+1 + λ>(btj −Btjxt−1) + ν>x̄t.

Now assume that t ≥ 2. Let us take m ∈ C(nkt−1). Recall that jt(m) is the unique index j such that ξtj = ξm.

Clearly (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) is feasible for dual problem (3.64) written for j = jt(m) and therefore for any

xt−1 ∈ Xt−1 we have

(3.65) Qk−1
tjt(m)(xt−1) ≥ Dk−1

tjt(m)(α
k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xt−1),

which gives

Qt(xt−1) =

Mt∑
j=1

ptjQt(xt−1, ξtj)

(H0)
=

∑
m∈C(nk

t−1)

pmQt(xt−1, ξm)

=
∑

m∈C(nk
t−1)

pmQt(xt−1, ξtjt(m))

(3.63)

≥
∑

m∈C(nk
t−1)

pmQk−1
tjt(m)(xt−1)

(3.65)

≥
∑

m∈C(nk
t−1)

pmDk−1
tjt(m)(α

k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xt−1)

= Ckt (xt−1),

for every xt−1 ∈ Xt−1, where for the last equality, we have used (3.41) and (3.59). Therefore we have shown
(3.60).

Now take n ∈ Nodes(t− 1) and k ∈ Sn. Then by definition of (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) and of Ckt , we get for

any m ∈ C(n):

(3.66) Qk−1
tjt(m)(x

k
n) = Dk−1

tjt(m)(α
k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn)

and

(3.67) Ckt (xkn) =
∑

m∈C(n)

pmDk−1
tjt(m)(α

k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn) =

∑
m∈C(n)

pmQk−1
tjt(m)(x

k
n) = Qk−1

t (xkn).

3.4. Convergence analysis. In what follows, if the stage associated to node n is τ(n), we use the notation

(3.68) Sn = {k ∈ N∗ : nkτ(n) = n}.

In other words, Sn the set of iterations k where the sampled scenario passes through node n.

Theorem 3.9 (Convergence of StoDCuP). Let Assumption (H0), (H1)-Sto, and (H2) hold. Then
(i) for every t = 1, . . . , T ,i = 1, . . . , p, almost surely

(3.69) lim
k→+∞

max(gti(x
k
m, x

k
n, ξm), 0) = 0, ∀m ∈ Nodes(t), n = P(m).

For all t = 2, . . . , T + 1, for all node n ∈ Nodes(t− 1), we have almost surely

(3.70) H(t) : lim
k→+∞

Qt(xkn)−Qkt (xkn) = 0.
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(ii) The limit of the sequence of first stage problems optimal values (fk−1
11 (xkn1

, x0) +Qk−1
2 (xkn1

))k≥1 is the

optimal value Q1(x0) of (3.39) and any accumulation point of the sequence (xkn1
) is an optimal solution to

the first stage problem (3.39).

Proof: We first show (3.69). Let us fix t ∈ {1, . . . , T}, i ∈ {1, . . . , p}, m ∈ Nodes(t), n = P(m). Recall from
Lemma 3.7 that

(3.71) 0 ≤ max(gti(x
k
m, x

k
n, ξm), 0) ≤ gti(xkm, xkn, ξm)− gk−1

tijt(m)(x
k
m, x

k
n).

We now show that

(3.72) lim
k→+∞

gti(x
k
m, x

k
n, ξm)− gk−1

tijt(m)(x
k
m, x

k
n) = 0,

which will show (3.69) due to relation (3.71).
Recalling that set Sn is infinite (see Remark 3.3), we denote by k(1), k(2), . . . , the iterations in Sn with

k(i) < k(i+ 1): Sn = {k(1), k(2), k(3), . . .}. Let us first show that we have

(3.73) lim
k→+∞,k∈Sn

max(gti(x
k
m, x

k
n, ξm), 0) = 0.

For all ` ≥ 1, relation (3.49) gives

(3.74) gti(x
k(`)
m , xk(`)

n , ξm) = g
k(`)
tijt(m)(x

k(`)
m , xk(`)

n ).

Let us now apply Lemma 2.5 to y` = (x
k(`)
m , x

k(`)
n ), sequence f ` = g

k(`)
tijt(m), and f = gti(·, ·, ξm) (observe that

the assumptions of the lemma are satisfied with k0 = 1). Since

lim
`→+∞

f(y`)− f `(y`) = 0,

we deduce that

(3.75) lim
`→+∞

f(y`)− f `−1(y`) = lim
`→+∞

gti(x
k(`)
m , xk(`)

n , ξm)− gk(`−1)
tijt(m)(x

k(`)
m , xk(`)

n ) = 0.

Since k(`) ≥ 1 + k(` − 1), we have 0 ≤ gti(·, ·, ξm) − gk(`)−1
tijt(m)(·, ·) ≤ gti(·, ·, ξm) − gk(`−1)

tijt(m)(·, ·) and therefore

(3.75) implies

(3.76) lim
`→+∞

gti(x
k(`)
m , xk(`)

n , ξm)− gk(`)−1
tijt(m)(x

k(`)
m , xk(`)

n ) = lim
k→+∞,k∈Sn

gti(x
k
m, x

k
n, ξm)− gk−1

tijt(m)(x
k
m, x

k
n) = 0.

Finally, we show in the Appendix that

(3.77) lim
k→+∞,k/∈Sn

gti(x
k
m, x

k
n)− gk−1

tijt(m)(x
k
m, x

k
n) = 0,

which achieves the proof of (3.72) and therefore of (3.69).
Let us now show H(t) by backward induction on t. H(T +1) holds since QT+1 = QkT+1. Assume now that

H(t+ 1) holds for some t ∈ {2, . . . , T} and let us show that H(t) holds. Take a node n ∈ Nodes(t− 1) and
let us denote again by k(1), k(2), . . . , the iterations in Sn with k(i) < k(i + 1): Sn = {k(1), k(2), k(3), . . .}.
Let us first show that

(3.78) lim
k→+∞,k∈Sn

Qt(xkn)−Qkt (xkn) = lim
`→+∞

Qt(xk(`)
n )−Qk(`)

t (xk(`)
n ) = 0.

