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A block inertial Bregman proximal algorithm for nonsmooth nonconvex problems

with application to symmetric nonnegative matrix tri-factorization

MASOUD AHOOKHOSH1, LE THI KHANH HIEN2. NICOLAS GILLIS2, AND PANAGIOTIS PATRINOS1

Abstract. We propose BIBPA, a block inertial Bregman proximal algorithm for minimiz-

ing the sum of a block relatively smooth function (that is, relatively smooth concerning

each block) and block separable nonsmooth nonconvex functions. We prove that the se-

quence generated by BIBPA subsequentially converges to critical points of the objective

under standard assumptions, and globally converges when the objective function is addi-

tionally assumed to satisfy the Kurdyka-Łojasiewicz (KŁ) property. We also provide the

convergence rate when the objective satisfies the Łojasiewicz inequality. We apply BIBPA

to the symmetric nonnegative matrix tri-factorization (SymTriNMF) problem, where we

propose kernel functions for SymTriNMF and provide closed-form solutions for subprob-

lems of BIBPA.

1. Introduction

This paper is concerned with the minimization of the sum of a block relatively smooth

(see Definition 2.2), and a block separable (nonsmooth) nonconvex function. Although this

problem has a simple structure, it covers a broad range of optimization problems arising

in signal and image processing, machine learning, and inverse problems. In our block-

structured nonconvex setting, the most common class of methodologies is first-order ones,

where the central to their convergence analysis is the so-called descent lemma in both the

Euclidean setting (e.g., [1, 11, 12, 36, 38]) and the non-Euclidean one (e.g., [10, 35, 48]).

While for the Euclidean case, the descent lemma is guaranteed if the function has Lipschitz

continuous gradients, in the non-Euclidean setting it holds for relatively smooth functions

encompassing the class of smooth functions with Lipschitz gradients.

In the Euclidean setting, there are large number alternating minimization algorithms

for handling our structured problem such as block coordinate methods [13, 14, 37, 46,

47] and Gauss-Seidel methods [8, 15, 28], proximal alternating minimization [5, 7], and

proximal alternating linearized minimization [19, 41, 43]. In the non-Euclidean setting,

several algorithms have been proposed, namely, Bregman forward-backward splitting [3,

9, 10, 20, 35, 45], accelerated Bregman forward-backward splitting [29, 31], stochastic

mirror descent methods [30], Bregman proximal alternating linearized minimization [2].
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In order to establish the global convergence of generic algorithms for (nonsmooth) non-

convex problems, one needs to assume that the celebrated Kurdyka-Łojasiewicz inequality

(see Definition 3.10) is satisfied as a feature of the underlying problem’s class. The earliest

abstract convergence theorem was introduced by Attouch et al. [6] and by Bolte et al. [19],

relying on the following conditions that an algorithm should satisfy: (i) sufficient decrease

condition of the cost function; (ii) subgradient lower bound of iterations gap; (iii) subse-

quential convergence. These conditions are shown to be satisfied by many algorithms [6].

In [19], these conditions were extended for proximal alternating linearized minimization.

In the case of inertial proximal point algorithms [40, 41], it was shown that some Lya-

punov function satisfies the sufficient decrease condition, which leads to a generalization

of the abstract convergence theorem. A generalization of this theorem was introduced for

variable metric algorithms in [26], which has been recently extended for inertial variable

metric algorithms [39]. In this paper, we show that the results of [39] can cover the global

convergence of algorithms in non-Euclidean settings.

1.1. Contribution. Our contribution is twofold:

1) (Block inertial Bregman proximal algorithm) We introduce BIBPA, a block generaliza-

tion of the Bregman proximal gradient method [19] with an inertial force. We extend the

notion of relative smoothness [10, 35, 48] to its block version (with different kernels for

each block) to support our structured nonconvex problems. Notably, these kernel functions

are block-wise convex, a property that does not necessarily imply their joint convexity for

all blocks. Unlike the global convergence theorem in [6, 19] that verifies the sufficient de-

crease condition and subgradient lower bound of iterations gap on the cost function, for

BIBPA these properties hold for a Lyapunov function including Bregman terms (see the

equation (3.8)). Then, the global convergence of BIBPA is studied under the KŁ property,

and its convergence rate is studied for Łojasiewicz-type KŁ functions.

2) (Globally convergent scheme for solving the SymTriNMF problem) With appropriate

selection of kernel functions for Bregman distances, it turns out that the objective of the

symmetric nonnegative matrix tri-factorization (SymTriNMF) problem is block relatively

smooth, and the corresponding subproblems can be solved in closed form, an important

property when dealing with machine learning problems that include a large number of

variables. To the best of our knowledge, BIBPA is the first scheme with a rigorous theoret-

ical guarantee of convergence for the SymTriNMF problem.

1.2. Related works. There are three papers [2, 50, 51] that are closely related to this

paper. In [2], we introduced a multi-block relative smoothness condition that exploits a

single kernel function for all blocks, while in the current paper we assume a block relative

smoothness condition allowing a different kernel function for each block. Moreover, our

algorithm BIBPA involves dynamic step-sizes and inertial terms for each block that makes

our derivation and analysis different from those of [2]. Beside of the algorithmic differences

with [50], we use nonseparable (nonconvex) kernels as apposed to the separable convex

kernel used in [50] for each block. An inertial Bregman proximal gradient algorithm was

presented in [51] for composite minimization that does not support our block structure

nonconvex problems and therefore is different in derivation and analysis concerning our

work.
1.3. Organization. The remainder of this paper is organized as follows. While Section 2

discusses the problem statement and the block relative smoothness, Section 3 introduces

and analyzes a block inertial Bregman proximal algorithm (BIBPA). In Section 4, it is

shown the BIBPA’s subproblems are solved in closed form. Some conclusion are delivered

in Section 5.
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2. Problem statement and block relative smoothness

We consider the structured nonsmooth nonconvex minimization problem

minimize
x∈C

Φ(x) ≡ f (x) +

N∑

i=1

gi(xi), (2.1)

where C is a nonempty, convex, and open set in �n and C denotes its closure. Setting

n =
∑N

i=1 ni and i = 1, . . . ,N, we assume the following hypotheses:

Assumption I (requirements for composite minimization (2.1)).

a1 gi : �ni → � ≔ � ∪ {∞} is proper and lower semicontinuous (lsc);

a2 hi : �n → � is i-th block Legandre, int dom h1 = . . . = int dom hN , C ⊆ dom h1, and

dom g ∩ C , ∅ with g :=
∑N

i=1 gi;

a3 f : �n → � is C1(int dom h1) and (L1, . . . , LN)-smooth relative to (h1, . . . , hN);

a4 arg min
{
Φ(x) | x ∈ C

}
, ∅.

2.1. Notation. We denote by� ≔ �∪{∞} the extended-real line. We use boldface lower-

case letters (e.g., x, y, z) for vectors in �n and use normal lower-case letters (e.g., zi, xi,

yi) for vectors in �ni , for ni ∈ �. For the identity matrix In, we set Ui ∈ �n×ni such that

In = (U1, . . . ,UN) ∈ �n×n. The set of cluster points of (x
k)

k∈� is denoted as ω(x
0). A

function f : �n → � is proper if f > −∞ and f . ∞, in which case its domain is defined

as the set dom f ≔ {x ∈ �n | f (x) < ∞}. A vector v ∈ ∂ f (x) is a subgradient of f at x, and

the set of all such vectors is called the subdifferential ∂ f (x) [42, Definition 8.3], i.e.

∂ f (x) =
{
v ∈ �n | ∃(x

k, vk)k∈� s.t. x
k → x, f (x

k)→ f (x), ∂̂ f (x
k) ∋ v

k → v

}
,

where ∂̂ f (x) is the set of regular subgradients of f at x, namely

∂̂ f (x) =
{
v ∈ �n | f (z) ≥ f (x) + 〈v, z − x〉 + o(‖z − x‖), ∀z ∈ �n

}
.

2.2. Block relative smoothness. We first describe the notion of block relative smoothness,

which is an extension of the relative smoothness [10, 35]. To this end, we introduce the

notion of block kernel functions, which coincides with the classical one (cf. [3, Definition

2.1]) for N = 1.

