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Constraint reduction reformulations for projection

algorithms with applications to wavelet construction

Minh N. Dao∗ Neil D. Dizon†, Jeffrey A. Hogan‡, Matthew K. Tam§

March 16, 2021

Abstract

We introduce a reformulation technique that converts a many-set feasibility problem into
an equivalent two-set problem. This technique involves reformulating the original feasibility
problem by replacing a pair of its constraint sets with their intersection, before applying
Pierra’s classical product space reformulation. The step of combining the two constraint sets
reduces the dimension of the product spaces. We refer to this as the constraint reduction
reformulation and use it to obtain constraint-reduced variants of well-known projection algo-
rithms such as the Douglas–Rachford algorithm and the method of alternating projections,
among others. We prove global convergence of constraint-reduced algorithms in the presence
of convexity and local convergence in a nonconvex setting. In order to analyse convergence
of the constraint-reduced Douglas–Rachford method, we generalize a classical result which
guarantees that the composition of two projectors onto subspaces is a projector onto their
intersection. Finally, we apply the constraint-reduced versions of Douglas–Rachford and
alternating projections to solve the wavelet feasibility problems, and then compare their
performance with their usual product variants.

Keywords: alternating projections · cyclic projections · Douglas–Rachford · fixed point iter-
ations · wavelets

Mathematics Subject Classification (MSC 2020): 90C26 · 47H10 · 65K10 · 65T60

1. Introduction

A feasibility problem is the task of finding a point in the intersection of a finite family of sets.
Formally, given sets K1,K2, . . . ,Kr contained in a Hilbert space, the corresponding feasibility
problem is to

find x∗ ∈ K :=

r⋂
j=1

Kj . (1)
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In the literature, projection algorithms are often used to solve feasibility problems. The method
of alternating projections (MAP) [37] and the Douglas-Rachford (DR) algorithm [21] are well-
known examples of projection algorithms which are applicable to two-set feasibility problems.
Of these, the DR method has experienced sustained popularity because of its empirical potency
in nonconvex settings [1, 2, 3, 9, 12, 17]. Although originally formulated for two-set feasibility
problems, it has been extended to many-set feasibility problems by employing the cyclic DR
method [10, 11], cyclically anchored DR method [8], cyclic generalized DR method [15, 16], or
through Pierra’s product space reformulation [35]. The latter reformulation has the potential
drawback of computational inefficiency when the number of constraint sets becomes large. This
arises because each additional constraint in the original problem results in an additional product-
dimension in the reformulation. A scheme to circumvent this is to replace a pair of constraints
by their intersection. We formalize this as a new reformulation technique in Section 3 and use
it to introduce variants of well-known projection algorithms. It is further favorable, but not
required, if the pair of constraints Ki and Kj satisfy

PKi(Kj) ⊆ Kj (2)

for some i, j ∈ {1, 2, . . . , r} with i 6= j, where PC denotes the projector onto a set C. As we will
show in Section 4, exactly this property appears in the constraint sets arising in the feasibility
approach to wavelet construction [22, 23, 24].

More precisely, the construction of compactly supported and smooth multidimensional
wavelets with orthogonal shifts and multiresolution structure has been recently formulated as a
many-set feasibility problem [22, 23, 24] where the DR method, together with other projection
algorithms and their many-set extensions, has been successfully employed. In this approach,
properties of wavelets which are desirable in signal processing (e.g., compact support, smooth-
ness) are treated as constraints alongside the conditions of multiresolution analysis (MRA)
[30, 31], and intersection points yield the coefficients of the corresponding scaling and wavelet
functions.

As additional properties such as real-valuedness, symmetry and cardinality [20] are added to
the wavelet construction problem, the computational inefficiencies of the product space refor-
mulation outlined above are realized due to the additional constraint sets. Fortunately, but also
rather peculiarly to the structure of the wavelet feasibility problem, its constraint sets satisfy
the property stated in (2). In particular, we show that the real-valuedness or the symmetry
constraint may be combined with constraint sets arising from the conditions of MRA.

The goal of this paper is to present a constraint reduction reformulation for projection
algorithms aimed at solving the feasibility problem (1). The main results appear in Section 3
where we formally introduce the reformulation, and use the framework of fixed point theory to
study the operators obtained as a result of applying the reformulation to well-known projection
algorithms. We give a global convergence analysis for the resulting variant of MAP and DR in
the convex setting, and a local convergence analysis in a nonconvex setting. To do so, we extend
a classical result regarding commutativity of two projectors on closed subspaces. As we show in
Section 4, the reformulation can significantly reduce computational time.

The rest of the paper is organized as follows. Section 2 recalls relevant preliminaries and
auxiliary results. Section 3 contains the constraint reduction reformulation together with other
new results including the generalization of the classical result on the commutativity of two
projectors. And finally in Section 4, we apply the reformulation to wavelet construction cast as
a feasibility problem.
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2. Preliminaries

Henceforth, we use H to denote a real Hilbert space endowed with an inner product 〈·, ·〉 and
induced norm ‖ · ‖. For x ∈ H and δ ≥ 0, the closed ball centered at x with radius δ is
B(x; δ) := {z ∈ H : ‖z−x‖ ≤ δ}. We use I to denote the identity mapping on H which maps any
point to itself. Moreover, if T is an operator acting on a set K, we write T (K) = {T (x) : x ∈ K}.
We also denote the set of fixed points of the operator T by FixT := {x ∈ H : x ∈ T (x)},
which reduces to {x ∈ H : x = T (x)} when T is single-valued. Further, the product space
Hr = H ×H × · · · ×H is also a real Hilbert space endowed with the inner product given by

〈x,y〉 =
r∑
j=1

〈xj , yj〉 (3)

for all x = (x1, x2, . . . , xr) and y = (y1, y2, . . . , yr) in Hr.

2.1. Projectors, Reflectors and Projection Methods

Definition 2.1. Let C be a nonempty subset of H. The distance function to C is the function
dC : H→ R defined by

dC(x) = inf
z∈C
‖x− z‖

and the projector onto C is the set-valued operator PC : H ⇒ C defined by

PC(x) = {c ∈ C : ‖x− c‖ = dC(x)}.

The reflector with respect to C is the set-valued operator RC : H ⇒ H defined by

RC := 2PC − I .

An element of PC(x) is called a best approximation of x from C or a projection of x onto C.
Similarly, an element of RC(x) is called a reflection of x with respect to C. If every point in H

has at least one projection onto C, then C is said to be proximinal.

Note that the sum in the definition of RC is understood in the sense of Minkowski set
addition. In the case where PC is single-valued for all x ∈ H, i.e., PC(x) = {u} for some u ∈ C,
we abuse notation by writing PC(x) = u and understand PC as a single-valued operator. It
is a direct consequence of the definition that if the projector onto C is single-valued, then the
reflector with respect to C is also single-valued. If the set C is closed and convex, then PC is
single-valued [19, Theorem 3.5], and the projections onto C are easily characterized as follows.

Proposition 2.2. Let C be a nonempty closed convex subset of H, and D be a nonempty closed
affine subspace of H. Then the following statements hold.

(a) PC(x) = p if and only if p ∈ C and 〈x− p, c− p〉 ≤ 0 for all c ∈ C,

(b) PD(x) = p if and only if p ∈ D and 〈x− p, d− p〉 = 0 for all d ∈ D.

Proof. For (a), see [19, Theorem 4.1] or [6, Theorem 3.16]. For (b), see [6, Corollary 3.22].

Projectors and reflectors form part of iterative algorithms called projection algorithms for
solving feasibility problems. These algorithms exploit the structure of the individual sets which
comprise the intersection that is the feasible region. These techniques iterate successively on
the individual sets by applying projectors or reflectors, usually in a cyclic fashion.
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The earliest formulation of projection methods dates back to the work of von Neumann [37]
who showed that the sequence (xn)n∈N with x0 ∈ H and xn+1 = SA,B(xn), where

SA,B := PAPB,

satisfies limn→∞ xn = PA∩B(x0) whenever A and B are closed subspaces. The operator SA,B is
sometimes called the alternating projection operator, and iterating SA,B to obtain a projection
onto the intersection is referred to as the method of alternating projections. The result was
motivated by von Neumann’s return to the question of finding a point on A ∩ B when PA
and PB do not commute. Before then, it was only known that if PA and PB commute, then
PAPB = PA∩B [37, Chapter XIII]. The following proposition provides several characterization
of this fact.

Theorem 2.3. If A and B are closed subspaces of H, then the following are equivalent:

(a) PAPB = PBPA,

(b) PA(B) ⊆ B,

(c) PB(A) ⊆ A,

(d) PAPB = PA∩B.

Proof. See [19, Lemma 9.2].

In the next section, we generalize Theorem 2.3 to the case where A is a closed affine subspace
and B is a proximinal subset. This generalization is key to our analysis of iterative algorithms.

