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Optimality Conditions and Exact Penalty for Mathematical Programs

with Switching Constraints

Yan-Chao Liang and Jane J. Ye

Abstract. In this paper, we give an overview on optimality conditions and exact penalization for the

mathematical program with switching constraints (MPSC). MPSC is a new class of optimization problems

with important applications. It is well known that if MPSC is treated as a standard nonlinear program,

some of the usual constraint qualifications may fail. To deal with this issue, one could reformulate it as a

mathematical program with disjunctive constraints (MPDC). In this paper, we first survey recent results

on constraint qualifications and optimality conditions for MPDC, then apply them to MPSC. Moreover,

we provide two types of sufficient conditions for the local error bound and exact penalty results for

MPSC. One comes from the directional quasi-normality for MPDC, and the other is obtained via the

local decomposition approach.

Key words. Mathematical program with switching constraints, mathematical program with disjunctive

constraints, directional optimality condition, directional pseudo-normality, directional quasi-normality,

error bound, exact penalization.
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1 Introduction

The mathematical program with switching constraints (MPSC) defines a class of optimization problems in

which some of the equality constraint functions are products of two functions. The terminology “switching

constraint” comes from the fact that if the product of two constraint functions is equal to zero, then at

least one of them must be equal to zero. MPSC can be used to model the discretized version of the

optimal control problem with switching structure (see e.g. [1, 2, 3] and the references therein), or to

reformulate the so-called mathematical programs with either-or-constraints (see [3, Section 7]). MPSC

has many interesting applications, e.g., optimal control with switching structures have been used to model
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certain real-world applications [4, 5, 6] and the mathematical program with either-or-constraints was used

to study some special instances of portfolio optimization [2].

It is well known that if the mathematical program with equilibrium constraints (MPEC) [7, 8], or the

mathematical program with vanishing constraints (MPVC) [9, 10], are treated as nonlinear programs,

then there are issues involving the usual constraint qualifications such as the Mangasarian-Fromovitz

Constraint Qualification (MFCQ) and/or the linear independence constraint qualification (LICQ) for

MPEC and MPVC. It is not surprising that this issue also exists for MPSC. Indeed, Mehlitz [3, Lemma

4.1] showed that if an MPSC is treated as a nonlinear program, then MFCQ fails at any feasible point

z∗ for which there is a pair of switching functions with value equal to zero. Consequently, he introduced

the concepts of weak, Mordukhovich (M-), and strong (S-) stationarity for MPSC and presented some

associated constraint qualifications. Kanzow et al. [2] adopted several relaxation methods from the

numerical treatment of MPEC to MPSC. Li and Guo extended some weak and verifiable constraint

qualifications for nonlinear programs to MPSC in [11]. In the work of [3, 11], the error bound property

was not studied and that is one of the main focuses of this paper.

The mathematical program with disjunctive constraints (also called the disjunctive program) is a type

of set-constrained optimization problem where the set is the union of finitely many polyhedral convex

sets. Programs such as MPEC, MPVC and MPSC can be reformulated as disjunctive programs. The

classical concepts of optimality for disjunctive programs such as S-stationary condition based on the

regular normal cone and M-stationary condition based on the limiting/Mordukhovich normal cone for

disjunctive programs were introduced by Flegel et al. [12]. Although M-stationary condition holds for

a local minimizer under very weak constraint qualifications such as the generalized Guignard constraint

qualification (GGCQ), it may be weak for some problems and it does not exclude feasible descent di-

rections. Based on concepts of metric subregularity and some new developments in variational analysis,

for disjunctive programs, Gfrerer [13] introduced various new concepts of constraint qualifications and

stationarity concepts including the strong M-stationarity and the extended M-stationarity which are

stronger than M-stationarity. Moreover, a directional version of LICQ and directional first and second

order optimality conditions are given in [13]. Another direction of sharpening optimality conditions and

weakening constraint qualifications is to consider directional optimality conditions and constraint qual-

ifications. Bai et al. [14] introduced the directional quasi/pseudo-normality as sufficent conditions for

the metric subregularity which are weaker than both the classical quasi/pseudo-normality and the first

order sufficient condition for metric subregularity. Benko et al. [15] generalized the notions of directional

pseudo- and quasi-normality to obtain more sufficient conditions for metric subregularity. In particular,

they have shown that for the disjunctive program, the (directional) pseudo-normality can always take the

simplified form while for a special class of the disjunctive program called the ortho-disjunctive program

(which includes MPSC), the (directional) quasi-normality can also take the simplified form. Mehlitz [16]

introduced an alternative concept of LICQ and obtained first and second order optimality conditions
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for disjunctive programs. Recall that M-stationary condition does not preclude the existence of feasible

descent directions. To deal with this issue, recently Benko and Gfrerer [17] introduced the so-called

Q-stationarity and QM -stationarity where QM -stationarity is stronger than M-stationarity. A further

extension of Q-stationarity and QM -stationarity are presented in Benko and Gfrerer [18]. To deal with

the difficulty of calculating the limiting normal cone to the feasible region, Gfrerer [19] introduced a

new concept of stationary condition for a set-constrained optimization problem called the linearized M-

stationary condition. Recently, sequential optimality conditions and constraint qualifications and their

applications in numerical algorithms became a popular topic. A suitable theory has been developed in

the context of MPEC in [20, 21]. Mehlitz [22] has generalized the underlying theories to an very general

optimization problem which includes MPDC as a special case.

In this paper, we will survey the aforementioned results about new stationarity concepts and sufficient

conditions for metric subregularity for disjunctive programs. We then apply these results to obtain various

optimality conditions and local error bound results for MPSC. Moreover, we propose to use the local

decomposition approach to study sufficient conditions for the error bound property by the corresponding

constraint qualifications for each branch as a standard nonlinear program (NLP).

The remainder of this paper is organized as follows. In Section 2, we review some constraint qual-

ifications from nonlinear programs, and existing constraint qualifications and optimality conditions for

MPSC. In Section 3, we summarize the results that we need for disjunctive programs. In Section 4,

we apply the results from Section 3 to MPSC. In Section 5, we derive the local error bound and exact

penalty results for MPSC. In Section 6, we conclude our discussion and provide relationships among

various constraint qualifications, error bound properties and stationary conditions.

Throughout the paper, for a differentiable mapping c : Rn → R
m and a vector z ∈ R

n, we denote by

∇c(z) the Jacobian of c at z. For a differentiable function f : Rn → R, we denote by ∇f(z) its gradient

vector and ∇2f(z) its Hessian matrix at z provided that it is twice differentiable. For a set C, we denote

by C◦ := {x | xT y ≤ 0, ∀y ∈ C} its polar cone, and by distC(x) the distance between x and C. Unless

otherwise specified, ‖ · ‖ denotes an arbitrary norm in R
n.

2 Review of constraint qualifications and optimality conditions

In this section, we first recall some constraint qualifications for NLP. Then we review some existing

constraint qualifications and optimality conditions for MPSC. The reader is referred to [3, 11] for those

constraint qualifications for MPSC that are not reviewed here.

3



2.1 Constraint qualifications for NLP

Consider the standard nonlinear program

min f(z) s.t. g(z) ≤ 0, h(z) = 0, (1)

where f : Rn → R, g : Rn → R
p, h : Rn → R

q are continuously differentiable. Denote by Īg := Ig(z̄) =

{i ∈ {1, · · · , p}|gi(z̄) = 0} the index set of active inequality constraints at z̄. We recall some constraint

qualifications for problem (1) that we will refer to in this paper.

Definition 2.1 Let z̄ ∈ R
n be a feasible point of problem (1). We say that z̄ satisfies

1. linear independence constraint qualification (LICQ), if the family of gradients {∇gi(z̄)}i∈Īg
∪{∇hi(z̄)}

q
i=1

is linearly independent;

2. Mangasarian-Fromovitz constraint qualification (MFCQ) [23], or equivalently positive-linearly inde-

pendent constraint qualification (PLICQ) if the family of gradients {∇gi(z̄)}i∈Īg
∪ {∇hi(z̄)}

q
i=1 is

positive-linearly independent, i.e. the family of gradients {∇gi(z̄)}i∈Īg
∪{∇hi(z̄)}

q
i=1 is linearly in-

dependent with non-negative scalars associated to the gradients of the active inequality constraints;

3. constant rank constraint qualification (CRCQ) [24], if there exists a neighborhood N(z̄) of z̄ such

that for every I ⊆ Īg and every J ⊆ {1, · · · , q}, the family of gradients {∇gi(z)}i∈I ∪ {∇hi(z)}i∈J

has the same rank for every z ∈ N(z̄);

4. relaxed constant rank constraint qualification (RCRCQ) [25], if there exists a neighborhood N(z̄) of

z̄ such that for every I ⊆ Īg , the family of gradients {∇gi(z)}i∈I ∪ {∇hi(z)}
q
i=1 has the same rank

for every z ∈ N(z̄);

5. constant positive linear dependence constraint qualification (CPLD) [26], if there exists a neigh-

borhood N(z̄) of z̄ such that for every I ⊆ Īg and every J ⊆ {1, · · · , q}, whenever the family of

gradients {∇gi(z̄)}i∈I ∪{∇hi(z̄)}i∈J is positive-linearly dependent, then {∇gi(z)}i∈I ∪{∇hi(z)}i∈J

is linearly dependent for every z ∈ N(z̄);

6. relaxed constant positive linear dependence constraint qualification (RCPLD) [27], if there exists a

neighborhood N(z̄) of z̄ such that (i) {∇hi(z)}
q
i=1 has the same rank for every z ∈ N(z̄); (ii) For

every I ⊆ Īg, if the family of gradients {∇gi(z̄)}i∈I ∪ {∇hi(z̄)}i∈J is positive-linearly dependent,

where J ⊆ {1, · · · , q} is such that {∇hi(z̄)}i∈J is a basis for span {∇hi(z̄)}
q
i=1, then {∇gi(z)}i∈I ∪

{∇hi(z)}i∈J is linearly dependent for every z ∈ N(z̄);

7. constant rank of subspace component (CRSC) [28], if there exists a neighborhood N(z̄) of z̄ such

that the rank of {∇gi(z)}i∈I− ∪ {∇hi(z)}
q
i=1 remains constant for z ∈ N(z̄), where

I− =:



l ∈ Īg

∣∣∣∣∣∣
−∇gl(z̄) ∈





q∑

i=1

λi∇hi(z̄) +
∑

i∈Īg\{l}

µi∇gi(z̄)|µi ≥ 0, i ∈ Īg







 .
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LICQ MFCQ CPLD RCPLD CRSC

CRCQ RCRCQ

error bound/metric subregular

Fig.1 Relation among constraint qualifications for NLPs

Remark 2.1 Let L(z̄) := {d|∇gi(z̄)d ≤ 0, i ∈ Īg,∇hi(z̄)d = 0, i = 1, · · · , q} be the linearization cone of

problem (1) at z̄. Kruger al. [29] pointed out that since the polar of the linearization cone is equal to

L(z̄)◦ =





q∑

i=1

λi∇hi(z̄) +
∑

i∈Īg

µi∇gi(z̄)

∣∣∣∣∣∣
µi ≥ 0, i ∈ Īg



 ,

by the definition of the linearization cone, the index set I− can be equivalently written as

I− = {l ∈ Īg|∇gl(z̄)
Td = 0, ∀d ∈ L(z̄)}.