By definition of Qk(`)
t , we have Qk(`)

t (x
k(`)
n ) ≥ Ck(`)

t (x
k(`)
n ) and therefore for all ` ≥ 1 we get:

(3.79)

0 ≤ Qt(xk(`)
n )−Qk(`)

t (x
k(`)
n ) ≤ Qt(xk(`)

n )− Ck(`)
t (x

k(`)
n )

= Qt(xk(`)
n )−Qk(`)−1

t (x
k(`)
n ),

=
∑

m∈C(n
k(`)
t−1 )

pm

[
Qt(x

k(`)
n , ξm)−Q

k(`)−1
tjt(m) (xk(`)

n )
]
.

By definiton of xkm, we have

(3.80) Q
k(`)−1
tjt(m) (xk(`)

n ) = f
k(`)−1
tjt(m) (xk(`)

m , xk(`)
n ) +Qk(`)−1

t+1 (xk(`)
m ),
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which, plugged into (3.79), gives

(3.81) 0 ≤ Qt(xk(`)
n )−Qk(`)

t (xk(`)
n ) ≤

∑
m∈C(n

k(`)
t−1 )

pm

[
Qt(x

k(`)
n , ξm)− fk(`)−1

tjt(m) (xk(`)
m , xk(`)

n )−Qk(`)−1
t+1 (xk(`)

m )
]
.

Let us apply Lemma 2.5 to y` = (x
k(`)
m , x

k(`)
n ), sequence f ` = f

k(`)
tjt(m), and f = ft(·, ·, ξm) (observe that the

assumptions of the lemma are satisfied). Due to (3.49), we have

lim
`→+∞

f(y`)− f `(y`) = 0

and therefore

(3.82) lim
`→+∞

f(y`)− f `−1(y`) = lim
`→+∞

ft(x
k(`)
m , xk(`)

n , ξm)− fk(`−1)
tjt(m) (xk(`)

m , xk(`)
n ) = 0.

Since k(`) ≥ k(` − 1) + 1, we have 0 ≤ ft(x
k(`)
m , x

k(`)
n , ξm) − f

k(`)−1
tjt(m) (x

k(`)
m , x

k(`)
n ) ≤ ft(x

k(`)
m , x

k(`)
n , ξm) −

f
k(`−1)
tjt(m) (x

k(`)
m , x

k(`)
n ) which combined with (3.82) gives

(3.83) lim
`→+∞

ft(x
k(`)
m , xk(`)

n , ξm)− fk(`)−1
tjt(m) (xk(`)

m , xk(`)
n ) = 0.

Using (3.80) and (3.61), we get

f
k(`)−1
tjt(m) (xk(`)

m , xk(`)
n ) +Qk(`)−1

t+1 (xk(`)
m ) = Q

k(`)−1
tjt(m) (xk(`)

n ) ≤ Qt(x
k(`)
n , ξm).

Therefore the sequence (f
k(`)−1
tjt(m) (x

k(`)
m , x

k(`)
n ) +Qk(`)−1

t+1 (x
k(`)
m )−Qt(x

k(`)
n , ξm))`≥1 is bounded and has a finite

limit superior which satisfies

(3.84) lim
`→+∞

f
k(`)−1
tjt(m) (xk(`)

m , xk(`)
n ) +Qk(`)−1

t+1 (xk(`)
m )−Qt(x

k(`)
n , ξm) ≤ 0.

Applying Lemma 2.5 to y` = x
k(`)
m , sequence f ` = Qk(`)

t+1 , and f = Qt+1 (observe that the assumptions of the
lemma are satisfied), since from the induction hypothesis we know that

lim
`→+∞

f(y`)− f `(y`) = 0

we deduce that

(3.85) lim
`→+∞

f(y`)− f `−1(y`) = lim
`→+∞

Qt+1(xk(`)
m )−Qk(`−1)

t+1 (xk(`)
m ) = 0.

Since k(`) ≥ k(` − 1) + 1, we have 0 ≤ Qt+1(x
k(`)
m ) − Qk(`)−1

t+1 (x
k(`)
m ) ≤ Qt+1(x

k(`)
m ) − Qk(`−1)

t+1 (x
k(`)
m ), which

combines with (3.85) to give

(3.86) lim
`→+∞

Qt+1(xk(`)
m )−Qk(`)−1

t+1 (xk(`)
m ) = 0.

Combining (3.83), (3.84), and (3.86), we obtain

(3.87) lim
`→+∞

ft(x
k(`)
m , xk(`)

n , ξm) +Qt+1(xk(`)
m )−Qt(x

k(`)
n , ξm) ≤ 0.

Let us now show by contradiction that

(3.88) lim
k→+∞

ft(x
k(`)
m , xk(`)

n , ξm) +Qt+1(xk(`)
n )−Qt(x

k(`)
n , ξm) ≥ 0.

Assume that (3.88) does not hold. Using the fact that sequence (xkm, x
k
n)k∈Sn belongs to the compact

set Xt×Xt−1, and the lower semicontinuity of ft(·, ·, ξm), gt(·, ·, ξm), Qt, Qt(·, ξm), there is a subsequence
(xkm, x

k
n)k∈K with K ⊂ Sn converging to some (x̄m, x̄n) ∈ Xt×Xt−1 such that

ft(x̄m, x̄n, ξm) +Qt+1(x̄n)−Qt(x̄n, ξm) < 0

and x̄m ∈ Xt(x̄n, ξm). This is in contradiction with the definition of Qt. Therefore we must have

0 = lim`→+∞ ft(x
k(`)
m , x

k(`)
n , ξm) +Qt+1(x

k(`)
m )−Qt(x

k(`)
n , ξm)

= lim`→+∞ f
k(`)−1
tjt(m) (x

k(`)
m , x

k(`)
n ) +Qk(`)−1

t+1 (x
k(`)
m )−Qt(x

k(`)
n , ξm)
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which, plugged into (3.81) gives

(3.89) lim
k→+∞,k∈Sn

Qt(xkn)−Qkt (xkn) = 0.

Finally, we show in the Appendix that

(3.90) lim
k→+∞,k/∈Sn

Qt(xkn)−Qkt (xkn) = 0,

which achieves the proof of H(t).
(ii) The proof of (ii) can easily be obtained from (i), see Theorem 4.1-(ii) in [6] for details.