A natural extension of MAP for many-set feasibility problems is the method of cyclic projec-
tions which iterates by consecutively applying the projectors onto each of the constraint sets.
This has a guaranteed convergence when the sets of interest are subspaces [25]. Moreover, the
method weakly converges to a point on the intersection when the constraint sets are closed and
convex [13]. For the case of two closed convex sets, if one of the set is compact or if either of the
set is finite dimensional with the distance between them being attained, then strong convergence
of MAP may be achieved [14]. While there are other projection methods, we confine ourselves
mainly to alternating projections, and the DR algorithm which we now introduce.

Definition 2.4. Given two nonempty subsets A and B of H, the DR operator TA,B is defined
as

TA,B :=
I +RBRA

2
.

It is worth noting (see [7, Equations (20)–(23)]) that, if PA is single-valued, then

TA,B = I−PA + PBRA and PA(FixTA,B) = A ∩B.

If A and B are closed convex subsets of H with A∩B 6= ∅, then, for any x0 ∈ H, the sequence
(xn)n∈N generated by xn+1 = TA,B(xn) converges weakly to a point x∗ ∈ FixTA,B, and the
shadow sequence (PA(xn))n∈N converges weakly to PA(x∗) ∈ A ∩B [28, 36].

2.2. Convergence of Fixed Point Iterations

Most of the projection algorithms that we have already mentioned can be cast as fixed point
iterations. That is, for some starting point, a sequence is generated by repeated applications of
the operator at hand, ideally to attain a fixed point in the limit. In this subsection, we will recall
the relevant notions as well as the propositions necessary to establish convergence of projection
algorithms.
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Definition 2.5. Let C ⊆ H and let T : C → H. The mapping T is said to be

(a) nonexpansive if, for all x, y ∈ C,

‖T (x)− T (y)‖ ≤ ‖x− y‖;

(b) firmly nonexpansive if, for all x, y ∈ C,

‖T (x)− T (y)‖2 + ‖(I−T )(x)− (I−T )(y)‖2 ≤ ‖x− y‖2;

(c) α-averaged if α ∈ (0, 1) and there exists a nonexpansive operator R : C → H such that

T = (1− α) I +αR,

or equivalently, if α ∈ (0, 1) and, for all x, y ∈ C,

‖T (x)− T (y)‖2 +
1− α
α
‖(I−T )(x)− (I−T )(y)‖2 ≤ ‖x− y‖2.

It follows from these definitions that T is firmly nonexpansive if and only if it is 1/2-averaged.
Moreover, if T is α-averaged, then it is nonexpansive and also β-averaged with β ∈ (α, 1).

Proposition 2.6. Let C be a nonempty closed convex subset of H. Then

(a) PC is firmly nonexpansive.

(b) RC is nonexpansive.

Proof. This follows from [6, Proposition 4.16 and Corollary 4.18].

It is also easy to establish that the composition of two nonexpansive operators is again
nonexpansive. Also, other averaged maps may be obtained from convex combinations and
compositions of already known averaged maps.

Proposition 2.7. Let C ⊆ H and let Tj : C → H be αj-averaged for each j ∈ J := {1, 2, . . . , r}.
Then the following statements hold.

(a)
∑

j∈J λjTj is α-averaged with α =
∑
j∈J

λjαj, whenever λj > 0 and
∑
j∈J

λj = 1;

(b) TrTr−1 · · ·T1 is α-averaged with

α =

1 +

∑
j∈J

αj
1− αj

−1−1 .
Proof. For (a), see [6, Proposition 4.42]. For (b), see [6, Proposition 4.46].

The next proposition establishes averagedness as well as characterizes the fixed point set of
operators that are coordinate-wise averaged.

Proposition 2.8. Let Cj ⊆ H and let Tj : Cj → H be αj-averaged for each j ∈ J :=
{1, 2, . . . , r}. Define the operator T : C1 × C2 × · · · × Cr → Hr by

T (x) = (T1(x1), T2(x2), . . . , Tr(xr))

for all x = (x1, x2, . . . , xr) ∈ C1 × C2 × · · · × Cr. Then the following statements hold.
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(a) T is α-averaged with α = max
j∈J

αj.

(b) FixT = FixT1 × FixT2 × · · · × FixTr.

Proof. (a): Let x,y ∈ C1 ×C2 × · · · ×Cr. Since α = maxj∈J αj ∈ (0, 1), we also have that Tj is
α-averaged for each j ∈ J . Using Definition 2.5 and (3), we obtain

‖T (x)− T (y)‖2 +
1− α
α
‖(I−T )(x)− (I−T )(y)‖2

=
r∑
j=1

‖Tj(xj)− Tj(yj)‖2 +
1− α
α

r∑
j=1

‖(I−Tj)(xj)− (I−Tj)(yj)‖2

=

r∑
j=1

(
‖Tj(xj)− Tj(yj)‖2 +

1− α
α
‖(I−Tj)(xj)− (I−Tj)(yj)‖2

)

≤
r∑
j=1

‖xj − yj‖2

= ‖x− y‖2.

Thus, T is α-averaged.

(b): This is immediate from the definition.

The following proposition provides a useful criterion for convergence of fixed point iterations.

Proposition 2.9 (Opial’s theorem). Let T : H → H be α-averaged with FixT 6= ∅. Then,
for any x0 ∈ H, the sequence (xn)n∈N generated by xn+1 = T (xn) converges weakly to a point
x∗ ∈ FixT .

Proof. See [33], or set λn = 1 for all n in [6, Proposition 5.16].

Proposition 2.10. Let C be a nonempty subset of H and let Tj : C → C be αj-averaged for
each j ∈ {1, 2, . . . , r} such that

⋂r
j=1 FixTj 6= ∅. Then Fix(Tr · · ·T2T1) =

⋂r
j=1 FixTj.

Proof. See [6, Corollary 4.51].

2.3. Product Space Reformulation

The product space reformulation rewrites a many-set feasibility problem into a two-set feasibility
problem [35]. Given K1,K2, . . . ,Kr ⊆ H, with corresponding projectors PK1 , PK2 , . . . , PKr , the
sets C and D in the product Hilbert space Hr are defined by

C := K1 ×K2 × · · · ×Kr and (4a)

D := {(x1, x2, . . . , xr) ∈ Hr : x1 = x2 = · · · = xr}. (4b)

The r-set feasibility problem is equivalent to the two-set feasibility problem on C and D in the
sense that

x∗ ∈
r⋂
j=1

Kj ⇐⇒ x∗ := (x∗, x∗, . . . , x∗) ∈ C ∩D. (5)

Furthermore, the projectors onto C and D are given by

PC(x) = PK1(x1)× PK2(x2)× · · · × PKr(xr) and (6a)
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PD(x) =

1

r

r∑
j=1

xj ,
1

r

r∑
j=1

xj , . . . ,
1

r

r∑
j=1

xj

 (6b)

for any x = (x1, x2, . . . , xr) ∈ Hr; see, e.g., [6, Proposition 29.3 and Proposition 26.4(iii)]. Note
that D is a closed subspace of H, and C is a closed convex set if and only if K1,K2, . . . ,Kr are
closed and convex.

The product space reformulation allows us to use MAP and DR even when the number of
constraint sets is greater than two.

3. Constraint Reduction for Feasibility Problems

The main objective of this section is to introduce a constraint reduction reformulation for the
r-set feasibility problem defined in (1). Before describing the new reformulation, we first prove
a generalization of Theorem 2.3. This will be important in defining a particular case where the
resulting operator arising from the constraint reduction reformulation for DR method will have
a guaranteed convergence.

3.1. Projectors onto Intersections

The following theorem extends Theorem 2.3, which applies for two closed subspaces of H, to
the setting of a closed affine subspace and a proximinal subset.

Theorem 3.1. Let A be a closed affine subspace and B be a proximinal subset of H. Consider
the following statements.

(a) PA(B) ⊆ B,

(b) PA(B) = A ∩B,

(c) PB(A) ⊆ A,

(d) PB(A) = A ∩B,

(e) PBPA = PA∩B.

Then (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e). Moreover, if B is convex, then all statements
are equivalent.

Proof. (a) =⇒ (b): If PA(B) ⊆ B, then PA(B) ⊆ A ∩ B = PA(A ∩ B) ⊆ PA(B), which yields
PA(B) = A ∩B.

(b) =⇒ (c): Assume that PA(B) = A ∩ B. Take any a ∈ A, any b ∈ PB(a) ⊆ B, and
set p = PA(b) ∈ PA(B) = A ∩ B. Since A is a closed affine subspace, Proposition 2.2(b) gives
〈a− p, b− p〉 = 0, which implies that

‖a− b‖2 = ‖a− p‖2 + ‖b− p‖2.