Hence in [29], CRSC is also called relaxed MFCQ.

Definition 2.2 (see e.g. [30]) Let FNLP be the feasible region of problem (1). We say that an error

bound holds in a neighborhood N(z̄) of a feasible point z̄ ∈ FNLP if there exists α > 0 such that for every

z ∈ N(z̄)

distFNLP
(z) ≤ α

(
p∑

i=1

max{gi(z), 0}+

q∑

i=1

|hi(z)|

)
.

It is easy to see that the local error bound condition holds at z̄ for NLP if and only if the feasibility

mapping z ⇒ (g(z), h(z))− R
p
− × {0}q is metrically subregular (see Definition 3.8) at (z̄, 0).

Andreani al. [28, Theorem 5.5] showed that CRSC implies the existence of local error bounds under

the second-order differentiability of functions g, h. This assumption was removed by Guo et al. [31].

Finally, we summarize relations among constraint qualifications for NLP discussed in this subsection in

Figure 1.

2.2 Constraint qualifications and optimality conditions for MPSC

In this paper, we consider the following MPSC:

min f(z)

s.t. g(z) ≤ 0, h(z) = 0, Gi(z)Hi(z) = 0, i = 1, · · · ,m (2)

where f : R
n → R, g : Rn → R

p, h : R
n → R

q, G1, · · · , Gm : R
n → R, H1 · · · , Hm : R

n → R.

We assume that unless otherwise specified, all defining functions are continuously differentiable. Let F

denote the feasible region of (2). For a feasible point z∗ ∈ F , we define some useful index sets as follows:

I∗
g := Ig(z

∗) = {i ∈ {1, · · · , p} | gi(z
∗) = 0},

I∗
G := IG(z

∗) = {i ∈ {i, · · · ,m} | Gi(z
∗) = 0, Hi(z

∗) 6= 0},

I∗
H := IH(z∗) = {i ∈ {i, · · · ,m} | Gi(z

∗) 6= 0, Hi(z
∗) = 0},

I∗
GH := IGH(z∗) = {i ∈ {i, · · · ,m} | Gi(z

∗) = Hi(z
∗) = 0}.
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Since by [3, Lemma 4.1], MPSC never satisfies MFCQ at a feasible point z∗ with I∗
GH 6= ∅, Mehlitz [3]

defined and studied the following alternative stationarity concepts.

Definition 2.3 [3] We say that z∗ ∈ F is a weakly stationary (W-stationary) point of MPSC (2) if there

exist multipliers (λg, λh, λG, λH) such that

∇f(z∗) +
∑

i∈I∗

g

λg
i∇gi(z

∗) +

q∑

i=1

λh
i ∇hi(z

∗) +

m∑

i=1

(λG
i ∇Gi(z

∗) + λH
i ∇Hi(z

∗)) = 0, (3)

λg
i ≥ 0, i ∈ I∗

g , λ
G
i = 0, i ∈ I∗

H , λH
i = 0, i ∈ I∗

G. (4)

We say that z∗ ∈ F is a Mordukhovich stationary (M-stationary) point of MPSC (2) if there exist mul-

tipliers (λg , λh, λG, λH) such that (3)–(4) hold and λG
i λ

H
i = 0, i ∈ I∗

GH .Moreover, we call (λg, λh, λG, λH)

an M-multiplier.

We say that z∗ ∈ F is a strongly stationary (S-stationary) point of MPSC (2) if there exist multipliers

(λg, λh, λG, λH) such that (3)–(4) hold and λG
i = λH

i = 0, i ∈ I∗
GH . Moreover, we call (λg, λh, λG, λH)

an S-multiplier.

Consider the associated tightened nonlinear problem at z∗ ∈ F :

(TNLP) min f(z)

s.t. g(z) ≤ 0, h(z) = 0, Gi(z) = 0, i ∈ I∗
G ∪ I∗

GH , Hi(z) = 0, i ∈ I∗
H ∪ I∗

GH .

Definition 2.4 [3] Let z∗ be a feasible point of MPSC (2). We say that z∗ satisfies MPSC-LICQ/-MFCQ,

if LICQ/MFCQ holds for (TNLP) at z∗.

Definition 2.5 Let z∗ be a feasible point of MPSC (2). We say that z∗ satisfies MPSC-CRCQ/-CPLD,

if CRCQ/CPLD holds for (TNLP) at z∗.

Remark 2.2 The MPSC-CRCQ/-CPLD defined in Definition 2.5 coincides with those defined in [11,

Definition 4.2]. The advantage of defining these constraint qualifications as the corresponding ones for the

tightened nonlinear program (TNLP) is that we can immediately conclude from the definitions of CRCQ

and CPLD for nonlinear programs that MPSC-CRCQ implies MPSC-CPLD without proof as in (i) of the

proof for [11, Theorem 4.2].

Definition 2.6 (MPSC-RCPLD) [11] Let z∗ be a feasible point of MPSC (2). We say that z∗ satisfies

MPSC-RCPLD if there exists a neighborhood N(z∗) of z∗ such that

(i) The vectors {∇hi(z)}
q
i=1 ∪ {∇Gi(z)}i∈I∗

G
∪ {∇Hi(z)}i∈I∗

H
have the same rank for all z in N(z∗);

(ii) Let I1 ⊆ {1, 2, · · · , q}, I2 ⊆ I∗
G, I3 ⊆ I∗

H be index sets such that the set of vectors {∇hi(z
∗)}i∈I1 ∪

{∇Gi(z
∗)}i∈I2 ∪{∇Hi(z

∗)}i∈I3 is a basis for span ({∇hi(z
∗)}qi=1, {∇Gi(z

∗)}i∈I∗

G
, {∇Hi(z

∗)}i∈I∗

H
).
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For each I4 ⊆ I∗
g , I5, I6 ⊆ I∗

GH , if there exist {λg, λh, λG, λH} not all zero, with λg
i ≥ 0 for each

i ∈ I4 and λG
i λ

H
i = 0 for each i ∈ I∗

GH , such that

∑

i∈I4

λg
i∇gi(z

∗) +
∑

i∈I1

λh
i ∇hi(z

∗) +
∑

i∈I2∪I5

λG
i ∇Gi(z

∗) +
∑

i∈I3∪I6

λH
i ∇Hi(z

∗) = 0,

then for any z ∈ N(z∗), the set of vectors

{∇gi(z)}i∈I4
∪ {∇hi(z)}i∈I1 ∪ {∇Gi(z)}i∈I2∪I5 ∪ {∇Hi(z)}i∈I3∪I6

is linearly dependent.

We now gather constraint conditions and necessary optimality conditions from [3, 11] in the following

theorem. One can find the definition of MPSC No Nonzero Abnormal Multiplier Constraint Qualification

(MPSC-NNAMCQ) and MPSC quasi/pseudo-normality from the comments after Definitions 4.6 and 4.7

respectively.

Theorem 2.1 [3, 11] Let z∗ be feasible for problem (2). If MPSC-LICQ is fulfilled at z∗, then z∗ is S-

stationary. If MPSC-MFCQ/-CPLD/-CRCQ/-RCPLD/-NNAMCQ/-quasi/-pseudo-normality is fulfilled

at z∗, then z∗ is M-stationary.

3 Optimality conditions for mathematical programs with dis-

junctive constraints

In this section we review some optimality conditions for the mathematical programs with disjunctive

constraints (MPDC):

min f(z) s.t. P (z) ∈ Λ, (5)

where f : Rn → R, P : Rn → R
m are continuously differentiable, and Λ ⊆ R

m is the union of finitely many

convex polyhedral sets. We denote the feasible region by FD := {z ∈ R
n|P (z) ∈ Λ} and the linearization

cone by

Llin
FD

(z∗) := {d ∈ R
n|∇P (z∗)d ∈ TΛ(P (z∗))}.

To study the mathematical program with disjunctive constraints (5), we need to study various tan-

gent cones and normal cones to set Λ. First we recall definitions of tangent cones and normal cones.

Suppose that A ⊆ R
m is closed and x∗ ∈ A. The tangent/Bouligand cone, the Fréchet/regular and the

limiting/basic/Mordukhovich normal cone to A at x∗ are defined by

TA(x
∗) :=

{
d ∈ R

m | ∃ tk ↓ 0, dk → d such that x∗ + tkd
k ∈ A

}
,

N̂A(x
∗) := {ζ ∈ R

m|〈ζ, x− x∗〉 ≤ o(‖x− x∗‖) ∀x ∈ A} ,

NA(x
∗) :=

{
ζ ∈ R

m
∣∣∣ ∃ {xk} ⊆ A, ∃ζk such that xk → x∗, ζk → ζ, ζk ∈ N̂A(x

k)
}
,
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respectively, see e.g. [32]. When A is convex, all the normal cones above are equal and they coincide

with the normal cone in the sense of convex analysis.