Definition 2.1 (i-th block convexity and kernel function). Let h : �n → � be a proper and

lower semicontinuous (lsc) function with int dom h , ∅ and such that h ∈ C1(int dom h).

For a fixed vector x ∈ �n and i ∈ {1, . . . ,N}, we say that h is

(i) i-th block (strongly/strictly) convex if the function h(x+Ui(·−xi)) is (strongly/strictly)

convex for all x ∈ dom h;

(ii) a i-th block kernel function if h is i-th block convex and h(x+Ui(· − xi)) is 1-coercive

for all x ∈ dom h, i.e., lim‖z‖→∞
h(x+Ui (z−xi))

‖z‖ = ∞;

(iii) i-th block essentially smooth, if for every sequence (x
k)

k∈� ⊆ int dom h converging

to a boundary point of dom h, we have ‖∇ih(x
k)‖ → ∞;

(iv) i-th block Legendre if it is i-th block essentially smooth and i-th block strictly convex.

Let h : �n → � be a Legendre function. Then, the classical definition of Bregman

distances (cf. [23]) leads to the function Dh : �n ×�n → � given by

Dh(y, x) ≔

{
h(y) − h(x) − 〈∇h(x), y − x〉 if y ∈ dom h, x ∈ int dom h,

∞ otherwise.
(2.2)
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However, in the remainder of this paper, we extend this definition for the cases that h is

only an i-th block Legendre function. Fixing all blocks except the i-th one, the Bregman

distance (2.2) will reduce to Dh(x+Ui(yi−xi), x) = h(x+Ui(yi−xi))−h(x)−〈∇ih(x), yi−xi〉,
which measures the proximity between x+Ui(yi− xi) and x with respect to the i-th block of

variables. Moreover, the kernel h is i-th block convex if and only if Dh(x+Ui(yi−xi), x) ≥ 0

for all x+Ui(yi− xi) ∈ dom h and x ∈ int dom h. Note that if h is i-th block strictly convex,

then Dh(x + Ui(yi − xi), x) = 0 if and only if xi = yi.

We are now in a position to present the notion of block relative smoothness, which is

the central tool for our analysis in the next section.

Definition 2.2 (block relative smoothness). For i ∈ [N], let hi : �n → � be i-th block

kernel functions and let f : �n → � be a proper and lsc function. If there exists Li > 0,

i ∈ [N], such that Lihi(x+Ui(z− xi))− f (x+Ui(z− xi)) are convex for all x, x+Ui(z− xi) ∈
int dom hi, then, f is called (L1, . . . , LN)-smooth relative to (h1, . . . , hN).

Note that if N = 1, the block relative smoothness is reduced to standard relative smooth-

ness [10, 35]. If f is L-Lipschitz continuous, then both L/2‖ · ‖2 − f and L/2‖ · ‖2 + f are

convex, i.e., the relative smoothness of f generalizes the notions of Lipschitz continuity.

Proposition 2.3 (characterization of block relative smoothness). For i = 1, . . . ,N, let hi :

�
n → � be i-th block kernels and let f : �n → � be a proper lsc function and f ∈ C1.

Then, the following statements are equivalent:

(a) (L1, . . . , LN)-smooth relative to (h1, . . . , hN);

(b) for all (x, y) ∈ int dom hi × int dom hi and i = 1, . . . ,N,

f (x + Ui(yi − xi)) ≤ f (x) + 〈∇i f (x), yi − xi〉 + Li Dhi
(x + Ui(yi − xi), x); (2.3)

(c) for all (x, y) ∈ int dom hi × int dom hi and i = 1, . . . ,N,

〈∇i f (x) − ∇i f (y), xi − yi〉 ≤ Li〈∇ihi(x) − ∇ihi(y), xi − yi〉; (2.4)

(d) if f ∈ C2(int dom f ) and h ∈ C2(int dom hi), then

Li∇2
xi xi

hi(x) − ∇2
xi xi

f (x) � 0, ∀x ∈ int dom hi, i = 1, . . . ,N. (2.5)

Proof. The proof is a straightforward extension of those given in [35, Proposition 1.1], by

fixing all the blocks except one of them. �

2.3. Motivating example: symmetric nonnegative matrix tri-factorization. We con-

sider a symmetric matrix X ∈ �m×m and aim to decompose it in the form X = UVUT ,

where U ∈ �m×r
+ and V ∈ �r×r

+ . This translates to the minimization of 1
2
‖X − UVUT‖2

F
for

U,V ≥ 0, leading to the unconstrained problem

min
U∈�m×r ,V∈�r×r

1
2
‖X − UVUT‖2F + δU≥0 + δV≥0. (2.6)

Proposition 2.4 (block relative smoothness of SymTriNMF objective). Let functions h1 :

�
m×r ×�r×r → � and h2 : �m×r ×�r×r → � be strongly convex kernel functions as

h1(U,V) := a1

4
‖V‖2F‖U‖4F +

b1

2
(‖X‖F‖V‖F + ε1)‖U‖2F , (2.7)

h2(U,V) := a2

2

(
‖U‖4F + ε2

)
‖V‖2F . (2.8)

with ε1, ε2 > 0. Then the function f : �m×r×�r×r → � given by f (U,V) := 1
2
‖X−UVUT ‖2

F

is (L1, L2)-smooth relative to (h1, h2) with

L1 ≥ max
{

6
a1
, 2

b1

}
, and L2 ≥ 1

a2
. (2.9)
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Proof. Plugging the partial derivative ∇U f (U,V) = −XUVT − XT UV + UVUT UVT +

UVT UT UV into the definition of directional derivative, we obtain

∇2
UU

f (U,V)Z= −2XZVT + UVUT ZV + UVZT UV + ZVUT UVT

+UVT UT ZV + UVT ZT UV + ZVT UT UV,

which consequently leads to

〈Z,∇2
UU

f (U,V)Z〉= −2〈Z, XZVT 〉 + 〈Z,UVUT ZV〉 + 〈Z,UVZT UV〉 + 〈Z, ZVUT UVT 〉
+〈Z,UVT UT ZV〉 + 〈Z,UVT ZT UV〉 + 〈Z, ZVT UT UV〉
≤
(
2‖X‖ ‖V‖ + 6‖U‖2‖V‖2

)
‖Z‖2

F
.

On the other hand, from ∇Uh1(U,V) =
(
a1‖U‖2F‖V‖2F + b1(‖X‖F ‖V‖F + ε1)

)
U, we have

∇2
UU h1(U,V)Z =

(
2a1‖V‖2〈U, Z〉

)
U +
(
a1‖V‖2F‖U‖2F + b1(‖X‖F ‖V‖F + ε1)

)
Z,

implying that

〈Z,∇2
UU

h1(U,V)Z〉≥
(
a1‖V‖2F‖U‖2F + b1(‖X‖F ‖V‖F + ε1)

)
‖Z‖2

F

≥
(
a1‖V‖2‖U‖2 + b1(‖X‖ ‖V‖ + ε1)

)
‖Z‖2

F
.

Therefore, the inequality

〈Z, (L1∇2
UU h1(U,V) − ∇2

UU f (U,V))Z〉

≥
(
(L1a1 − 6)‖V‖2‖U‖2 + (L1b1 − 2)‖X‖ ‖V‖ + ε1L1

)
‖Z‖2F ≥ 0

holds if L1a1 − 6 ≥ 0 and L1b1 − 2 ≥ 0, as claimed.

It follows from ∇V f (U,V) = UT XU + UT UVUT U that

∇2
VV f (U,V)Z = lim

∇U f (U + tZ,V) − ∇U f (U,V)

t
= UT UZUT U,

leading to the inequality 〈Z,∇2
VV

f (U,V)Z〉 = 〈Z,UT UZUT U〉 ≤ ‖U‖4‖Z‖2
F

. Now, using

∇Vh2(U,V) = a2

(
‖U‖4 + ε2

)
V , we get 〈Z,∇2

VV
h2(U,V)Z〉 = a2

(
‖U‖4 + ε2

)
‖Z‖2

F
, i.e.,

〈Z, (L2∇2
VVh2(U,V) − ∇2

VV f (U,V))Z〉 =
(
(L2a2 − 1)‖U‖4 + ε2L2

)
‖Z‖2F ≥ 0

if L2a2 − 1 ≥ 0, giving our desired results. �

3. Block inertial Bregman proximal algorithm

This section discusses our algorithm, starting from the prox-boundedness extension

[42].