As b ∈ PB(a) and p ∈ B, it holds that ‖a − b‖ ≤ ‖a − p‖. Combining with the above equality
yields ‖b− p‖2 = 0, so b = p ∈ A. Since a was chosen arbitrarily, we deduce that PB(A) ⊆ A.

(c) =⇒ (d): This follows by interchanging the roles of A and B in the proof of “(a) =⇒
(b)”.
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(d) =⇒ (e): Assume that PB(A) = A ∩ B. Fix x ∈ H, let any b ∈ PBPA(x) and any
c ∈ PA∩B(x). Then b ∈ PB(A) = A ∩ B and also c ∈ A ∩ B. Setting a = PA(x), we have
b ∈ PB(a). Since A is a closed affine subspace, Proposition 2.2(b) implies that, for all z ∈ B,
〈x− a, a− z〉 = 0, which yields

‖x− b‖2 = ‖x− a‖2 + ‖a− b‖2 and ‖x− c‖2 = ‖x− a‖2 + ‖a− c‖2.

In addition, ‖a−b‖ ≤ ‖a−c‖ since b ∈ PB(a) and c ∈ B. Therefore, ‖x−b‖ ≤ ‖x−c‖ = dA∩B(x),
which together with b ∈ A ∩B implies that ‖x− b‖ = ‖x− c‖ and b ∈ PA∩B(x). From this, we
also obtain that ‖a−c‖ = ‖a−b‖ = dB(a), and hence that c ∈ PB(a), which means c ∈ PBPA(x).
Since x, b and c were choosen arbitrarily, we deduce that PBPA = PA∩B.

(e) =⇒ (a): Assume that B is convex and that PBPA = PA∩B. Fix x ∈ B and set
y := PBPA(x) = PA∩B(x). Then y ∈ A ∩ B. Since A is a closed affine subspace and y ∈ A,
Proposition 2.2(b) gives

〈PA(x)− y, PA(x)− x〉 = 0. (7)

Moreover, since x ∈ B and y = PBPA(x), Proposition 2.2(a) yields

〈PA(x)− y, x− y〉 ≤ 0. (8)

Adding (7) and (8), we obtain

〈PA(x)− y, PA(x)− y〉 ≤ 0,

which implies that PA(x) = y = PBPA(x). Thus, PA(B) ⊆ PB(PA(B)) ⊆ B.

We remark that if B is not convex, then we need not have PA(B) ⊆ B when PBPA = PA∩B.
For a counterexample, we refer to Figure 1a. Here we take A = {(x, x) : x ∈ R} and B =
{(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}. It is easy to check that A is a subspace, B is nonconvex and
PBPA = PA∩B. However, x0 ∈ B and PA(x0) /∈ B.

(a) PBPA = PA∩B 6=⇒ PA(B) ⊆ B. (b) PAPB 6= PA∩B .

Figure 1: Counterexamples: The figure on the left shows that PA(x0) /∈ B even if PBPA = PA∩B
for a nonconvex set B. The figure on the right illustrates that even when B is convex and
PBPA = PA∩B, it does not follow that PA and PB commute.

Additionally, if B is convex and any of the equivalent statements is true, then it does not
follow that PAPB = PBPA. In particular, PAPB need not be equal to PA∩B. To visualize
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this, refer to Figure 1b where we redefined B = {(x, y) ∈ R2 : x2 + y2 ≤ 4} to show that
PAPB(x0) 6= PA∩B(x0).

Example 3.2. We now consider the following examples to illustrate the previous theorem.

(a) Let A,B ⊆ R2 where

A = {(x, x) : x ∈ R}, B = {(x, y) : |x|+ |y| ≤ 1}.

In this example, A is a subspace and B is a closed convex subset of R2. Further, PBPA ⊆
A. Thus, all statements in Theorem 3.1 hold. In particular, PBPA = PA∩B. Refer to
Figure 2a.

(b) Let A,B ⊆ R2 where

A = {(x, 0) : x ∈ R}, B =
{

(x, y) :
√
|x|+

√
|y| ≤ 1

}
.

Here, A is a subspace and B is a nonconvex set. This is a particular example where B is
nonconvex but all of the statements in Theorem 3.1 still hold. Refer to Figure 2b.

(a) B is convex. (b) B is nonconvex.

Figure 2: The plot on the left shows that PBPA = PA∩B which is equivalent to all other
statements in Theorem 3.1 because B is convex. The figure on the right is an example satisfying
all statements in Theorem 3.1 even though B is nonconvex.

3.2. Constraint Reduction Reformulation

The feasibility problem defined in (1) may be solved using a projection algorithm that is appli-
cable to an r-set feasibility problem. In particular, one may employ the product DR and the
product MAP by defining the product spaces C and D as in (4a) and (4b), respectively.

We now introduce a constraint reduction reformulation which also rewrites an r-set feasibility
problem into a two-set. This is formalized in the following definition.

9



Definition 3.3 (Constraint reduction reformulation). Let K1,K2, . . . ,Kr be subsets of H. The
constraint reduction reformulation of the r-set feasibility problem in (1) is the two-set feasibility
problem given by

find x := (x1, x2, . . . , xr−1) ∈ V ∩W ⊆ Hr−1,

where V and W denote the reduced product space constraints given by

V := K1 ×K2 × · · · ×Kr−2 × (Kr−1 ∩Kr) ⊆ Hr−1, (9a)

W :=
{

(x1, x2, . . . , xr−1) ∈ Hr−1 : x1 = x2 = · · · = xr−1
}
. (9b)

The associated mappings QV and PW on Hr−1 are defined as

QV (x) := PK1(x1)× PK2(x2)× · · · × PKr−2(xr−2)× PKr−1PKr(xr−1), (10a)

PW (x) :=

 1

r − 1

r−1∑
j=1

xj ,
1

r − 1

r−1∑
j=1

xj , . . . ,
1

r − 1

r−1∑
j=1

xj

 . (10b)

This new reformulation can be viewed as two-step process that involves rewriting the original
feasibility problem by replacing a pair of its constraint sets with their intersection, followed by
an application of Pierra’s product space technique to the revised problem with reduced number
of constraints. In particular, Kr−1 ∩ Kr replaces Kr−1 × Kr in the definition of V so that V
is a Cartesian product of only r − 1 sets. The operator QV is defined to take the role of PC
by replacing PKr−1 and PKr with the composition PKr−1PKr . Computing QV requires the same
knowledge about the individual projectors as in PC in (6a). Note however that QV , in general,
is not the projector onto V . Furthermore, we note that W is a subspace with dimension one
less than that of D defined in (4b), and PW is the projector onto W which takes the role of PD
defined in (6b).

We remark that V , W and their associated mappings may be reformulated differently to allow
for the intersection of other pairs of constraint sets. This will further cut down the dimension
of the reduced product space constraints and the ambient Hilbert space. For simplicity of
exposition, we focus on the set in Definition 3.3, but our results extend to the more general case.

As the following lemma shows, the constraint reduction reformulation still enjoys the equiv-
alence statement (5) satisfied by the product space reformulation.

Lemma 3.4. Let K1,K2, . . . ,Kr be subsets of H, and consider V and W as defined in (9a) and
(9b), respectively. Then

x∗ ∈
r⋂
j=1

Kj ⇐⇒ x∗ := (x∗, x∗, . . . , x∗) ∈ V ∩W.

Proof. If x∗ ∈
⋂r
j=1Kj , then x∗ ∈ Kj for all j ∈ {1, 2, . . . , r − 2} and x∗ ∈ Kr−1 ∩ Kr.

Consequently, x∗ ∈ V ∩W . The reverse implication is straightforward.

We now apply the constraint reduction reformulation to the method of alternating projections
to deduce our first constraint reduced algorithm.

Constraint Reduction Reformulation for MAP

Definition 3.5. Let K1,K2, . . . ,Kr be proximinal subsets of H. The constraint-reduced MAP
operator, denoted by S, is defined by

S := PWQV ,

where QV and PW are the operators defined in (10a) and (10b), respectively.
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In the next theorem, we show global convergence of constraint-reduced MAP in the convex
setting.

Theorem 3.6. Let K1,K2, . . . ,Kr be closed convex subsets of H with nonempty intersection.
Then the following statements hold.

(a) FixS = V ∩W = {(x1, x2, . . . , xr−1) : x1 = x2 = · · · = xr−1 ∈
⋂r
j=1Kj}.

(b) S is 3/4-averaged. If, in addition, PKr−1(Kr) ⊆ Kr and Kr is affine, then S is 2/3-
averaged.

(c) For any x0 ∈ Hr−1, the sequence (xn)n∈N generated by xn+1 = S(xn) converges weakly to
x∗ = (x∗, x∗, . . . , x∗) ∈ V ∩W with x∗ ∈

⋂r
j=1Kj.

Proof. (a): We first note that PKj is 1/2-averaged for each j ∈ {1, 2, . . . , r} by Example 2.6, and
then that PKr−1PKr is 2/3-averaged by Proposition 2.7(b). We deduce from Proposition 2.8(a)
that QV is 2/3-averaged.