Using various normal cones, some stationary conditions were introduced; cf [12, Definition 1], [17,

Definition 3].

Definition 3.1 Let z∗ ∈ FD.

(a) We say that z∗ is B-stationary (Bouligand stationary) if 0 ∈ ∇f(z∗) + N̂FD
(z∗).

(b) We say that z∗ is S-stationary (Strongly stationary) if 0 ∈ ∇f(z∗) +∇P (z∗)T N̂Λ(P (z∗)).

(c) We say that z∗ is M-stationary (Mordukhovich stationary) if 0 ∈ ∇f(z∗) +∇P (z∗)TNΛ(P (z∗)).

Definition 3.2 Let z∗ ∈ FD. We say that the generalized Guignard constraint qualification (GGCQ)

holds at z∗ if

N̂FD
(z∗) = (Llin

FD
(z∗))◦. (6)

GGCQ is a rather weak constraint qualification. For example, it holds if the set-valued map F (z) :=

−P (z) + Λ is metrically subregular at z∗ (see Definition 3.8).

The following necessary optimality conditions are well known. Proposition 3.1(a) follows from the

well-known fact that any local optimizer has no feasible descent directions and the fact that (TFD
(z∗))◦ =

N̂FD
(z∗). Proposition 3.1(b) follows from (a) and the change of coordinates formula in [32, Exercise 6.7].

Proposition 3.1 Let z∗ be a local optimal solution of problem (5). Then

(a) z∗ is B-stationary.

(b) If ∇P (z∗) has full rank m, then z∗ is S-stationary.

(c) [12, Theorem 7] Suppose GGCQ holds at z∗. Then z∗ is M-stationary.

Recently some MPDC-tailored versions of LICQ have been introduced in [16, Definition 3.1] and in

[33, (31)] (see also Definition 4.5). These conditions all ensure that a local optimal solution is S-stationary.

It is easy to see that although B-stationary condition does not need any constraint qualification, it

is implicit and hence not easy to use. S-stationary condition is sharper than M-stationary condition but

requires very strong constraint qualification to hold. M-stationary condition is necessary for optimality

under very weak constraint qualification but it can be very weak for certain problems. Recently, some

stationary conditions weaker than B-stationarity but stronger than M-stationarity have been introduced.

We now review these results.

For problems in the form (5) but with Λ being an arbitrary closed set, the limiting normal cone in

M-stationary condition can be hard to compute and the resulting M-stationary condition can be weak. In

order to deal with this difficulty, Gfrerer [19] introduced the so-called linearized M-stationary condition by

a repeated linearization procedure. We now apply the linearization procedure to our problem. Suppose

8



that z∗ is B-stationary for problem (5) with Λ being a closed set and GGCQ holds at z∗. Then since

−∇f(z∗) ∈ N̂FD
(z∗), by (6) the point d∗ = 0 is a global minimizer for the linearized problem

min
d

∇f(z∗)T d subject to ∇P (z∗)d ∈ TΛ(P (z∗)). (7)

If a constraint qualification holds, then M-stationary condition for the above linearized problem holds at

d∗ = 0. In our case since Λ is the union of finitely many convex polyhedral sets, the perturbed feasible

map FD(d) := ∇P (z∗)d−TΛ(P (z∗)) is metric subregular at (0, 0) and hence GGCQ holds automatically.

Then by Proposition 3.1(c), d∗ = 0 is an M-stationary point of the linearized problem which means that

0 ∈ ∇f(z∗) +∇P (z∗)TNTΛ(P (z∗))(0). (8)

The linearization procedure would continue if TΛ(P (z∗)) is not the union of finitely many convex poly-

hedral sets, until a series of tangent cones to tangent cones to the set Λ is the union of finitely many

convex polyhedral sets. The resulting optimality condition is called a linearized M-stationary condition.

In general, the linearized M-stationary condition is sharper than M-stationary condition. To see this,

suppose TΛ(P (z∗)) is the union of finitely many convex polyhedral sets and the original set Λ is not. Then

the linearized M-stationary condition is (8). Since NTΛ(P (z∗))(0) ⊆ NΛ(P (z∗)), cf. [32, Proposition 6.27],

the linearized M-stationary condition is sharper than M-stationary condition. Moreover, NTΛ(P (z∗))(0)

would be easier to calculate than the normal cone NΛ(P (z∗)) in this case. But since in our case, Λ is

the union of finitely many convex polyhedral sets, NTΛ(P (z∗))(0) = NΛ(P (z∗)) (see [34, p. 59]. Hence the

linearized M-stationary condition coincides with M-stationary condition for the disjunctive program.

Another approach taken by Benko and Gfrerer in [17] to obtain sharper stationary condition than

M-stationary condition for problems in the form (5) but with Λ being an arbitrary closed set is to give

an accurate estimate for the regular normal cone to the constraint system. The idea is as follows. Let

Q1, Q2 ⊆ TΛ(P (z∗)) be two closed convex cones. Then

∇P (z∗)−1Qi ⊆ ∇P (z∗)−1TΛ(P (z∗)) = Llin
FD

(z∗), i = 1, 2,

where ∇P (z∗)−1Qi := {d|∇P (z∗)d ∈ Qi}. Therefore, if GGCQ holds at z∗, we have

N̂FD
(z∗) = (Llin

FD
(z∗))◦

⊆ (∇P (z∗)−1Q1 ∪∇P (z∗)−1Q2)
◦

= (∇P (z∗)−1Q1)
◦ ∩ (∇P (z∗)−1Q2)

◦ since Q1 and Q2 are convex cones.

Moreover, suppose the following condition holds:

(∇P (z∗)−1Qi)
◦ = ∇P (z∗)TQ◦

i , i = 1, 2. (9)

Then it follows that

N̂FD
(z∗) ⊆ (∇P (z∗)TQ◦

1) ∩ (∇P (z∗)TQ◦
2) = ∇P (z∗)T

(
Q◦

1 ∩ (ker∇P (z∗)T +Q◦
2)
)
, (10)
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where ker∇P (z∗)T := {r|P (z∗)T r = 0} and the equality follows from [17, Lemma 1]. The right hand

side of the inclusion (10) gives an upper estimate for N̂FD
(z∗). In order to have that the above inclusion

provides a good estimate for the regular normal cone, it is obvious that we want to choose Q1, Q2 as

large as possible so that the inclusion is tight. Furthermore, since one always has ∇P (z∗)T N̂Λ(P (z∗)) ⊆

N̂FD
(z∗) ([32, Theorem 6.14]), if

∇P (z∗)T
(
Q◦

1 ∩ (ker∇P (z∗)T +Q◦
2)
)
⊆ ∇P (z∗)T N̂Λ(P (z∗)), (11)

then the equality holds in (10) and consequently,

N̂FD
(z∗) = ∇P (z∗)T

(
Q◦

1 ∩ (ker∇P (z∗)T +Q◦
2)
)
= ∇P (z∗)T N̂Λ(P (z∗)). (12)

How to choose Q1, Q2 satisfying the condition (11)? One good choice is to find Q1, Q2 satisfying

Q◦
1 ∩Q◦

2 = N̂Λ(P (z∗)),

since then condition (11) holds whenever ∇P (z∗) has full rank.

Based on the estimates of the regular normal cone in (10) and the fact that any local minimizer is

an B-stationary point, Benko and Gfrerer in [17] introduced the concept of the so-called Q-stationarity.

Moreover when an Q-stationary point is also an M-stationary point, then they call it an QM -stationary

point. In our case, since TΛ(P (z∗)) is the union of finitely many convex polyheral sets, we can choose

Q1, Q2 to be closed convex polyhedral cones. By [17, Proposition 1], the polyhedrality of the cones

Qi ⊆ TΛ(P (z∗)), i = 1, 2 ensures validity of (9). We now give definition for Q-stationarity for the

disjunctive program.

Definition 3.3 ([17, Definiton 4 and Lemma 2]) Let Q denote some collection of pairs (Q1, Q2) of closed

convex polyhedral cones fulfilling Qi ⊆ TΛ(P (z∗)), i = 1, 2.

(i) Given (Q1, Q2) ∈ Q, we say that z∗ is Q-stationary with respect to (Q1, Q2) for program (5) if

0 ∈ ∇f(z∗) +∇P (z∗)T
(
Q◦

1 ∩ (ker∇P (z∗)T +Q◦
2)
)
.

(ii) We say that z∗ is Q-stationary for program (5), if z∗ is Q-stationary with respect to some pair

(Q1, Q2) ∈ Q.

(iii) We say that z∗ is QM -stationary provided that z∗ is both M-stationary and Q-stationary with

respect to some pair (Q1, Q2) ∈ Q, i.e., there exists a pair (Q1, Q2) ∈ Q such that

0 ∈ ∇f(z∗) +∇P (z∗)T
(
Q◦

1 ∩ (ker∇P (z∗)T +Q◦
2) ∩NΛ(P (z∗))

)
.

Based on the discussion before Definition 3.3, we obtain the following optimality conditions.
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Proposition 3.2 Let z∗ be a local optimal solution for program (5). If GGCQ holds at z∗, then z∗ is Q-

stationary with respect to every pair (Q1, Q2) ∈ Q. Moreover, z∗ is QM -stationary with respect to every

pair (Q1, Q2) ∈ Q. Conversely, if z∗ is Q-stationary with respect to some pair (Q1, Q2) ∈ Q fulfilling

(11), then z∗ is S-stationary and consequently also B-stationary.