Definition 3.1 (block prox-boundedness). A function g : �n → � is block prox-bounded

if for each i ∈ {1, . . . ,N} there exists γi > 0 and x ∈ �n such that

inf
z∈�ni

{
g(x + Ui(z − xi)) +

1
γi

Dhi
(x + Ui(z − xi), x)

}
> −∞.

The supremum of the set of all such γi is the threshold γh
i,g

of the block prox-boundedness,

γ
hi

i,g
:= sup

γi>0

{
γi : ∃x ∈ �n, inf

z∈�ni

{
g(x + Ui(z − xi)) +

1
γi

Dhi
(x + Ui(z − xi), x)

}
> −∞

}
.

(3.1)

Proposition 3.2 (characteristics of block prox-boundedness). For hi : �n → � and proper

and lsc functions gi : �ni → � (i = 1, . . . ,N), the following statements are equivalent:

(a) g =
∑N

i=1 gi is block prox-bounded;

(b) for all i = 1, . . . ,N, gi+ rihi(x+Ui(z− xi)) is bounded below on�ni for some ri ∈ �;
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(c) for all i = 1, . . . ,N, lim inf‖z‖→∞ gi(z)/hi(x+Ui(z−xi)) > −∞.

Proof. The proof is a straightforward adaptation of [2, Proposition 2.7]. �

For a given points x
k, x

k−1 ∈ �n and αk
i
≥ 0, let us define the functionMhi/γk

i

: dom hi ×
int dom hi × int dom hi → � given by

Mhi/γk
i

(x, x
k, x

k−1) := 〈∇f (x
k) − αk

i

γk
i

(x
k − x

k−1), x − x
k〉 + 1

γk
i

Dhi
(x, x

k) +

N∑

i=1

gi(xi) (3.2)

and the block inertial Bregman proximal mapping Thi/γk
i

: int dom hi × int dom hi ⇒ �
ni as

Thi/γk
i

(x
k, x

k−1) := arg min
z∈�ni

Mhi/γk
i

(x
k + Ui(z − xk

i ), x
k, x

k−1)

= arg min
z∈�ni

〈∇i f (x
k) − αk

i

γk
i

(x
k
i − x

k−1
i ), z − x

k
i 〉 + 1

γk
i

Dhi
(x

k + Ui(z − xk
i ), x

k) + gi(z),
(3.3)

which is set-valued by nonconvexity of gi (i = 1, . . . ,N), and it reduces to the inertial

Bregman forward-backward mapping for N = 1; cf. [21]. For a given sequence (x
k)

k∈�, we

introduce the following notation

x
k,i := (xk+1

1 , . . . , xk+1
i , xk

i+1, . . . , xk
N), (3.4)

i.e., x
k,0 = x

k and x
k,N = x

k+1. Using this notation and the mapping (3.3), we next introduce

the block inertial Bregman proximal algorithm (BIBPA); see Algorithm 1.

Algorithm 1 (BIBPA) Block Inertial Bregman Proximal Algorithm

Input x
0 ∈ int dom h1, In = (U1, . . . ,UN) ∈ �n×n with Ui ∈ �n×ni and the identity

matrix In, k = 0.

1: while some stopping criterion is not met do

2: x
k,0 = x

k;

3: for i = 1, . . . ,N do choose γk
i

and αk
i

as Prop. 3.5 and compute

x
k,i
i
∈ Thi/γk

i

(x
k,i−1, x

k−1), x
k,i = x

k,i−1 + Ui(x
k,i
i
− x

k,i−1
i

); (3.5)

4: x
k+1 = x

k,N , k = k + 1;

Output A vector x
k.

In order to verify the well-definedness of the iterations generated by BIBPA, we next

investigate some important properties of the mapping Thi/γk
i

.

Assumption II. For all z ∈ Thi/γk
i

(x, y) and γk
i
∈ (0, 1/Li), x+Ui(z−xi) ∈ C and i = 1, . . . ,N.

Proposition 3.3 (properties of the mapping Thi/γk
i

). Under Assumption I and Assumption

II, γk
i
∈ (0, γ

hi

i,g
) for i ∈ [N], and x

k, x
k−1 ∈ int dom hi, the following statements are true:

(i) Thi/γk
i

(x
k, x

k−1) is nonempty, compact, and outer semicontinuous;

(ii) dom Thi/γk
i

= int dom hi × int dom hi;

(iii) If x
k,i
i
∈ Thi/γk

i

(x
k,i−1, x

k−1) for γk
i
∈ (0, 1/Li), then x

k,i ∈ int dom hi.

Proof. The proof follows from [2, Proposition 2.10] and Assumption II. �

In the subsequent lemma, we show that the cost function Φ satisfies some necessary

inequality that will be needed in the next result.
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Lemma 3.4 (cyclic inequality of the cost). Let Assumption I and Assumption II hold, and

let (x
k)

k∈� be generated by BIBPA. If hi (i ∈ [N]) is σi-block strongly convex, then we have

Φ(x
k+1) −Φ(x

k) ≤
N∑

i=1

((
|αk

i
|

σiγ
k
i

− 1−γk
i
Li

γk
i

)
Dhi

(x
k,i, x

k,i−1) +
|αk

i
|

σiγ
k
i

Dhi
(x

k−1,i, x
k−1,i−1)

)
. (3.6)

Proof. For i ∈ {1, . . . ,N} and xk,i
i
∈ Thi/γk

i

(x
k,i−1, x

k−1), it holds that

〈∇i f (x
k,i−1) − αk

i

γk
i

(xk
i − xk−1

i ), xk,i
i
− xk

i 〉 + 1

γk
i

Dhi
(x

k,i, x
k,i−1) +

N∑

j=1

g j(x
k,i
j

) ≤
N∑

j=1

g j(x
k,i−1
j

).

Together with Assumption Ia3 and Proposition 2.3(b), this implies

f (x
k,i) ≤ f (x

k,i−1) + 〈∇i f (x
k,i−1), xk,i

i
− xk

i
〉 + Li Dhi

(x
k,i, x

k,i−1)

≤ f (x
k,i−1) +

∑N
j=1 g j(x

k,i−1
j

) −∑N
j=1 g j(x

k,i
j

) − 1−γk
i
Li

γk
i

Dhi
(x

k,i, x
k,i−1) +

αk
i

γk
i

〈xk
i
− xk−1

i
, xk,i

i
− xk

i
〉

≤ f (x
k,i−1) +

∑N
j=1 g j(x

k,i−1
j

) −∑N
j=1 g j(x

k,i
j

) − 1−γk
i
Li

γk
i

Dhi
(x

k,i, x
k,i−1)

+
|αk

i
|

2γk
i

(
‖xk

i
− xk−1

i
‖2 + ‖xk,i

i
− xk

i
‖2
)

≤ f (x
k,i−1) +

∑N
j=1 g j(x

k,i−1
j

) −∑N
j=1 g j(x

k,i
j

) +

(
|αk

i
|

σiγ
k
i

− 1−γk
i
Li

γk
i

)
Dhi

(x
k,i, x

k,i−1)

+
|αk

i
|

σiγ
k
i

Dhi
(x

k−1,i, x
k−1,i−1),

which yields

Φ(x
k,i) ≤ Φ(x

k,i−1) +

(
|αk

i
|

σiγ
k
i

− 1−γk
i
Li

γk
i

)
Dhi

(x
k,i, x

k,i−1) +
|αk

i
|

σiγ
k
i

Dhi
(x

k−1,i, x
k−1,i−1). (3.7)

Now, let us sum up both sides of (3.7) for i = 1, . . . ,N, i.e.,

Φ(x
k+1) −Φ(x

k)=
∑N

i=1

(
Φ(x

k,i) − Φ(x
k,i−1)
)

≤ ∑N
i=1

((
|αk

i
|

σiγ
k
i

− 1−γk
i
Li

γk
i

)
Dhi

(x
k,i, x

k,i−1) +
|αk

i
|

σiγ
k
i

Dhi
(x

k−1,i, x
k−1,i−1)

)
.

�

We notice that Lemma 3.4 does not guarantee the monotonicity of the sequence (Φ(x
k))

k∈�.