Since FixPKj = Kj for each j ∈ {1, 2, . . . , r} and
⋂r
j=1Kj 6= ∅, we have FixPKr−1PKr =

Kr−1 ∩ Kr by Proposition 2.10, and then FixQV = K1 × · · · × Kr−2 × (Kr−1 ∩ Kr) = V by
Proposition 2.8(b). Noting that W is also closed convex set, we have from Example 2.6 that
PW is 1/2-averaged. Moreover, FixPW = W and, by Lemma 3.4,

V ∩W =

(x1, x2, . . . , xr−1) : x1 = x2 = · · · = xr−1 ∈
r⋂
j=1

Kj

 6= ∅.

Applying Proposition 2.10 again to QV and PW gives us FixS = FixQV ∩ FixPW = V ∩W .

(b): As shown in (a), QV is 2/3-averaged and PW is 1/2-averaged. By applying Propo-
sition 2.7(b), S is 3/4-averaged. Let us now assume that PKr−1(Kr) ⊆ Kr and Kr is affine.
Theorem 3.1 yields PKr−1PKr = PKr−1∩Kr . This makes PKr−1PKr and QV both 1/2-averaged.
Consequently, S is 2/3-averaged as given again by Proposition 2.7(b).

(c): We have from (a) that FixS = V ∩W 6= ∅. Since S is 3/4-averaged by (b), invoking
Proposition 2.9 yields the desired result.

Remark 3.7. Without the additional assumptions of Theorem 3.6(b), the operator PKr−1PKr

is not 1/2-averaged in general, even when Kr−1 and Kr are both closed subspaces of R2 [5,
Example 4.2.5]. As a consequence, the operator QV is not 1/2-averaged in general. Nevertheless,
these extra assumptions are not necessary in obtaining the fixed point result in Theorem 3.6(a)
and the convergence result described in Theorem 3.6(c). When these assumptions are present,
Theorem 3.6(c) follows from Theorem 3.1(a)&(e) and the convergence analysis of MAP for two
closed convex sets.

Constraint Reduction Reformulation for DR

Definition 3.8. Let K1,K2, . . . ,Kr be proximinal subsets of H. The constraint-reduced DR
operator, denoted by T , is defined by

T := I−PW +QVRW = I−PW +QV (2PW − I),

where QV and PW are the operators defined in (10a) and (10b), respectively.
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We reiterate that QV is not necessarily a projector onto V , so that the classic convergence
results for DR (or product DR) do not easily follow for T . Although a similar characterization of
its fixed points still holds, we do not have a general convergence result analogous to Theorem 3.6
for the constraint-reduced DR. But in particular cases where we know more about the structure
of Kr−1 and Kr, we can prove convergence.

Theorem 3.9. Let K1,K2, . . . ,Kr be proximinal subsets of H with nonempty intersection. Sup-
pose that PKr−1(Kr) ⊆ Kr. Then the following statements hold.

(a) PW (FixT ) = V ∩W . In particular, if (x1, x2, . . . , xr−1) ∈ FixT , then

1

r − 1

r−1∑
j=1

xj ∈
r⋂
j=1

Kj .

(b) If Kr is affine, then T = (I +RVRW )/2 coincides with the DR operator for W and V .

(c) If K1, . . .Kr−1 are convex and Kr is affine, then T is firmly nonexpansive. Consequently,
for any x0 ∈ Hr−1, the sequence (xn)n∈N generated by xn+1 = T (xn) converges weakly to
a point x∗ = (x∗1, x

∗
2, . . . , x

∗
r−1) ∈ FixT . Moreover, writing xn = (x1,n, x2,n, . . . , xr−1,n),

the sequence
(

1
r−1

∑r−1
j=1 xj,n

)
n∈N

converges weakly to

1

r − 1

r−1∑
i=j

x∗j ∈
r⋂
j=1

Kj .

Proof. (a): First, it follows from PKr−1(Kr) ⊆ Kr that PKr−1PKr(H) = PKr−1(Kr) ⊆ Kr−1∩Kr,
and thus,

QV (Hr−1) ⊆ K1 × · · · ×Kr−2 ×Kr−1 ∩Kr = V.

Let x ∈ FixT . Then x ∈ T (x) = x − PW (x) + QVRW (x), which implies that PW (x) ∈
QVRW (x) ⊆ QV (Hr−1) ⊆ V . Therefore, PW (x) ∈ V ∩ W . We deduce that PW (FixT ) ⊆
V ∩ W . On the other hand, it is straightforward to see that V ∩ W ⊆ FixT , which yields
V ∩W = PW (V ∩W ) ⊆ PW (FixT ). Hence, PW (FixT ) = V ∩W .

Now, if x = (x1, x2, . . . , xr−1) ∈ FixT , then

PW (x) =

 1

r − 1

r−1∑
j=1

xj ,
1

r − 1

r−1∑
j=1

xj , . . . ,
1

r − 1

r−1∑
j=1

xj

 ∈ PW (FixT ) = V ∩W,

and the conclusion follows from Lemma 3.4.

(b): Assume that Kr is affine. Since Kr is proximinal, it is closed (see [19, Theorem 3.1]),
and we have that Kr is a closed affine subspace. Using Theorem 3.1, PKr−1PKr = PKr−1∩Kr , and
so QV = PV is the projector onto V . This implies that T = I−PW +PVRW = (I +RVRW )/2 is
the DR operator for W and V .

(c): Assume that K1, . . .Kr−1 are convex and Kr is affine. By (b), T = (I +RVRW )/2. Since
every proximinal set in a Hilbert space is closed (see [19, Theorem 3.1]), we derive that V is
convex and closed. As W is also convex and closed, by Example 2.6, RWRV is nonexpansive
and hence T is 1/2-averaged, i.e., firmly nonexpansive.

Finally, since
⋂r
j=1Kj 6= ∅, Lemma 3.4 implies that V ∩W 6= ∅. The weak convergence of

(xn)n∈N to x∗ ∈ FixT follows from Proposition 2.9, see also [28, Theorem 1]. We also derive
from [36, Theorem 1] that (PW (xn))n∈N converges weakly to PW (x∗) ∈ PW (FixT ) = V ∩W .
This completes the proof.
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We wish to highlight that the constraint reduction reformulation for closed convex sets
K1,K2, . . . ,Kr with additional assumptions that PKr−1(Kr) ⊆ Kr and that Kr is a closed affine
subspace, coincides with a non-standard application of the product space reformulation since
PKr−1PKr = PKr−1∩Kr by Theorem 3.1. On the other hand, if we lift the convexity assumption
on at least the set Kr−1 but assuming it is proximinal, then we still have PKr−1PKr = PKr−1∩Kr

by Theorem 3.1(a)&(e). This makes QV a projector so that the convergence results can be
deduced from the convergence analysis of the DR algorithm for two closed convex sets. In this
case, the projector is no longer guaranteed to be nonexpansive and thus the convergence results
for constraint-reduced operators like S or T do not necessarily follow. As we will see in the next
section, local convergence in nonconvex settings can still be guaranteed by replacing convexity
with set regularity notions.

We end this section by noting that the one dimension reduction in the product spaces V
and W is consequential to combining the pair of constraint sets Kr−1 and Kr. In general,
given an r-set feasibility problem, we may pair up as many sets as possible, and replace each
pair by their intersection to form the reformulated problem. This will allow for more reduction
in dimensionality. It is relatively easy to read off from the proof of Theorem 3.6 that such a
problem reformulation will still yield a similar fixed point and global convergence results for the
corresponding constraint-reduced MAP. Similarly, a corresponding constraint-reduced DR may
be set up for solving such a reformulated problem. However, for a favorable fixed point result,
the proof of Theorem 3.9 suggests that we must be clever in pairing up any two sets Ki and
Kj in that they must satisfy PKi(Kj) ⊆ Kj , for i, j ∈ {1, 2, . . . , r} with i 6= j. Moreover, for
convergence, Kj must be affine.

3.3. Local Convergence of Constraint Reduced Algorithms

In this subsection, H is finite-dimensional. Then a nonempty set in H is proximinal if and only
if it is closed; see [6, Corollary 3.15]. Let C be a nonempty closed subset of H. The limiting
normal cone to C at x ∈ C (see [32, Definition 1.1(ii) and Theorem 1.6]) can be given by

NC(x) =

{
lim

n→+∞
λn(zn − xn) : λn ≥ 0, xn → x with zn ∈ PC(xn)

}
.

Recall from [27] that C is superregular at a point x ∈ C if, for any ε > 0, there exists δ > 0 such
that, for all y, z ∈ C ∩ B(x; δ) and all u ∈ NC(z),

〈u, y − z〉 ≤ ε‖u‖‖y − z‖.