Proof. Let z∗ be a local optimal solution for program (5). Then by Proposition 3.1, z∗ is a B-

stationary point, i.e., −∇f(z∗) ∈ N̂FD
(z∗). If GGCQ holds at z∗, then by (10) and Definition 3.3, z∗

is Q-stationary with respect to every pair (Q1, Q2) ∈ Q. Moreover, by Proposition 3.1, it is also an

M-stationary point and hence QM -stationary. Conversely, suppose that z∗ is Q-stationary with respect

to some pair (Q1, Q2) ∈ Q fulfilling (11). Then by definition of Q-stationarity and (12), z∗ is also

S-stationary and B-stationary.

Now we review the asymptotical version of M-stationarity. Using a simple penalization argument,

[22, Theorem 3.2] showed that any local minimizer z∗ of MPDC must be AM-stationary for MPDC.

The question is under what conditions, is an AM-stationary point M-stationary? In [22, Definition

3.8], Mehlitz defined the so-called asymptotically Mordukhovich-regularity (AM-regularity for short) and

showed that under AM-regularity, an AM-stationary point is M-stationary. Moreover, for the case of

MPDC, according to the equivalence theorem shown in [22, Theorem 5.3], we can define AM-regularity

as follows.

Definition 3.4 [22, Definition 3.1] Let z∗ ∈ FD. We say that z∗ is asymptotically M-stationary (AM-

stationary) if there exist sequences {zk}, {εk} ⊆ R
n with zk → z∗, εk → 0 such that

εk ∈ ∇f(zk) +∇P (zk)TNΛ(P (zk)) ∀k.

Definition 3.5 [22, Theorem 5.3] Let z∗ ∈ FD. Define a set-valued mapping K : Rn
⇒ R

n by means of

K(z) := ∇P (z)TNΛ(P (z∗)) ∀z ∈ R
n.

We say that z∗ is AM-regular if the following condition holds:

lim sup
z→z∗

K(z) ⊆ K(z∗),

where

lim sup
z→z∗

K(z) := {y ∈ R
n|∃ zk → z∗, yk → y, s.t. yk ∈ K(zk) ∀k}.

Proposition 3.3 ([22, Theorem 3.2 and Theorem 3.9]) Let z∗ be a local minimizer of MPDC. Then z∗

is AM-stationary. Moreover, suppose that z∗ is AM-regular. Then z∗ is M-stationary.

Recently, the following directional version of the limiting normal cone was introduced.

Definition 3.6 (directional normal cones) ([35, Definition 2] or [36, Definition 2.3]) Let A ⊆ R
m be

closed, x∗ ∈ A and d ∈ R
m. The limiting normal cone to A at x∗ in direction d is defined by

NA(x
∗; d) :=

{
ζ ∈ R

m
∣∣∣∃tk ↓ 0, dk → d, ζk → ζ, s.t. ζk ∈ N̂A(x

∗ + tkd
k)
}
.
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From the definition, it is obvious that the limiting normal cone to A at x∗ in direction d = 0 is equal to

the limiting normal cone. It is also easy to see that NA(x
∗; d) = ∅ if d /∈ TA(x

∗) and NA(x
∗; d) ⊆ NA(x

∗)

for all d. If A is convex, then by [13, Lemma 2.1], the following relationship holds

NA(x
∗; d) = NA(x

∗) ∩ {d}⊥ ∀d ∈ TA(x
∗). (13)

Definition 3.7 ([37, Definition 3.3]) Let A ⊆ R
m be closed, x∗ ∈ A and d ∈ R

m. We say that set A is

directionally regular at x∗ if

NA(x
∗; d) = N i

A(x
∗; d) ∀d,

where N i
A(x

∗; d) :=
{
ζ ∈ R

m
∣∣∣∀tk ↓ 0, ∃dk → d, ζk → ζ, s.t. ζk ∈ N̂A(x

∗ + tkd
k)
}
. If A is directionally

regular at any point x ∈ A, we say that the set A is directionally regular.

By [37, Proposition 3.5], any closed convex set is directionally regular. The following calculus rules

will be useful. It is a special case of [37, Proposition 3.3].

Proposition 3.4 ([37, Proposition 3.3]) Let A := A1 × A2 × · · · × Al, where Ai ⊆ R
mi is closed for

i = 1, 2, · · · , l and m = m1 +m2 + · · ·+ml. Consider a point x∗ = (x∗
1, · · · , x

∗
l ) ∈ A and a direction d =

(d1, · · · , dl) ∈ R
m. Moreover, suppose that all except at most one of Ai for i = 1, · · · , l are directionally

regular at x∗
i , then

TA(x
∗) = TA1

(x∗
1)× · · · × TAl

(x∗
l ), NA(x

∗; d) = NA1
(x∗

1; d1)× · · · ×NAl
(x∗

l ; dl).

Definition 3.8 (directional metric subregularity) ([35, Definition 2.1]) Let F (z) := P (z) − Λ be

a set-valued map induced by P (z) ∈ Λ. We say that the set-valued map F is metrically subregu-

lar in direction d at (z∗, 0) ∈ gphF , where gphF := {(z, y)|y ∈ F (z)} is the graph of F , if there

exist κ > 0 and ρ, δ > 0 such that distF−1(0)(z) ≤ κ distΛ(P (z)), ∀z ∈ z∗ + Vρ,δ(d), where Vρ,δ(d) :=

{z ∈ Bρ(0)|‖‖d‖z − ‖z‖d‖ ≤ δ‖z‖‖d‖} is the so-called directional neighborhood in direction d, and F−1(y) :=

{z|y ∈ F (z)} denotes the inverse of F at y. If d = 0 in the above definition, then we say F is metrically

subregular at (z∗, 0).

According to [15], when the disjunctive set Λ := ∪N
l=1Λ

l,Λl = Πm
i=1[a

l
i, b

l
i], where ali, b

l
i are given

numbers with ali ≤ bli, with possibility of ali = −∞ and bli = +∞, we call (5) the ortho-disjunctive

program. We now recall the following sufficient conditions for directional metric subregularity for the

ortho-disjunctive program.

Definition 3.9 Let z∗ be a feasible solution to the ortho-disjunctive program.

(a) ([15, Corollary 5.1]) We say that the quasi-normality holds at z∗ in direction d ∈ Llin
FD

(z∗) if there

exists no ζ 6= 0 such that

0 = ∇P (z∗)T ζ, ζ ∈ NΛ(P (z∗);∇P (z∗)d), (14)
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and

∃dk → d tk ↓ 0 s.t. ζi(Pi(z
∗ + tkd

k)− Pi(z
∗)) > 0 if ζi 6= 0.

We say that the directional quasi-normality holds at z∗ if the quasi-normality holds at z∗ in any

direction d ∈ Llin
FD

(z∗).

(b) ([15, Corollary 4.5]) We say that the pseudo-normality holds at z∗ in direction d ∈ Llin
FD

(z∗) if there

exists no ζ 6= 0 such that (14) holds and

∃dk → d tk ↓ 0 s.t. 〈ζ, P (z∗ + tkd
k)− P (z∗)〉 > 0.

We say that the directional pseudo-normality holds at z∗ if the pseudo-normality holds at z∗ in

any direction d ∈ Llin
FD

(z∗).

(c) ([38, Theorem 4.3]) We say that the first-order sufficient condition for metric subregularity (FOS-

CMS) holds at z∗ in direction d ∈ Llin
FD

(z∗) if there exists no ζ 6= 0 such that (14) holds.

(d) ([38, Theorem 4.3]) Suppose P is second-order differentiable at z∗. We say that the second-order

sufficient condition for metric subregularity (SOSCMS) holds at z∗ in direction d ∈ Llin
FD

(z∗) if there

exists no ζ 6= 0 such that (14) and the following second-order condition hold

m∑

i=1

ζid
T∇2Pi(z

∗)d ≥ 0.

Note that the concepts of directional quasi/pseudo-normality for the ortho-disjunctive program as

defined in Definition 3.9 correspond precisely to the ones introduced for the general set-constrained

optimization problem in [14]. It was shown in [15, 38] that the following implication holds:

FOSCMS in d =⇒ SOSCMS in d =⇒ pseudo-normality in d =⇒ quasi-normality in d.

We refer the reader to higher order sufficient condition for metric subregularity and other sufficient

conditions for metric subregularity in [15].

The following result is a directional version of [14, Corollary 4.1].

Proposition 3.5 ([14, Corollary 4.1]) Suppose that the quasi-normality holds at z∗ in d ∈ Llin
FD

(z∗).

Then the set-valued map F (z) := P (z)− Λ is metrically subregular at (z∗, 0) in direction d.

We now summarize some first and second order necessary optimality conditions for MPDC in the

following propositions.

Proposition 3.6 ([13, Theorems 3.3]) Let z∗ be a local minimizer of problem (5) and d ∈ C(z∗), where

C(z∗) := {d ∈ Llin
FD

(z∗)|∇f(z∗)d ≤ 0} is the critical cone at z∗. If F (z) := P (z) − Λ is metrically
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subregular at (z∗, 0) in direction d, then M-stationary condition in direction d holds. That is, there exists

ζ such that

0 = ∇f(z∗) +∇P (z∗)T ζ, ζ ∈ NΛ(P (z∗);∇P (z∗)d). (15)

Moreover, if f and P are twice differentiable at z∗, then there exists ζ satisfying (15) such that the second

order condition holds:

dT∇2
zL(z

∗, ζ)d ≥ 0,

where L(z, ζ) := f(z) + P (z)T ζ is the Lagrangian.

We also give a sufficient optimality condition based on S-stationary condition below. One may refer

to [13, Theorems 3.3] for more general sufficient optimality condition.

Proposition 3.7 ([13, Theorems 3.3]) or [16, Theorem 4.3]) Let z∗ be a feasible solution for problem (5)

where f and P are twice differentiable at z∗. Suppose for each 0 6= d ∈ C(z∗), there exists an S-multiplier

ζ satisfying S-stationary condition

0 = ∇f(z∗) +∇P (z∗)T ζ, ζ ∈ N̂Λ(P (z∗))

and the second order condition

dT∇2
zL(z

∗, ζ)d > 0.