For x, y ∈ �n and δi ≥ 0, we define the Lyapunov function L : �n × �n → �,

L(x, y) := Φ(x) +

N∑

i=1

δi Dhi
((x1, . . . , xi, yi+1, . . . , yN), (x1, . . . , xi−1, yi, . . . , yN)), (3.8)

Note that L(x
k+1, x

k) := Φ(x
k+1) +

∑N
i=1 δi Dhi

(x
k,i, x

k,i−1). We denote by Lk+1 and Lk

the terms L(x
k+1, x

k) and L(x
k, x

k−1), respectively. We next indicate the monotonicity of

(Lk)
k∈�.

Proposition 3.5 (descent property of the Lyapunov function). Let Assumption I and As-

sumption II hold, let (x
k)

k∈� be generated by BIBPA, and let hi (i = 1, . . . ,N) be σi-block

strongly convex. If limk→∞ α
k
i
= αi and 0 < γi ≤ σi−2|αi |

σiLi
and

|αk
i | <

σi

2
, 0 < γi ≤ γk

i ≤
σi−2|αk

i
|

σiLi
,
|αk

i
|

σiγ
k
i

≤ δi ≤
1−γk

i
Li

γk
i

− |αk
i
|

σiγ
k
i

i = 1, . . . ,N, (3.9)

then, setting ai :=
1−γk

i
Li

γk
i

− |αk
i
|

σiγ
k
i

− δi and bi := δi −
|αk

i
|

σiγ
k
i

for i = 1, . . . ,N, we get

Lk+1 − Lk ≤ −
N∑

i=1

(
ai Dhi

(x
k,i, x

k,i−1) + bi Dhi
(x

k−1,i, x
k−1,i−1)

)
, (3.10)
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i.e., the sequence (Lk)
k∈� is non-increasing and consequently limk→∞Dhi

(x
k,i, x

k,i−1) = 0,

i.e., limk→∞ ‖xk,i − x
k,i−1‖ = 0, for all i = 1, . . . ,N.

Proof. Using (3.6) and applying the Lyapunov function (3.8), we have

Lk+1 − Lk= Φ(x
k+1) − Φ(x

k) +
∑N

i=1 δi Dhi
(x

k,i, x
k,i−1) −∑N

i=1 δi Dhi
(x

k−1,i, x
k−1,i−1)

≤ ∑N
i=1

((
|αk

i
|

σiγ
k
i

− 1−γk
i
Li

γk
i

+ δi

)
Dhi

(x
k,i, x

k,i−1) +

(
|αk

i
|

σiγ
k
i

− δi

)
Dhi

(x
k−1,i, x

k−1,i−1)

)
,

as claimed in (3.10). In order to guarantee the non-increasing property of the sequence

(Lk)
k∈�, the inequalities ai =

1−γk
i
Li

γk
i

− |αk
i
|

σiγ
k
i

− δi ≥ 0, bi = δi −
|αk

i
|

σiγ
k
i

≥ 0 should be satisfied,

for i = 1, . . . ,N, i.e.,
|αk

i
|

σiγ
k
i

≤ δi ≤
1−γk

i
Li

γk
i

− |αk
i
|

σiγ
k
i

≤ 1−γiLi

γi
i = 1, . . . ,N, which is guaranteed

by (3.9), i.e., Lk+1 ≤ Lk. Together with (3.10), this yields that
∑p

k=0

∑N
i=1 ai Dhi

(x
k,i, x

k,i−1) + bi Dhi
(x

k−1,i, x
k−1,i−1)≤ ∑p

k=0

(
Lk − Lk+1

)

= L0 − Lp+1 ≤ L0 − inf L < +∞.
Let p→ +∞, the result follows from Dhi

(·, ·) ≥ 0 and block strong convexity of hi. �

In convergence analysis of proximal algorithms, one usual assumption is the bounded-

ness of (x
k)

k∈�; cf., [5, 20]. A sufficient condition for this is given next.

Corollary 3.6 (boundedness of iterations). Suppose that all assumptions of Proposition

3.5 hold. Further, if ϕ has bounded level sets, then the sequence (x
k)

k∈� is bounded.

Proof. It follows from Proposition 3.5 that L(x
k+1, x

k) is non-increasing, hence

Φ(x
k+1)≤ L(x

k+1, x
k) = Φ(x

k+1) +
∑N

i=1 δi Dhi
(x

k,i, x
k,i−1)

≤ L(x
1, x

0) = Φ(x
1) +
∑N

i=1 δi Dhi
(x

0,i, x
0,i−1) < ∞.

Hence,N(x
1, x

0) :=
{
x ∈ �n | Φ(x) ≤ Φ(x

1) +
∑N

i=1 δi Dhi
(x

0,i, x
0,i−1)
}

encompasses (x
k)

k∈�,

i.e., (x
k)

k∈� ⊆ N(x
1, x

0). Since ϕ has bounded level sets, we have (x
k)

k∈� are bounded. �

The next proposition provides a lower bound for
∑N

i=1

√
Dh(xk,i, xk,i−1)+

√
Dh(xk−1,i, xk−1,i−1).

Proposition 3.7 (subgradient lower bound for iterations gap). Let Assumption I and As-

sumption II hold, let (x
k)

k∈� be generated by BIBPA, and let hi (i ∈ [N]) be σi-block

strongly convex. Furthermore, suppose that ∇i f , ∇ih, (i = 1, . . . ,N) are locally Lipschitz

on bounded sets with Lipschitz moduli L̂ and L̃i > 0, ∇2
ii
hi is bounded on bounded set with

constants Li (i ∈ [N]) and that the sequence (x
k)

k∈� is bounded. For a fixed k ∈ � and

j ∈ [N], we define

Gk+1
j := (Vk+1

j ,Wk+1
j ), (3.11)

where

Vk+1
j

:=
N∑

i= j

δi(∇jhi(x
k,i) − ∇jhi(x

k,i−1)) + 1

γk
j

(∇jh j(x
k, j−1) − ∇jh j(x

k, j))

+
αk

j

γk
j

(xk
j
− xk−1

j
) + ∇j f (x

k+1) − ∇j f (x
k, j−1)

Wk+1
j

:=
j−1∑
i=1

δi(∇jhi(x
k,i) − ∇jhi(x

k,i−1)) − ∇2
j j

h j(x
k, j−1)(xk+1

j
− xk

j
).

If hi, i ∈ [N], is block strongly convex, then Gk+1 :=
(
Gk+1

1
, . . . ,Gk+1

N

)
∈ ∂L(x

k+1, x
k) and

‖Gk+1‖ ≤ c

N∑

i=1

√
Dh(xk,i, xk,i−1) + ĉ

N∑

i=1

√
Dh(xk−1,i, xk−1,i−1), (3.12)
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with

c := max
{√

2/σ1, . . . ,
√

2/σN

}(
N
(
L̂ +max

{
δ1L̃1, . . . , δN L̃N

})
+max

{
L̃1

γ1
+ L1, . . . ,

L̃N

γN
+ LN

})
,

ĉ := max
{√

2/σ1, . . . ,
√

2/σN

}
max
{
σ1(1−γ1L1)

γ1
, . . . ,

σN (1−γN LN )

γN

}
.

Proof. Following [42, Chapter 10], the subdifferential of L at (xk+1, xk) is given by

∂L(x
k+1, x

k) =
(
∂

x
k+1L(x

k+1, x
k), ∂

x
kL(x

k+1, x
k)
)
, (3.13)

where, for j = 1, . . . ,N , by applying [42, Exercise 8.8] we have

∂
x
k+1
j
L(x

k+1, x
k) = ∇j f (x

k+1) + ∂g j(x
k+1
j ) +

N∑

i= j

δi(∇jhi(x
k,i) − ∇jhi(x

k,i−1)); (3.14)

∂
x
k
j
L(x

k+1, x
k) =

j−1∑

i=1

δi(∇jhi(x
k,i) − ∇jhi(x

k,i−1)) − ∇2
j jh j(x

k, j−1)(xk+1
j − xk

j). (3.15)

Writing the first-order optimality conditions for the subproblem (3.3) implies that there

exists a subgradient ηk+1
j
∈ ∂g j(xk+1

j
) such that

∇j f (x
k, j−1) − αk

j

γk
j

(xk
j − xk−1

j ) + 1

γk
j

(
∇jh j(x

k, j) − ∇jh j(x
k, j−1)
)
+ ηk+1

j = 0 j ∈ [N],

which implies ηk+1
j
= 1

γk
j

(
∇jh j(x

k, j−1) − ∇jh j(x
k, j)
)
+

αk
j

γk
j

(xk
j
− xk−1

j
) − ∇j f (x

k, j−1), j ∈ [N].