A family of sets {K1,K2, . . . ,Kr} in H is said to be

(a) linearly regular around x ∈ H if there exist κ ≥ 0 and δ > 0 such that, for all z ∈ B(x; δ),

dK1∩K2∩···∩Kr(z) ≤ κmax{dK1(z), dK2(z), . . . , dKr(z)}.

(b) strongly regular at x ∈ H if

u1 + u2 + · · ·+ ur = 0 with uj ∈ NKj (x) =⇒ u1 = u2 = · · · = ur = 0.

When r = 2, the strong regularity condition can be written as

NK1(x) ∩ (−NK2(x)) = {0}.

Interested readers can find more discussion on linear regularity and strong regularity in [4, 15,
16, 26, 27, 29].
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Proposition 3.10. Let {K1,K2, . . . ,Kr} be a family of sets in H. The following statements
hold.

(a) If Kj is superregular at xj ∈ Kj for each j ∈ {1, . . . , r}, then the product set C :=
K1 ×K2 × · · · ×Kr ⊆ Hr is superregular at x := (x1, x2, . . . , xr) ∈ C.

(b) If Kj is superregular at x ∈ K :=
⋂r
j=1Kj for each j ∈ {1, . . . , r} and {K1,K2, . . . ,Kr}

is strongly regular at every z near x, then the intersection set K is superregular at x.

Proof. Let ε > 0.

(a): Since Kj is superregular at xj , there exists δj > 0 such that, for all yj , zj ∈ Kj∩B(xj ; δj)
and all uj ∈ NKj (zj), we have

〈uj , yj − zj〉 ≤ ε‖uj‖‖yj − zj‖. (11)

Set δ = minj=1,...,r δj . Let y = (y1, . . . , yr), z = (z1, . . . , zr) ∈ C ∩B(x; δ) and u = (u1, . . . , un) ∈
NC(z) = NK1(z)× · · · ×NKr(z). Then (11) followed by the Cauchy–Schwarz inequality yields

〈u,y − z〉 =
r∑
j=1

〈uj , yj − zj〉 ≤ ε
r∑
j=1

‖uj‖‖yj − zj‖

≤ ε

 r∑
j=1

‖uj‖2
1/2 r∑

j=1

‖yj − zj‖2
1/2

= ε‖u‖‖y − z‖,

which establishes the result.

(b): Since Kj is superregular at x, there exists δ > 0 such that, for all y, z ∈ K ∩ B(x; δ) ⊆
Kj ∩ B(x; δ) and all uj ∈ NKj (z), we have

〈uj , y − z〉 ≤ ε‖uj‖‖y − z‖.

Let u ∈ NK(z) be arbitrary. By assumption, shrinking δ if necessary, {K1,K2, . . . ,Kr} is
strongly regular at z and, by [32, Corollary 3.37], u =

∑r
j=1 uj with some uj ∈ NKj (z). We

then derive from [16, Proposition 2.4] and [32, Theorem 1.6] the existence of ζ > 0 independent
of uj ’s and u such that

‖u‖ =
∥∥∥ r∑
j=1

uj

∥∥∥ ≥ ζ r∑
j=1

‖uj‖.

Therefore,

〈u, y − z〉 =
r∑
j=1

〈uj , y − z〉 ≤ ε
r∑
j=1

‖uj‖‖y − z‖ ≤
ε

ζ
‖u‖‖y − z‖,

which completes the proof.

Proposition 3.11. Let {K1,K2, . . . ,Kr} be a family of sets in H and set

C := K1 ×K2 × · · · ×Kr and

D := {(x1, x2, . . . , xr) ∈ Hr : x1 = x2 = · · · = xr}.

Then the following statements hold.

(a) {K1,K2, . . . ,Kr} is linearly regular around x ∈ H if and only if {C,D} is linearly regular
around (x, x, . . . , x) ∈ Hr.
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(b) {K1,K2, . . . ,Kr} is strongly regular at x ∈ H if and only if {C,D} is strongly regular at
(x, x, . . . , x) ∈ Hr.

Proof. (a): Set K := K1 ∩K2 ∩ · · · ∩Kr. We first have that, for all z = (z, z, . . . , z) ∈ D,

d2C∩D(z) = inf
y=(y,y,...,y)∈C∩D

‖z− y‖2 = r inf
y∈K
‖z − y‖2 = rd2K(z) (12)

and, since PC(z) = PK1(z)× PK2(z)× · · · × PKr(z),

d2C(z) = d2K1
(z) + d2K2

(z) + · · ·+ d2Kr
(z). (13)

Assume that {K1,K2, . . . ,Kr} is linearly regular around x ∈ H. Then there exist κ ≥ 0 and
δ > 0 such that, for all z ∈ B(x; δ), we have

dK(z) ≤ κmax{dK1(z), dK2(z), . . . , dKr(z)}. (14)

Set x := (x, x, . . . , x) ∈ Hr and let y ∈ B(x;
√
rδ/2) and z = PD(y). Noting that x ∈ D, we

have
‖z− x‖ ≤ ‖y − z‖+ ‖y − x‖ ≤ 2‖y − x‖ ≤

√
rδ.

Thus, z = (z, z, . . . , z) ∈ D with z ∈ B(x; δ). It follows from (12), (13), and (14) that

d2C∩D(z) = rd2K(z) ≤ rκ2 max{d2K1
(z), d2K2

(z), . . . , d2Kr
(z)} ≤ rκ2d2C(z),

and so
dC∩D(z) ≤

√
rκdC(z) ≤

√
rκ(dC(y) + ‖y − z‖) =

√
rκ(dC(y) + dD(y)).

We deduce that

dC∩D(y) ≤ dC∩D(z) + ‖y − z‖ = dC∩D(z) + dD(y)

≤
√
rκdC(y) + (1 +

√
rκ)dD(y)

≤ (1 + 2
√
rκ) max{dC(y), dD(y)},

which implies the linear regularity of {C,D} around x.

Conversely, assume that {C,D} is linearly regular around x = (x, x, . . . , x) ∈ Hr, i.e., there
exist κ ≥ 0 and δ > 0 such that, for all z ∈ B(x; δ),

dC∩D(z) ≤ κmax{dC(z), dD(z)}.

Let z ∈ B(x; δ/
√
r). Then z := (z, z, . . . , z) ∈ D ∩ B(x; δ) and the above inequality implies

dC∩D(z) ≤ κdC(z). Thus, by using (12) and (13), we deduce linear regularity of {K1,K2, . . . ,Kr}
around x.

(b): For all x = (x, x, . . . , x) ∈ D, we have from [32, Proposition 1.2] that

NC(x) = NK1(x)×NK2(x)× · · · ×NKr(x) (15)

and from, e.g., [6, Proposition 26.4(ii)] that

ND(x) = {(u1, u2, . . . , ur) ∈ Hr : u1 + u2 + · · ·+ ur = 0}. (16)

Assume that {K1,K2, . . . ,Kr} is strongly regular at x ∈ H. Set x := (x, x, . . . , x) ∈ Hr and
let u ∈ NC(x)∩ (−ND(x)). In view of (15), we can write u = (u1, u2, . . . , ur) with uj ∈ NKj (x).
Since u ∈ −ND(x), it follows from (16) that u1 + u2 + · · · + ur = 0. By the strong regularity
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of {K1,K2, . . . ,Kr}, we have u1 = u2 = · · · = ur = 0, and so u = 0. Altogether, we have
NC(x) ∩ (−ND(x)) = {0}, and thus {C,D} is strongly regular at x.

Conversely, assume that {C,D} is strongly regular at x = (x, x, . . . , x) ∈ Hr and assume
that

u1 + u2 + · · ·+ ur = 0 with uj ∈ NKj (x).

Then u := (u1, u2, . . . , ur) ∈ NC(x) due to (15) and, in turn, (16) implies that u ∈ −ND(x), so
u ∈ NC(x) ∩ (−ND(x)) = {0}. We therefore have that u1 = u2 = · · · = ur = 0, which proves
the strong regularity of {K1,K2, . . . ,Kr} at x.

Recall that a sequence (xn)n∈N is said to converge R-linearly to a point x∗ if there exist
ρ ∈ [0, 1) and σ > 0 such that, for all n ∈ N,

‖xn − x∗‖ ≤ σρn.

Theorem 3.12. Let K1,K2, . . . ,Kr−1 be closed subsets and Kr be a closed affine subspace of
H such that

⋂r
j=1Kj 6= ∅ and PKr−1(Kr) ⊆ Kr. Suppose that K1, . . . ,Kr−2, and Kr−1 ∩ Kr

are superregular at a point x ∈
⋂r
j=1Kj. Set x := (x, x, . . . , x) ∈ Hr−1. Then the following

statements hold.

(a) If {K1, . . . ,Kr−2,Kr−1 ∩ Kr} is linearly regular around x, then, whenever the starting
point is sufficiently close to x, the sequence (xn)n∈N generated by xn+1 ∈ S(xn) converges
R-linearly to a point x∗ = (x∗, x∗, . . . , x∗) ∈ V ∩W with x∗ ∈

⋂r
j=1Kj.