Then there is a constant C > 0 and N(z∗) a neighborhood of z∗ such that the following quadratic growth

condition is valid:

f(z) ≥ f(z∗) + C‖z − z∗‖2 ∀z ∈ FD ∩N(z∗).

In particular, z∗ is a strict local minimizer of MPDC.

Definition 3.10 (see (31) in [33]) Let d ∈ Llin
FD

(z∗). We say that LICQ in direction d (LICQ(d)) holds

at z∗ if

∇P (z∗)Tλ = 0, λ ∈ spanNΛ(P (z∗);∇P (z∗)d) =⇒ λ = 0.

Proposition 3.8 ([33, Lemma 7]) Let z∗ be a local minimizer of problem (5) and d ∈ C(z∗). Suppose

that LICQ(d) holds. Then S-stationary condition in direction d holds. That is, there exists ζ such that

0 = ∇f(z∗)+∇P (z∗)T ζ, ζ ∈ N̂TΛ(P (z∗))(∇P (z∗)d). (16)

Moreover, the multiplier ζ is unique.
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4 Optimality conditions for MPSC from the corresponding ones

for MPDC

In this section, we reformulate MPSC as the following disjunctive program and derive the corresponding

optimality conditions from Section 3.

min f(z) s.t. P (z) ∈ Λ, (17)

where

P (z) := (g(z), h(z), (G(z), H(z))), Λ := R
p
− × {0}q × Ωm

SC (18)

with the switching cone

ΩSC := {(a, b) ∈ R
2|ab = 0}. (19)

Since the switching cone ΩSC is the union of the two subspaces R× {0} and {0} × R, the cone Λ is the

union of 2m convex polyhedral sets.

By a straightforward calculation, we can obtain the formulas for various tangent and normal cones

for the switching cone ΩSC defined in (19) as follows.

Lemma 4.1 For all a = (a1, a2) ∈ ΩSC we have

TΩSC
(a) =





{0} × R if a1 = 0, a2 6= 0,

ΩSC if a1 = a2 = 0,

R× {0} if a1 6= 0, a2 = 0





,

N̂ΩSC
(a) =





R× {0} if a1 = 0, a2 6= 0,

{0} × {0} if a1 = a2 = 0,

{0} × R if a1 6= 0, a2 = 0





,

NΩSC
(a) =





R× {0} if a1 = 0, a2 6= 0,

ΩSC if a1 = a2 = 0,

{0} × R if a1 6= 0, a2 = 0





,

N̂TΩSC
(a)(d) =





R× {0} if a1 = 0, a2 6= 0, d1 = 0,

{0} × R if a1 6= 0, a2 = 0, d2 = 0,

R× {0} if a1 = a2 = 0, d1 = 0, d2 6= 0,

{0} × R if a1 = a2 = 0, d1 6= 0, d2 = 0,

{0} × {0} if a1 = a2 = d1 = d2 = 0,

15



NΩSC
(a; d) = N i

ΩSC
(a; d) =





R× {0} if a1 = 0, a2 6= 0, d1 = 0,

{0} × R if a1 6= 0, a2 = 0, d2 = 0,

R× {0} if a1 = a2 = 0, d1 = 0, d2 6= 0,

{0} × R if a1 = a2 = 0, d1 6= 0, d2 = 0,

ΩSC if a1 = a2 = d1 = d2 = 0.

Hence the switching cone ΩSC is directionally regular.

Since R
p
− and {0}q are obviously directionally regular and the switching cone ΩSC is directionally

regular, the calculus rules for tangent and directional normal cones of Λ as a Cartesian product in

Proposition 3.4 hold. Hence for any z∗ such that P (z∗) ∈ Λ, we can obtain the expression for the tangent

cone to Λ at P (z∗) as follows:

TΛ(P (z∗)) = TR
p
−

(g(z∗))× T{0}q (0)×Πm
i=1TΩSC

(Gi(z
∗), Hi(z

∗)). (20)

First we study Q and QM stationary conditions for MPSC. Let P(I∗
GH) be the set of all (disjoint)

bipartitions of I∗
GH . For fixed (β1, β2) ∈ P(I∗

GH), we define the convex polyhedral cone

Qβ1,β2

SC := TR
p
−

(g(z∗))× {0}q ×
m∏

i=1

τβ1,β2

i

where τβ1,β2

i := TΩSC
(Gi(z

∗), Hi(z
∗)) if i ∈ I∗

G ∪ I∗
H and

τβ1,β2

i :=





{0} × R if i ∈ β1,

R× {0} if i ∈ β2.

By (20) and the formula for the tangent cone to ΩSC in Lemma 4.1, it is easy to see that Qβ1,β2

SC is a

subset of TΛ(P (z∗)) as required by Q-stationarity. Moreover, similarly to [17, Lemma 3], we can show

that for any (β1, β2) ∈ P(I∗
GH),

(Qβ1,β2

SC )◦ ∩ (Qβ2,β1

SC )◦ = N̂Λ(P (z∗)).

Hence according to the discussion in Section 3, Q1 := Qβ1,β2

SC , Q2 := Qβ2,β1

SC would be a good choice

for the Q-stationarity. Similar to [17, Proposition 4], we can derive the definition of Q-stationarity for

MPSC by using the corresponding definitions for the disjunctive program in Definition 3.3 by using

(Q1, Q2) := (Qβ1,β2

SC , Qβ2,β1

SC ). By Definition 3.3, z∗ is Q-stationary with respect to (Qβ1,β2

SC , Qβ2,β1

SC ) if

−∇f(z∗) ∈ ∇P (z∗)T
(
(Qβ1,β2

SC )◦ ∩ (ker∇P (z∗)T + (Qβ2,β1

SC )◦
)

=

{
p∑

i=1

λg
i∇gi(z

∗) +

q∑

i=1

λh
i ∇hi(z

∗) +
m∑

i=1

(
λG
i ∇Gi(z

∗) + λH
i ∇Hi(z

∗)
)

∣∣∣(λh, λg, λG, λH) ∈ (Qβ1,β2

SC )◦ ∩ (ker∇p(z∗)T + (Qβ2,β1

SC )◦)
}
.
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Next we are aiming to find a formula for (Qβ1,β2

SC )◦ ∩
(
ker∇P (z∗)T + (Qβ2,β1

SC )◦
)
in the above. Obvi-

ously, we have (Qβ1,β2

SC )◦ = NR
p
−

(g(z∗))×R
q×(

∏m
i=1 τ

β1,β2

i )◦ and the set (Qβ1,β2

SC )◦∩
(
ker∇P (z∗)T + (Qβ2,β1

SC )◦
)

consists of all λ = (λh, λg, λG, λH) such that there exists µ = (µh, µg, µG, µH) ∈ ker∇P (z∗)T and

(ηh, ηg, ηG, ηH) ∈ (Qβ2,β1

SC )◦ = NR
p
−

(g(z∗))× R
q × (

∏m
i=1 τ

β2,β1

i )◦ such that

λ = µ+ η ∈ (Qβ1,β2

SC )◦.

We now analyse the following different cases.

• Equality constraints: We obtain λh = µh + ηh ∈ R
q, ηh ∈ R

q, i.e., λh, µh ∈ R
q.

• Inequality constraints: For i ∈ I∗
g , we have λg

i = µg
i + ηgi ≥ 0, ηgi ≥ 0 or equivalently λg

i ≥

max{0, µg
i }, whereas for i ∈ {1, . . . , p} \ I∗

g , we obtain λg
i = µg

i = 0.

• i ∈ I∗
G: Since (τβ1,β2

i )◦ = R× {0}, we obtain λH
i = ηHi = 0 and so µH

i = 0.

• i ∈ I∗
H : Similarly as in the previous case, we obtain λG

i = µG
i = 0.

• i ∈ β1: Since (τβ1,β2

i )◦ = R× {0} and (τβ2,β1

i )◦ = {0} × R, we have

(λG
i , λ

H
i ) = (µG

i , µ
H
i ) + (ηGi , ηHi ) ∈ R× {0}

and (ηGi , η
H
i ) ∈ {0} × R. Equivalently, we obtain λH

i = 0 and λG
i = µG

i .

• i ∈ β2: Similarly as in the previous case, we obtain λG
i = 0 and λH

i = µH
i .

We now denote two multiplier sets

RSC := {(µg, µh, µG, µH) ∈ R
p × R

q × R
m × R

m|µg
i = 0, i = {1, · · · , p} \ I∗

g ,

µG
i = 0, i ∈ I∗

H , µH
i = 0, i ∈ I∗

G}

and

NSC :=

{

(µg, µh, µG, µH) ∈ RSC

∣

∣

∣

∣

∣

p
∑

i=1

µg
i∇gi(z

∗) +

q
∑

i=1

µh
i ∇hi(z

∗) +

m
∑

i=1

(µG
i ∇Gi(z

∗) + µH
i ∇Hi(z

∗)) = 0

}

.

Based on the discussion above, we can now give the following definition.

Definition 4.1 Let z∗ ∈ F . We say that z∗ is Q-stationary for MPSC (2) with respect to (β1, β2) ∈ P(I∗
GH) if

there exists multipliers (λg, λh, λG, λH) ∈ RSC such that

0 = ∇f(z∗) +

p
∑

i=1

λg
i∇gi(z

∗) +

q
∑

i=1

λh
i ∇hi(z

∗) +
m
∑

i=1

(λG
i ∇Gi(z

∗) + λH
i ∇Hi(z

∗))

and (µg , µh, µG, µH) ∈ NSC such that

λg
i ≥ max{µg

i , 0}, i ∈ I∗
g , λ

H
i = 0, λG

i = µG
i , i ∈ β1, λ

G
i = 0, λH

i = µH
i , i ∈ β2.
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It is easy to see that for MPSC, an Q-stationary point is also an M-stationary point. Hence for MPSC,

Q-stationary condition coincides with QM -stationary condition.