Therefore, we haveVk+1
j
= ∇j f (x

k+1)+ηk+1
j
+
∑N

i= j δi(∇jhi(x
k,i)−∇jhi(x

k,i−1)) ∈ ∂
x
k+1
j
L(x

k+1, x
k),

which implies Gk+1 ∈ ∂L(x
k+1, x

k). Together with the Lipschitz continuity of ∇i f , ∇ihi and

the boundedness of ∇2
ii
hi on bounded sets, the boundedness of (x

k)
k∈�, and the triangle

inequality, this implies that there exist constants L̂, L̂i, Li > 0 (for i ∈ [N]) such that

‖Gk+1
j ‖ = ‖Vk+1

j ‖ + ‖Wk+1
j ‖ ≤

αk
j

γk
j

‖xk
j − xk−1

j ‖ + ‖∇j f (x
k+1) − ∇j f (x

k, j−1)‖

+

N∑

i=1

δi‖∇jhi(x
k,i) − ∇jhi(x

k,i−1)‖ + 1

γk
j

‖∇jh j(x
k) − ∇jh j(x

k,1)‖ + ‖∇2
j jh j(x

k, j−1)‖ ‖xk+1
j − xk

j‖

≤ αk
j

γk
j

‖xk
j − xk−1

j ‖ + L̂

N∑

i=1

‖xk+1
i − xk

i ‖ +
N∑

i=1

δiL̃i‖xk+1
i − xk

i ‖ +
(

L̃ j

γk
j

+ Li

)
‖xk+1

j − xk
j‖.

Combining the last two inequalities with (3.9), it can be deduced that

‖Gk+1‖≤
(
N
(
L̂ +max

{
δ1L̃1, . . . , δN L̃N

})
+max

{
L̃1

γk
1

+ L1, . . . ,
L̃N

γk
N

+ LN

})∑N
i=1 ‖xk+1

i
− xk

i
‖

+max

{
αk

1

γk
1

, . . . ,
αk

N

γk
N

}∑N
i=1 ‖xk

i
− xk−1

i
‖

≤
(
N
(
L̂ +max

{
δ1L̃1, . . . , δN L̃N

})
+max

{
L̃1

γ1
+ L1, . . . ,

L̃N

γN
+ LN

})∑N
i=1 ‖xk+1

i
− xk

i
‖

+max
{
σ1(1−γ1L1)

γ1
, . . . ,

σN (1−γN LN )

γN

}∑N
i=1 ‖xk

i
− xk−1

i
‖

≤ c
∑N

i=1 ‖xk+1
i
− xk

i
‖ + ĉ

∑N
i=1 ‖xk

i
− xk−1

i
‖.

Hence, it follows from the block strong convexity of hi (i = 1, . . . ,N) that

‖Gk+1‖≤ c
∑N

i=1 ‖xk+1
i
− xk

i
‖ + ĉ

∑N
i=1 ‖xk

i
− xk−1

i
‖

≤ c
∑N

i=1

√
Dh(xk,i, xk,i−1) + ĉ

∑N
i=1

√
Dh(xk−1,i, xk−1,i−1),

giving our desired result. �
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Remark 3.8. Note that a uniformly continuous function maps bounded sets to bounded

sets. Therefore, in Proposition 3.7, if the function ∇2
ii
hi (i = 1, . . . ,N) is uniformly contin-

uous, it is bounded on bounded sets. �

Applying Proposition 3.7, the subsequential convergence of (x
k)

k∈� generated by BIBPA

is presented next. On top of that we explain some basic properties of ω(x
0).

Assumption III. C ⊆ int dom h1.

Theorem 3.9 (subsequential convergence and properties of ω(x
0)). Let all assumptions of

Proposition 3.7 and Assumption II hold. Then, the following assertions are satisfied:

(i) every cluster point of (x
k)

k∈� is a critical point of Φ, i.e., ω(x
0) ⊂ crit Φ;

(ii) limk→∞ dist
(
x

k, ω(x
0)
)
= 0;

(iii) ω(x
0) is a nonempty, compact, and connected set;

(iv) the Lyapunov functionL is finite and constant on ω(x
0).

Proof. Let us assume x
⋆ = (x⋆

1
, . . . , x⋆

N
) ∈ ω(x

0). The boundedness of (x
k)

k∈� implies that

there exists an infinite index setJ ⊂ � such that the subsequence (x
k)

k∈J → x
⋆ as k → ∞.

It follows from (3.5) that

〈∇i f (x
k,i−1) − αk

i

γk
i

(xk
i
− xk−1

i
), xk+1

i
− xk

i
〉 + 1

γk
i

Dhi
(x

k,i, x
k,i−1) + gi(xk+1

i
)

≤ 〈∇i f k(x
k,i−1) − αk

i

γk
i

(xk
i
− xk−1

i
), x⋆

i
− xk

i
〉 + 1

γk
i

Dhi
(x

⋆, x
k,i−1) + gi(x⋆

i
).

(3.16)

Invoking Proposition 3.5 and using block strong convexity of hi, there exist ε⋆
i
> 0, k0

i
∈ �,

and a neighborhood B(x⋆
i
, ε⋆

i
) such that limk→∞

σi

2
‖xk+1

i
− xk

i
‖2 ≤ limk→∞Dhi

(x
k,i, x

k,i−1) =

0, xk
i
∈ B(x⋆

i
, ε⋆

i
), i ∈ [N], for k ≥ k0

i
and k ∈ J , i.e., limk→∞(xk+1

i
− xk

i
) = 0. Hence,

substituting k = k j − 1 for k j ∈ J into (3.16) and taking the limit from both sides of (3.16),

we derive lim sup j→∞ gi(x
k j

i
) ≤ gi(x⋆

i
) i = 1 ∈ [N]. Furthermore, since gi is lsc, this

yields that lim j→∞ gi(x
k j

i
) = gi(x⋆

i
), then

lim
j→∞
L(x

k j+1, x
k j) = lim

j→∞

 f (x
k j

1
, . . . , x

k j

N
) +

N∑

i=1

gi(x
k j

i
) +

N∑

i=1

δi Dhi
(x

k j,i, x
k j ,i−1)

 = L(x
⋆, x

⋆).

Hence, from (3.12) and Proposition 3.5, we obtain

lim
k→+∞

‖Gk+1‖ ≤ lim
k→+∞

c
N∑

i=1

√
Dhi

(xk,i, xk,i−1) + ĉ

N∑

i=1

√
Dhi

(xk−1,i, xk−1,i−1)

 = 0,

which consequently yields limk→∞Gk+1 = 0. As a result, we have 0 ∈ ∂L(x⋆, x⋆), owing

to the closedness of the subdifferential mapping ∂L. The result of Theorem 3.9(i) follows

from the fact ∂L(x
⋆, x

⋆) =
(
∂Φ(x

⋆), 0
)
. Moreover, Theorem 3.9(ii) is a straightforward

consequence of Theorem 3.9(i), and Theorem 3.9(iii) and Theorem 3.9(iv) can be proved

in the same way as [19, Lemma 5(iii)-(iv)]. �

3.1. Global convergence for KŁ functions. In this section, we consider the class of

Kurdyka-Łojasiewicz (KŁ) functions (see [32, 34]) and show that for such functions the

sequence (x
k)

k∈� converges to a critical point x⋆.

Definition 3.10 (KŁ property). A proper and lsc function ϕ : �n → � has the KŁ property

at x
⋆ ∈ domϕ if there exist a concave function ψ : [0, η] → [0,+∞[ (with η > 0) and



A block inertial Bregman proximal algorithm 11

neighborhood B(x
⋆; ε) with ε > 0, such that (i) ψ(0) = 0; (ii) ψ is of class C1 with ψ > 0

on (0, η); (ii) for all x ∈ B(x
⋆; ε) such that ϕ(x

⋆) < ϕ(x) < ϕ(x
⋆) + η it holds that

ψ′(ϕ(x) − ϕ(x
⋆)) dist(0, ∂ϕ(x)) ≥ 1. (3.17)

If this property holds for each point of dom ∂ϕ, the ϕ is a KŁ function.