Remark 3.10 (Stopping criterion). The stopping criterion is similar to SDDP. We can stop the algorithm
when the gap Ub−Lb

Ub is less than a threshold, for instance 5%, where Ub and Lb are upper and lower bounds,
respectively, defined as follows. Due to Lemma 3.8, we can take as a lower bound on the optimal value of
problem (3.38) the value Lb = Qk−1

11 (x0). The upper bound Ub corresponds to the upper end of a 100(1-
α)%-one-sided confidence interval (with for instance α = 0.05) on the optimal value for N policy realizations
(using the costs of decisions taken on N independent sampled scenarios).

3.5. Other variants. It is easy to adapt several recent enhancements of SDDP to the forward StoDCuP
method we have just presented. More precisely, we can extend forward StoDCuP to forward-backward
StoDCuP which builds the trial points and cuts for the objective and constraint functions corresponding to
the sampled scenario in the forward pass and to build cuts for the cost-to-go functions Qt in a backward
pass. In this case, the backward pass also builds cuts for all functions ft(·, ·, ξtj), gti(·, ·, ξtj) t = 1, . . . , T ,
j = 1, . . . ,Mt, i = 1, . . . , p. It is also easy to incorporate in StoDCuP regularization as in [15], to apply
multicut variants as in [10], [3], and cut selection strategies for the bundles of cuts of Qt, for instance along
the lines of [25], [7], [10]. Observe, however, that all linearizations for ft(·, ·, ξtj) and gti(·, ·, ξtj) are tight
and therefore no cut selection is needed for these linearizations.

4. Inexact cuts in StoDCuP

In this section, we present an extension of StoDCuP to solve problem (3.38). Since all subproblems
of forward StoDCuP presented in Section 3 are linear programs, it is easy to derive an inexact variant of
StoDCuP that computes εkt -optimal solutions (instead of optimal solutions in StoDCuP) of the subproblems
solved for iteration k and stage t. We show in Lemma 4.1 below that the cuts computed by this variant are

still valid and that the distance between the cuts and Qk−1
t (·) =

∑Mt

j=1 ptjQ
k−1
tj (·) at the trial point xkn for

stage t and iteration k is at most εkt . This variant of StoDCuP, called inexact StoDCuP, is given below and
the convergence of the method is proved in Theorem 4.3:

Inexact StoDCuP.

Step 1) Initialization. For t = 1, . . . , T , take f0
tj , g

0
tij : Xt×Xt−1 → R affine functions satisfying f0

tj ≤
ft(·, ·, ξtj), g0

tij ≤ gti(·, ·, ξtj), and for t = 2, . . . , T , Q0
t : Xt−1 → R is an affine function satisfying

Q0
t ≤ Qt. Set xn0

= x0, set the iteration count k to 1, and Q0
T+1 ≡ 0.

Step 2) Generate a sample (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) of (ξ1, ξ2, . . . , ξT ) corresponding to a set of nodes (nk1 , n

k
2 , . . . , n

k
T )

where nk1 = n1, and for t ≥ 2, nkt is a node of stage t, child of node nkt−1. Set nk0 = n0.

Do θkT+1 = 0 and βkT+1 = 0.
For t = 1, . . . , T ,

Let n = nkt−1.
For every m ∈ C(n),

a) compute an εkt -optimal feasible solution xkm of

(4.91) Qk−1
tjt(m)(x

k
n) =

{
min
xm

fk−1
tjt(m)(xm, x

k
n) +Qk−1

t+1 (xm)

xm ∈ Xk−1
tjt(m)(x

k
n).

b) Compute function values and subgradients of convex functions ft(·, ·, ξm) and gti(·, ·, ξm)
at (xkm, x

k
n) and let `ft(·,·,ξm)((·, ·); (xkm, x

k
n)) and `gti(·,·,ξm)((·, ·); (xkm, x

k
n)) denote the
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corresponding linearizations.
c) Set

fktjt(m) = max
(
fk−1
tjt(m) , `ft(·,·,ξm)((·, ·); (xkm, x

k
n))
)
,

gkti = max
(
gk−1
ti , `gti(·,·,ξm)((·, ·); (xkm, x

k
n))
)
, ∀i = 1, . . . , p.

d) Using the notation of Section 3.3, in particular (3.54), (3.55), and (3.55), if t ≥ 2 compute
an εkt -optimal feasible solution (αkm, µ

k
m, δ

k
m, ν

k
m, λ

k
m) of the dual problem

max
α,µ,δ,ν,λ

α>(Bk−1
tjt(m)x

k
n + Ck−1

tjt(m)) + µ>(Ek−1
tjt(m)x

k
n +Hk−1

tjt(m)) + δ>θ0:k−1
t+1

+λ>(btjt(m) −Btjt(m)x
k
n) + ν>x̄t

(Ak−1
tjt(m))

>α+ (Dk−1
tjt(m))

>µ+ (β0:k−1
t+1 )>δ − X>t ν − (Atjt(m))

>λ = 0,

e>α = 1, e>δ = 1, α, µ, δ, ν ≥ 0.

End For
If t ≥ 2 compute:

(4.92)

βkt =
∑

m∈C(n)

pm

[
(Bktjt(m))

>αk−1
m + (Ek−1

tjt(m))
>µkm −B>tjt(m)λ

k
m

]
,

θkt =
∑

m∈C(n)

pm

[
〈αkm, Ck−1

tjt(m)〉+ 〈µkm, Hk−1
tjt(m)〉+ 〈δkm, θ0:k−1

t+1 〉+ 〈λkm, btjt(m)〉+ 〈νkm, x̄t〉
]
.

End If
End For

Step 4) Do k ← k + 1 and go to Step 2).

Clearly Lemma 3.7 still holds for Inexact StoDCuP. The quality of the cuts computed for Qt by Inexact
StoDCuP is given in Lemma 4.1:

Lemma 4.1 (Validity and quality of cuts computed by Inexact StoDCuP). Let Assumptions (H0) and
(H1)-Sto hold. For every t = 2, . . . , T + 1, for every k ≥ 1, we have

(4.93) Qt(xt−1) ≥ Ckt (xt−1) and Qt(xt−1) ≥ Qkt (xt−1), ∀xt−1 ∈ Xt−1.

For all t = 1, . . . , T , j = 1, . . . ,Mt, for every k ≥ 1, we have

(4.94) Qk
tj(xt−1) ≤ Qt(xt−1, ξtj) for all xt−1 ∈ Xt−1.