Applying Proposition 3.2, similar to [17, Proposition 4 and Theorem 5], we have the following optimality

conditions.

Proposition 4.1 Let z∗ be a local optimal solution for MPSC. If GGCQ holds at z∗, then z∗ is Q-stationary with

respect to every pair (β1, β2) ∈ P(I∗
GH). Conversely, if z∗ is Q-stationary with respect to some pair (β1, β2) ∈

P(I∗
GH) such that for every µ ∈ NSC there holds

µG
i µ

G
i′ = 0, µH

i µH
i′ = 0 ∀(i, i′) ∈ β1 × β2, (21)

µG
i µ

H
i′ = 0 ∀(i, i′) ∈ β1 × β1, (22)

µG
i µ

H
i′ = 0 ∀(i, i′) ∈ β2 × β2. (23)

Then z∗ is S-stationary.

Proof. The first statement follows directly from Proposition 3.2. We now prove the converse statement.

Suppose that z∗ is Q-stationary with respect to some pair (β1, β2) ∈ P(I∗
GH). Then by definition, there exist

(λg, λh, λG, λH) ∈ RSC and (µg , µh, µG, µH) ∈ NSC satisfying the Q-stationary condition. Since by the definition

of Q-stationarity, λH
i = 0, i ∈ β1 and λG

i = 0, i ∈ β2. So if λG
i = 0, i ∈ β1 and λH

i = 0, i ∈ β2, then z∗ must be S-

stationary in this case. Otherwise, either there is some j ∈ β1 such that λG
j 6= 0 or some j ∈ β2 such that λH

j 6= 0.

First consider the case when λG
j 6= 0 for some j ∈ β1. Set (λ̃

g, λ̃h, λ̃G, λ̃H) := (λg−µg, λh−µh, λG−µG, λH −µH).

Then

0 = ∇f(z∗) +

p
∑

i=1

λ̃g
i∇gi(z

∗) +

q
∑

i=1

λ̃h
i ∇hi(z

∗) +

m
∑

i=1

(λ̃G
i ∇Gi(z

∗) + λ̃H
i ∇Hi(z

∗))

and

λ̃g
i = 0, i /∈ I∗

g , λ̃
g
i ≥ 0, i ∈ I∗

g , λ̃
G
i = 0, i ∈ I∗

H , λ̃H
i = 0, i ∈ I∗

G, λ̃
G
i = 0, i ∈ β1, λ̃

H
i = 0, i ∈ β2.

Further, since 0 6= λG
j = µG

j , then by (21) we have µG
i = 0 ∀i ∈ β2 and by (22) we have µH

i = 0 ∀i ∈ β1 .

Consequently, λ̃G
i = 0, and λ̃H

i = 0 holds for all i ∈ β1 ∪ β2. Hence z∗ is S-stationary. The proof for the case

when λH
j 6= 0 for some j ∈ β2 is similar and (21) and (23) are used to derive the result in this case.

Applying Definition 3.4-3.5 and Lemma 4.1, we have the following AM-stationary condition and AM-regular

for MPSC.

Definition 4.2 Let z∗ ∈ F . We say that z∗ is AM-stationary of MPSC if there exist sequences {zk} ⊆ F , {εk} ⊆
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R
n and multipliers

{

(λg,k, λh,k, λG,k, λH,k)
}

⊆ R
p × R

q × R
m × R

m with εk → 0, zk → z∗ such that ∀k

∇f(zk) +

p
∑

i=1

λg,k
i ∇gi(z

k) +

q
∑

i=1

λh,k
i ∇hi(z

k) +
m
∑

i=1

(λG,k
i ∇Gi(z

k) + λH,k
i ∇Hi(z

k)) = εk,

λg,k
i = 0, if gi(z

k) < 0;λg,k
i ≥ 0 if gi(z

k) = 0; λG,k
i = 0, if Hi(z

k) = 0 6= Gi(z
k);

λH,k
i = 0, if Gi(z

k) = 0 6= Hi(z
k); λG,k

i λH,k
i = 0, if Gi(z

k) = Hi(z
k) = 0.

Definition 4.3 Let z∗ ∈ F . Define a set-valued mapping K : Rn
⇒ R

n by means of

K(z) :=











































∑p

i=1 λ
g
i∇gi(z) +

∑q

i=1 λ
h
i ∇hi(z)

+
∑m

i=1(λ
G
i ∇Gi(z) + λH

i ∇Hi(z))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(λg, λh, λG, λH)} ⊆ R
p
+ × R

q × R
m × R

m,

λg
i = 0 for i /∈ I∗

g ,

λH
i = 0 for i ∈ I∗

G, λ
G
i = 0 for i ∈ I∗

H ,

λG
i λ

H
i = 0 for i ∈ I∗

GH











































.

We say that z∗ is AM-regular if the following condition holds:

lim sup
z→z∗

K(z) ⊆ K(z∗).

Applying Proposition 3.3, we have the following conclusion.

Theorem 4.1 Let z∗ be a local minimizer of MPSC, then z∗ is AM-stationary. Moreover, suppose that z∗ is

AM-regular. Then z∗ is M-stationary.

We now apply Propositions 3.6 and 3.8 to MPSC in the form of (17). By the expressions for TΛ(P (z∗)) in (20)

and the expression for the tangent cone of the switching set in Lemma 4.1, the linearization cone of the feasible

region F can be expressed as follows:

Llin
F (z∗) :=

{

d|∇P (z∗)d ∈ TΛ(P (z∗))
}

=























































d ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇gi(z
∗)d ≤ 0 i ∈ I∗

g ,

∇hj(z
∗)d = 0 j = 1, · · · , q,

∇Gi(z
∗)d = 0 i ∈ I∗

G,

∇Hi(z
∗)d = 0 i ∈ I∗

H ,

(∇Gi(z
∗)d)(∇Hi(z

∗)d) = 0 i ∈ I∗
GH























































.

Denote the critical cone at z∗ by CF (z∗) := {d ∈ Llin
F (z∗)|∇f(z∗)d ≤ 0}. Given d ∈ Llin

F (z∗), we define

I∗
g (d) :=

{

i ∈ I∗
g | ∇gi(z

∗)d = 0
}

,

I∗
G(d) := {i ∈ I∗

GH | ∇Gi(z
∗)d = 0, ∇Hi(z

∗)d 6= 0} ,

I∗
H(d) := {i ∈ I∗

GH | ∇Gi(z
∗)d 6= 0, ∇Hi(z

∗)d = 0} ,

I∗
GH(d) := {i ∈ I∗

GH | ∇Gi(z
∗)d = ∇Hi(z

∗)d = 0} .
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Then by the Cartesian product rule in Proposition 3.4, the expressions for the tangent cone and the directional

limiting normal cone to the switching cone in Lemma 4.1 we have,

NΛ(P (z∗);∇P (z∗)d) = N
R
p
−

(g(z∗);∇g(z∗)d)×N{0}q (h(z
∗);∇h(z∗)d)

×Πm
i=1NΩSC

((Gi(z
∗),Hi(z

∗)); (∇Gi(z
∗)d,∇Hi(z

∗)d)),

with

NΩSC
((Gi(z

∗),Hi(z
∗)); (∇Gi(z

∗)d,∇Hi(z
∗)d)) =



























(λG, λH)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λG
i = 0 i ∈ I∗

H ∪ I∗
H(d),

λH
i = 0 i ∈ I∗

G ∪ I∗
G(d),

λG
i λ

H
i = 0 i ∈ I∗

GH(d)



























.

Since d ∈ Llin
F (z∗) implies ∇gi(z

∗)d ≤ 0 ∀i ∈ I∗
g and by (13)

NR
p
−

(g(z∗);∇g(z∗)d) = NR
p
−

(g(z∗)) ∩ {∇g(z∗)d}⊥,

for any λg ∈ N
R
p
−

(g(z∗);∇g(z∗)d), we have that λg
i = 0 ∀i 6∈ I∗

g (d) and λg
i ≥ 0 ∀i ∈ I∗

g (d). Hence

NΛ(P (z∗);∇P (z∗)d) =











































(λg, λh, λG, λH)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λg
i ≥ 0 i ∈ I∗

g (d), λg
i = 0, i 6∈ I∗

g (d),

λG
i = 0 i ∈ I∗

H ∪ I∗
H(d),

λH
i = 0 i ∈ I∗

G ∪ I∗
G(d),

λG
i λ

H
i = 0 i ∈ I∗

GH(d)











































. (24)

Based on the directional M-stationary condition (15) and directional S-stationary condition (16), we now define

the directional version of the W, S, M-stationarity for MPSC.

Definition 4.4 Let z∗ be a feasible solution of MPSC and d ∈ CF(z
∗). We say that z∗ is a W-stationary point

of MPSC (2) in direction d if there exists (λg, λh, λG, λH) such that

0 = ∇f(z∗) +
∑

i∈I∗

g (d)

λg
i∇gi(z

∗) +

q
∑

i=1

λh
i ∇hi(z

∗) +
m
∑

i=1

(λG
i ∇Gi(z

∗) + λH
i ∇Hi(z

∗)), (25)

λg
i ≥ 0, i ∈ I∗

g (d), λG
i = 0, i ∈ I∗

H ∪ I∗
H(d), λH

i = 0, i ∈ I∗
G ∪ I∗

G(d). (26)

We say that z∗ is a M-stationary point of MPSC (2) in direction d if there exists (λg, λh, λG, λH) such that

(25)–(26) hold and λG
i λ

H
i = 0, i ∈ I∗

GH(d).

We say that z∗ is a S-stationary point of MPSC (2) in direction d if there exists (λg, λh, λG, λH) such that

(25)–(26) hold and λG
i = λH

i = 0, i ∈ I∗
GH(d).

Using the formula in (24), we have

spanNΛ(P (z∗);∇P (z∗)d) =



























(λg, λh, λG, λH)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λg
i = 0 i 6∈ I∗

g (d),

λG
i = 0 i ∈ I∗

H ∪ I∗
H(d),

λH
i = 0 i ∈ I∗

G ∪ I∗
G(d).



