In [33, 34], Stanisław Łojasiewicz showed for the first time that every real analytic

function1 satisfies (3.17) with ψ(s) := κ
1−θ s1−θ with θ ∈ [0, 1). In 1998, Kurdyka [32]

proved that this inequality is valid for C1 functions whose graph belong to an o-minimal

structure (see its definition in [25]). Later, (3.17) was extended for nonsmooth functions in

[17, 16, 18].

The KŁ property (3.17) of the underlying objective function plays a key role in estab-

lishing the global convergence of a generic algorithm for nonconvex problems; however,

this is not sufficient and one also needs some additional conditions to be guaranteed by the

algorithm (see below). In particular, for several algorithms the cost functions satisfy the

sufficient decrease condition (cf. [2, 6, 19]), while for some others the sufficient decrease

condition is satisfied for some Lyapunov functions (cf. [26, 40, 39, 41, 51]).

As shown in Proposition 3.5, Proposition 3.7, and Theorem 3.9 (see its proof), the se-

quence (x
k)

k∈� generated by BIBPA satisfies the following conditions that are non-Euclidean

extension of those given in [6, 19] for the structured problem (2.1):

1) (sufficient descent condition) For each k ∈ � and ai, bi ≥ 0 (i = 1, . . . ,N),

N∑

i=1

(
ai Dhi

(x
k,i, x

k,i−1) + bi Dhi
(x

k−1,i, x
k−1,i−1)

)
≤ L(x

k, x
k−1) − L(x

k+1, x
k);

2) (subgradient lower bound of iteration gap) For each k ∈ �, there exists a subgra-

dient Gk+1 ∈ ∂L(x
k+1, x

k) and c, d̂ ≥ 0 such that

‖Gk+1‖ ≤ c

N∑

i=1

√
Dhi

(xk,i, xk,i−1) + ĉ

N∑

i=1

√
Dhi

(xk−1,i, xk−1,i−1);

3) (continuity condition) The function L is a KŁ function, and each cluster point x
⋆

of (x
k)

k∈� (x
⋆ ∈ ω(x

0)) satisfies (x
⋆, x

⋆) ∈ critL
We now use the above three conditions to prove that the whole sequence (x

k)
k∈� converges.

Theorem 3.11 (global convergence). Let all assumptions of Proposition 3.7 and Assump-

tion II hold. If L is a KŁ function, then the following statements are true:

(i) The sequence (x
k)

k∈� has finite length, i.e.,

∞∑

k=1

‖xk+1
i − xk

i ‖ < ∞ i = 1, . . . ,N; (3.18)

(ii) The sequence (x
k)

k∈� converges to a stationary point x
⋆ of Φ.

Proof. Define the sequence (dk)
k∈� as dk :=

∑N
i=1

√
Dhi

(xk,i, xk,i−1) +
√

Dhi
(xk−1,i, xk−1,i−1).

From Proposition 3.7 for c̃ := max
{
c, ĉ
}
, we obtain

‖Gk+1‖≤ c
∑N

i=1

√
Dh(xk,i, xk,i−1) + ĉ

∑N
i=1

√
Dh(xk−1,i, xk−1,i−1)

≤ c̃
∑N

i=1

(√
Dhi

(xk,i, xk,i−1) +
√

Dhi
(xk−1,i, xk−1,i−1)

)
= c̃dk.

(3.19)

1A function ϕ : �n → � said to be real analytic if it can be represented by a convergent power series.
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Applying twice the root-mean square and arithmetic mean inequalitywe come to

dk≤
√

N
∑N

i=1 Dhi
(xk,i, xk,i−1) +

√
N
∑N

i=1 Dhi
(xk−1,i, xk−1,i−1)

≤
√

2N
∑N

i=1

(
Dhi

(xk,i, xk,i−1) + Dhi
(xk−1,i, xk−1,i−1)

)
.

(3.20)

Then, it can be concluded from Proposition 3.5 and (3.20) that

Lk − Lk+1≥ ∑N
i=1

(
ai Dhi

(x
k,i, x

k,i−1) + bi Dhi
(x

k−1,i, x
k−1,i−1)

)

≥ ̺∑N
i=1

(
Dhi

(x
k,i, x

k,i−1) + Dhi
(x

k−1,i, x
k−1,i−1)

)
≥ ̺

2N
d2

k
,

where ̺ := min {a1, b1, . . . , aN , bN}. Together with (3.19) and Theorem 3.9(i), this implies

that [39, Assumption H] holds true with ak =
̺

2N
, bk = 1, b = c̃, I = {1}, εk = 0. There-

fore, since L is a proper lower semicontinuous KŁ function, [39, Theorem 10] yields that

Theorem 3.11(i) holds true and the sequence (x
k)

k∈� converges to x
⋆ in which (x

⋆, x
⋆) is

a stationary point of the Lyapunov functionL (3.8), i.e., 0 ∈ ∂L(x
⋆, x

⋆). Finally, the result

follows from the fact ∂L(x
⋆, x

⋆) =
(
∂Φ(x

⋆), 0
)
. �

3.2. Rate of convergence for Łojasiewicz-type KŁ functions. We now investigate the

convergence rate of the generated sequence under KŁ inequality of Łojasiewicz-type at x⋆

(ψ(s) := κ
1−θ s1−θ with θ ∈ [0, 1)), i.e., there exists ε > 0 such that

|ϕ(x) − ϕ⋆|θ ≤ κ dist(0, ∂ϕ(x)) ∀x ∈ B(x
⋆; ε). (3.21)

Fact 3.12 (convergence rate of a sequence with positive elements). [22, Lemma 15] Let

(sk)
k∈� be a monotonically decreasing sequence in�+ and let θ ∈ [0, 1) and β > 0. Suppose

that s2θ
k
≤ β(sk − sk+1) holds for all k ∈ �. Then, the following assertions hold:

(i) If θ = 0, the sequences (sk)
k∈� converges in a finite time;

(ii) If θ ∈ (0, 1/2], there exist λ > 0 and τ ∈ [0, 1) such that 0 ≤ sk ≤ λτk for every k ∈ �.

(iii) If θ ∈ (1/2, 1), there exists µ > 0 such that 0 ≤ sk ≤ µk
− 1

2θ−1 for every k ∈ �
Let (Sk)

k∈� given by Sk := L(x
k, x

k−1) − L(x
⋆, x

⋆). We next derive the convergence

rates of (x
k)

k∈� and (Sk)
k∈� when L satisfies the KŁ inequality of Łojasiewicz type.

Theorem 3.13 (convergence rate). Let all assumptions of Proposition 3.7 and Assumption

II hold, and (x
k)

k∈� converges to x
⋆. If L satisfies the KŁ inequality of Łojasiewicz type,

then the following assertions hold:

(i) if θ = 0, then the sequences (x
k)

k∈� and (Φ(x
k))

k∈� converge in a finite number of

steps to x
⋆ and Φ(x

⋆), respectively;

(ii) if θ ∈ (0, 1/2], then there exist λ1 > 0, µ1 > 0, τ, τ ∈ [0, 1), and k ∈ � such that

0 ≤ ‖xk − x
⋆‖ ≤ λ1τ

k, 0 ≤ Sk ≤ µ1τ
k ∀k ≥ k;

(iii) if θ ∈ (1/2, 1), then there exist λ2 > 0, µ2 > 0, and k ∈ � such that

0 ≤ ‖xk − x
⋆‖ ≤ λ2k

− 1−θ
2θ−1 , 0 ≤ Sk ≤ µ2k

− 1−θ
2θ−1 ∀k ≥ k + 1.