For all t = 2, . . . , T , for every k ≥ 1, defining Qk−1
t (xkn) =

∑Mt

j=1 ptjQ
k−1
tj (xkn), we have for every n ∈

Nodes(t− 1) and for all k ∈ Sn:

(4.95) 0 ≤ Qk−1
t (xkn)− Ckt (xkn) ≤ εkt .

Proof: The proofs of (3.60) and (3.61) in Lemma 3.8 can be used to prove (4.93) and (4.94) for Inexact
StoDCuP, observing that only feasibility and not optimality of the primal and dual solutions computed as
well as Lemma 3.7 (which, as we have already observed, holds) are needed in these proofs.

Now take n ∈ Nodes(t− 1) and k ∈ Sn. Then recalling that

Dk−1
tj (α, µ, δ, ν, λ;xt−1) = α>(Bk−1

tj xt−1 + Ck−1
tj ) + µ>(Ek−1

tj xt−1 +Hk−1
tj ) + δ>θ0:k−1

t+1 + λ>(btj −Btjxt−1) + ν>x̄t,

by definition of (αkm, µ
k
m, δ

k
m, ν

k
m, λ

k
m) and of Ckt , we get

(4.96) Qk−1
tjt(m)(x

k
n)− εkt ≤ Dk−1

tjt(m)(α
k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn) ≤ Qk−1

tjt(m)(x
k
n)

and

(4.97) Ckt (xkn) =
∑

m∈C(n)

pmDk−1
tjt(m)(α

k
m, µ

k
m, δ

k
m, ν

k
m, λ

k
m;xkn).

Since Qk−1
t (xkn) =

∑
m∈C(nk

t−1) pmQk−1
tjt(m)(x

k
n), pm ≥ 0, and

∑
m∈C(n) pm = 1, relations (4.96) and (4.97)

imply (4.95).
Lemma 4.2 below is the analogue of Lemma 3.4:
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Lemma 4.2. Let Assumptions (H0) and (H1)-Sto hold and assume that sequences εkt are bounded: |εkt | ≤ ε̂
for all t, k, for some 0 ≤ ε̂ < +∞. Then, the following statements hold for Inexact StoDCuP:

(a) For t = 2, . . . , T , the sequences {θkt }∞k=1 and {βkt }∞k=1 are almost surely bounded.
(b) There exists L ≥ 0 such that for each t = 2, . . . , T , Qkt is L-Lipschitz continuous on Xt−1 for every

k ≥ 1.
(c) There exists L̂ ≥ 0 such that for each t = 1, . . . , T , j = 1, . . . ,Mt, functions fktj and gktij are L̂-

Lipschitz continuous on Xt ×Xt−1 for every k ≥ 1 and i = 1, . . . , p.

Proof: (a) Using (H1)-Sto, there is ε > 0 such that for every t ∈ {2, . . . , T}, every xt−1 ∈ Xt−1 + B̄(0; ε),
and every j = 1, . . . ,Mt, the set X0

tj(xt−1) is nonempty and f0
tj(·, xt−1) +Q0

t+1(·) is continuous on this set.

Therefore Q0
tj is convex and finite on Xt−1 + B̄(0; ε), implying that Q0

tj is Lipschitz continuous on Xt−1. It

follows that Q0
t is also Lipschitz continuous on Xt−1 and we can define min

xt−1∈Xt−1

Q0
t (xt−1) ∈ R. Similarly

to DCuP, due to (H1)-Sto, we can also choose ε > 0 in such a way that Qt is Lipschitz continuous on
Xt−1 + B̄(0; ε), implying that we can define maxxt−1∈Xt−1+B̄(0;ε)Qt(xt−1) < +∞. We can now easily extend

the proof of Lemma 3.4: for every xt−1 ∈ Xt−1 + B̄(0; ε), denoting n = nkt−1, we have for k ≥ 2:

max
xt−1∈Xt−1+B̄(0;ε)

Qt(xt−1) ≥ Qt(xt−1)
(4.93)

≥ Ckt (xt−1)

= Ckt (xkn) + 〈βkt , xt−1 − xkn〉 [Ckt is affine],
(4.95)

≥ Qk−1
t (xkn)− εkt + 〈βkt , xt−1 − xkn〉,

≥ min
xt−1∈Xt−1

Q0
t (xt−1)− ε̂+ 〈βkt , xt−1 − xkn〉.

For βkt 6= 0, take xt−1 = xkn + ε
2
βk
t

‖βk
t ‖

to obtain

‖βkt ‖ ≤ L :=
2

ε

(
ε̂+ max

xt−1∈Xt−1+B̄(0;ε)
Qt(xt−1)− min

xt−1∈Xt−1

Q0
t (xt−1)

)
.

Using (4.95), we also have for n = nkt−1:

−ε̂+ min
xt−1∈Xt−1

Q0
t (xt−1) ≤ θkt = Ckt (xkn) ≤ max

xt−1∈Xt−1

Qt(xt−1).

(b) immediately follows from (a) and (c) from (H1)-Sto.

Theorem 4.3 (Convergence of Inexact StoDCuP). Let Assumptions (H0), (H1)-Sto, and (H2) hold and
assume that limk→+∞ εkt = 0 for t = 1, . . . , T . Then the conclusions of Theorem 3.9 hold: for every
t = 1, . . . , T ,i = 1, . . . , p, almost surely (3.69) and (3.70) hold and the limit of the sequence of first stage

problems optimal values (fk−1
11 (xkn1

, x0) + Qk−1
2 (xkn1

))k≥1 is the optimal value Q1(x0) of (3.39) and any

accumulation point of the sequence (xkn1
) is an optimal solution to the first stage problem (3.39).

Proof: The proof is an adaptation of the proof of Theorem 3.9 and uses Lemmas 3.7, 4.1, and 4.2. We
highlight these adaptations below.

Using Lemma 4.1, for Inexact StoDCuP relation (3.79) becomes

(4.98)

0 ≤ Qt(xk(`)
n )−Qk(`)

t (x
k(`)
n ) ≤ Qt(xk(`)

n )− Ck(`)
t (x

k(`)
n )

(3.62)

≤ ε
k(`)
t +Qt(xk(`)

n )−Qk(`)−1
t (x

k(`)
n ),

= ε
k(`)
t +

∑
m∈C(n

k(`)
t−1 )

pm

[
Qt(x

k(`)
n , ξm)−Q

k(`)−1
tjt(m) (xk(`)

n )
]
.