.

Hence based on Definition 3.10, we define the following directional version of the MPSC-LICQ.
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Definition 4.5 Let z∗ be a feasible solution of MPSC (2) and d ∈ Llin
F (z∗). We say that the MPSC-LICQ in

direction d (MPSC-LICQ(d)) holds at z∗ if and only if the gradients

{∇gi(z
∗)|i ∈ I∗

g (d)} ∪ {∇hj(z
∗)|j = 1, 2, · · · , q} ∪ {∇Gi(z

∗)|i ∈ I∗
G ∪ I∗

G(d) ∪ I∗
GH(d)}

∪{∇Hi(z
∗)|i ∈ I∗

H ∪ I∗
H(d) ∪ I∗

GH(d)}

are linearly independent.

Since I∗
g (0) = I∗

g , I
∗
G(0) = I∗

H(0) = ∅ and I∗
GH(0) = I∗

GH , it is easy to see that MPSC-LICQ(0) is exactly the

MPSC-LICQ.

It is easy to see that MPSC is an ortho-disjunctive program. Hence by Definition 3.9, it is easy to see that the

directional quasi/pseudo-normality for constraint system of MPSC (2) can be rewritten in the following form.

Definition 4.6 Let z∗ be a feasible solution of MPSC (2). z∗ is said to be MPSC quasi- or pseudo-normal in

direction d ∈ Llin
F (z∗) if there exists no (λg, λh, λG, λH) 6= 0 such that

(i) 0 = ∇g(z∗)Tλg +∇h(z∗)Tλh +∇G(z∗)TλG +∇H(z∗)TλH ;

(ii) λg
i ≥ 0, i ∈ I∗

g (d);λ
g
i = 0, i /∈ I∗

g (d); λ
H
i = 0, i ∈ I∗

G ∪I∗
G(d);λ

G
i = 0, i ∈ I∗

H ∪I∗
H (d); λG

i λ
H
i = 0, i ∈ I∗

G,H(d);

(iii) ∃dk → d and tk ↓ 0 such that











































λg
i gi(z

∗ + tkd
k) > 0, if λg

i 6= 0,

λh
i hi(z

∗ + tkd
k) > 0, if λh

i 6= 0,

λG
i Gi(z

∗ + tkd
k) > 0, if λG

i 6= 0,

λH
i Hi(z

∗ + tkd
k) > 0, if λH

i 6= 0,

or

λgT g(z∗ + tkd
k) + λhT

h(z∗ + tkd
k) + λGT

G(z∗ + tkd
k) + λHT

H(z∗ + tkd
k) > 0,

respectively.

z∗ is said to be directionally quasi- or pseudo-normal if it is quasi- or pseudo-normal in all directions from Llin
F (z∗).

Note that MPSC quasi/pseudo-normality in direction d = 0 coincides with MPSC quasi/pseudo-normality

defined as in [11] and when d 6= 0, the directional one is weaker.

We now apply Definition 3.9 to obtain FOSCMS/SOSCMS for MPSC.

Definition 4.7 Let z∗ be a feasible solution of MPSC (2) and d ∈ Llin
F (z∗). We say that MPSC first or-

der sufficient condition for metric subregularity (MPSC-FOSCMS) in direction d holds at z∗ if there exists no

(λg, λh, λG, λH) 6= 0 such that (i)–(ii) in Definition 4.6 holds.
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Note that MPSC-FOSCMS in direction d = 0 coincides with the MPSC-NNAMCQ defined as in [3] and when

d 6= 0, MPSC-FOSCMS is weaker than MPSC-NNAMCQ.

Definition 4.8 Let z∗ be a feasible solution of MPSC (2) and d ∈ Llin
F (z∗). We say that MPSC second-

order sufficient condition for metric subregularity (MPSC-SOSCMS) in direction d holds at z∗ if there exists

no (λg, λh, λG, λH) 6= 0 such that (i)–(ii) in Definition 4.6 hold and

dT∇2L0(z∗, λg, λh, λG, λH)d ≥ 0,

where L0(z, λg, λh, λG, λH) := 〈λg, g(z)〉+ 〈λh, h(z)〉+ 〈λG, G(z)〉+ 〈λH ,H(z)〉.

The following result follows from Propositions 3.6-3.8. The reader is referred to Figure 3 for sufficient condi-

tions for MPSC quasi-normality.

Theorem 4.2 Let z∗ be a local minimizer for MPSC (2) and let d ∈ CF (z∗). If MPSC-LICQ(d) holds, then

z∗ is an S-stationary point in direction d. If MPSC quasi-normality holds at z∗ in direction d, then z∗ is an

M-stationary point in direction d. If f and F are twice differentiable at z∗ then there exist an M-multiplier in

direction d denoted by (λg, λh, λG, λH) such that the second-order condition holds:

dT∇2
zL(z

∗, λg, λh, λG, λH)d ≥ 0,

where L(z, λg, λh, λG, λH) := f(z)+ 〈λg, g(z)〉+ 〈λh, h(z)〉+ 〈λG, G(z)〉+ 〈λH ,H(z)〉. Conversely, suppose that z∗

is a feasible solution to MPSC and for each 0 6= d ∈ CF (z∗), there is an S-multiplier denoted by (λg, λh, λG, λH)

and the second-order condition

dT∇2
zL(z

∗, λg, λh, λG, λH)d > 0

holds, then z∗ is a strict local minimizer of MPSC.

For MPEC, Gfrerer [13] pointed out that the extended M-stationary condition (which means the directional

M-stationary condition holds at every critical direction) is usually hard to verify and introduced the strong M-

stationary condition to build a bridge between M-stationarity and S-stationarity. Similarly we can propose a

concept of strong M-stationary condition in a critical direction. In what follows we denote by r(z∗; d) the rank of

the family of gradients

{∇gi(z
∗)|i ∈ I∗

g (d)} ∪ {∇hj(z
∗)|j = 1, · · · , q} ∪ {∇Gi(z

∗)|i ∈ I∗
G ∪ I∗

G(d) ∪ I∗
GH (d)}

∪{∇Hi(z
∗)|i ∈ I∗

H ∪ I∗
H(d) ∪ I∗

GH(d)}.

Definition 4.9 A triple of index sets (Jg , JG, JH) with Jg ⊆ I∗
g (d), JG ⊆ I∗

G∪I∗
G(d)∪I∗

GH(d), JH ⊆ I∗
H∪I∗

H(d)∪

I∗
GH(d) is called an MPSC working set in direction d for MPSC (2), if JG ∪ JH = {1, 2, · · · ,m},

|Jg |+ q + |JG|+ |JH | = r(z∗; d),
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and the family of gradients

{∇gi(z
∗)|i ∈ Jg} ∪ {∇hj(z

∗)|j = 1, · · · , q} ∪ {∇Gi(z
∗)|i ∈ JG} ∪ {∇Hi(z

∗)|i ∈ JH}

is linearly independent.

The point z∗ is called strongly M-stationary in direction d for MPSC (2), if there exists an MPSC working

set (Jg, JG, JH ) in direction d together with λ = (λg, λh, λG, λH), an M-multiplier in direction d, satisfying

λg
i = 0, i ∈ {1, · · · , p} \ Jg ,

λG
i = 0, i ∈ {1, · · · ,m} \ JG,

λH
i = 0, i ∈ {1, · · · ,m} \ JH ,

λG
i = λH

i = 0, i ∈ JG ∩ JH .

Similarly as in [13, Theorem 4.3], we have the following result.

Theorem 4.3 Assume that z∗ is M-stationary in direction d ∈ CF(z
∗) for MPSC (2) and assume that there

exists some MPSC working set in direction d. Then, z∗ is strongly M-stationary in direction d.

Theorem 4.4 Let z∗ be feasible for MPSC (2) and assume that MPSC-LICQ(d) is fulfilled at z∗. Then z∗ is

strongly M-stationary in direction d if and only if it is S-stationary in direction d.

Proof. The statement follows immediately from the fact that under MPSC-LICQ(d) there exists exactly one

MPSC working set and this set fulfills Jg = I∗
g (d), JG = I∗

G ∪ I∗
G(d) ∪ I∗

GH(d), JH = I∗
H ∪ I∗

H(d) ∪ I∗
GH(d).

In [3, Example 5.2], it was shown that the optimal solution of the following problem is M-stationary but not

S-stationary. But we can show that MPSC-LICQ(d) holds at z∗ and z∗ is S-stationary in any nonzero critical

direction.

Example 4.1 [3, Example 5.2] Consider the following optimization problem

min z1 + z22

s.t. −z1 + z2 ≤ 0, z1z2 = 0.

Its unique global minimizer is given by z∗ := (0, 0). The linearization cone and critical cone of this problem at z∗

are given by

Llin
F (z∗) = {d ∈ R

2| − d1 + d2 ≤ 0, d1d2 = 0},

CF (z∗) = {d ∈ R
2| − d1 + d2 ≤ 0, d1d2 = 0, d1 ≤ 0} = {d ∈ R

2|d1 = 0, d2 ≤ 0}.
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S-stationary

S-stationary in direction d

strongly M-stationary in direction d

M-stationary in direction d

QM -stationary

Q-stationary

M-stationary

linearized M-stationary AM-stationary

Fig.2 Relation among stationarities

Define g(z) := −z1 + z2, G(z) := z1,H(z) := z2. Let 0 6= d ∈ CF (z∗), then I∗
g (d), I

∗
H(d),I∗

GH (d) are all empty but

the index set I∗
G(d) = {1}. Hence MPSC-LICQ(d) holds at z∗. It is easy to check that z∗ is indeed S-stationary

in any direction 0 6= d ∈ CF (z∗).

The strong M-stationarity in direction d builds a bridge between M-stationarity in direction d and S-stationarity

in direction d. We summarize the relations among the various stationarity concepts in Figure 2.