(b) If {K1, . . . ,Kr−2,Kr−1 ∩ Kr} is strongly regular at x, then, whenever the starting point
is sufficiently close to x, the sequence (xn)n∈N generated by xn+1 ∈ T (xn) converges R-
linearly to a point x∗ = (x∗, x∗, . . . , x∗) ∈ V ∩W with x∗ ∈

⋂r
j=1Kj.

Proof. We first derive from Lemma 3.4 that x ∈ V ∩W and from Proposition 3.10(a) that V
is superregular at x. Since PKr−1(Kr) ⊆ Kr and Kr is a closed affine subspace, Theorem 3.1
implies that PKr−1PKr = PKr−1∩Kr . In turn, QV = PV .

(a): We have S = PWPV and, by Proposition 3.11(a), {V,W} is linearly regular around x.
Now, since V is superregular at x and W is convex, applying [15, Corollary 5.12(i)(b)] with
λ = µ = α = 1, we get the conclusion.

(b): According to Theorem 3.9(b), T = (I +RVRW )/2. By Proposition 3.11(b), {V,W}
is strongly regular at x. Noting that V is superregular at x and W is convex, and using [15,
Corollary 5.12(i)(a)] with λ = µ = 2 and α = 1/2 (see also [34, Theorem 4.3]), we complete the
proof.

4. Application: Wavelet Construction

A wavelet ψ on the line is a function whose dyadic dilation and integer translations form an
orthonormal basis for L2(R,C). The utility of wavelets in analyzing and synthesizing signals
relies on certain wavelet properties like compact support and regularity. The earliest examples of
compactly supported smooth wavelets with orthonormal shifts were first achieved by Daubechies
[18] through the multiresolution analysis (MRA) introduced by Mallat and Meyer [30, 31]. The
methods employed by Daubechies are heavily reliant on complex analysis techniques that are
not readily extendable to higher dimensions.

Recently, wavelet construction has been formulated as a feasibility problem [22, 23, 24]. The
product space DR and MAP, along with other projection algorithms, have been successfully
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employed to solve the wavelet feasibility problem. The product DR was observed to yield both
already known and unseen examples of wavelets on the line consistently. This approach has also
been extended to produce nonseparable wavelets on the plane which required a higher number
of constraint sets. In certain applications in signal and image processing, the efficiency of these
wavelets requires additional properties including real-valuedness, symmetry, and cardinality [20].
Unfortunately, the inclusion of more constraints also requires additional product space dimen-
sions. As the number of constraints gets large, the size of formulation becomes computationally
intractable. It is on this ground that we want to evade an additional dimension by exploiting
the property in (2) whenever it is viable.

We also remark that there are theoretical obstructions to obtain wavelets with the desired
properties. Except for the case of Haar wavelet, there exists no symmetric, real-valued wavelets
with orthonormal shifts, and compact support [18]. However, if we remove the real-valuedness
condition, we may be able to obtain complex-valued scaling function and wavelet with perfect
symmetry properties. Similarly, there exist no continuous, cardinal wavelets with compact
support, and orthogonal shifts [38]. These theoretical obstructions may also be circumvented,
without completely ruling out the desirable benefits of perfect symmetry or cardinality, by
seeking for near-symmetry or near-cardinality [20].

In this section, we recall the wavelet feasibility problem and verify that a pair of its constraint
sets satisfy (2). For purposes of illustration, we set up feasibility problems for constructing real-
valued smooth orthogonal wavelets, and for symmetric smooth orthogonal wavelets. We use the
constraint-reduced DR and MAP to solve the feasibility problems.

4.1. The Wavelet Construction Problem

Wavelet orthonormal bases are constructed by finding a scaling function–wavelet pair (φ, ψ),
where φ comes from an MRA. This construction reduces to finding a matrix-valued function
U(ξ) : R→ C2×2 of the form

U(ξ) =

[
m0(ξ) m1(ξ)

m0(ξ + 1/2) m1(ξ + 1/2)

]
where m0 and m1 are trigonometric series called filters associated to the scaling function φ and
wavelet ψ, respectively. Finding the coefficients of these filters is key to constructing a (φ, ψ)
pair.

MRA Conditions and Design criteria

A consistency condition arises from the definition of U(ξ), that is, U(ξ + 1/2) = σU(ξ) where
σ is the “row swap” matrix. Additionally, a necessary condition for the orthonormality of the
shifts and dilates of ψ is that m0(0) = 1 and U(ξ) is unitary almost everywhere. For φ and ψ to
be compactly supported on [0,M − 1] for an even M ≥ 4, we seek to impose that m0 and m1

be trigonometric polynomials of the form m0(ξ) =
∑M−1

k=0 hke
2πikξ and m1(ξ) =

∑M−1
k=0 gke

2πikξ.

Consequently, U(ξ) =
∑M−1

k=0 Ake
2πikξ with each Ak ∈ C2×2. The regularity criterion can be

achieved by forcing d`

dξ`
U(0) to be diagonal for all 0 < ` ≤ D, for some fixed 0 < D ≤ M−2

2 .
Here, a higher value of D would mean more regularity for the wavelet. To ensure that we obtain
real-valued scaling and wavelet functions, we require U(ξ) = U(−ξ). Finally, if U(ξ)† denotes a
copy of U(ξ) with negated off-diagonal entries and φ is symmetric about the center of support,
then U(ξ) = e2πi(M−1)ξU(ξ)†.
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Discretisation by Uniform Sampling

The compact support condition allows us to write U(ξ) as a matrix-valued trigonometric
polynomial of degree M − 1. And because a trigonometric polynomial of degree M − 1 is
determined by M distinct points, we discretise U(ξ) by a uniform sampling at M points
{ jM }

M−1
j=0 ⊆ [0, 1). If Uj = U( j

M ), then the sampling procedure produces an ensemble

U = (U0, U1, . . . , UM−1) ∈ (C2×2)M of matrices. Moreover, the coefficient matrices Ak may
be obtained from the ensembles by an M -point discrete Fourier transform, that is,

Ak = (FMU)k =
1

M

M−1∑
j=0

Uje
−2πijk/M , (17)

which is also invertible to recover back Uj = (F−1M A)j . This establishes a connection between
the uniform samples and the coefficient matrices Ak of U(ξ).

Wavelet Properties Encoded on the Ensembles

The consistency condition is imposed on the ensemble of samples to satisfy Uj+M
2

= σUj for

all j ∈ {0, 1, . . . ,M − 1}. On the other hand, unitarity of each sample Uj = U( j
M ) for j ∈

{0, 1, . . . ,M − 1} is insufficient to ensure the unitarity of U(ξ) almost everywhere. However,
it transpires that forcing U(ξ) to be unitary at 2M samples, uniformly chosen to be U( j

2M )

and U(2j+1
2M ), for j ∈ {0, 1, . . . ,M − 1}, is sufficient for U(ξ) to be unitary almost everywhere.

Incidentally, given U = (U( j
M ))M−1j=0 , the other M samples written to form an ensemble Ũ may

be obtained from U using Ũ = F−1M χMFM (U), where (χM )j = eπij/M for j = {0, 1, . . . ,M − 1}.
In terms of the sample matrices Uj , the regularity condition is imposed by forcing

∑M−1
j=0 j`Aj

to be diagonal, where

M−1∑
j=0

j`Aj =
1

M

M−1∑
k=0

α`kUk and α`k =
1

M

M−1∑
j=0

j`e−2πikj/M .

For real-valuedness, the ensembles must satisfy Uj = UM−j for j ∈ {1, 2, . . . , M2 }. Lastly, we

require Uj = e2πi(M−1)j/MU †M−j for all j ∈ {1, 2, . . . , M2 } to meet the symmetry condition.

Wavelet Construction as a Feasibility Problem

Let (C2×2)Mσ denote the collection of ensembles in (C2×2)M that satisfy the consistency condition.
Further, let U(2) denote the collection of all 2-by-2 unitary matrices. For an even M ≥ 4 and a

fixed 0 < D ≤ M−2
2 , we define C1, C2, C3, C

(R)
4 , C

(S)
4 ⊆ (C2×2)Mσ as follows.

C1 :=

{
U : U0 =

[
1 0
0 z

]
, |z| = 1, Uj ∈ U(2), j ∈ {0, 1, . . . ,M/2}

}
, (18a)

C2 :=
{
U : (FMχM (FM )−1(U))j ∈ U(2), j ∈ {0, 1, . . . ,M/2}

}
, (18b)

C3 :=

{
U :

M−1∑
k=0

α`kUk ∈ diag (C2×2), 1 ≤ ` ≤ D

}
, (18c)

C
(R)
4 :=

{
U : Uj = UM−j , j ∈ {1, 2, . . . ,M/2}

}
, (18d)

C
(S)
4 :=

{
U : Uj = e2πi(M−1)j/MU †M−j , j ∈ {1, 2, . . . ,M/2}

}
. (18e)
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Problem 1 (Symmetric wavelets). The problem to construct symmetric smooth orthogonal

wavelet is to find an ensemble U = (U0, . . . , UM−1) ∈
⋂3
k=1Ck ∩ C

(S)
4 ⊆ (C2×2)Mσ .