Also, by definiton of xkm, we now have

(4.99) Q
k(`)−1
tjt(m) (xk(`)

n ) ≤ fk(`)−1
tjt(m) (xk(`)

m , xk(`)
n ) +Qk(`)−1

t+1 (xk(`)
m ) ≤ Q

k(`)−1
tjt(m) (xk(`)

n ) + ε
k(`)
t ,

23



Instance Variables Linear constraints Quadratic constraints

T, n,M (n+ 2)(1 +MT−1) (2n+ 1)(1 +MT−1) 4(1 +MT−1)

3,10,2 60 105 20

3,10,10 1212 2121 404

5,10,10 120 012 210 021 40 004

5,10,20 1.92e6 3.36e6 6.4e5

10,200,10 2.02e11 4.01e11 4e9

10,200,20 1.0342e14 2.0531e14 2.0480e12

Table 1. Number of variables and constraints of the deterministic equivalents of the 6 instances.

which, plugged into (4.98) gives
(4.100)

0 ≤ Qt(xk(`)
n )−Qk(`)

t (xk(`)
n ) ≤ 2ε

k(`)
t +

∑
m∈C(n

k(`)
t−1 )

pm

[
Qt(x

k(`)
n , ξm)− fk(`)−1

tjt(m) (xk(`)
m , xk(`)

n )−Qk(`)−1
t+1 (xk(`)

m )
]
.

The remaining relations and arguments used in the convergence proof of StoDCuP apply to prove the
theorem.

5. Numerical experiments

We consider the multistage nondifferentiable nonlinear stochastic program given by the following DP
equations: the Bellman function for stage t = 1, . . . , T , is Qt(xt−1) = Eξt,Ψt,Ut

[Qt(xt−1, ξt,Ψt, Ut)] and for
t = 1, . . . , T , Qt(xt−1, ξt,Ψt, Ut) is given by

(5.101)
min ft(xt, xt−1, ξt, Ut) +Qt+1(xt)
−100 e ≤ xt ≤ 100 e,
max(4(xt − e)T (xt − e), xTt ξtξ

T
t xt + xTt ξt + 1) ≤ Ψt,

where xt ∈ Rn, ft(xt, xt−1, ξt, Ut) = max((xt − xt−1)T ξtξ
T
t (xt − xt−1) + xTt ξt + 1, xTt ξtξ

T
t xt + xTt e + Ut), e

is a vector of size n of ones, and QT+1 is the null function. In these equations, ξt is a discretization of a
Gaussian random vector with mean vector mt having entries 1 or −1 and covariance matrix Σt = AtA

T
t +0.5I

where At has entries in [−0.5, 0.5]; Ut is a discrete random variable taking values +10, −10, and Ψt has
discrete distribution with support contained in [104, 105]. The number of realizations Mt for (ξt,Ψt, Ut) is
fixed to Mt = M for each stage. We assume that (ξ1,Ψ1, U1) is known and (ξ2,Ψ2, U2), . . . , (ξT ,ΨT , UT ) are
independent.

We generate 6 instances of this problem with parameters T, n,M given by (T, n,M) = (3, 10, 2), (3, 10, 10),
(5, 10, 10), (5, 10, 20), (10, 200, 10), and (10, 200, 20). The instances are chosen taking realizations Ψtj of Ψt

sufficiently large, in such a way that Assumption (H1)-Sto-4) holds.2 It is easy to check that the remaining
assumptions (H1)-Sto and (H0) are satisfied and therefore StoDCuP and Inexact StoDCuP (IStoDCuP) can
both be applied to solve the problem. Since the problem is nondifferentiable, SDDP and Inexact SDDP from
[8] cannot be applied directly. However, it is possible to reformulate the problem as a differentiable problem
replacing in (5.101) each max with 2 quadratic constraints. The number of variables and of linear and
quadratic constraints of the deterministic equivalent corresponding to this reformulation is given in Table 1
for all instances.

Using this reformulation, we implemented ISDDP given in [8] and SDDP, using Mosek [1] to solve the
subproblems. Unfortunately, none of the 6 instances could be solved by these implementations because
essentially all suproblems to be solved within SDDP and ISDDP cannot be solved by Mosek due to the
fact that all the matrices of the quadratic forms are ill-conditioned, yielding an error in the convexity
check performed by Mosek (even if of course in theory all subproblems are convex) which is done using
Cholesky factorizations of those matrices. Rather than a flaw of Mosek which is an efficient solver for
conic problems, the problem comes from the subproblems under consideration which are difficult to solve

2We checked that the instances generate nontrivial nondifferentiable problems in the sense that no function in the max

dominates the other on the set Xt := {xt ∈ Rn : −100 e ≤ xt ≤ 100 e}.
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Iteration 1–10 11–20 21–40 41–140 141–240 241–350 > 350

MSK DPAR INTPNT TOL REL GAP 10 5 3 1 0.5 0.1 e-6

Table 2. Relative error of the subproblem solutions in IStoDCuP along iterations (Mosek
parameter MSK DPAR INTPNT TOL REL GAP).

because of the degeneracy of the quadratic forms.3 In this condition, StoDCup and IStoDCuP (considering
the variants which linearize all nonlinear functions at all iterations for all subproblems) which only have to
solve linear subproblems are possible solution methods to solve the original problem. The corresponding
Matlab implementation can be found at https://github.com/vguigues/StoDCuP.4 Both StoDCuP and
IStoDCuP were warm-started constructing 20 linearizations of each function ft(·, ·, ξtj) and gti(·, ·, ξtj) at
points randomly selected in the set Xt := {xt ∈ Rn : −100 e ≤ xt ≤ 100 e}.

For IStoDCuP to be well defined, we also need to set the level of accuracy of the computed solutions
along the iterations of the method. It makes sense to increase the accuracy (or equivalently to decrease the
relative error) of the solutions as the algorithm progresses and eventually for a given iteration to increase the
accuracy with the stage. In our experiments the relative error of the subproblem solutions (Mosek parameter
MSK DPAR INTPNT TOL REL GAP whose range is any value ≥ 10−14 and default value is 10−8) is given
in Table 2; see also Remark 2 in [8] for other choices of sequences of noises εkt . For StoDCuP, this parameter
was set to 10−10 for all iterations.