Proof. We first set ε > 0 to be that a constant described in (3.21) and xk ∈ B(x⋆; ε) for all

k ≥ k̃ and k̃ ∈ �. Let us define ∆k := ψ(L(x
k, x

k−1) − L(x
⋆, x

⋆)) = ψ(Sk). Then, it follows
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from the concavity of ψ and 2) that

∆k − ∆k+1= ψ(Sk) − ψ(Sk+1) ≥ ψ′(Sk)(Sk − Sk+1)

= ψ′(Sk)(L(x
k, x

k−1) − L(x
k+1, x

k)) ≥ L(x
k ,xk−1)−L(x

k+1,xk)

dist(0,∂L(x
k ,xk−1))

≥
∑N

i=1 (ai Dhi
(x

k,i ,xk,i−1)+bi Dhi
(x

k−1,i ,xk−1,i−1))
c
∑N

i=1

√
Dhi

(x
k−1,i ,xk−1,i−1)+̂c

∑N
i=1

√
Dhi

(x
k−2,i ,xk−2,i−1)

≥ 1
c

∑N
i=1 (Dhi

(x
k,i ,xk,i−1)+Dhi

(x
k−1,i ,xk−1,i−1))

∑N
i=1

(√
Dhi

(x
k−1,i ,xk−1,i−1)+

√
Dhi

(x
k−2,i ,xk−2,i−1)

) ,

with c := max {c,̂c}/min {a1,b1,...,aN ,bN }. Using (3.20) and applying the arithmetic mean and geo-

metric mean inequality, it can be concluded that

dk≤
√

2N
∑N

i=1

(
Dhi

(xk,i, xk,i−1) + Dhi
(xk−1,i, xk−1,i−1)

)

≤
√

2cN(∆k − ∆k+1)
∑N

i=1

(√
Dhi

(xk−1,i, xk−1,i−1) +
√

Dhi
(xk−2,i, xk−2,i−1)

)

≤ cN(∆k − ∆k+1) + 1
2

∑N
i=1

(√
Dhi

(xk−1,i, xk−1,i−1) +
√

Dhi
(xk−2,i, xk−2,i−1)

)
(3.22)

We now define the sequences (ak)
k∈� and (bk)

k∈� given by

pk+1 :=

N∑

i=1

√
Dhi

(xk,i, xk,i−1)+

√
Dhi

(xk−1,i, xk−1,i−1), qk = cN(∆k − ∆k+1), α := 1
2
, (3.23)

where
∑∞

i=1 qk = 2cN
∑∞

i=1 (∆i − ∆i+1) = ∆1 − ∆∞ = ∆1 < ∞. This and (3.22) yield pk+1 ≤
1
2

pk + qk for all k ≥ k̃. Since (Φ)
k∈� is non-increasing,

∞∑

j=k

p j+1 ≤ 1
2

∞∑

j=k

(p j − p j+1 + p j+1) + 2cN

∞∑

j=k

(
∆ j − ∆ j+1

)
= 1

2

∞∑

j=k

p j+1 +
1
2

pk + 2cN∆k.

From the root-mean square, the arithmetic mean inequality, ψ(Sk) ≤ ψ(Sk−1), and Propo-

sition 3.5, this lead to

∞∑
j=k

p j+1≤ pk + 4cN∆k =
N∑

i=1

( √
Dhi

(xk−1,i, xk−1,i−1) +
√

Dhi
(xk−2,i, xk−2,i−1)

)
+ 4cNψ(Sk)

≤
√

N
∑N

i=1 Dhi
(xk,i, xk,i−1) +

√
N
∑N

i=1 Dhi
(xk−1,i, xk−1,i−1) + 4cNψ(Sk)

≤
√

2N
∑N

i=1

(
Dhi

(xk,i, xk,i−1) + Dhi
(xk−1,i, xk−1,i−1)

)
+ 4cNψ(Sk)

≤
√

2N/̺
√
Sk−1 − Sk + 4cNψ(Sk−1),

(3.24)

with ̺ := min {a1, b1, . . . , aN , bN}. Since Dhi
(·, ·) ≥ 0, for i = 1, . . . ,N, it holds that

‖xk
i
− x⋆

i
‖ ≤ ‖xk+1

i
− xk

i
‖ + ‖xk+1

i
− x⋆

i
‖ ≤ . . . ≤ ∑∞j=k ‖x

j+1

i
− x

j

i
‖

≤ ∑∞j=k

√
2
σi

Dhi
(xk−1,i, xk−1,i−1) ≤

√
2
σi

∑∞
j=k

( √
Dhi

(xk−1,i, xk−1,i−1) +
√

Dhi
(xk−2,i, xk−2,i−1)

)
.

Combining this with (3.24) and setting ρ := max
{√

2/σ1, . . . ,
√

2/σN

}
, we come to

∑N
i=1 ‖xk

i
− x⋆

i
‖≤ ρ∑∞j=k

∑N
i=1

(√
Dhi

(xk−1,i, xk−1,i−1) +
√

Dhi
(xk−2,i, xk−2,i−1)

)

≤ ρ
√

2N/̺
√
Sk−1 − Sk + 4cρNψ(Sk−1),

which consequently yields

‖xk
i − x⋆i ‖ ≤ νmax

{ √
Sk−1, ψ(Sk−1)

}
i = 1, . . . ,N, (3.25)

with ν := ρ
√

2N/̺ + 4cρN and ψ(s) := κ
1−θ s1−θ. Furthermore, the nonlinear equation

√
Sk−1 − κ

1−θS
1−θ
k−1
= 0 has a solution at Sk−1 = ((1−θ)/κ)

2
1−2θ . For k̂ ∈ � and k ≥ k̂, we
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assume (3.25) holds and Sk−1 ≤
(

κ
1−θ

) 2
1−2θ . Two cases are recognized: (a) θ ∈ (0, 1/2];

(b) θ ∈ (1/2, 1). In Case (a), if θ ∈ (0, 1/2), then ψ(Sk−1) ≤
√
Sk−1. For θ = 1/2, we get

ψ(Sk−1) = κ
1−θ
√
Sk−1, which implies max

{√
Sk−1, ψ(Sk−1)

}
= max

{
1, κ

1−θ

}√
Sk−1. Then,

max
{√
Sk−1, ψ(Sk−1)

}
≤ max

{
1, κ

1−θ

}√
Sk−1. In Case (b), it holds that ψ(Sk−1) ≥

√
Sk−1,

i.e., max
{√
Sk−1, ψ(Sk−1)

}
= κ

1−θS
1−θ
k−1

. Combining both cases, for all k ≥ k := max
{
k̃, k̂
}
,

we end up with

‖xk
i − x⋆i ‖ ≤


νmax

{
1, κ

1−θ

}√
Sk−1 if θ ∈ (0, 1/2],

ν κ
1−θS

1−θ
k−1

if θ ∈ (1/2, 1).
(3.26)

On the other hand, it follows from Proposition 3.5 that

Sk−1 − Sk

= L(x
k−1, x

k−2) − L(x
k, x

k−1) ≥ ̺∑N
i=1

(
Dh(x

k−1,i, x
k−1,i−1 + Dh(x

k−2,i, x
k−2,i−1)

)

≥ ̺

2N

( √
Dhi

(xk−1,i, xk−1,i−1) +
√

Dhi
(xk−2,i, xk−2,i−1)

)2

≥ ̺

2Nc̃2 ‖(Gk
1
, . . . ,Gk

N
)‖2 ≥ ̺

2Nc̃2 dist(0, ∂L(x
k, x

k−1))2 ≥ ̺

2Nc̃2κ2Sθk−1
= c2Sθk−1

,

where c2 :=
̺

2Nc̃2κ2 . The results then follow from Sk → 0, (3.26) and Fact 3.12. �

4. Application to symmetric nonnegative matrix tri-factorization

A natural way of analyzing large data sets is finding an effective way to represent them

using dimensionality reduction methodologies. Nonnegative matrix factorization (NMF) is

one such technique that has received much attention in the last few years; see, e.g., [24, 27]

and the references therein. In order to extract hidden and important features from data,

NMF decomposes the data matrix into two factor matrices (usually much smaller than

the original data matrix) by imposing componentwise nonnegativity and (possibly) other

constraints such as sparsity to take prior information into account. More precisely, let the

data matrix be X = [x1, x2, . . . , xn] ∈ �m×n
+ where each xi represents some data point. NMF

seeks a decomposition of X into a nonnegative n × r basis matrix U = [u1, u2, . . . , ur] ∈
�

m×r
+ and a nonnegative r × n coefficient matrix V = [v1, v2, . . . , vr]

T ∈ �r×n
+ such that

X ≈ UV, (4.1)

where �m×n
+ is the set of m × n nonnegative matrices. Extensive research has been carried

out on variants of NMF, and most studies have focused on algorithmic developments, but

with very limited convergence theory. This motivates us to study the application of BIBPA

to a variant of NMF, namely SymTriNMF; see (2.6) for the formulation of SymTriNMF as

an optimization problem.