Problem 2 (Real-valued wavelets). The problem to construct real-valued smooth orthogonal

wavelet is to find an ensemble U = (U0, . . . , UM−1) ∈
⋂3
k=1Ck ∩ C

(R)
4 ⊆ (C2×2)Mσ .

Note that before the constraint sets are defined, the parameters M and D must be chosen
first. A particular combination of values of M and D corresponds to a specific case of Problem 1
or Problem 2. We also remark that C1 and C2 are nonconvex subsets of (C2×2)Mσ , and every

ensemble in both C1 and C2 will satisfy the unitarity condition. The subspaces C3, C
(R)
4 ,

and C
(S)
4 are constraint sets for regularity, real-valuedness, and symmetry, respectively. The

projectors onto C1, C2, and C3 are computed in [22, Section 6.3] and those onto C
(R)
4 and C

(S)
4

are referred to [20, Section 3]. We will show that C
(R)
4 and C

(S)
4 are both invariant under the

projector onto C1 which we recall in the next proposition.

Proposition 4.1. Let U = (U0, U1, . . . , UM−1) ∈ (C2×2)Mσ and Ũ := {Ũ0, Ũ1, . . . , ŨM−1} ∈
PC1(U). Suppose further that z is the (2, 2)-entry of U0 and that Uj = XjΣjY

∗
j is a singular

value decomposition for Uj where j ∈ {1, 2, . . . ,M − 1} \
{
M
2

}
. Then

Ũ0 =

[
1 0
0 z
|z|

]
, ŨM

2
= σŨ0, and Ũj = XjY

∗
j

for j ∈ {1, 2, . . . ,M − 1} \
{
M
2

}
.

Proof. See [22, Lemma 6.3.4].

We emphasize that the ensembles in PC1(U) do satisfy the consistency condition [22,
Lemma 6.3.6]. We now verify two important relations among the constraint sets. These relations
give us appropriate pairs of constraint sets for applying the constraint reduction reformulation
to the wavelet feasibility problem.

Theorem 4.2. Let C1, C
(R)
4 , and C

(S)
4 be as defined in (18). Then the following statements

hold.

(a) PC1

(
C

(R)
4

)
⊆ C(R)

4 .

(b) PC1

(
C

(S)
4

)
⊆ C(S)

4 .

Proof. (a): Let U ∈ C
(R)
4 and Ũ ∈ PC1(U). Then Uj = UM−j and Uj = σUj+M

2
for j ∈

{0, 1, . . . , M2 }. Consequently, U0 and UM
2

have real entries. We deduce from Proposition 4.1

that Ũ0 and ŨM
2

will also have real entries. For j ∈
{

1, 2, . . . , M2 − 1
}

, again by Proposition 4.1,

Ũj = XjY
∗
j , where Uj = XjΣjY

∗
j is a singular value decomposition for Uj . Moreover,

UM−j = Uj = XjΣjY ∗j = XjΣjY ∗j

is a singular value decomposition for UM−j , and so ŨM−j = XjY ∗j = Ũj . Therefore, Ũ ∈ C(R)
4 .

(b): Let U ∈ C(S)
4 and Ũ ∈ PC1(U). Then Uj = e2πi(M−1)j/MU †M−j and Uj = σUj+M

2
for

j ∈ {0, 1, . . . , M2 }. In particular, U0 = U †0 and UM
2

= −U †M
2

. We know from Proposition 4.1
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that Ũ0 is diagonal and deduce that Ũ0 = Ũ †0 and ŨM
2

= σŨ0 = −(σŨ0)
† = −Ũ †M

2

. For

j ∈
{

1, 2, . . . , M2 − 1
}

, we also learn from Proposition 4.1 that Ũj = XjY
∗
j , where Uj = XjΣjY

∗
j

is a singular value decomposition for Uj . Denote s = e−2πi(M−1)j/M and τ = diag(−1, 1) ∈ C2×2.
Then

UM−j = e−2πi(M−1)j/MU †j = sτUjτ
∗ = (sτXj)Σj(Y

∗
j τ
∗)

is a singular value decomposition for UM−j since |s| = 1 and τ is unitary. Hence,

ŨM−j = (sτXj)(Y
∗
j τ
∗) = s(τXjY

∗
j τ
∗) = s(XjY

∗
j )† = e−2πi(M−1)j/M Ũ †j ,

and we deduce that Ũ ∈ C(S)
4 .

The results in Theorem 4.2 further justify our choice of C1 and C
(S)
4 as the pair of constraints

to replace with their intersection for constraint reduction reformulation of Problem 1. Similarly,

the pair of C1 and C
(R)
4 is the natural choice for Problem 2. We will solve these problems in the

next subsection.

We note that a solution U = (U0, . . . , UM−1) of Problem 1 or 2 contains the M samples of
U(ξ) from which we recover the coefficients Ak using (17). Consequently, the coefficients of the
scaling filter m0(ξ) and wavelet filter m1(ξ) may be easily pulled out from the Ak’s. Through the
cascade algorithm applied to the coefficients of m0 and m1, we may be able to plot the scaling
function φ and wavelet ψ, respectively.

4.2. Numerical Experiments

The wavelet feasibility problems defined in Problems 1–2 can be straightforwardly reformulated
to a two-set feasibility problem using the product space reformulation defined in Section 2.3.
The product DR and MAP are then employable to solve the two-set problem. Alternatively, we
may apply the constraint-reduction reformulation to the problems at hand. We abuse notation
by consistently denoting the reduced product space constraints as in Definition 3.3 for both
problems.

Constraint-reduction reformulation for Problem 1: The product space constraints for obtaining
symmetric wavelets are defined by

V :=
(
C1 ∩ C(S)

4

)
× C2 × C3 ⊆

(
(C2×2)Mσ

)3
,

W :=
{

(Uj)
3
j=1 ∈

(
(C2×2)Mσ

)3
: U1 = U2 = U3

}
.

Constraint-reduction reformulation for Problem 2: The product space constraints for obtaining
real-valued wavelets are defined by

V :=
(
C1 ∩ C(R)

4

)
× C2 × C3 ⊆

(
(C2×2)Mσ

)3
,

W :=
{

(Uj)
3
j=1 ∈

(
(C2×2)Mσ

)3
: U1 = U2 = U3

}
.

The associated operators QV and PW for both the two new problems are defined similar to
what appeared in Definition 3.3.

For constructing symmetric wavelets, we will solve two cases of Problem 1 where (M,D) =
(6, 2) and (M,D) = (6, 1). Similarly, for real-valued wavelets, we work out two cases of Problem 2
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corresponding to the parameters (M,D) = (6, 2) and (M,D) = (6, 1). For each particular
problem, we employ product DR, constraint-reduced DR, product MAP, and constraint-reduced
MAP. However, we only compare the performance of product DR against constraint-reduced
DR, and the performance of product MAP against constraint-reduced MAP. Henceforth, we
let (xn)n∈N be the sequence of iterates generated by a projection algorithm. We will employ a
particular algorithm to a problem twice using two different tolerance values, namely, ε = 10−6

and ε = 10−9. For the DR variant, we use the stopping criterion given by ‖QV PW (xn) −
PW (xn)‖ < ε which when satisfied indicates that PW (xn) can be declared as a feasible point.
Similarly for constraint-reduced MAP, we set a stopping criterion ‖QV (xn)− xn‖ < ε to decide
that the iterate xn lies on the intersection of V and W . We consider a projection algorithm
to have solved our feasibility problem if and when it attains a point that satisfies the stopping
criterion within the cutoff of 50, 000 iterates. For our numerical results, we provide statistics
on the number of iterations which we mainly consider as performance measure. We also look
at the average running time of an algorithm in solving a particular problem. Additionally, we
comment on the versatility of an algorithm in tackling the nonconvex wavelet feasibility problem
by counting the number of times it solves a particular problem, initialized at 1, 000 ensembles
that satisfy the consistency condition and with complex entries having real and imaginary parts
chosen from uniformly distributed random number in the interval (0, 1). All datasets generated
and analysed in this study are available from the corresponding author on request.

Symmetric Wavelets

In constructing symmetric wavelets, we solve Problem 1. We employ the product DR and MAP,
and their constraint-reduced variants to solve the product space and constraint-reduced versions
of Problem 1 with (M,D) = (6, 2) and (M,D) = (6, 1). We only compare the performance of
product DR with that of constraint-reduced DR, doing the same for MAP. In this way, we are
essentially comparing the robustness of the product space and constraint reduction reformula-
tions.