Same as SDDP, methods StoDCuP and IStoDCuP compute at each iteration a lower bound on the optimal
value which is the optimal value of the first stage problem solved in the forward pass and upper bounds
computed as SDDP by Monte-Carlo simulations, from iterations 200 on, using the last 200 forward scenarios.
We also run the methods with the smoothed upper bounds used in [4, 14] which consists in using all previous
forward passes to compute the upper bound but this implementation needed many more iterations to satisfy
the stopping criterion for the large instances and the corresponding results will not be reported. We should
also recall (see [8]) that for both IStoDCuP and StoDCuP the first stage problems are solved with high
accuracy to get valid lower bounds from the optimal values of the first stage forward subproblems. The
algorithms stopped when a relative gap of at most 0.1 was achieved for the first four instances while for the
last two instances, the algorithms were run for 900 and 600 iterations, respectively.

As mentioned in Section 3.5, the cut selection methods proposed in [7, 10, 25] for SDDP can be directly
applied to StoDCuP. The convergence of DDP, single cut SDDP, and multicut SDDP combined with these
cut selection methods was proved in [7, 10]. For the three largest instances, we tested another cut selection
strategy for the inexact variant IStoDCuP of StoDCuP, denoted by IStoDCuP CS, which consists, in the
backward passes, from a given iteration I and for the next L− 1 iterations, to simultaneously add a new cut
(computed at the trial points computed in the forward pass) for each cost-to-go function and to eliminate
the oldest cut. As long as L is not too large, we only eliminate, progressively, the cuts computed with loose
accuracy (the cuts computed for the first L iterations). Therefore, with this method, in the end of iterations
I, I + 1, . . . , I + L − 1, the number of cuts for each cost-to-go function is constant, equal to I, and then
from iteration I + L on, one cut is added for each cost-to-go function at each iteration as in IStoDCuP if
we choose one sampled scenario per forward pass. In our experiments, this cut selection strategy was run
taking I = L = 350.

The evolution of the upper and lower bounds along the iterations of StoDCuP, IStoDCup, and IStoDCuP
CS to solve the 6 instances is given in Figure 2 while the cumulated CPU time is given in Figure 3. All
methods were implemented in Matlab and run on an Intel Core i7, 1.8GHz, processor with 12,0 Go of RAM.
More precisely, the number of iterations and CPU time required to solve all instances is given in Table 3
and the bounds and cumulated CPU time for some iterations are given in Table 4.

We observe that the sequences of upper bounds tend to decrease, the sequences of lower bounds are
increasing, and all these sequences converge to the same values for a given instance; which illustrates the

3We also implemented ISDDP using the inexact cuts from Section 2 of [11] and such variant could not solve our instances
neither, again because Mosek failed to solve all quadratic subproblems of the corresponding ISDDP.

4The tests were run in file TestStoDCuP.m and the functions implementing StoDCup and IStoDCuP are
inexact stodcup quadratic.m and inexact stodcup quadratic cut selection.m, this latter being a variant with cut selection,

denoted IStoDCuP CS in this section.

25



(T, n,M) Iterations StoDCuP
Iterations Inexact

StoDCuP
CPU time StoDCuP

CPU Time Inexact
StoDCuP

3, 10, 2 216 216 10.13 7.63

3, 10, 10 586 451 597.2 148.4

5, 10, 10 1061 1221 4345 2825

5, 10, 20 1387 1376 4493 3784

10, 200, 10 900 900 62 536 55 061

10, 200, 20 600 600 26 414 25 276

Table 3. Number of iterations and CPU time (in seconds) for each instance and method.
For Inexact StoDCuP, we report the quickest, among IStoDCuP and IStoDCuP CS.

validity of StoDCuP and IStoDCuP to solve a multistage stochastic nondifferentiable convex problem and is
a good indication that both methods have been well implemented.

In all instances, at least one of the inexact variants of StoDCuP was quicker than StoDCuP and provided
policies of similar quality. A general behavior we expect for IStoDCuP is to have quicker iterations but
to need more iterations, as for instance T = 5, n = 10, M = 10, or a similar number of iterations, as
for instances T = 3, n = 10, M = 2 and T = 5, n = 10,M = 20 (in this latter the number of iterations
before gettting a gap smaller than 0.1 is 1376, 1387, and 1642 for respectively IStoDCuP CS, StoDCuP, and
IStoDCuP (see Table 4)). However, it may happen that StoDCuP requires more iterations as for instance
T = 3, n = 10, M = 10. The inexact variant with cut selection tested on the three largest instances allowed
us to decrease the gap with respect to IStoDCuP while still being quicker than StoDCuP. It is also interesting
to see that on the largest instance this inexact variant also yielded a much smaller gap than StoDCuP after
completing the 600 iterations (see Table 4 and Figure 2).

6. Conclusion

We introduced StoDCuP, a variant of SDDP which builds linearizations of some or all nonlinear constraint
and objective functions along the iterations of the method, as well as an inexact variant of StoDCuP which
is able to cope with approximate primal-dual solutions of the subproblems solved along the iterations. We
have shown the convergence of StoDCuP and of Inexact StoDCuP for vanishing error terms εkt .

Our numerical experiments have illustrated on a difficult nonlinear nondifferentiable multistage stochastic
program that StoDCuP can be an alternative solution method to SDDP and that its inexact variant can
converge quicker than StoDCuP. An interesting feature of the inexact variant is its flexiblity, able to cope
with any approximate primal-dual solution to the subproblems, allowing to further study the impact of
the calibration of error terms εkt on the performance of Inexact StoDCuP. For DCuP, the calibration seems
simpler, see for instance Remark 2 in [8] on the calibration of the error terms for Inexact DDP which also
applies to Inexact DCuP.
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Figure 2. Upper and lower bounds computed by StoCuP, IStoDCuP, and IStoDCuP CS
along the iterations to solve the instances.
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Iteration UB IStoDCuP UB StoDCuP LB IStoDCuP LB StoDCuP Time IStoDCuP Time StoDCuP

10 - - -36 424 -15 037 0.09 0.16

200 24 109 16 990 -29.3120 -29.3123 6.98 8.91

210 282.4 73.9 -29.3120 -29.3123 7.57 9.67

216 -26.99 -27.34 -29.3120 -29.3123 7.63 10.13

T = 3, n = 10,M = 2

Iteration UB IStoDCuP UB StoDCuP LB IStoDCuP LB StoDCuP Time IStoDCuP Time StoDCuP