5 Error bound and exact penalty for MPSC

In this section we show the error bound property under two types of constraint qualifications: one is based on

the local decomposition approach and the other is based on the directional quasi-normality.

First we discuss the local decomposition approach. Let P(I∗
GH) be the set of all (disjoint) bipartitions of I∗

GH .

For fixed (β1, β2) ∈ P(I∗
GH), define

NLP(β1, β2) min f(z)

s.t. g(z) ≤ 0, h(z) = 0, Gi(z) = 0, i ∈ I∗
G ∪ β1,Hi(z) = 0, i ∈ I∗

H ∪ β2.

Definition 5.1 Let z∗ be a feasible point of MPSC (2). We say that z∗ satisfies

• MPSC piecewise MFCQ/CRCQ/CPLD/RCRCQ/RCPLD/CRSC, if for each (β1, β2) ∈ P(I∗
GH), MFC-

Q/CRCQ/CPLD/RCRCQ/RCPLD/CRSC holds for (NLP(β1, β2)) at z
∗.

We now compare the piecewise constraint qualifications just defined with MPSC-MFCQ/-CRCQ/-CPLD as

defined in subsection 2.2. It is easy to see that if MFCQ/CRCQ/CPLD holds for (TNLP) at z∗ then for any

(β1, β2) ∈ P(IGH(z∗)), MFCQ/CRCQ/CPLD holds for (NLP(β1, β2)) at z∗. Hence MPSC-MFCQ/-CRCQ/-

CPLD implies MPSC piecewise MFCQ/CRCQ/CPLD.

MPSC piecewise MFCQ/CRCQ/CPLD does not imply MPSC-MFCQ/-CRCQ/-CPLD. For example, consider

MPSC with constraint system G(z) = −z1,H(z) = z1 − z21z
2
2 at z∗ = (0, 0). ∇G(z) = (−1, 0)T ,∇H(z) =

24



(1 − 2z1z
2
2 ,−2z21z2). For (TNLP), CPLD does not hold at z∗, but for (NLP(β1, β2)), LICQ holds at z∗, then

MFCQ/CRCQ/CPLD holds at z∗. This counter example shows that MPSC piecewise MFCQ/CRCQ/CPLD is

strictly weaker than MPSC-MFCQ/-CRCQ/-CPLD.

Since piecewise constraint qualifications are required to hold for all pieces, they may be harder to verify than

the non-piecewise version. However sometimes, these two concepts may be equivalent. For example, it was shown

in [39] that MPSC piecewise RCPLD is equivalent to MPSC-RCPLD.

In Theorem 5.1 we will show that MPSC piecewise CRSC which is the weakest one among all the piecewise

constraint qualifications introduced will imply the error bound property. For this purpose, we first give the

following definition for local error bound property of MPSC (2).

Definition 5.2 We say that MPSC local error bound holds around z∗ ∈ F if there exists a neighborhood V (z∗)

of z∗ and α > 0 such that

distF (z) ≤ α

(

p
∑

i=1

max{gi(z), 0}+

q
∑

j=1

|hj(z)|+
m
∑

i=1

min{|Gi(z)|, |Hi(z)|}

)

∀z ∈ V (z∗).

Theorem 5.1 If z∗ ∈ F verifies MPSC piecewise CRSC, then MPSC local error bound holds in a neighborhood

of z∗.

Proof. Recall that the definition of MPSC piecewise CRSC means that for any (β1, β2) ∈ P(I∗
GH), CRSC holds

for nonlinear programs (NLP(β1, β2)) at z∗. When i ∈ I∗
G, |Hi(z

∗)| > |Gi(z
∗)| = 0, there exists a neighborhood

VG(z
∗) of z∗ such that |Hi(z)| ≥ |Gi(z)|, then we have min{|Gi(z)|, |Hi(z)|} = |Gi(z)|, for i ∈ I∗

G and z ∈ VG(z
∗).

Similarly, there exists a neighborhood VH(z∗) of z∗ such that min{|Gi(z)|, |Hi(z)|} = |Hi(z)|, for i ∈ I∗
H and

z ∈ VH(z∗). Thus by [31, Corollary 4.1] we have that for (β1, β2) ∈ P(I∗
GH), there exist a neighborhood Vβ1,β2

(z∗)

and a constant αβ1,β2
such that

distF (z) ≤ αβ1,β2





p
∑

i=1

max{gi(z), 0}+

q
∑

j=1

|hj(z)|+
∑

i∈I∗

G
∪β1

|Gi(z)|+
∑

i∈I∗

H
∪β2

|Hi(z)|





= αβ1,β2





p
∑

i=1

max{gi(z), 0}+

q
∑

j=1

|hj(z)|+
∑

i∈I∗

G

min{|Gi(z)|, |Hi(z)|}

+
∑

i∈I∗

H

min{|Gi(z)|, |Hi(z)|}+
∑

i∈β1

|Gi(z)|+
∑

i∈β2

|Hi(z)|



 ,

for all z ∈ Vβ1,β2
(z∗). Taking α := max(β1,β2)∈P(I∗

GH
) αβ1,β2

, V (z∗) := ∩(β1,β2)∈P(I∗

GH
)Vβ1,β2

(z∗), we get for all

z ∈ V (z∗)

distF (z) ≤ α





p
∑

i=1

max{gi(z), 0}+

q
∑

j=1

|hj(z)|+
∑

i∈I∗

G

min{|Gi(z)|, |Hi(z)|}

+
∑

i∈I∗

H

min{|Gi(z)|, |Hi(z)|}+
∑

i∈β1

|Gi(z)|+
∑

i∈β2

|Hi(z)|



 .
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Finally, it holds for all (β1, β2) ∈ P(I∗
GH). Set

β∗
1 (z) := {i ∈ I∗

GH ||Gi(z)| = min{|Gi(z)|, |Hi(z)|}}, β∗
2 (z) := I∗

GH \ β∗
1 (z),

then (β∗
1 (z), β

∗
2 (z)) ∈ P(I∗

GH).

Then we have

distF (z) ≤ α





p
∑

i=1

max{gi(z), 0}+

q
∑

j=1

|hj(z)|+
∑

i∈I∗

G

min{|Gi(z)|, |Hi(z)|}

+
∑

i∈I∗

H

min{|Gi(z)|, |Hi(z)|}+
∑

i∈β∗

1
(z)

min{|Gi(z)|, |Hi(z)|}

+
∑

i∈β∗

2
(z)

min{|Gi(z)|, |Hi(z)|}





= α

(

p
∑

i=1

max{gi(z), 0}+

q
∑

j=1

|hj(z)|+
m
∑

i=1

min{|Gi(z)|, |Hi(z)|}

)

.

This completes the proof.

Now we discuss the second approach based on the directional quasi-normality. First we need the following

calculation.

Lemma 5.1 Under the l1-norm, the distance functions are given by the following expressions for a, b ∈ R :

dist(−∞,0](a) = max{a, 0}, dist{0}(a) = |a|,

distΩSC
((a, b)) = min{|a|, |b|} =





































a or b a = b ≥ 0,

b |a| > b ≥ 0,

−b |a| > −b ≥ 0,

a |b| > a ≥ 0,

−a |b| > −a ≥ 0,

−a or − b a = b ≤ 0.

Theorem 5.2 Let z∗ ∈ F such that MPSC directional quasi-normality holds. Then MPSC local error bound

holds in a neighborhood of z∗.

Proof. If MPSC directional quasi-normality holds at z∗, then by [14, Corollary 4.1], the set-valued map F (z) :=

P (z) − Λ is metrically subregular at (z∗, 0). By the definition of metric subregularity, there exist α ≥ 0 and a

neighborhood N(z∗) of z∗ such that

distF−1(0)(z) ≤ αdistΛ(P (z)) ∀z ∈ N(z∗).

Recall the distance functions in Lemma 5.1, we complete the proof.

By Clarke’s exact penalty principle [40, Proposition 2.4.3], we obtain the following exact penalty result im-

mediately.
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MPSC-LICQ

MPSC-MFCQ

MPSC-CPLD

MPSC Linear CQ

MPSC-CRCQ

MPSC piecewise CRCQ

MPSC piecewise RCRCQ

MPSC piecewise RCPLD

MPSC-RCPLD

MPSC piecewise MFCQ

MPSC-NNAMCQ

MPSC pseudo-normality

MPSC quasi-normality

MPSC-LICQ(d)

MPSC-FOSCMS in direction d

MPSC-SOSCMS in direction d

MPSC pseudo-normality in direction d

MPSC quasi-normality in direction d

M-stationarity in direction d

Metric subregularity/Error bound

M-stationarity

MPSC piecewise CPLD

MPSC piecewise CRSC

AM-regularity

Fig.3 Relation among CQs, stationary conditions and error bounds for MPSC

Theorem 5.3 Let z∗ be a local optimal solution of MPSC (2). If either MPSC directional quasi-normality or

MPSC piecewise CRSC holds at z∗, then z∗ is a local optimal solution of the penalized problem:

min f(z) + Lfα

[

p
∑

i=1

max{0, gi(z}) +

q
∑

j=1

|hj(z)|+
m
∑

i=1

min{|Gi(z)|, |Hi(z)|}

]

,

where α is the error bound constant and Lf is the Lipschitz constant of f around z∗.

6 Conclusions

In Figure 3, we give a diagram displaying the relations of various constraint qualifications, stationary conditions

and error bounds. Note that in the diagram, the arrows pointing to stationary points only hold for local optimal

solutions. MPSC Linear CQ means all defining constraint functions g, h,G,H are all affine. The relation between

MPSC piecewise RCPLD and MPSC-RCPLD can be checked easily by using definitions. The proof of relation be-

tween MPSC-RCPLD and AM-regularity is similar to [20, Theorem 4.8]. To obtain all other relationships, we use

definitions and the results presented here together with the results from [3, 11, 14, 38]. From the diagram, we can

see that directional conditions in a nonzero critical direction d are weaker than the corresponding nondirectional

ones.
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