One popular application of SymTriNMF is community detection. Let X be the adjacency

matrix of graph so that Xi j = 1 if item i is connected to item j, and Xi j = 0 otherwise. Let

also X ≈ UVUT be a SymTriNMF decomposition of X. Each column of U corresponds to

a community, that is, to a subset of items highly connected. In other words, the entry U jk

of U indicates the membership of item j within community k, and U jk > 0 if j belongs

to community k. The r-by-r matrix V indicates the relationship between communities, that

is, whether the items within two communities are likely to interact: Vkp is the "strength" of

the interaction between the kth and pth communities. We have X ≈ ∑r
k=1

∑r
p=1 U:kVk,pUT

:p,

so that X is decomposed via the sum of r2 rank-one factors corresponding to the r commu-

nities and their interactions; see [49, 52] for more details. Note that SymTriNMF is closely

related to the mixed membership stochastic blockmodel [4].

Given Uk and Vk, we next derive the closed-form solutions for Uk+1 and Vk+1.
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Theorem 4.1 (closed-form solutions of the subproblem (3.5) for SymTriNMF). Let h1 and

h2 be the kernel functions given in (2.7) and (2.8) and Uk and Vk are given. Then,

(i) the iteration Uk+1 of the subproblem (3.5) is given by

Uk+1 = 1
tk

max


1

γk
1

(∇Uh1(Uk,Vk) − γk
1∇U f (Uk,Vk) + αk

1(Uk − Uk−1)
)
, 0

 (4.2)

with

∇U f (Uk,Vk) = −XUk(Vk)T − XT UkVk + UkVk(Uk)T Uk(Vk)T + Uk(Vk)T (Uk)T UkVk,

∇Uh1(Uk,Vk) =
(
a1‖Uk‖2F‖Vk‖2F + b1(‖X‖F ‖Vk‖F + ε1)

)
Uk,

and

tk =
τ1

3
+

3

√
τ2 +

√
∆1

2
+
τ3

1

27
+

3

√
τ2 −

√
∆1

2
+
τ3

1

27
, (4.3)

where τ1 = b1(‖X‖F‖Vk‖F +ε1), τ2 = a1‖Vk‖2
F
‖max

{
Gk, 0

}
‖2

F
, ∆1 = τ

2
2
+ 4

27
τ2

2
τ3

1

with Gk := 1

γk
1

(
∇Uh1(Uk,Vk) − γk

1
∇U f (Uk,Vk) + αk

1
(Uk − Uk−1)

)
.

(ii) for ηk := a2‖Uk+1‖4 + ε2, the iteration Vk+1 of the subproblem (3.5) is given by

Vk+1 = max
{
Vk − 1

ηk

(
αk

2(Vk − Vk−1) − γk
2∇V f (Uk+1,Vk)

)
, 0
}
, (4.4)

with ∇V f (Uk+1,Vk) = (Uk+1)T XUk+1 + (Uk+1)T Uk+1Vk(Uk+1)T Uk+1.

Proof. Setting g1 := δU≥0 and f (U,V) = 1
2
‖X − UVUT ‖2

F
, it follows from (3.5) that

Uk+1 = arg minU∈�m×r

{
〈∇U f (Uk,Vk) − αk

1

γk
1

(Uk − Uk−1),U − Uk〉
+ 1

γk
1

Dh1
((U,Vk), (Uk,Vk)) + g1(U)

}

= arg minU≥0

{
1

γk
1

〈γk
1
∇U f (Uk,Vk) − ∇Uh1(Uk,Vk) − αk

1
(Uk − Uk−1),U〉 + 1

γk
1

h1(U,Vk)
}
.

(4.5)

By [44, Corollary 3.5], the normal cone of the nonnegativity constraint U ≥ 0 isNU≥0(Uk) ={
P ∈ �m×r | Uk ⊙ P = 0, P ≤ 0

}
where Uk⊙P denotes the Hadamard products given point-

wise by (Uk ⊙ P)i j := Uk
i j

Pi j for i ∈ 1, . . . ,m and j ∈ 1, . . . , r. The first-order optimality

conditions for the subproblem (4.5) yields that Gk − (a1‖Uk+1‖2
F
‖Vk‖2

F
+ b1(‖X‖F‖Vk‖F +

ε1))Uk+1 ∈ NU≥0(Uk+1).

We now consider two cases: (i) Gi j ≤ 0; (ii) Gi j > 0. In Case (i), we have

Pi j = Gk
i j − (a1‖Uk+1‖2F‖Vk‖2F + b1(‖X‖F‖Vk‖F + ε1))Uk+1

i j ≤ 0,

hence Uk+1
i j
= 0. In Case (ii), if Uk+1

i j
= 0, then Pi j = Gk

i j
> 0, which contradicts

P ≤ 0; hence Gk
i j
− (a1‖Uk+1‖2

F
‖Vk‖2

F
+ b1(‖X‖F‖Vk‖F + ε1))Uk+1

i j
= 0. Combining both

cases, we get (a1‖Uk+1‖2
F
‖Vk‖2

F
+ b1(‖X‖F‖Vk‖F + ε1))Uk+1 = ProjG≥0(Gk). Denote tk =

a1‖Uk+1‖2
F
‖Vk‖2

F
+ b1‖X‖F‖Vk‖F , then ‖Uk+1‖2

F
= (tk − b1‖X‖F‖Vk‖F )/(a1‖Vk‖2

F
). We have

t3
k
− b1‖X‖F‖Vk‖F t2

k
− a1‖Vk‖2

F
‖ProjG≥0(Gk)‖2

F
= 0. Note that the third order polynomial

equation y2(y − a) = c has the unique real solution y = a
3
+

3

√
c+
√
∆

2
+ a3

27
+

3

√
c−
√
∆

2
+ a3

27
,

where ∆ = c2+ 4
27

ca3. Then we get (4.3). Finally, the result follows from Uk+1 =
ProjG≥0 (Gk)

tk
.
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By setting g2 := δV≥0 and invoking (3.5), we get

Vk+1 = arg minV∈�r×r

{
〈∇V f (Uk+1,Vk) − αk

2

γk
2

(Vk − Vk−1),V − Vk〉
+ 1

γk
2

Dh2
((Uk+1,V), (Uk+1,Vk)) + g2(V)

}

= arg minV≥0
1

γk
2

〈γk
2
∇V f (Uk+1,Vk) − αk

2
(Vk − Vk−1) − ∇h2(Uk+1,Vk),V〉 + 1

γk
2

h2(Uk+1,V)

= arg minV≥0

{∥∥∥V − 1
a2‖Uk+1 ‖4+ε2

(
αk

2
(Vk − Vk−1) + ∇h2(Uk+1,Vk) − γk

2
∇V f (Uk+1,Vk)

)∥∥∥2
F

}

= ProjV≥0

(
Vk − 1

ηk

(
αk

2
(Vk − Vk−1) − γk

2
∇V f (Uk+1,Vk)

))
,

which proves (4.4). �

5. Final remarks

The descent lemma is a key factor for analyzing the first-order methods in both Eu-

clidean and non-Euclidean settings. Owing to the notion of block relative smoothness, it

was shown that the descent lemma is still valid for each block of variables for structured

nonsmooth nonconvex problems with non-Lipschitz gradients. Based on this development,

BIBPAwas introduced to deal with such problems, and it was shown to be globally conver-

gent for KŁ functions and its convergence rate was also studied. Besides, it was shown that

the objective of the symmetric nonnegative matrix tri-factorization (SymTriNMF) prob-

lem is block relatively smooth, and the corresponding subproblems can be solved in closed

forms. To our knowledge, BIBPA is the first algorithm with rigorous theoretical guaran-

tee of convergence for this problem. We emphasize that the main objective of this paper is

to provide a theoretical and algorithmic framework that can handle block structured non-

smooth nonconvex problems under the block relative smoothness assumption. Hence, a

comprehensive numerical experiments for such structured problems are postponed to a fu-

ture work.
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