10 - - -98 584 -82 872 0.29 0.35

210 6361.8 3889.3 -19.023 -17.44 20.6 18.5

451 -14.97 -13.58 -16.27 -16.25 148.4 144.6

T = 3, n = 10,M = 10

Iteration UB IStoDCuP UB StoDCuP LB IStoDCuP LB StoDCuP Time IStoDCuP Time StoDCuP

10 - - -440 000 -352 310 0.65 0.72

400 9.68 13.84 -12.09 -12.58 140.9 151.7

800 -6.01 -8.69 -10.83 -10.85 1144.6 1897.2

1061 -7.84 -9.78 -10.72 -10.72 2166 4345

1221 -9.78 - -10.69 - 2825 -

T = 5, n = 10,M = 10

Iteration 600 1376 1387 1642

UB IStoDCuP CS -0.586 -4.5343 - -

UB IStoDCuP -1.6317 -3.7448 -3.7993 -4.5153

UB StoDCuP -0.0327 -3.9773 -4.5648 -

LB IStoDCuP CS -5.5886 -4.9595 - -

LB IStoDCuP -5.6431 -4.9584 -4.9552 -4.9078

LB StoDCuP -5.7420 -4.9623 -4.9591 -

Time IStoDCuP CS 525 3784 - -

Time IStoDCuP 575 4106 4180 6178

Time StoDCuP 579 4424 4493 -

T = 5, n = 10,M = 20

Iteration 400 600 900

UB IStoDCuP CS 2.5343e7 3.6465e5 143.2

UB IStoDCuP 2.1689e7 4.6095e5 338.7

UB StoDCuP 2.3785e7 3.0292e5 -50.4

LB IStoDCuP CS -1.3343e6 -4.0214e4 -444.4

LB IStoDCuP -1.4643e6 -5.0292e4 -436.4

LB StoDCuP -0.9529e6 -2.0954e4 -428.9

Time IStoDCuP CS 8 534.6 21 166 56 082

Time IStoDCuP 7 946.7 21 557 55 061

Time StoDCuP 8 364.2 24 015 62 536

T = 10, n = 200,M = 10

Iteration 400 500 600

UB IStoDCuP CS 1.943e8 1.1955e8 0.6321e8

UB IStoDCuP 2.2722e8 1.6320e8 1.2129e8

UB StoDCuP 2.3129e8 1.6563e8 1.0990e8

LB IStoDCuP CS -1.0060e8 -0.5826e8 -0.3522e8

LB IStoDCuP -1.6151e8 -1.1376e8 -0.6979e8

LB StoDCuP -1.5124e8 -0.9974e8 -0.6059e8

Time IStoDCuP CS 1.1254e4 1.7554e4 2.5276e4

Time IStoDCuP 1.1254e4 1.7618e4 2.5418e4

Time StoDCuP 1.2320e4 1.8689e4 2.6414e4

T = 10, n = 200,M = 20

Table 4. Cumulated CPU time (Time) in seconds and upper (UB) and lower (LB) bounds
computed by StoDCuP, IStoDCuP, and IStoDCuP CS for some iterations and the 6 in-
stances.

29



[7] V. Guigues. Dual dynamic programing with cut selection: Convergence proof and numerical experiments. European Journal

of Operational Research, 258:47–57, 2017.

[8] V. Guigues. Inexact cuts in Stochastic Dual Dynamic Programming. SIAM Journal on Optimization, 30:407–438, 2020.
[9] V. Guigues. Inexact Stochastic Mirror Descent for two-stage nonlinear stochastic programs. Accepted for publication in

Mathematical Programming, 2020. https://arxiv.org/pdf/1805.11732.pdf.

[10] V. Guigues and M. Bandarra. Single cut and multicut SDDP with cut selection for multistage stochastic linear programs:
convergence proof and numerical experiments. Computational Management Science, to appear. https://arxiv.org/abs/

1902.06757.
[11] V. Guigues, R. Monteiro, and B. Svaiter. Inexact cuts in SDDP applied to multistage stochastic nondifferentiable problems.

arXiv, 2020. https://arxiv.org/abs/2004.02701.

[12] V. Guigues and W. Römisch. Sampling-based decomposition methods for multistage stochastic programs based on extended
polyhedral risk measures. SIAM J. Optim., 22:286–312, 2012.

[13] V. Guigues and W. Römisch. SDDP for multistage stochastic linear programs based on spectral risk measures. Operations

Research Letters, 40:313–318, 2012.
[14] V. Guigues, A. Shapiro, and Y. Cheng. Duality and sensitivity analysis of multistage linear stochastic programs. Optimiza-

tion OnLine, 2019.

[15] V. Guigues, W. Tekaya, and M. Lejeune. Regularized decomposition methods for deterministic and stochastic convex
optimization and application to portfolio selection with direct transaction and market impact costs. Optimization &

Engineering, 21:1133–1165, 2020.

[16] J.E. Kelley. The cutting plane method for solving convex programs. Journal of the SIAM, 8:703–712, 1960.
[17] K.C. Kiwiel. An aggregate subgradient method for nonsmooth convex minimization. Mathematical Programming, pages

320–341, 1983.
[18] K.C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Programming,

46:105–122, 1990.

[19] V. Kozmik and D.P. Morton. Evaluating policies in risk-averse multi-stage stochastic programming. Mathematical Pro-
gramming, 152:275–300, 2015.
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Appendix

To prove (3.77) and (3.90), we will need the following lemma (the proof of (ii) of this lemma was given in
[5] for a more general sampling scheme and the proof of (i), that we detail, is similar to the proof of (ii)):

Lemma 6.1. Assume that Assumptions (H0), (H1)-Sto, and (H2) hold for StoDCuP. Define random vari-
ables ykn = 1(k ∈ Sn).

(i) Let ε > 0, t ∈ {1, . . . , T}, n ∈ Nodes(t− 1), m ∈ C(n), i ∈ {1, . . . , p} and set

Kε,m,i =
{
k ≥ 1 : gti(x

k
m, x

k
n, ξm)− gk−1

tijt(m)(x
k
m, x

k
n) ≥ ε

}
.