Table 1 summarizes the performance of DR in solving Problem 1 using product space and
constraint reduction reformulations. In all versions of the problem considered, the constraint-
reduced DR solved every test case while product DR failed in a number of cases. In instances
where both algorithms converged, the constraint-reduced DR used up lesser number of iterations
in at least 78% of the time. This suggests that the constraint-reduced DR outperforms product
DR as also reflected in the computed mean and median number of iterations. The average
running time (in seconds) of the constraint-reduced DR is also better than that of the product
DR.

Problem
parameters

ε algorithm
cases
solved

solved
alone

solved
by both

when solved by both

wins mean median running time

M=6, D=2
10−6

P–DR 940 0 940 187 3862 3393 8.6575
CR–DR 1000 60 940 753 3223 2735 7.1764

10−9
P–DR 956 0 956 206 6969 5941 15.0907

CR–DR 1000 44 956 750 5439 4754 11.6524

M=6, D=1
10−6

P–DR 934 0 934 148 4076 3456 8.8109
CR–DR 1000 66 934 786 3073 2724 6.5987

10−9
P–DR 934 0 934 154 7262 5988 16.1757

CR–DR 1000 66 934 780 5378 4721 11.8203

Table 1: Statistics on the performance of product DR (P–DR) and constraint-reduced DR (CR–
DR) for wavelet feasibility problems with symmetry constraint.
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Similarly, Table 2 highlights our results for cases where MAP is used to solve the feasibility
problem through product space and constraint reduction reformulations. In our statistics, the
two algorithms solved all test cases with constraint-reduced MAP incurring lesser number of
iterations in at least 97% of the time. This suggests that constraint-reduced MAP outperforms
product MAP in this sense as can also be seen in the computed mean and median number of
iterations for both algorithms. Moreover, constraint-reduced MAP has exhibited a consistently
favorable running time as compared to product MAP.

Problem
parameters

ε algorithm
cases
solved

solved
alone

solved
by both

when solved by both

wins mean median running time

M=6, D=2
10−6

P–MAP 1000 0 1000 26 3337 3474 3.0885
CR–MAP 1000 0 1000 974 2521 2599 2.2512

10−9
P–MAP 1000 0 1000 2 5528 5648 4.5243

CR–MAP 1000 0 1000 998 4157 4232 3.3080

M=6, D=1
10−6

P–MAP 1000 0 1000 23 3389 3477 2.4394
CR–MAP 1000 0 1000 977 2516 2600 1.7688

10−9
P–MAP 1000 0 1000 4 5569 5655 4.1696

CR–MAP 1000 0 1000 996 4149 4232 3.0308

Table 2: Statistics on the performance of product MAP (P–MAP) and constraint-reduced MAP
(CR–MAP) for wavelet feasibility problems with symmetry constraint.

It is also noteworthy that based on our statistics, MAP’s variants are more effective than
DR’s in finding symmetric wavelets. Figure 3 shows an example of a symmetric scaling function
and an anti-symmetric wavelet generated by solving Problem 1 with (M,D) = (6, 2).

(a) A symmetric scaling function. (b) An anti-symmetric wavelet.

Figure 3: Complex-valued compactly supported smooth scaling function and wavelet with sym-
metry properties obtained by solving Problem 1 with (M,D) = (6, 2).

Real-valued Wavelets

To construct real-valued wavelets, we need to deal with Problem 2. We employ the product DR
and MAP, and their constraint-reduced variants in the two problems where (M,D) = (6, 2) and
(M,D) = (6, 1).
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Table 3 shows the performance of DR in solving Problem 2 using product space and constraint
reduction reformulations. For the particular problem where (M,D) = (6, 2) and ε = 10−9, the
product DR solved more cases than constraint-reduced DR. Nevertheless, in cases where both
algorithms solved the feasibility problem, the constraint-reduced DR used up lesser number of
iterations 97% of the time. This suggests that the constraint-reduced DR outperforms product
DR in terms of the number of iterations. This claim is supported by the computed mean and
median number of iterations for the contraint-reduced DR that are less than that of the product
DR. Moreover, the average running time (in seconds) of constraint-reduced DR is better than
product DR. Similar results are observed for the problem where (M,D) = (6, 2) and ε = 10−6.
For the problems where (M,D) = (6, 1) with the tolerance values 10−6 and 10−9, the constraint-
reduced DR outperforms the product version in terms of number of iterations and running time.

Problem
parameters

ε algorithm
cases
solved

solved
alone

solved
by both

when solved by both

wins mean median running time

M=6, D=2
10−6

P–DR 619 262 357 21 771 584 1.5704
CR–DR 497 140 357 336 618 457 1.2569

10−9
P–DR 619 262 357 11 1147 959 1.8231

CR–DR 497 140 357 346 1053 740 1.6551

M=6, D=1
10−6

P–DR 827 334 493 64 560 301 0.8113
CR–DR 581 88 493 429 252 183 0.3615

10−9
P–DR 827 334 493 72 693 467 1.1542

CR–DR 581 88 493 421 358 283 0.5914

Table 3: Statistics on the performance of product DR (P–DR) and constraint-reduced DR (CR–
DR) for wavelet feasibility problems with real-valuedness constraint.

Similarly, Table 4 summarizes our results when MAP is used to solve the feasibility prob-
lem through product space and constraint reduction reformulations. In our statistics for both
problems corresponding to (M,D) = (6, 2) and (M,D) = (6, 1) under two different values for
ε, the two algorithms performed closely in terms of their efficacy to solve the feasibility prob-
lem. For the problem with (M,D) = (6, 2), product MAP solved a few more problems than
the constraint-reduced version. However, when (M,D) = (6, 1), constraint-reduced MAP solved
more cases than product DR. In cases where both algorithms solved the feasibility problem, the
constraint-reduced MAP consistently rendered lesser number of iterations, outperforming the
product MAP. These are reflected in the computed mean and median number of iterations for
both algorithms. Constraint-reduced MAP also exhibited a consistently favorable running time.

Problem
parameters

ε algorithm
cases
solved

solved
alone

solved
by both

when solved by both

wins mean median running time

M=6, D=2
10−6

P–MAP 264 95 169 0 355 354 0.2621
CR–MAP 235 66 169 169 264 263 0.1890

10−9
P–MAP 264 95 169 0 543 542 0.4549

CR–MAP 235 66 169 169 404 403 0.3294

M=6, D=1
10−6

P–MAP 112 32 80 1 90 88 0.0731
CR–MAP 158 78 80 79 66 63 0.0525

10−9
P–MAP 112 32 80 1 133 129 0.1059

CR–MAP 158 78 80 79 97 93 0.0757

Table 4: Statistics on the performance of product MAP (P–MAP) and constraint-reduced MAP
(CR–MAP) for wavelet feasibility problems with real-valuedness constraint.
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In contradistinction, MAP is not as robust as DR in solving the two cases of Problem 2 that
we have considered, as suggested by the total number of test runs that MAP and DR solved.
Figure 4 shows an example of real-valued scaling function-wavelet pair generated by solving
Problem 2 with (M,D) = (6, 2). This wavelet is exactly Daubechies’ 3ψ wavelet which is known
to have the maximal number of vanishing moments for its length of support [18, Chapter 5].
Other solutions may be obtained by lowering the requirement on regularity as in the case where
(M,D) = (6, 1).

(a) A real-valued scaling function. (b) A real-valued wavelet.

Figure 4: Real-valued compactly supported smooth scaling function and wavelet obtained by
solving Problem 2 with M = 6 and D = 2. These coincide with Daubechies’ 3φ scaling function
and 3ψ wavelet.

5. Conclusions

We have introduced a constraint reduction reformulation for converting many-set feasibility
problems into two-set problems. It provides an equivalent formulation of many-set feasibility
problems by replacing a pair of its constraint sets with their intersection, before applying Pierra’s
classical product space reformulation. Our new reformulation gives rise to constraint-reduced
variants of any projection algorithm that can be used to solve two-set feasibility problems. We
have presented a global convergence analysis for the constraint-reduced variants of DR and
MAP in the convex setting, and a local convergence analysis in a nonconvex setting. In carrying
out the analysis for the constraint-reduced DR, we have generalized a well-known result which
guarantees that the composition of two projectors onto subspaces is again a projector onto the
intersection. Even when the constraint sets do not possess the additional structure required, the
constraint-reduced variants of projection algorithms still serve as useful heuristics for solving
nonconvex feasibility problems.

The required property among the constraint sets for the convergence of constraint-reduced
DR appear exactly in the wavelet feasibility problems so it provided us a suitable venue for
numerical implementations of the new reformulation technique. In certain cases, the performance
of constraint-reduced DR and MAP has been seen as improvement over their usual product
variants.
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