Let

Ω0(ε) = {ω ∈ Ω : |Kε,m,i(ω)| is infinite}
and assume that Ω0(ε) 6= ∅. Define on the sample space Ω0(ε) the random variables Iε,m,i(j), j ≥ 1, where
Iε,m,i(1) = min{k ≥ 1 : k ∈ Kε,m,i(ω)} and for j ≥ 2

Iε,m,i(j) = min{k > Iε,m,i(j − 1) : k ∈ Kε,m,i(ω)},

i.e., Iε,m,i(j)(ω) is the index of jth iteration k such that gti(x
k
m, x

k
n, ξm) − gk−1

tijt(m)(x
k
m, x

k
n) ≥ ε. Then

random variables (y
Iε,m,i(j)
n )j≥1 defined on sample space Ω0(ε) are independent, have the distribution of y1

n

and therefore by the Strong Law of Large numbers we have

(6.102) P

 lim
N→+∞

1

N

N∑
j=1

yIε,m,i(j)
n = E[y1

n]

 = 1.

(ii) Let ε > 0, t ∈ {1, . . . , T}, n ∈ Nodes(t− 1), and set

Kε,n =
{
k ≥ 1 : Qt(xkn)−Qkt (xkn) ≥ ε

}
.

Let

Ω1(ε) = {ω ∈ Ω : |Kε,n(ω)| is infinite}
and assume that Ω1(ε) 6= ∅. Define on the sample space Ω1(ε) the random variables Iε,n(j), j ≥ 1, where
Iε,n(1) = min{k ≥ 1 : k ∈ Kε,n(ω)} and for j ≥ 2

Iε,n(j) = min{k > Iε,n(j − 1) : k ∈ Kε,n(ω)},

i.e., Iε,n(j)(ω) is the index of jth iteration k such that Qt(xkn) − Qkt (xkn) ≥ ε. Then random variables

(y
Iε,n(j)
n )j≥1 defined on sample space Ω1(ε) are independent, have the distribution of y1

n and therefore by the
Strong Law of Large numbers we have

(6.103) P

 lim
N→+∞

1

N

N∑
j=1

yIε,n(j)
n = E[y1

n]

 = 1.

Proof: (i) Define on the sample space Ω0(ε) the random variables (wkε,m,i)k by

wkε,m,i(ω) =

{
1 if k ∈ Kε,m,i(ω)
0 otherwise.

To alleviate notation (ε,m, n, i being fixed), let us put wk := wkε,m,i, I(j) := Iε,m,i(j), For yj ∈ {0, 1}, we
have

(6.104) P
(
yI(j)
n = yj

)
=

∞∑
Ij=1

P
(
yIjn = yj ; I(j) = Ij

)
.

Observe that the event I(j) = Ij can be written as the union
⋃

1≤I1<I2<...<Ij E(I1, . . . , Ij) of events

E(I1, . . . , Ij) :=

{
wI1 = . . . = wIj = 1,
w` = 0, 1 ≤ ` < Ij , ` /∈ {I1, . . . , Ij}

}
.
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Due to Assumption (H2) observe that random variable y
Ij
n is independent of random variables wi, i =

1, . . . , Ij , and therefore events {yIjn = yj} and {I(j) = Ij} are independent which gives
(6.105)

P
(
y
I(j)
n = yj

)
=

∞∑
Ij=1

P
(
yIjn = yj ; I(j) = Ij

)
=

∞∑
Ij=1

P
(
yIjn = yj

)
P
(
I(j) = Ij

)
= P

(
y1
n = yj

) ∞∑
Ij=1

P
(
I(j) = Ij

)
= P

(
y1
n = yj

)
where we have used the fact that y1

n and y
Ij
n have the same distribution (from (H2)).

Next for y1, . . . , yp ∈ {0, 1}, we have

P
(
y
I(1)
n = y1, . . . , y

I(p)
n = yp

)
=

∞∑
1≤I1<I2<...<Ip

P
(
yI1n = y1; . . . ; yIpn = yp; I(1) = I1; . . . ; I(p) = Ip

)
.

By the same reasoning as above, the event{
yI1n = y1; . . . ; yIp−1

n = yp−1; I(1) = I1; . . . ; I(p) = Ip
}

can be expressed in terms of random variables yI1n , . . . , y
Ip−1
n , wI1n , . . . , w

Ip
n , and is therefore independent of

event {yIpn = yp}. It follows that
(6.106)

P
(
y
I(j)
n = yj , 1 ≤ j ≤ p

)
=

∞∑
1≤I1<I2<...<Ip

P
(
yIpn = yp

)
P
(
yIjn = yj , 1 ≤ j ≤ p− 1; I(j) = Ij , 1 ≤ j ≤ p

)
= P

(
y1
n = yp

) ∞∑
1≤I1<I2<...<Ip

P
(
yIjn = yj , 1 ≤ j ≤ p− 1; I(j) = Ij , 1 ≤ j ≤ p

)
= P

(
y1
n = yp

) ∞∑
1≤I1<I2<...<Ip−1

P
(
yIjn = yj , 1 ≤ j ≤ p− 1; I(j) = Ij , 1 ≤ j ≤ p− 1

)
= P

(
y1
n = yp

)
P
(
y
I(j)
n = yj , 1 ≤ j ≤ p− 1

)
.

By induction this implies

(6.107) P
(
y
I(j)
n = yj , 1 ≤ j ≤ p

)
=

p∏
j=1

P
(
y1
n = yj

)
(6.105)

=

p∏
j=1

P
(
yI(j)
n = yj

)
which shows that random variables (y

I(j)
n )j≥1 are independent.

The proof of (ii) is similar to the proof of (i).
Proof of (3.77) and (3.90). As in [5], we can now use the previous lemma to prove (3.77) and (3.90).

Let us prove (3.77). By contradiction, assume that (3.77) does not hold. Then there is ε > 0 such that the
set Ω0(ε) defined in Lemma 6.1 is nonempty. By Lemma 6.1, this implies that (6.102) holds. But due to

(3.76), only a finite number of indices Iε,m,i(j) can be in Sn (with corresponding variable y
Iε,m,i(j)
n being

one) and therefore P
(

limN→+∞
1
N

∑N
j=1 y

Iε,m,i(j)
n = 0

)
= 1, which is a contradiction with (6.102).

The proof of (3.90) is similar to the proof of (3.77), by contradiction and using (3.89) and Lemma 6.1-(ii)
(see also [5], [6]). �
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